Metal complexes as a promising source for new antibiotics

There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 11; no. 1; pp. 2627 - 2639
Main Authors Frei, Angelo, Zuegg, Johannes, Elliott, Alysha G, Baker, Murray, Braese, Stefan, Brown, Christopher, Chen, Feng, Dowson, Christopher, Dujardin, Gilles, Jung, Nicole, King, A. Paden, Mansour, Ahmed M, Massi, Massimiliano, Moat, John, Mohamed, Heba A, Renfrew, Anna K, Rutledge, Peter J, Sadler, Peter J, Todd, Matthew H, Willans, Charlotte E, Wilson, Justin J, Cooper, Matthew A, Blaskovich, Mark A. T
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules.
AbstractList There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules.
Author Zuegg, Johannes
Elliott, Alysha G
Rutledge, Peter J
Dowson, Christopher
Massi, Massimiliano
Cooper, Matthew A
Frei, Angelo
Blaskovich, Mark A. T
Baker, Murray
King, A. Paden
Willans, Charlotte E
Todd, Matthew H
Dujardin, Gilles
Braese, Stefan
Brown, Christopher
Moat, John
Chen, Feng
Jung, Nicole
Mansour, Ahmed M
Mohamed, Heba A
Renfrew, Anna K
Sadler, Peter J
Wilson, Justin J
AuthorAffiliation The University of Sydney
Centre for Superbug Solutions
Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS)
University College London
University of Warwick
Department of Chemistry and Chemical Biology
School of Chemistry
Department of Chemistry
University of Leeds
Chemistry Department
School of Pharmacy
School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces
University of Sydney
Institute of Molecules and Matter of Le Mans (IMMM)
Antimicrobial Screening Facility
UMR 6283 CNRS
The University of Western Australia
Faculty of Science
Cornell University
Curtin University
Karlsruhe Institute of Technology (KIT)
The University of Queensland
School of Medical Sciences (Discipline of Pharmacology)
Institute of Organic Chemistry
School of Molecular Sciences
Institute for Molecular Bioscience
School of Life Sciences
Le Mans Université
Cairo University
AuthorAffiliation_xml – name: School of Medical Sciences (Discipline of Pharmacology)
– name: Institute of Molecules and Matter of Le Mans (IMMM)
– name: Department of Chemistry
– name: Antimicrobial Screening Facility
– name: School of Pharmacy
– name: UMR 6283 CNRS
– name: Centre for Superbug Solutions
– name: The University of Western Australia
– name: University of Warwick
– name: The University of Queensland
– name: Institute of Organic Chemistry
– name: Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS)
– name: Department of Chemistry and Chemical Biology
– name: School of Molecular Sciences
– name: University of Leeds
– name: Cairo University
– name: The University of Sydney
– name: Karlsruhe Institute of Technology (KIT)
– name: Institute for Molecular Bioscience
– name: School of Life Sciences
– name: Faculty of Science
– name: Le Mans Université
– name: Chemistry Department
– name: Cornell University
– name: Curtin University
– name: University of Sydney
– name: School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces
– name: School of Chemistry
– name: University College London
– name: g Antimicrobial Screening Facility , School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
– name: h Institute of Molecules and Matter of Le Mans (IMMM) , UMR 6283 CNRS , Le Mans Université , France
– name: b School of Molecular Sciences , The University of Western Australia , Stirling Highway , 6009 Perth , Australia
– name: l School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
– name: m School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
– name: j Chemistry Department , Faculty of Science , Cairo University , Egypt
– name: i Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA
– name: f Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
– name: k School of Molecular and Life Sciences – Curtin Institute for Functional Materials and Interfaces , Curtin University , Kent Street , 6102 Bentley WA , Australia
– name: n School of Pharmacy , University College London , London , WC1N 1AX , UK
– name: c Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
– name: e School of Medical Sciences (Discipline of Pharmacology) , University of Sydney , Australia
– name: a Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . Email: angelo.frei.ch@gmail.com ; Email: m.blaskovich@uq.edu.au
– name: d Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
Author_xml – sequence: 1
  givenname: Angelo
  surname: Frei
  fullname: Frei, Angelo
– sequence: 2
  givenname: Johannes
  surname: Zuegg
  fullname: Zuegg, Johannes
– sequence: 3
  givenname: Alysha G
  surname: Elliott
  fullname: Elliott, Alysha G
– sequence: 4
  givenname: Murray
  surname: Baker
  fullname: Baker, Murray
– sequence: 5
  givenname: Stefan
  surname: Braese
  fullname: Braese, Stefan
– sequence: 6
  givenname: Christopher
  surname: Brown
  fullname: Brown, Christopher
– sequence: 7
  givenname: Feng
  surname: Chen
  fullname: Chen, Feng
– sequence: 8
  givenname: Christopher
  surname: Dowson
  fullname: Dowson, Christopher
– sequence: 9
  givenname: Gilles
  surname: Dujardin
  fullname: Dujardin, Gilles
– sequence: 10
  givenname: Nicole
  surname: Jung
  fullname: Jung, Nicole
– sequence: 11
  givenname: A. Paden
  surname: King
  fullname: King, A. Paden
– sequence: 12
  givenname: Ahmed M
  surname: Mansour
  fullname: Mansour, Ahmed M
– sequence: 13
  givenname: Massimiliano
  surname: Massi
  fullname: Massi, Massimiliano
– sequence: 14
  givenname: John
  surname: Moat
  fullname: Moat, John
– sequence: 15
  givenname: Heba A
  surname: Mohamed
  fullname: Mohamed, Heba A
– sequence: 16
  givenname: Anna K
  surname: Renfrew
  fullname: Renfrew, Anna K
– sequence: 17
  givenname: Peter J
  surname: Rutledge
  fullname: Rutledge, Peter J
– sequence: 18
  givenname: Peter J
  surname: Sadler
  fullname: Sadler, Peter J
– sequence: 19
  givenname: Matthew H
  surname: Todd
  fullname: Todd, Matthew H
– sequence: 20
  givenname: Charlotte E
  surname: Willans
  fullname: Willans, Charlotte E
– sequence: 21
  givenname: Justin J
  surname: Wilson
  fullname: Wilson, Justin J
– sequence: 22
  givenname: Matthew A
  surname: Cooper
  fullname: Cooper, Matthew A
– sequence: 23
  givenname: Mark A. T
  surname: Blaskovich
  fullname: Blaskovich, Mark A. T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32206266$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9LXDEQx0NRqq5eem95xYsIq5Nkk_dyEWTxFygetOeQzU5s5G3ymryt-t8b3XVbpTQEEpjPfDPfmWyRtRADEvKFwgEFrg6tyhbkSAJ-IpsMRnQoBVdrqzuDDbKT8z2UxTkVrP5MNjhjIJmUm0RdYW_aysZZ1-Ij5sqUXXUpznz24a7KcZ4sVi6mKuBDZULvJz723uZtsu5Mm3FneQ7Ij9OT2_H58PL67GJ8fDm05e1-yJWwfIoj7txECCdFzRjljlOmBLJ60ljqJAWnwPAGDUBtawPKToUDYw3jA3K00O3mkxlOLYY-mVZ3yc9MetLReP0-EvxPfRd_6xqk4jUUgb2lQIq_5ph7XbxZbFsTMM6zZrwprYCGNgXd_YDeF_-h2CtULRSDUnahvv1d0aqUt64WYH8B2BRzTuhWCAX9MjU9Vjfj16mdFBg-wNb3pvfxxY1v_53ydZGSsl1J__kIJf79f3HdTR1_BvWMrWI
CitedBy_id crossref_primary_10_1039_D1RA09027E
crossref_primary_10_1039_D3DT01287E
crossref_primary_10_1016_j_jinorgbio_2022_111887
crossref_primary_10_3390_biomedicines10123182
crossref_primary_10_2174_0929867330666230321110018
crossref_primary_10_1016_j_ccr_2023_215429
crossref_primary_10_1016_j_inoche_2025_114355
crossref_primary_10_1016_j_jinorgbio_2024_112735
crossref_primary_10_1016_j_ica_2024_122393
crossref_primary_10_1080_00958972_2024_2369911
crossref_primary_10_3390_molecules30030564
crossref_primary_10_1021_acsomega_4c11347
crossref_primary_10_1016_j_porgcoat_2024_108799
crossref_primary_10_1039_D4DT02068E
crossref_primary_10_1039_D3DT00150D
crossref_primary_10_1093_mtomcs_mfad049
crossref_primary_10_14233_ajchem_2021_23478
crossref_primary_10_1007_s10534_023_00565_y
crossref_primary_10_3390_ijms22094847
crossref_primary_10_1016_j_colsurfb_2022_112432
crossref_primary_10_1099_jmm_0_001363
crossref_primary_10_3390_ijms25158525
crossref_primary_10_3390_antibiotics12091474
crossref_primary_10_1016_j_ejmech_2024_116712
crossref_primary_10_1093_mtomcs_mfac070
crossref_primary_10_3390_antibiotics9060321
crossref_primary_10_1002_cplu_202400543
crossref_primary_10_1007_s11356_021_14958_4
crossref_primary_10_1016_j_molstruc_2023_136603
crossref_primary_10_1016_j_poly_2025_117441
crossref_primary_10_1007_s00284_023_03232_0
crossref_primary_10_1002_cbic_202400678
crossref_primary_10_1002_cbic_202400435
crossref_primary_10_1002_slct_202101149
crossref_primary_10_1039_D1DT00979F
crossref_primary_10_31857_S0132344X23700305
crossref_primary_10_1515_pac_2023_0212
crossref_primary_10_1016_j_envres_2023_117275
crossref_primary_10_1039_D2MD00430E
crossref_primary_10_1002_cmdc_202300065
crossref_primary_10_3390_molecules28010040
crossref_primary_10_3390_antibiotics11111645
crossref_primary_10_1016_j_jinorgbio_2024_112755
crossref_primary_10_1002_ejic_202300767
crossref_primary_10_3390_chemistry2020026
crossref_primary_10_1016_j_jinorgbio_2024_112517
crossref_primary_10_1002_ange_202310040
crossref_primary_10_1186_s12934_024_02628_2
crossref_primary_10_1002_chem_202301603
crossref_primary_10_3390_inorganics11060252
crossref_primary_10_3390_antibiotics10010072
crossref_primary_10_1016_j_poly_2021_115390
crossref_primary_10_2174_2211352520666220104104747
crossref_primary_10_1039_D2DT02834D
crossref_primary_10_1039_D1QI00512J
crossref_primary_10_1080_02603594_2021_1962310
crossref_primary_10_3390_antibiotics9100649
crossref_primary_10_1039_D1DT03234H
crossref_primary_10_1039_D1RA03063A
crossref_primary_10_1039_D2DT02696A
crossref_primary_10_1039_D2DT00752E
crossref_primary_10_1016_j_bmcl_2021_127879
crossref_primary_10_1016_j_ica_2022_120996
crossref_primary_10_1039_D3DT01904G
crossref_primary_10_1515_hsz_2021_0253
crossref_primary_10_2147_IJN_S328767
crossref_primary_10_3390_ijms24010188
crossref_primary_10_1002_ange_202414325
crossref_primary_10_1016_j_soilbio_2024_109362
crossref_primary_10_1039_D0SC04082G
crossref_primary_10_1016_j_ejmech_2021_113600
crossref_primary_10_1177_17475198211055098
crossref_primary_10_1016_j_bioorg_2025_108319
crossref_primary_10_1016_j_ejmech_2021_113602
crossref_primary_10_1002_ange_202420204
crossref_primary_10_1002_ange_202317901
crossref_primary_10_1016_j_poly_2024_117287
crossref_primary_10_1007_s00775_022_01967_y
crossref_primary_10_1002_aoc_7943
crossref_primary_10_1039_D1BM01743H
crossref_primary_10_1021_acsinfecdis_0c00163
crossref_primary_10_1039_D1DT02929K
crossref_primary_10_1021_acsptsci_0c00159
crossref_primary_10_1039_D3DT00395G
crossref_primary_10_1016_j_jinorgbio_2022_112052
crossref_primary_10_1016_j_poly_2021_115033
crossref_primary_10_1016_j_poly_2022_115857
crossref_primary_10_1039_D4CS01193G
crossref_primary_10_1002_asia_202401060
crossref_primary_10_3390_inorganics9060048
crossref_primary_10_1016_j_ica_2024_122509
crossref_primary_10_3390_ijms241512296
crossref_primary_10_1021_acs_inorgchem_2c02690
crossref_primary_10_1039_D4DT00907J
crossref_primary_10_1186_s12951_023_02208_3
crossref_primary_10_1002_ejoc_202101516
crossref_primary_10_1021_acs_inorgchem_3c01041
crossref_primary_10_1039_D2DT01310J
crossref_primary_10_3390_pharmaceutics13121995
crossref_primary_10_1038_s41570_023_00463_4
crossref_primary_10_1016_j_ijbiomac_2023_125917
crossref_primary_10_1021_acs_inorgchem_4c05064
crossref_primary_10_1039_D4DT01867B
crossref_primary_10_1080_08927014_2021_2015336
crossref_primary_10_1039_D4MD00860J
crossref_primary_10_1093_mtomcs_mfaa011
crossref_primary_10_1002_cmdc_202000536
crossref_primary_10_1016_j_ejmech_2020_112533
crossref_primary_10_1016_j_jinorgbio_2024_112546
crossref_primary_10_1016_j_marpolbul_2023_115189
crossref_primary_10_1039_D4RA07449A
crossref_primary_10_3390_pharmaceutics12100961
crossref_primary_10_3390_antibiotics10121443
crossref_primary_10_1002_cbic_202300247
crossref_primary_10_1016_j_ejmech_2022_114834
crossref_primary_10_1016_j_molstruc_2025_141859
crossref_primary_10_1016_j_poly_2024_117340
crossref_primary_10_1016_j_molstruc_2021_131595
crossref_primary_10_1134_S1070328423700665
crossref_primary_10_1002_aoc_6917
crossref_primary_10_1002_slct_202200280
crossref_primary_10_1016_j_molstruc_2022_132989
crossref_primary_10_1016_j_molstruc_2022_132506
crossref_primary_10_3390_biophysica1040027
crossref_primary_10_1016_j_ica_2020_120152
crossref_primary_10_1002_cmdc_202100157
crossref_primary_10_1039_D3DT01761C
crossref_primary_10_3390_antibiotics11060711
crossref_primary_10_14233_ajchem_2021_23048
crossref_primary_10_3390_antibiotics12050909
crossref_primary_10_1016_j_jorganchem_2021_121960
crossref_primary_10_1002_chem_202400646
crossref_primary_10_1016_j_ica_2023_121656
crossref_primary_10_1016_j_poly_2023_116660
crossref_primary_10_59761_RCR5093
crossref_primary_10_1038_s41467_021_23659_y
crossref_primary_10_1111_php_13435
crossref_primary_10_1021_acsami_4c02979
crossref_primary_10_1016_j_jorganchem_2024_123114
crossref_primary_10_1038_s41429_023_00629_8
crossref_primary_10_1002_aoc_7579
crossref_primary_10_1016_j_jare_2023_02_004
crossref_primary_10_1071_MA24026
crossref_primary_10_3390_molecules29051186
crossref_primary_10_1021_acs_cgd_3c00042
crossref_primary_10_1038_s41467_021_23953_9
crossref_primary_10_1038_s41467_023_40828_3
crossref_primary_10_1016_S2666_5247_24_00003_X
crossref_primary_10_1080_00958972_2024_2448518
crossref_primary_10_3389_fmicb_2023_1198473
crossref_primary_10_3390_ijms26062436
crossref_primary_10_1002_ardp_202100305
crossref_primary_10_1016_j_heliyon_2022_e10378
crossref_primary_10_1021_acs_organomet_1c00166
crossref_primary_10_1016_j_inoche_2025_113967
crossref_primary_10_55230_mabjournal_v53i6_1
crossref_primary_10_1002_ejic_202300634
crossref_primary_10_1016_j_molstruc_2021_130006
crossref_primary_10_1111_cbdd_13943
crossref_primary_10_3390_inorganics10110200
crossref_primary_10_1039_D4RA03141E
crossref_primary_10_1093_mtomcs_mfab007
crossref_primary_10_1134_S1070328421120046
crossref_primary_10_3390_ijms23137146
crossref_primary_10_3390_antibiotics11020158
crossref_primary_10_1016_j_molstruc_2025_141403
crossref_primary_10_1039_D0NJ03122D
crossref_primary_10_1039_D3DT01678A
crossref_primary_10_3390_ijms25158395
crossref_primary_10_1039_D4DT02562H
crossref_primary_10_1016_j_mib_2023_102347
crossref_primary_10_1016_j_poly_2025_117414
crossref_primary_10_1016_j_ccr_2023_215608
crossref_primary_10_1016_j_jorganchem_2023_122633
crossref_primary_10_1016_j_arabjc_2020_102932
crossref_primary_10_1039_D1NJ04273D
crossref_primary_10_1039_d0mt00206b
crossref_primary_10_1002_chem_202003545
crossref_primary_10_1126_sciadv_adk6331
crossref_primary_10_3390_biomedicines10020222
crossref_primary_10_1002_anie_202414325
crossref_primary_10_3390_pharmaceutics14081664
crossref_primary_10_1002_anie_202420204
crossref_primary_10_1016_j_molstruc_2022_132814
crossref_primary_10_1016_j_jinorgbio_2021_111408
crossref_primary_10_1016_j_jallcom_2021_163073
crossref_primary_10_3390_pharmaceutics13060874
crossref_primary_10_1021_acsami_3c07354
crossref_primary_10_3390_inorganics11020063
crossref_primary_10_1002_EXP_20210117
crossref_primary_10_1039_D2DT02157A
crossref_primary_10_1007_s00775_020_01843_7
crossref_primary_10_1039_D2DT00346E
crossref_primary_10_1016_j_ica_2023_121749
crossref_primary_10_1002_aoc_7190
crossref_primary_10_1039_D1RA06559A
crossref_primary_10_1039_D2RA07401J
crossref_primary_10_3390_antibiotics11030388
crossref_primary_10_1016_j_molliq_2023_121841
crossref_primary_10_1016_j_molliq_2024_124616
crossref_primary_10_1016_j_ica_2020_119806
crossref_primary_10_1016_j_inoche_2024_113396
crossref_primary_10_1039_D4NJ01152J
crossref_primary_10_3390_ph15040453
crossref_primary_10_1039_d0mt00142b
crossref_primary_10_1016_j_molliq_2025_127269
crossref_primary_10_1016_j_jhazmat_2023_132375
crossref_primary_10_3390_chemistry2040056
crossref_primary_10_1007_s10904_024_03571_w
crossref_primary_10_1016_j_jddst_2023_104428
crossref_primary_10_1021_acsami_3c06394
crossref_primary_10_1016_j_ijbiomac_2024_138617
crossref_primary_10_1016_j_molliq_2024_124183
crossref_primary_10_1039_D0SC03410J
crossref_primary_10_1007_s10904_021_02148_1
crossref_primary_10_1016_j_inoche_2024_112620
crossref_primary_10_1016_j_jorganchem_2021_121928
crossref_primary_10_1007_s10534_021_00307_y
crossref_primary_10_1039_D4DT01033G
crossref_primary_10_1039_D2CC01259F
crossref_primary_10_1021_jacsau_2c00308
crossref_primary_10_1039_D5DT00087D
crossref_primary_10_1155_2022_8453159
crossref_primary_10_1021_acs_inorgchem_0c00982
crossref_primary_10_1039_D2DT03365H
crossref_primary_10_1016_j_ica_2024_122337
crossref_primary_10_1016_j_molliq_2024_125161
crossref_primary_10_1080_17568919_2025_2458459
crossref_primary_10_3390_molecules28020902
crossref_primary_10_1016_j_bmc_2024_117842
crossref_primary_10_1002_ardp_202200041
crossref_primary_10_1080_00958972_2022_2101365
crossref_primary_10_1080_00958972_2023_2265037
crossref_primary_10_3390_ph15091107
crossref_primary_10_1016_j_jphotochem_2023_114769
crossref_primary_10_1055_s_0041_1741035
crossref_primary_10_19261_cjm_2023_1121
crossref_primary_10_3389_fchem_2024_1371637
crossref_primary_10_1002_cbdv_202402540
crossref_primary_10_3390_ph13120471
crossref_primary_10_35848_1347_4065_ac1c3d
crossref_primary_10_3390_antibiotics9050277
crossref_primary_10_1002_aoc_5923
crossref_primary_10_1002_cbic_202000707
crossref_primary_10_1021_acsabm_0c01221
crossref_primary_10_1021_jacsau_1c00262
crossref_primary_10_3390_inorganics10040050
crossref_primary_10_1002_aoc_6695
crossref_primary_10_3390_antibiotics10020135
crossref_primary_10_1002_chem_202401712
crossref_primary_10_3390_ijms24065756
crossref_primary_10_1016_j_bcp_2024_116716
crossref_primary_10_1016_j_pmatsci_2021_100887
crossref_primary_10_1021_acs_inorgchem_4c05414
crossref_primary_10_3390_antibiotics12111578
crossref_primary_10_3390_molecules27207059
crossref_primary_10_1007_s00775_022_01979_8
crossref_primary_10_1039_D0CC06037B
crossref_primary_10_1002_anie_202317901
crossref_primary_10_3390_app15031166
crossref_primary_10_3390_molecules28217453
crossref_primary_10_1039_D2DT00411A
crossref_primary_10_1039_D0DT02225J
crossref_primary_10_3390_molecules26175302
crossref_primary_10_3390_challe11020015
crossref_primary_10_1002_aoc_7394
crossref_primary_10_1039_D3DT00287J
crossref_primary_10_3390_app13179854
crossref_primary_10_3390_molecules29020414
crossref_primary_10_1002_anie_202310040
crossref_primary_10_1016_j_microc_2024_111035
crossref_primary_10_1039_D3MD00067B
crossref_primary_10_1016_j_poly_2020_114755
crossref_primary_10_1039_D2DT01657E
crossref_primary_10_1039_D2RA08327B
crossref_primary_10_1002_chem_202004822
crossref_primary_10_1016_j_biopha_2023_114690
crossref_primary_10_1039_D3DT01159C
crossref_primary_10_1039_D3SC05326A
crossref_primary_10_1016_j_ccr_2024_216147
crossref_primary_10_1039_D2CE01118B
crossref_primary_10_1039_D0NJ01889A
crossref_primary_10_1515_ract_2023_0249
crossref_primary_10_1039_D0SC03563G
crossref_primary_10_1002_marc_202100274
crossref_primary_10_1016_j_ejmech_2021_113858
crossref_primary_10_3390_v13060980
crossref_primary_10_1016_j_ejmech_2021_113610
crossref_primary_10_1016_j_jinorgbio_2022_111980
crossref_primary_10_1021_acsorginorgau_2c00021
crossref_primary_10_1016_j_jinorgbio_2021_111667
crossref_primary_10_1016_j_ccr_2023_215326
crossref_primary_10_1016_j_jinorgbio_2021_111543
crossref_primary_10_1021_acs_inorgchem_3c00214
crossref_primary_10_1134_S0036023623600910
crossref_primary_10_1016_j_colsurfa_2021_126540
crossref_primary_10_1016_j_jorganchem_2024_123076
crossref_primary_10_1016_j_drudis_2022_02_021
crossref_primary_10_1002_ejoc_202400425
crossref_primary_10_1016_j_molstruc_2021_130774
crossref_primary_10_1016_j_compbiolchem_2024_108190
crossref_primary_10_1016_j_bpc_2025_107419
crossref_primary_10_1016_j_colsurfb_2024_114280
crossref_primary_10_1016_j_bioorg_2024_107262
crossref_primary_10_3390_ijms241411865
crossref_primary_10_1039_D2CC01772E
crossref_primary_10_1016_j_crmicr_2021_100099
crossref_primary_10_1039_D0CB00218F
crossref_primary_10_1039_D2NJ00283C
crossref_primary_10_1007_s11172_024_4468_3
crossref_primary_10_1016_j_rechem_2023_100846
crossref_primary_10_3390_molecules28093887
crossref_primary_10_1021_acs_jmedchem_3c00322
crossref_primary_10_1016_j_jprot_2023_105011
crossref_primary_10_1039_D4DT00978A
crossref_primary_10_3390_ijms23010418
crossref_primary_10_3390_inorganics11080331
crossref_primary_10_1021_acsanm_3c03781
crossref_primary_10_1021_acschembio_0c00732
crossref_primary_10_1016_j_poly_2022_116073
crossref_primary_10_1016_j_matpr_2022_04_303
crossref_primary_10_1016_j_envint_2021_106863
crossref_primary_10_1016_j_inoche_2020_108077
crossref_primary_10_1021_acs_inorgchem_0c02432
crossref_primary_10_1080_00958972_2021_1871608
crossref_primary_10_1016_j_molstruc_2024_139435
crossref_primary_10_3390_antibiotics10080942
crossref_primary_10_1021_acsinfecdis_3c00286
crossref_primary_10_1002_aoc_70057
crossref_primary_10_1021_acsomega_1c04034
crossref_primary_10_1016_j_ecoenv_2024_117390
crossref_primary_10_1016_j_poly_2023_116485
crossref_primary_10_1016_j_scitotenv_2022_157778
crossref_primary_10_3390_ph15050507
crossref_primary_10_1016_j_bioorg_2024_107938
Cites_doi 10.2533/chimia.2015.442
10.1002/chem.201703543
10.1016/j.supflu.2014.08.034
10.1039/C4CS00343H
10.1039/C4DT02139H
10.1051/parasite/2011183207
10.1039/C8CC02930J
10.1073/pnas.0808608105
10.1039/C5CC05172J
10.1021/om500540x
10.1021/acs.jmedchem.8b00906
10.1002/anie.201205923
10.1039/C9SC05586J
10.1021/acs.jmedchem.6b00432
10.1021/cr60172a003
10.1021/acs.inorgchem.9b01199
10.1039/C8DT04606A
10.1126/science.aau4679
10.1016/bs.adioch.2019.11.001
10.1039/c1dt10250h
10.1021/jm500566f
10.1111/wrr.12699
10.1021/acsinfecdis.9b00100
10.1016/S0140-6736(11)60020-2
10.2217/fmb.14.3
10.1021/cr400460s
10.1016/j.burns.2011.09.020
10.1039/c2md20347b
10.1002/anie.200461471
10.1038/icb.1969.21
10.1021/acs.chemrev.8b00271
10.1002/ajoc.201900088
10.1002/chem.201805985
10.1038/170190a0
10.3390/molecules22081263
10.1093/jac/dks291
10.1039/b905798f
10.1016/j.ejmech.2018.07.057
10.1016/j.burns.2016.10.023
10.1046/j.1365-2036.2000.00686.x
10.1039/C4MT00122B
10.1002/chem.201301191
10.1021/acs.chemrev.5b00597
10.1098/rsta.2014.0182
10.1007/s00775-009-0550-4
10.1002/chem.201501816
10.1016/j.jlumin.2018.05.022
10.1016/j.orgel.2015.11.006
10.1021/acsnano.8b08440
10.1039/c3dt50225b
10.1371/journal.pbio.3000292
10.1039/C4DT02575J
10.1016/S0169-409X(96)00423-1
10.1038/nrd4706
10.1021/acs.chemrev.8b00211
10.1016/j.cbpa.2012.01.013
10.1039/C9SC01480B
10.1016/j.ccr.2006.08.019
10.1016/j.biotechadv.2018.05.004
10.1021/acsinfecdis.5b00044
10.1039/C7CS00195A
10.1021/jm901241e
10.1039/C4DT03679D
10.1021/jacs.6b09996
10.1021/acs.jmedchem.7b01569
10.1177/1534734617690949
10.1039/c3dt32775b
10.1039/C9SC04710G
10.1021/acs.accounts.8b00439
10.1038/nrd2201
10.1039/C9SC02032B
10.1080/00958972.2014.974582
10.1002/cbic.201200637
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2020.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 2020
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2020.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 2020
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/c9sc06460e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 2639
ExternalDocumentID PMC7069370
32206266
10_1039_C9SC06460E
c9sc06460e
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0400848
– fundername: Medical Research Council
  grantid: MR/P007503/1
– fundername: Medical Research Council
  grantid: MR/N002679/1
– fundername: NIGMS NIH HHS
  grantid: T32 GM008500
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c520t-395c3de43ffb55f6572213f31295e27b8c1f610f90a38ea007c7a09cd5f0aca23
ISSN 2041-6520
IngestDate Thu Aug 21 14:03:16 EDT 2025
Fri Jul 11 03:39:03 EDT 2025
Fri Jul 25 07:04:10 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Tue Jul 01 03:46:35 EDT 2025
Sat Jan 08 03:40:05 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry 2020.
This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-395c3de43ffb55f6572213f31295e27b8c1f610f90a38ea007c7a09cd5f0aca23
Notes 10.1039/c9sc06460e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Joint first authors.
ORCID 0000-0002-0482-3421
0000-0003-3147-3460
0000-0002-2983-0484
0000-0003-4845-3191
0000-0002-0877-3636
0000-0002-0767-5196
0000-0003-0734-8109
0000-0003-0412-8821
0000-0001-9447-2292
0000-0001-9160-1941
0000-0002-8294-8836
0000-0002-0785-5787
0000-0001-6949-4019
0000-0002-4086-7982
0000-0001-6169-2491
0000-0001-9946-4080
0000-0001-7096-4751
0000-0001-6240-6020
OpenAccessLink http://dx.doi.org/10.1039/c9sc06460e
PMID 32206266
PQID 2375920129
PQPubID 2047492
PageCount 13
ParticipantIDs crossref_primary_10_1039_C9SC06460E
pubmed_primary_32206266
proquest_journals_2375920129
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7069370
proquest_miscellaneous_2382660818
rsc_primary_c9sc06460e
crossref_citationtrail_10_1039_C9SC06460E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-14
PublicationDateYYYYMMDD 2020-03-14
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gianferrara (C9SC06460E-(cit28)/*[position()=1]) 2009
Karaoun (C9SC06460E-(cit37)/*[position()=1]) 2015; 51
Chernousova (C9SC06460E-(cit45)/*[position()=1]) 2013; 52
Chernousova (C9SC06460E-(cit30)/*[position()=1]) 2013; 52
Mjos (C9SC06460E-(cit16)/*[position()=1]) 2014; 114
Malfertheiner (C9SC06460E-(cit17)/*[position()=1]) 2011; 377
Yu (C9SC06460E-(cit73)/*[position()=1]) 2016; 59
Dwyer (C9SC06460E-(cit52)/*[position()=1]) 1969; 47
C9SC06460E-(cit83)/*[position()=1]
van Hilst (C9SC06460E-(cit64)/*[position()=1]) 2019; 8
Chellan (C9SC06460E-(cit15)/*[position()=1]) 2015; 373
Pandrala (C9SC06460E-(cit59)/*[position()=1]) 2013; 42
Wattanaploy (C9SC06460E-(cit22)/*[position()=1]) 2017; 16
Li (C9SC06460E-(cit57)/*[position()=1]) 2011; 40
Smitten (C9SC06460E-(cit61)/*[position()=1]) 2019; 13
Wang (C9SC06460E-(cit77)/*[position()=1]) 2019; 10
Johnstone (C9SC06460E-(cit9)/*[position()=1]) 2016; 116
Blaskovich (C9SC06460E-(cit6)/*[position()=1]) 2015; 1
Möhler (C9SC06460E-(cit46)/*[position()=1]) 2018; 36
Weber (C9SC06460E-(cit60)/*[position()=1]) 2016; 138
C9SC06460E-(cit80)/*[position()=1]
Smitten (C9SC06460E-(cit65)/*[position()=1]) 2020; 11
Imberti (C9SC06460E-(cit14)/*[position()=1]) 2020; 75
Lovering (C9SC06460E-(cit25)/*[position()=1]) 2013; 4
(C9SC06460E-(cit3)/*[position()=1]) 2018; 36
Biot (C9SC06460E-(cit10)/*[position()=1]) 2011; 18
Aggarwal (C9SC06460E-(cit47)/*[position()=1]) 2013; 19
Monro (C9SC06460E-(cit11)/*[position()=1]) 2019; 119
Chen (C9SC06460E-(cit36)/*[position()=1]) 2018; 61
Enders (C9SC06460E-(cit49)/*[position()=1]) 2014; 33
Kascatan-Nebioglu (C9SC06460E-(cit31)/*[position()=1]) 