Evaluation of Bond Repair Effect for Ultra-high-strength Concrete Specimens by Neutron Diffraction Method

The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 21; no. 5; pp. 337 - 350
Main Authors Yasue, Ayumu, Kobayashi, Kensuke, Yoshioka, Masahiro, Noma, Takashi, Okuno, Koichi, Tanaka, Seiichiro, Hirata, Yoshikazu, Oh-oka, Tokunao, Kimura, Yoshiharu, Nagai, Tomoya, Shobu, Takahisa, Nishio, Yuhei, Kanematsu, Manabu
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 03.05.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the non-injected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens.
AbstractList The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the non-injected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens.
Author Kimura, Yoshiharu
Yasue, Ayumu
Tanaka, Seiichiro
Shobu, Takahisa
Hirata, Yoshikazu
Oh-oka, Tokunao
Nagai, Tomoya
Kobayashi, Kensuke
Kanematsu, Manabu
Yoshioka, Masahiro
Noma, Takashi
Okuno, Koichi
Nishio, Yuhei
Author_xml – sequence: 1
  fullname: Yasue, Ayumu
  organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
– sequence: 2
  fullname: Kobayashi, Kensuke
  organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
– sequence: 3
  fullname: Yoshioka, Masahiro
  organization: Technical Research Institute, Technical Promotion Division, Haseko Corporation, 3-1-1 Tsurumaki, Tama, Tokyo, Japan
– sequence: 4
  fullname: Noma, Takashi
  organization: Utilization Promotion Division, Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Ibaraki, Japan
– sequence: 5
  fullname: Okuno, Koichi
  organization: Technical Research Institute, Hazama Ando Corporation, 515-1 Karima, Tsukuba, Ibaraki, Japan
– sequence: 6
  fullname: Tanaka, Seiichiro
  organization: Technical Research Institute, Hazama Ando Corporation, 515-1 Karima, Tsukuba, Ibaraki, Japan
– sequence: 7
  fullname: Hirata, Yoshikazu
  organization: Technology Development Office, Daisue Construction, 1-7-27 Shinsuna, Koto-ku, Tokyo, Japan
– sequence: 8
  fullname: Oh-oka, Tokunao
  organization: Institute of Technology, Tokyu Construction, 3062-1 Tana, Sagamihara, Kanagawa, Japan
– sequence: 9
  fullname: Kimura, Yoshiharu
  organization: Building Technology Group, Research Institute, Nishimatsu Construction, 2-2-1 Toranomon, Minato-ku, Tokyo, Japan
– sequence: 10
  fullname: Nagai, Tomoya
  organization: Building Technology Group, Research Institute, Nishimatsu Construction, 2-2-1 Toranomon, Minato-ku, Tokyo, Japan
– sequence: 11
  fullname: Shobu, Takahisa
  organization: Material Sciences Research Center, Sector of Nuclear Science Research, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, Japan
– sequence: 12
  fullname: Nishio, Yuhei
  organization: Department of Fire Engineering, Building Research Institute, 1 Tachihara, Tsukuba, Ibaraki, Japan
– sequence: 13
  fullname: Kanematsu, Manabu
  organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
BookMark eNo9kE9LAzEQxYMo2FZPfoGAR9mabLqb3Yugtf6BqqD2HNJk0t2lTdYkK_Tbu7Wll5mB-c17wxuiU-ssIHRFyZjRjN42UsVxSseM8RM0oGzCE1ZSdvo_50lB6OQcDUNoCGGccT5A9exXrjsZa2exM_jBWY0_oZW1xzNjQEVsnMeLdfQyqepVlYTowa5ihafOKg8R8FcLqt6ADXi5xe_QRd9rPdbG-P6bne4bxMrpC3Rm5DrA5aGP0OJp9j19SeYfz6_T-3mispTEhMlMaQDOyDLTE60JL-iSEw6ZopxrTctMp8oUUBQ0ZQXLGSU6BZNLrkmpNBuh671u691PByGKxnXe9pYiLdIsL8u-9tTNnlLeheDBiNbXG-m3ghKxy1LsshQpFX2WPX23p5sQ5QqOrPSxVms4stnh4LhQlfQCLPsDUpaA0g
Cites_doi 10.1016/j.engfailanal.2003.08.005
10.1016/j.conbuildmat.2016.10.036
10.1016/j.nima.2008.11.056
10.2208/jscej.1986.372_121
10.1007/s40069-016-0157-4
10.4028/www.scientific.net/MSF.681.443
10.14359/11203
10.1680/macr.13.00198
10.3130/aijs.86.1026
10.14359/12207
10.1155/2012/328570
10.1016/j.cemconcomp.2018.07.017
10.1080/13632469.2012.738284
10.14359/2758
10.2208/jscejmcs.72.19
10.3130/aijsaxx.132.0_1
10.1007/978-94-009-8567-4
10.14359/11325
10.1080/13632469809350320
10.3151/jact.6.317
10.7566/JPSCP.8.031006
10.1016/j.conbuildmat.2015.06.043
10.14359/6913
10.1088/0957-0233/25/2/025602
10.1016/j.compositesb.2019.107456
10.1002/suco.201500199
ContentType Journal Article
Copyright 2023 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2023
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.21.337
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 350
ExternalDocumentID 10_3151_jact_21_337
article_jact_21_5_21_337_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c520t-3a5cdee730b5d4dd0781b707e5c177dd195d2cf8e88123836310d2ef6a7d09cd3
ISSN 1346-8014
IngestDate Mon Jun 30 08:18:34 EDT 2025
Tue Jul 01 01:31:06 EDT 2025
Thu Jul 06 09:20:53 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-3a5cdee730b5d4dd0781b707e5c177dd195d2cf8e88123836310d2ef6a7d09cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/21/5/21_337/_article/-char/en
PQID 2825699825
PQPubID 1996343
PageCount 14
ParticipantIDs proquest_journals_2825699825
crossref_primary_10_3151_jact_21_337
jstage_primary_article_jact_21_5_21_337_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023/05/03
PublicationDateYYYYMMDD 2023-05-03
PublicationDate_xml – month: 05
  year: 2023
  text: 2023/05/03
  day: 03
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2023
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 3) Brantschen, F., Faria, D. M. V., Ruiz, M. F. and Muttoni, A., (2016). “Bond behaviour of straight, hooked, U-shaped and headed bars in cracked concrete.” Structural Concrete, 17(5), 799-810.
35) Shima, H., Chou, L. L. and Okamura, H., (1987). “Micro and macro models for bond in reinforced concrete.” Journal of the Faculty of Engineering, The University of Tokyo, (2), 141-157.
5) Clarkson, W. P., (1972). “A review of the repair of two concrete buildings damaged by the San Fernando earthquake.” ACI Journal Proceedings, 70(3), 237-241.
26) Lee, S. W., Kang, S. B., Tan, K. H. and Yang, E. H., (2016). “Experimental and analytical investigation on bond-slip behavior of deformed bars embedded in engineered cementitious composites.” Construction and Building Materials, 127(30), 494-503.
40) Yang, L., Shi, C. and Wu, Z., (2019). “Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review.” Composites Part B: Engineering, 178(1), 1-12.
22) JSA, (2020). “Steel bars for concrete reinforcement (JIS A 3112).” Tokyo: Japanese Standards Association.
18) JSA, (2014). “Plastics - Determination of tensile properties - Part 1: General principles (JIS K 7161).” Tokyo: Japanese Standards Association.
7) Desnerck, P., Lees, J. M. and Morley, C. T., (2015). “Bond behaviour of reinforcing bars in cracked concrete.” Construction and Building Materials, 94, 126-136.
32) Ozaka, Y., Suzuki, M., Ishida, H. and Miyamoto, M., (1986). “Bond failure of reinforced concrete members and effectiveness of repairs by epoxy resin injection.” Doboku Gakkai Ronbunshu, 372/V-5, 121-130. (in Japanese
38) Suzuki, H., Kusunoki, K., Kanematsu, M., Mukai, T. and Harjo, S., (2016). “Structural engineering studies on reinforced concrete structure using neutron diffraction.” In: T. M. Holden, O. Muránsky and L. Edwards, Eds. Proceedings of the 10th International Conference on Residual Stresses 2016 (ICRS-10), Sydney 3-7 July 2016. Millersville, PA, USA: Materials Research Forum LLC, Vol. 2, 25-30.
25) Kobayashi, K., Yasue, A., Kim, J., Nishio, Y., Miyazu, Y., Mukai, T. and Kanematsu, M., (2022). “The effect on the measurement time of neutron diffraction method on the accuracy of measuring rebar stress.” Summaries of Technical Papers of Annual Meeting of AIJ (A-1: Materials and Construction), Hokkaido 5-9 September 2022. Tokyo: Architectural Institute of Japan, 161-162. (in Japanese
37) Suzuki, H., Kusunoki, K., Hatanaka, Y., Mukai, T., Tasai, A., Kanematsu, M., Kabayama, K. and Harjo, S., (2014). “Measuring strain and stress distributions along rebar embedded in concrete using time-of-flight neutron diffraction.” Measurement Science and Technology, 25(2), 1-8.
4) Chung, H. W., (1981). “Epoxy repair of bond in reinforced concrete members.” ACI Journal Proceedings, 78(1), 79-82.
12) Hardt, von der P. and Rotger, H., (1981). “Neutron radiography handbook: Nuclear science and technology.” The Netherlands: Springer Dordrecht.
34) Sahamitmongkol, R., Suwathanangkul, S., Phoothong, P. and Kato, Y., (2008). “Flexural behavior of corroded RC members with patch repair - Experiments & simulation.” Journal of Advanced Concrete Technology, 6(2), 317-336.
13) Harjo, S., Ito, T., Aizawa, K., Arima, H., Abe, J., Moriai, A., Iwahashi, T. and Kamiyama, T., (2011). “Current status of engineering materials diffractometer at J-PARC.” Materials Science Forum, 681, 443-448.
20) JSA, (2017). “Method of test for static modulus of elasticity of concrete (JIS A 1149).” Tokyo: Japanese Standards Association.
29) McHenry, D. E. and Walker, W. T., (1948). “Laboratory measurements of stress distribution in reinforcing steel.” ACI Journal Proceedings, 44(6), 1041-1054.
1) Abbas, S., Nehdi, M. L. and Saleem, M. A., (2016). “Ultra-high performance concrete: Mechanical performance, durability, sustainability, and implementation challenges.” International Journal of Concrete Structures and Materials, 10(3), 271-295.
31) Oishi, R., Yonemura, M., Nishimaki, Y., Torii, S., Hoshikawa, A., Ishigaki, T., Morishita, T., Mori, K. and Kamiyama, T., (2009). “Rietveld analysis software for J-PARC.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1), 94-96.
24) Kobayashi, K., Suzuki, H., Nishio, Y. and Kanematsu, M., (2021). “Evaluation of bond performance of reinforced concrete using hot-dip galvanized rebar by neutron diffraction.” Journal of Structural and Construction Engineering (Transactions of AIJ), 86(785), 1026-1035. (in Japanese
9) Furuuchi, H. and Watanabe, T., (2016). “Study on behavior of restoring bar and increasing of fatigue life under cycle loading after crack repairing.” Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 72(1), 19-31. (in Japanese
11) Goto, Y., (1971). “Cracks formed in concrete around deformed tension bars.” ACI Journal Proceedings, 68, 244-251.
6) CTBUH, (2021). “Tall buildings in 2020: Covid-19 contributes to dip in year-on-year completions.” CTBUH Journal, (1), 40-49.
33) Rauf, A., Maki, T. and Sato, R., (2011). “Behavior of quantitatively damaged epoxy injected concrete in uni-axial tension.” Proceedings of the Japan Concrete Institute, 33(2), 1441-1446.
30) Muguruma, H., Morita, S. and Tomita, K., (1967). “Fundamental study on bond between steel and concrete: Part 1 - Basic laws of bond stress distribution II.” Transactions of the Architectural Institute of Japan, 132, 1-6. (in Japanese
8) French, C. W., Thorp, G. A. and Tsai, W. J., (1990). “Epoxy repair techniques for moderate earthquake damage.” ACI Structural Journal, 87(4), 416-424.
21) JSA, (2018). “Method of test for compressive strength of concrete (JIS A 1108).” Tokyo: Japanese Standards Association.
15) Hong, S. and Park, S. K., (2012). “Uniaxial bond stress-slip relationship of reinforcing bars in concrete.” Advances in Materials Science and Engineering, 2012, 328570.
17) JSA, (2011). “Plastics - Determination of compressive properties (JIS K 7181).” Tokyo: Japanese Standards Association.
27) Mansur, M. A. and Ong, K. C. G., (1985). “Epoxy-repaired beams.” Concrete International, 7(10), 46-50.
36) Suzuki, H., Kanematsu, M. and Kusunoki, K., (2012). “Neutron diffraction studies on strain evaluation of rebar in reinforced concrete.” Powder Diffraction, 24, 568-571.
39) Suzuki, H., Kusunoki, K., Kanematsu, M., Tasai, A., Hatanaka, Y., Tsuchiya, N., Bea, S., Shiroishi, S., Sakurai, S., Kawasaki, T. and Harjo, S., (2015). “Application of neutron stress measurement to reinforced concrete structure.” JPS Conference Proceedings, (8), 031006.
10) Giovanni, M. and Giovanni A. P., (2014). “Influence of the relative rib area on bond behavior.” Magazine of Concrete Research, 66(6), 277-294.
28) Marthong, C., Dutta, A. and Deb, S. K., (2013). “Seismic rehabilitation of RC exterior beam-column connections using epoxy resin injection.” Journal of Earthquake Engineering, 17(3), 378-398.
23) Karayannis, C. G., Chalioris, C. E. and Sideris, K. K., (1998). “Effectiveness of RC beam-column connection repair using epoxy resin injections.” Journal of Earthquake Engineering, 2(2), 217-240.
16) JCI, (2011). “Technical committee report on bond models and their applications for numerical analyses, (JCI-TC092A).” Tokyo: Japan Concrete Institute. (in Japanese
19) JSA, (2015). “Epoxy adhesives for repairing and reinforcement in buildings (JIS A 6024).” Tokyo: Japanese Standards Association.
41) Yoo, D. Y. and Shin, H. O., (2018). “Bond performance of steel rebar embedded in 80-180 MPa ultra-high-strength concrete.” Cement and Concrete Composites, 93, 206-217.
2) AIJ, (2019). “AIJ standard for structural calculation of reinforced concrete structures (revised 2010).” Tokyo: Architectural Institute of Japan.
14) Hasan, K., Salih, Y., Hanifi, B., Erhan, Y. and Nihat, Ç., (2004). “May 1, 2003 Turkey—Bingöl earthquake: Damage in reinforced concrete structures.” Engineering Failure Analysis, 11(3), 279-291.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
21
References_xml – reference: 1) Abbas, S., Nehdi, M. L. and Saleem, M. A., (2016). “Ultra-high performance concrete: Mechanical performance, durability, sustainability, and implementation challenges.” International Journal of Concrete Structures and Materials, 10(3), 271-295.
– reference: 8) French, C. W., Thorp, G. A. and Tsai, W. J., (1990). “Epoxy repair techniques for moderate earthquake damage.” ACI Structural Journal, 87(4), 416-424.
– reference: 31) Oishi, R., Yonemura, M., Nishimaki, Y., Torii, S., Hoshikawa, A., Ishigaki, T., Morishita, T., Mori, K. and Kamiyama, T., (2009). “Rietveld analysis software for J-PARC.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1), 94-96.
– reference: 39) Suzuki, H., Kusunoki, K., Kanematsu, M., Tasai, A., Hatanaka, Y., Tsuchiya, N., Bea, S., Shiroishi, S., Sakurai, S., Kawasaki, T. and Harjo, S., (2015). “Application of neutron stress measurement to reinforced concrete structure.” JPS Conference Proceedings, (8), 031006.
– reference: 10) Giovanni, M. and Giovanni A. P., (2014). “Influence of the relative rib area on bond behavior.” Magazine of Concrete Research, 66(6), 277-294.
– reference: 37) Suzuki, H., Kusunoki, K., Hatanaka, Y., Mukai, T., Tasai, A., Kanematsu, M., Kabayama, K. and Harjo, S., (2014). “Measuring strain and stress distributions along rebar embedded in concrete using time-of-flight neutron diffraction.” Measurement Science and Technology, 25(2), 1-8.
– reference: 15) Hong, S. and Park, S. K., (2012). “Uniaxial bond stress-slip relationship of reinforcing bars in concrete.” Advances in Materials Science and Engineering, 2012, 328570.
– reference: 3) Brantschen, F., Faria, D. M. V., Ruiz, M. F. and Muttoni, A., (2016). “Bond behaviour of straight, hooked, U-shaped and headed bars in cracked concrete.” Structural Concrete, 17(5), 799-810.
– reference: 21) JSA, (2018). “Method of test for compressive strength of concrete (JIS A 1108).” Tokyo: Japanese Standards Association.
– reference: 28) Marthong, C., Dutta, A. and Deb, S. K., (2013). “Seismic rehabilitation of RC exterior beam-column connections using epoxy resin injection.” Journal of Earthquake Engineering, 17(3), 378-398.
– reference: 24) Kobayashi, K., Suzuki, H., Nishio, Y. and Kanematsu, M., (2021). “Evaluation of bond performance of reinforced concrete using hot-dip galvanized rebar by neutron diffraction.” Journal of Structural and Construction Engineering (Transactions of AIJ), 86(785), 1026-1035. (in Japanese)
– reference: 41) Yoo, D. Y. and Shin, H. O., (2018). “Bond performance of steel rebar embedded in 80-180 MPa ultra-high-strength concrete.” Cement and Concrete Composites, 93, 206-217.
– reference: 11) Goto, Y., (1971). “Cracks formed in concrete around deformed tension bars.” ACI Journal Proceedings, 68, 244-251.
– reference: 34) Sahamitmongkol, R., Suwathanangkul, S., Phoothong, P. and Kato, Y., (2008). “Flexural behavior of corroded RC members with patch repair - Experiments & simulation.” Journal of Advanced Concrete Technology, 6(2), 317-336.
– reference: 38) Suzuki, H., Kusunoki, K., Kanematsu, M., Mukai, T. and Harjo, S., (2016). “Structural engineering studies on reinforced concrete structure using neutron diffraction.” In: T. M. Holden, O. Muránsky and L. Edwards, Eds. Proceedings of the 10th International Conference on Residual Stresses 2016 (ICRS-10), Sydney 3-7 July 2016. Millersville, PA, USA: Materials Research Forum LLC, Vol. 2, 25-30.
– reference: 40) Yang, L., Shi, C. and Wu, Z., (2019). “Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review.” Composites Part B: Engineering, 178(1), 1-12.
– reference: 7) Desnerck, P., Lees, J. M. and Morley, C. T., (2015). “Bond behaviour of reinforcing bars in cracked concrete.” Construction and Building Materials, 94, 126-136.
– reference: 26) Lee, S. W., Kang, S. B., Tan, K. H. and Yang, E. H., (2016). “Experimental and analytical investigation on bond-slip behavior of deformed bars embedded in engineered cementitious composites.” Construction and Building Materials, 127(30), 494-503.
– reference: 19) JSA, (2015). “Epoxy adhesives for repairing and reinforcement in buildings (JIS A 6024).” Tokyo: Japanese Standards Association.
– reference: 30) Muguruma, H., Morita, S. and Tomita, K., (1967). “Fundamental study on bond between steel and concrete: Part 1 - Basic laws of bond stress distribution II.” Transactions of the Architectural Institute of Japan, 132, 1-6. (in Japanese)
– reference: 25) Kobayashi, K., Yasue, A., Kim, J., Nishio, Y., Miyazu, Y., Mukai, T. and Kanematsu, M., (2022). “The effect on the measurement time of neutron diffraction method on the accuracy of measuring rebar stress.” Summaries of Technical Papers of Annual Meeting of AIJ (A-1: Materials and Construction), Hokkaido 5-9 September 2022. Tokyo: Architectural Institute of Japan, 161-162. (in Japanese)
– reference: 29) McHenry, D. E. and Walker, W. T., (1948). “Laboratory measurements of stress distribution in reinforcing steel.” ACI Journal Proceedings, 44(6), 1041-1054.
– reference: 32) Ozaka, Y., Suzuki, M., Ishida, H. and Miyamoto, M., (1986). “Bond failure of reinforced concrete members and effectiveness of repairs by epoxy resin injection.” Doboku Gakkai Ronbunshu, 372/V-5, 121-130. (in Japanese)
– reference: 9) Furuuchi, H. and Watanabe, T., (2016). “Study on behavior of restoring bar and increasing of fatigue life under cycle loading after crack repairing.” Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 72(1), 19-31. (in Japanese)
– reference: 16) JCI, (2011). “Technical committee report on bond models and their applications for numerical analyses, (JCI-TC092A).” Tokyo: Japan Concrete Institute. (in Japanese)
– reference: 27) Mansur, M. A. and Ong, K. C. G., (1985). “Epoxy-repaired beams.” Concrete International, 7(10), 46-50.
– reference: 4) Chung, H. W., (1981). “Epoxy repair of bond in reinforced concrete members.” ACI Journal Proceedings, 78(1), 79-82.
– reference: 36) Suzuki, H., Kanematsu, M. and Kusunoki, K., (2012). “Neutron diffraction studies on strain evaluation of rebar in reinforced concrete.” Powder Diffraction, 24, 568-571.
– reference: 17) JSA, (2011). “Plastics - Determination of compressive properties (JIS K 7181).” Tokyo: Japanese Standards Association.
– reference: 22) JSA, (2020). “Steel bars for concrete reinforcement (JIS A 3112).” Tokyo: Japanese Standards Association.
– reference: 6) CTBUH, (2021). “Tall buildings in 2020: Covid-19 contributes to dip in year-on-year completions.” CTBUH Journal, (1), 40-49.
– reference: 12) Hardt, von der P. and Rotger, H., (1981). “Neutron radiography handbook: Nuclear science and technology.” The Netherlands: Springer Dordrecht.
– reference: 23) Karayannis, C. G., Chalioris, C. E. and Sideris, K. K., (1998). “Effectiveness of RC beam-column connection repair using epoxy resin injections.” Journal of Earthquake Engineering, 2(2), 217-240.
– reference: 20) JSA, (2017). “Method of test for static modulus of elasticity of concrete (JIS A 1149).” Tokyo: Japanese Standards Association.
– reference: 18) JSA, (2014). “Plastics - Determination of tensile properties - Part 1: General principles (JIS K 7161).” Tokyo: Japanese Standards Association.
– reference: 13) Harjo, S., Ito, T., Aizawa, K., Arima, H., Abe, J., Moriai, A., Iwahashi, T. and Kamiyama, T., (2011). “Current status of engineering materials diffractometer at J-PARC.” Materials Science Forum, 681, 443-448.
– reference: 14) Hasan, K., Salih, Y., Hanifi, B., Erhan, Y. and Nihat, Ç., (2004). “May 1, 2003 Turkey—Bingöl earthquake: Damage in reinforced concrete structures.” Engineering Failure Analysis, 11(3), 279-291.
– reference: 33) Rauf, A., Maki, T. and Sato, R., (2011). “Behavior of quantitatively damaged epoxy injected concrete in uni-axial tension.” Proceedings of the Japan Concrete Institute, 33(2), 1441-1446.
– reference: 35) Shima, H., Chou, L. L. and Okamura, H., (1987). “Micro and macro models for bond in reinforced concrete.” Journal of the Faculty of Engineering, The University of Tokyo, (2), 141-157.
– reference: 2) AIJ, (2019). “AIJ standard for structural calculation of reinforced concrete structures (revised 2010).” Tokyo: Architectural Institute of Japan.
– reference: 5) Clarkson, W. P., (1972). “A review of the repair of two concrete buildings damaged by the San Fernando earthquake.” ACI Journal Proceedings, 70(3), 237-241.
– ident: 2
– ident: 14
  doi: 10.1016/j.engfailanal.2003.08.005
– ident: 18
– ident: 26
  doi: 10.1016/j.conbuildmat.2016.10.036
– ident: 31
  doi: 10.1016/j.nima.2008.11.056
– ident: 35
– ident: 32
  doi: 10.2208/jscej.1986.372_121
– ident: 33
– ident: 1
  doi: 10.1007/s40069-016-0157-4
– ident: 16
– ident: 13
  doi: 10.4028/www.scientific.net/MSF.681.443
– ident: 5
  doi: 10.14359/11203
– ident: 10
  doi: 10.1680/macr.13.00198
– ident: 24
  doi: 10.3130/aijs.86.1026
– ident: 29
  doi: 10.14359/12207
– ident: 15
  doi: 10.1155/2012/328570
– ident: 41
  doi: 10.1016/j.cemconcomp.2018.07.017
– ident: 28
  doi: 10.1080/13632469.2012.738284
– ident: 8
  doi: 10.14359/2758
– ident: 20
– ident: 22
– ident: 17
– ident: 9
  doi: 10.2208/jscejmcs.72.19
– ident: 36
– ident: 30
  doi: 10.3130/aijsaxx.132.0_1
– ident: 12
  doi: 10.1007/978-94-009-8567-4
– ident: 38
– ident: 11
  doi: 10.14359/11325
– ident: 19
– ident: 23
  doi: 10.1080/13632469809350320
– ident: 34
  doi: 10.3151/jact.6.317
– ident: 39
  doi: 10.7566/JPSCP.8.031006
– ident: 7
  doi: 10.1016/j.conbuildmat.2015.06.043
– ident: 4
  doi: 10.14359/6913
– ident: 37
  doi: 10.1088/0957-0233/25/2/025602
– ident: 6
– ident: 21
– ident: 27
– ident: 25
– ident: 40
  doi: 10.1016/j.compositesb.2019.107456
– ident: 3
  doi: 10.1002/suco.201500199
SSID ssj0037377
Score 2.2916431
Snippet The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step,...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 337
SubjectTerms Concrete properties
Epoxy resins
High strength concretes
Neutron diffraction
Neutrons
Polyimide resins
Resin injection
Title Evaluation of Bond Repair Effect for Ultra-high-strength Concrete Specimens by Neutron Diffraction Method
URI https://www.jstage.jst.go.jp/article/jact/21/5/21_337/_article/-char/en
https://www.proquest.com/docview/2825699825
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2023/05/03, Vol.21(5), pp.337-350
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbK4AAHxE_RMZAPu6GUOo4T54jQ0ATaJKRWGqfIiZ1RujYoTQ7l79kfynux44atSIOLVbl-iZr35fmz6-89Qo4VsLaYSR3AfGCCSKdTLPPCAh6ZMk9ZbmRXveHsPD6dR58vxMVodD04tdQ2-aT4tVdX8j9ehT7wK6pk_8Gz_qLQAZ_Bv9CCh6G9k49PfKpu5HxYIRgJtVrU71xSYjxDOL9qahVgWuIAhSHrS1QdVWtgi42x5edXsJRFGnpuWtwYhzBYlrWrIX7WVZj-C4X1BwiK_nrNrZ36bwoc20WgbbtqfXyHMLLFOk5OG7Rpl2YXgKC_WiorJdqo74u68nvW1arrn6klWg_3LEJ7QpAPwiyPMA2ylY9OTN8H4S61ytQ-Nlv1tMOgGARablPFuDmb2-S1N6cDDnSmK0NQNJOQTbzNMOn2jcnQH1GExRGaZ2ichSwD43vkfgiLEYymX776_6p4wrv6nv43WRUoGr8f3PkP3vPgB1D_y9vzf0dqZk_IY-dK-sFC6ykZmfUz8miQo_I5WexARquSIsioBRm1IKMAMroHZLQHGfUgo_mWOpDRAcioBdkLMv90Mvt4Grj6HEEhwmkTcCUKbQzMEbnQkdaYNypPpokRBUsSrVkqdFiU0khgkVzyGJYSOjRlrBI9TQvNX5KDdbU2rwgVRujSsCKXcRqlMlaKxaVkQpWRKpiUY3LcP73sp03Dku3x0Jgk9sn6Qe7d9IOEG-m_QHEjxJIxOepdkbk3fJOhrjtOU2gP73b_1-ThDu5H5KCpW_MGSGuTv-0w8xt2MZ6G
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Bond+Repair+Effect+for+Ultra-high-strength+Concrete+Specimens+by+Neutron+Diffraction+Method&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Yasue%2C+Ayumu&rft.au=Kobayashi%2C+Kensuke&rft.au=Yoshioka%2C+Masahiro&rft.au=Noma%2C+Takashi&rft.date=2023-05-03&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=21&rft.issue=5&rft.spage=337&rft.epage=350&rft_id=info:doi/10.3151%2Fjact.21.337&rft.externalDBID=n%2Fa&rft.externalDocID=10_3151_jact_21_337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon