Evaluation of Bond Repair Effect for Ultra-high-strength Concrete Specimens by Neutron Diffraction Method
The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 21; no. 5; pp. 337 - 350 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
03.05.2023
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the non-injected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens. |
---|---|
AbstractList | The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the non-injected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens. |
Author | Kimura, Yoshiharu Yasue, Ayumu Tanaka, Seiichiro Shobu, Takahisa Hirata, Yoshikazu Oh-oka, Tokunao Nagai, Tomoya Kobayashi, Kensuke Kanematsu, Manabu Yoshioka, Masahiro Noma, Takashi Okuno, Koichi Nishio, Yuhei |
Author_xml | – sequence: 1 fullname: Yasue, Ayumu organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan – sequence: 2 fullname: Kobayashi, Kensuke organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan – sequence: 3 fullname: Yoshioka, Masahiro organization: Technical Research Institute, Technical Promotion Division, Haseko Corporation, 3-1-1 Tsurumaki, Tama, Tokyo, Japan – sequence: 4 fullname: Noma, Takashi organization: Utilization Promotion Division, Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Ibaraki, Japan – sequence: 5 fullname: Okuno, Koichi organization: Technical Research Institute, Hazama Ando Corporation, 515-1 Karima, Tsukuba, Ibaraki, Japan – sequence: 6 fullname: Tanaka, Seiichiro organization: Technical Research Institute, Hazama Ando Corporation, 515-1 Karima, Tsukuba, Ibaraki, Japan – sequence: 7 fullname: Hirata, Yoshikazu organization: Technology Development Office, Daisue Construction, 1-7-27 Shinsuna, Koto-ku, Tokyo, Japan – sequence: 8 fullname: Oh-oka, Tokunao organization: Institute of Technology, Tokyu Construction, 3062-1 Tana, Sagamihara, Kanagawa, Japan – sequence: 9 fullname: Kimura, Yoshiharu organization: Building Technology Group, Research Institute, Nishimatsu Construction, 2-2-1 Toranomon, Minato-ku, Tokyo, Japan – sequence: 10 fullname: Nagai, Tomoya organization: Building Technology Group, Research Institute, Nishimatsu Construction, 2-2-1 Toranomon, Minato-ku, Tokyo, Japan – sequence: 11 fullname: Shobu, Takahisa organization: Material Sciences Research Center, Sector of Nuclear Science Research, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, Japan – sequence: 12 fullname: Nishio, Yuhei organization: Department of Fire Engineering, Building Research Institute, 1 Tachihara, Tsukuba, Ibaraki, Japan – sequence: 13 fullname: Kanematsu, Manabu organization: Department of Architecture, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan |
BookMark | eNo9kE9LAzEQxYMo2FZPfoGAR9mabLqb3Yugtf6BqqD2HNJk0t2lTdYkK_Tbu7Wll5mB-c17wxuiU-ssIHRFyZjRjN42UsVxSseM8RM0oGzCE1ZSdvo_50lB6OQcDUNoCGGccT5A9exXrjsZa2exM_jBWY0_oZW1xzNjQEVsnMeLdfQyqepVlYTowa5ihafOKg8R8FcLqt6ADXi5xe_QRd9rPdbG-P6bne4bxMrpC3Rm5DrA5aGP0OJp9j19SeYfz6_T-3mispTEhMlMaQDOyDLTE60JL-iSEw6ZopxrTctMp8oUUBQ0ZQXLGSU6BZNLrkmpNBuh671u691PByGKxnXe9pYiLdIsL8u-9tTNnlLeheDBiNbXG-m3ghKxy1LsshQpFX2WPX23p5sQ5QqOrPSxVms4stnh4LhQlfQCLPsDUpaA0g |
Cites_doi | 10.1016/j.engfailanal.2003.08.005 10.1016/j.conbuildmat.2016.10.036 10.1016/j.nima.2008.11.056 10.2208/jscej.1986.372_121 10.1007/s40069-016-0157-4 10.4028/www.scientific.net/MSF.681.443 10.14359/11203 10.1680/macr.13.00198 10.3130/aijs.86.1026 10.14359/12207 10.1155/2012/328570 10.1016/j.cemconcomp.2018.07.017 10.1080/13632469.2012.738284 10.14359/2758 10.2208/jscejmcs.72.19 10.3130/aijsaxx.132.0_1 10.1007/978-94-009-8567-4 10.14359/11325 10.1080/13632469809350320 10.3151/jact.6.317 10.7566/JPSCP.8.031006 10.1016/j.conbuildmat.2015.06.043 10.14359/6913 10.1088/0957-0233/25/2/025602 10.1016/j.compositesb.2019.107456 10.1002/suco.201500199 |
ContentType | Journal Article |
Copyright | 2023 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2023 |
Copyright_xml | – notice: 2023 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2023 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.21.337 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 350 |
ExternalDocumentID | 10_3151_jact_21_337 article_jact_21_5_21_337_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c520t-3a5cdee730b5d4dd0781b707e5c177dd195d2cf8e88123836310d2ef6a7d09cd3 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 08:18:34 EDT 2025 Tue Jul 01 01:31:06 EDT 2025 Thu Jul 06 09:20:53 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-3a5cdee730b5d4dd0781b707e5c177dd195d2cf8e88123836310d2ef6a7d09cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/21/5/21_337/_article/-char/en |
PQID | 2825699825 |
PQPubID | 1996343 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2825699825 crossref_primary_10_3151_jact_21_337 jstage_primary_article_jact_21_5_21_337_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023/05/03 |
PublicationDateYYYYMMDD | 2023-05-03 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023/05/03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2023 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 3) Brantschen, F., Faria, D. M. V., Ruiz, M. F. and Muttoni, A., (2016). “Bond behaviour of straight, hooked, U-shaped and headed bars in cracked concrete.” Structural Concrete, 17(5), 799-810. 35) Shima, H., Chou, L. L. and Okamura, H., (1987). “Micro and macro models for bond in reinforced concrete.” Journal of the Faculty of Engineering, The University of Tokyo, (2), 141-157. 5) Clarkson, W. P., (1972). “A review of the repair of two concrete buildings damaged by the San Fernando earthquake.” ACI Journal Proceedings, 70(3), 237-241. 26) Lee, S. W., Kang, S. B., Tan, K. H. and Yang, E. H., (2016). “Experimental and analytical investigation on bond-slip behavior of deformed bars embedded in engineered cementitious composites.” Construction and Building Materials, 127(30), 494-503. 40) Yang, L., Shi, C. and Wu, Z., (2019). “Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review.” Composites Part B: Engineering, 178(1), 1-12. 22) JSA, (2020). “Steel bars for concrete reinforcement (JIS A 3112).” Tokyo: Japanese Standards Association. 18) JSA, (2014). “Plastics - Determination of tensile properties - Part 1: General principles (JIS K 7161).” Tokyo: Japanese Standards Association. 7) Desnerck, P., Lees, J. M. and Morley, C. T., (2015). “Bond behaviour of reinforcing bars in cracked concrete.” Construction and Building Materials, 94, 126-136. 32) Ozaka, Y., Suzuki, M., Ishida, H. and Miyamoto, M., (1986). “Bond failure of reinforced concrete members and effectiveness of repairs by epoxy resin injection.” Doboku Gakkai Ronbunshu, 372/V-5, 121-130. (in Japanese 38) Suzuki, H., Kusunoki, K., Kanematsu, M., Mukai, T. and Harjo, S., (2016). “Structural engineering studies on reinforced concrete structure using neutron diffraction.” In: T. M. Holden, O. Muránsky and L. Edwards, Eds. Proceedings of the 10th International Conference on Residual Stresses 2016 (ICRS-10), Sydney 3-7 July 2016. Millersville, PA, USA: Materials Research Forum LLC, Vol. 2, 25-30. 25) Kobayashi, K., Yasue, A., Kim, J., Nishio, Y., Miyazu, Y., Mukai, T. and Kanematsu, M., (2022). “The effect on the measurement time of neutron diffraction method on the accuracy of measuring rebar stress.” Summaries of Technical Papers of Annual Meeting of AIJ (A-1: Materials and Construction), Hokkaido 5-9 September 2022. Tokyo: Architectural Institute of Japan, 161-162. (in Japanese 37) Suzuki, H., Kusunoki, K., Hatanaka, Y., Mukai, T., Tasai, A., Kanematsu, M., Kabayama, K. and Harjo, S., (2014). “Measuring strain and stress distributions along rebar embedded in concrete using time-of-flight neutron diffraction.” Measurement Science and Technology, 25(2), 1-8. 4) Chung, H. W., (1981). “Epoxy repair of bond in reinforced concrete members.” ACI Journal Proceedings, 78(1), 79-82. 12) Hardt, von der P. and Rotger, H., (1981). “Neutron radiography handbook: Nuclear science and technology.” The Netherlands: Springer Dordrecht. 34) Sahamitmongkol, R., Suwathanangkul, S., Phoothong, P. and Kato, Y., (2008). “Flexural behavior of corroded RC members with patch repair - Experiments & simulation.” Journal of Advanced Concrete Technology, 6(2), 317-336. 13) Harjo, S., Ito, T., Aizawa, K., Arima, H., Abe, J., Moriai, A., Iwahashi, T. and Kamiyama, T., (2011). “Current status of engineering materials diffractometer at J-PARC.” Materials Science Forum, 681, 443-448. 20) JSA, (2017). “Method of test for static modulus of elasticity of concrete (JIS A 1149).” Tokyo: Japanese Standards Association. 29) McHenry, D. E. and Walker, W. T., (1948). “Laboratory measurements of stress distribution in reinforcing steel.” ACI Journal Proceedings, 44(6), 1041-1054. 1) Abbas, S., Nehdi, M. L. and Saleem, M. A., (2016). “Ultra-high performance concrete: Mechanical performance, durability, sustainability, and implementation challenges.” International Journal of Concrete Structures and Materials, 10(3), 271-295. 31) Oishi, R., Yonemura, M., Nishimaki, Y., Torii, S., Hoshikawa, A., Ishigaki, T., Morishita, T., Mori, K. and Kamiyama, T., (2009). “Rietveld analysis software for J-PARC.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1), 94-96. 24) Kobayashi, K., Suzuki, H., Nishio, Y. and Kanematsu, M., (2021). “Evaluation of bond performance of reinforced concrete using hot-dip galvanized rebar by neutron diffraction.” Journal of Structural and Construction Engineering (Transactions of AIJ), 86(785), 1026-1035. (in Japanese 9) Furuuchi, H. and Watanabe, T., (2016). “Study on behavior of restoring bar and increasing of fatigue life under cycle loading after crack repairing.” Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 72(1), 19-31. (in Japanese 11) Goto, Y., (1971). “Cracks formed in concrete around deformed tension bars.” ACI Journal Proceedings, 68, 244-251. 6) CTBUH, (2021). “Tall buildings in 2020: Covid-19 contributes to dip in year-on-year completions.” CTBUH Journal, (1), 40-49. 33) Rauf, A., Maki, T. and Sato, R., (2011). “Behavior of quantitatively damaged epoxy injected concrete in uni-axial tension.” Proceedings of the Japan Concrete Institute, 33(2), 1441-1446. 30) Muguruma, H., Morita, S. and Tomita, K., (1967). “Fundamental study on bond between steel and concrete: Part 1 - Basic laws of bond stress distribution II.” Transactions of the Architectural Institute of Japan, 132, 1-6. (in Japanese 8) French, C. W., Thorp, G. A. and Tsai, W. J., (1990). “Epoxy repair techniques for moderate earthquake damage.” ACI Structural Journal, 87(4), 416-424. 21) JSA, (2018). “Method of test for compressive strength of concrete (JIS A 1108).” Tokyo: Japanese Standards Association. 15) Hong, S. and Park, S. K., (2012). “Uniaxial bond stress-slip relationship of reinforcing bars in concrete.” Advances in Materials Science and Engineering, 2012, 328570. 17) JSA, (2011). “Plastics - Determination of compressive properties (JIS K 7181).” Tokyo: Japanese Standards Association. 27) Mansur, M. A. and Ong, K. C. G., (1985). “Epoxy-repaired beams.” Concrete International, 7(10), 46-50. 36) Suzuki, H., Kanematsu, M. and Kusunoki, K., (2012). “Neutron diffraction studies on strain evaluation of rebar in reinforced concrete.” Powder Diffraction, 24, 568-571. 39) Suzuki, H., Kusunoki, K., Kanematsu, M., Tasai, A., Hatanaka, Y., Tsuchiya, N., Bea, S., Shiroishi, S., Sakurai, S., Kawasaki, T. and Harjo, S., (2015). “Application of neutron stress measurement to reinforced concrete structure.” JPS Conference Proceedings, (8), 031006. 10) Giovanni, M. and Giovanni A. P., (2014). “Influence of the relative rib area on bond behavior.” Magazine of Concrete Research, 66(6), 277-294. 28) Marthong, C., Dutta, A. and Deb, S. K., (2013). “Seismic rehabilitation of RC exterior beam-column connections using epoxy resin injection.” Journal of Earthquake Engineering, 17(3), 378-398. 23) Karayannis, C. G., Chalioris, C. E. and Sideris, K. K., (1998). “Effectiveness of RC beam-column connection repair using epoxy resin injections.” Journal of Earthquake Engineering, 2(2), 217-240. 16) JCI, (2011). “Technical committee report on bond models and their applications for numerical analyses, (JCI-TC092A).” Tokyo: Japan Concrete Institute. (in Japanese 19) JSA, (2015). “Epoxy adhesives for repairing and reinforcement in buildings (JIS A 6024).” Tokyo: Japanese Standards Association. 41) Yoo, D. Y. and Shin, H. O., (2018). “Bond performance of steel rebar embedded in 80-180 MPa ultra-high-strength concrete.” Cement and Concrete Composites, 93, 206-217. 2) AIJ, (2019). “AIJ standard for structural calculation of reinforced concrete structures (revised 2010).” Tokyo: Architectural Institute of Japan. 14) Hasan, K., Salih, Y., Hanifi, B., Erhan, Y. and Nihat, Ç., (2004). “May 1, 2003 Turkey—Bingöl earthquake: Damage in reinforced concrete structures.” Engineering Failure Analysis, 11(3), 279-291. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 21 |
References_xml | – reference: 1) Abbas, S., Nehdi, M. L. and Saleem, M. A., (2016). “Ultra-high performance concrete: Mechanical performance, durability, sustainability, and implementation challenges.” International Journal of Concrete Structures and Materials, 10(3), 271-295. – reference: 8) French, C. W., Thorp, G. A. and Tsai, W. J., (1990). “Epoxy repair techniques for moderate earthquake damage.” ACI Structural Journal, 87(4), 416-424. – reference: 31) Oishi, R., Yonemura, M., Nishimaki, Y., Torii, S., Hoshikawa, A., Ishigaki, T., Morishita, T., Mori, K. and Kamiyama, T., (2009). “Rietveld analysis software for J-PARC.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1), 94-96. – reference: 39) Suzuki, H., Kusunoki, K., Kanematsu, M., Tasai, A., Hatanaka, Y., Tsuchiya, N., Bea, S., Shiroishi, S., Sakurai, S., Kawasaki, T. and Harjo, S., (2015). “Application of neutron stress measurement to reinforced concrete structure.” JPS Conference Proceedings, (8), 031006. – reference: 10) Giovanni, M. and Giovanni A. P., (2014). “Influence of the relative rib area on bond behavior.” Magazine of Concrete Research, 66(6), 277-294. – reference: 37) Suzuki, H., Kusunoki, K., Hatanaka, Y., Mukai, T., Tasai, A., Kanematsu, M., Kabayama, K. and Harjo, S., (2014). “Measuring strain and stress distributions along rebar embedded in concrete using time-of-flight neutron diffraction.” Measurement Science and Technology, 25(2), 1-8. – reference: 15) Hong, S. and Park, S. K., (2012). “Uniaxial bond stress-slip relationship of reinforcing bars in concrete.” Advances in Materials Science and Engineering, 2012, 328570. – reference: 3) Brantschen, F., Faria, D. M. V., Ruiz, M. F. and Muttoni, A., (2016). “Bond behaviour of straight, hooked, U-shaped and headed bars in cracked concrete.” Structural Concrete, 17(5), 799-810. – reference: 21) JSA, (2018). “Method of test for compressive strength of concrete (JIS A 1108).” Tokyo: Japanese Standards Association. – reference: 28) Marthong, C., Dutta, A. and Deb, S. K., (2013). “Seismic rehabilitation of RC exterior beam-column connections using epoxy resin injection.” Journal of Earthquake Engineering, 17(3), 378-398. – reference: 24) Kobayashi, K., Suzuki, H., Nishio, Y. and Kanematsu, M., (2021). “Evaluation of bond performance of reinforced concrete using hot-dip galvanized rebar by neutron diffraction.” Journal of Structural and Construction Engineering (Transactions of AIJ), 86(785), 1026-1035. (in Japanese) – reference: 41) Yoo, D. Y. and Shin, H. O., (2018). “Bond performance of steel rebar embedded in 80-180 MPa ultra-high-strength concrete.” Cement and Concrete Composites, 93, 206-217. – reference: 11) Goto, Y., (1971). “Cracks formed in concrete around deformed tension bars.” ACI Journal Proceedings, 68, 244-251. – reference: 34) Sahamitmongkol, R., Suwathanangkul, S., Phoothong, P. and Kato, Y., (2008). “Flexural behavior of corroded RC members with patch repair - Experiments & simulation.” Journal of Advanced Concrete Technology, 6(2), 317-336. – reference: 38) Suzuki, H., Kusunoki, K., Kanematsu, M., Mukai, T. and Harjo, S., (2016). “Structural engineering studies on reinforced concrete structure using neutron diffraction.” In: T. M. Holden, O. Muránsky and L. Edwards, Eds. Proceedings of the 10th International Conference on Residual Stresses 2016 (ICRS-10), Sydney 3-7 July 2016. Millersville, PA, USA: Materials Research Forum LLC, Vol. 2, 25-30. – reference: 40) Yang, L., Shi, C. and Wu, Z., (2019). “Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review.” Composites Part B: Engineering, 178(1), 1-12. – reference: 7) Desnerck, P., Lees, J. M. and Morley, C. T., (2015). “Bond behaviour of reinforcing bars in cracked concrete.” Construction and Building Materials, 94, 126-136. – reference: 26) Lee, S. W., Kang, S. B., Tan, K. H. and Yang, E. H., (2016). “Experimental and analytical investigation on bond-slip behavior of deformed bars embedded in engineered cementitious composites.” Construction and Building Materials, 127(30), 494-503. – reference: 19) JSA, (2015). “Epoxy adhesives for repairing and reinforcement in buildings (JIS A 6024).” Tokyo: Japanese Standards Association. – reference: 30) Muguruma, H., Morita, S. and Tomita, K., (1967). “Fundamental study on bond between steel and concrete: Part 1 - Basic laws of bond stress distribution II.” Transactions of the Architectural Institute of Japan, 132, 1-6. (in Japanese) – reference: 25) Kobayashi, K., Yasue, A., Kim, J., Nishio, Y., Miyazu, Y., Mukai, T. and Kanematsu, M., (2022). “The effect on the measurement time of neutron diffraction method on the accuracy of measuring rebar stress.” Summaries of Technical Papers of Annual Meeting of AIJ (A-1: Materials and Construction), Hokkaido 5-9 September 2022. Tokyo: Architectural Institute of Japan, 161-162. (in Japanese) – reference: 29) McHenry, D. E. and Walker, W. T., (1948). “Laboratory measurements of stress distribution in reinforcing steel.” ACI Journal Proceedings, 44(6), 1041-1054. – reference: 32) Ozaka, Y., Suzuki, M., Ishida, H. and Miyamoto, M., (1986). “Bond failure of reinforced concrete members and effectiveness of repairs by epoxy resin injection.” Doboku Gakkai Ronbunshu, 372/V-5, 121-130. (in Japanese) – reference: 9) Furuuchi, H. and Watanabe, T., (2016). “Study on behavior of restoring bar and increasing of fatigue life under cycle loading after crack repairing.” Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 72(1), 19-31. (in Japanese) – reference: 16) JCI, (2011). “Technical committee report on bond models and their applications for numerical analyses, (JCI-TC092A).” Tokyo: Japan Concrete Institute. (in Japanese) – reference: 27) Mansur, M. A. and Ong, K. C. G., (1985). “Epoxy-repaired beams.” Concrete International, 7(10), 46-50. – reference: 4) Chung, H. W., (1981). “Epoxy repair of bond in reinforced concrete members.” ACI Journal Proceedings, 78(1), 79-82. – reference: 36) Suzuki, H., Kanematsu, M. and Kusunoki, K., (2012). “Neutron diffraction studies on strain evaluation of rebar in reinforced concrete.” Powder Diffraction, 24, 568-571. – reference: 17) JSA, (2011). “Plastics - Determination of compressive properties (JIS K 7181).” Tokyo: Japanese Standards Association. – reference: 22) JSA, (2020). “Steel bars for concrete reinforcement (JIS A 3112).” Tokyo: Japanese Standards Association. – reference: 6) CTBUH, (2021). “Tall buildings in 2020: Covid-19 contributes to dip in year-on-year completions.” CTBUH Journal, (1), 40-49. – reference: 12) Hardt, von der P. and Rotger, H., (1981). “Neutron radiography handbook: Nuclear science and technology.” The Netherlands: Springer Dordrecht. – reference: 23) Karayannis, C. G., Chalioris, C. E. and Sideris, K. K., (1998). “Effectiveness of RC beam-column connection repair using epoxy resin injections.” Journal of Earthquake Engineering, 2(2), 217-240. – reference: 20) JSA, (2017). “Method of test for static modulus of elasticity of concrete (JIS A 1149).” Tokyo: Japanese Standards Association. – reference: 18) JSA, (2014). “Plastics - Determination of tensile properties - Part 1: General principles (JIS K 7161).” Tokyo: Japanese Standards Association. – reference: 13) Harjo, S., Ito, T., Aizawa, K., Arima, H., Abe, J., Moriai, A., Iwahashi, T. and Kamiyama, T., (2011). “Current status of engineering materials diffractometer at J-PARC.” Materials Science Forum, 681, 443-448. – reference: 14) Hasan, K., Salih, Y., Hanifi, B., Erhan, Y. and Nihat, Ç., (2004). “May 1, 2003 Turkey—Bingöl earthquake: Damage in reinforced concrete structures.” Engineering Failure Analysis, 11(3), 279-291. – reference: 33) Rauf, A., Maki, T. and Sato, R., (2011). “Behavior of quantitatively damaged epoxy injected concrete in uni-axial tension.” Proceedings of the Japan Concrete Institute, 33(2), 1441-1446. – reference: 35) Shima, H., Chou, L. L. and Okamura, H., (1987). “Micro and macro models for bond in reinforced concrete.” Journal of the Faculty of Engineering, The University of Tokyo, (2), 141-157. – reference: 2) AIJ, (2019). “AIJ standard for structural calculation of reinforced concrete structures (revised 2010).” Tokyo: Architectural Institute of Japan. – reference: 5) Clarkson, W. P., (1972). “A review of the repair of two concrete buildings damaged by the San Fernando earthquake.” ACI Journal Proceedings, 70(3), 237-241. – ident: 2 – ident: 14 doi: 10.1016/j.engfailanal.2003.08.005 – ident: 18 – ident: 26 doi: 10.1016/j.conbuildmat.2016.10.036 – ident: 31 doi: 10.1016/j.nima.2008.11.056 – ident: 35 – ident: 32 doi: 10.2208/jscej.1986.372_121 – ident: 33 – ident: 1 doi: 10.1007/s40069-016-0157-4 – ident: 16 – ident: 13 doi: 10.4028/www.scientific.net/MSF.681.443 – ident: 5 doi: 10.14359/11203 – ident: 10 doi: 10.1680/macr.13.00198 – ident: 24 doi: 10.3130/aijs.86.1026 – ident: 29 doi: 10.14359/12207 – ident: 15 doi: 10.1155/2012/328570 – ident: 41 doi: 10.1016/j.cemconcomp.2018.07.017 – ident: 28 doi: 10.1080/13632469.2012.738284 – ident: 8 doi: 10.14359/2758 – ident: 20 – ident: 22 – ident: 17 – ident: 9 doi: 10.2208/jscejmcs.72.19 – ident: 36 – ident: 30 doi: 10.3130/aijsaxx.132.0_1 – ident: 12 doi: 10.1007/978-94-009-8567-4 – ident: 38 – ident: 11 doi: 10.14359/11325 – ident: 19 – ident: 23 doi: 10.1080/13632469809350320 – ident: 34 doi: 10.3151/jact.6.317 – ident: 39 doi: 10.7566/JPSCP.8.031006 – ident: 7 doi: 10.1016/j.conbuildmat.2015.06.043 – ident: 4 doi: 10.14359/6913 – ident: 37 doi: 10.1088/0957-0233/25/2/025602 – ident: 6 – ident: 21 – ident: 27 – ident: 25 – ident: 40 doi: 10.1016/j.compositesb.2019.107456 – ident: 3 doi: 10.1002/suco.201500199 |
SSID | ssj0037377 |
Score | 2.2916431 |
Snippet | The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step,... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 337 |
SubjectTerms | Concrete properties Epoxy resins High strength concretes Neutron diffraction Neutrons Polyimide resins Resin injection |
Title | Evaluation of Bond Repair Effect for Ultra-high-strength Concrete Specimens by Neutron Diffraction Method |
URI | https://www.jstage.jst.go.jp/article/jact/21/5/21_337/_article/-char/en https://www.proquest.com/docview/2825699825 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2023/05/03, Vol.21(5), pp.337-350 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbK4AAHxE_RMZAPu6GUOo4T54jQ0ATaJKRWGqfIiZ1RujYoTQ7l79kfynux44atSIOLVbl-iZr35fmz6-89Qo4VsLaYSR3AfGCCSKdTLPPCAh6ZMk9ZbmRXveHsPD6dR58vxMVodD04tdQ2-aT4tVdX8j9ehT7wK6pk_8Gz_qLQAZ_Bv9CCh6G9k49PfKpu5HxYIRgJtVrU71xSYjxDOL9qahVgWuIAhSHrS1QdVWtgi42x5edXsJRFGnpuWtwYhzBYlrWrIX7WVZj-C4X1BwiK_nrNrZ36bwoc20WgbbtqfXyHMLLFOk5OG7Rpl2YXgKC_WiorJdqo74u68nvW1arrn6klWg_3LEJ7QpAPwiyPMA2ylY9OTN8H4S61ytQ-Nlv1tMOgGARablPFuDmb2-S1N6cDDnSmK0NQNJOQTbzNMOn2jcnQH1GExRGaZ2ichSwD43vkfgiLEYymX776_6p4wrv6nv43WRUoGr8f3PkP3vPgB1D_y9vzf0dqZk_IY-dK-sFC6ykZmfUz8miQo_I5WexARquSIsioBRm1IKMAMroHZLQHGfUgo_mWOpDRAcioBdkLMv90Mvt4Grj6HEEhwmkTcCUKbQzMEbnQkdaYNypPpokRBUsSrVkqdFiU0khgkVzyGJYSOjRlrBI9TQvNX5KDdbU2rwgVRujSsCKXcRqlMlaKxaVkQpWRKpiUY3LcP73sp03Dku3x0Jgk9sn6Qe7d9IOEG-m_QHEjxJIxOepdkbk3fJOhrjtOU2gP73b_1-ThDu5H5KCpW_MGSGuTv-0w8xt2MZ6G |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Bond+Repair+Effect+for+Ultra-high-strength+Concrete+Specimens+by+Neutron+Diffraction+Method&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Yasue%2C+Ayumu&rft.au=Kobayashi%2C+Kensuke&rft.au=Yoshioka%2C+Masahiro&rft.au=Noma%2C+Takashi&rft.date=2023-05-03&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=21&rft.issue=5&rft.spage=337&rft.epage=350&rft_id=info:doi/10.3151%2Fjact.21.337&rft.externalDBID=n%2Fa&rft.externalDocID=10_3151_jact_21_337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |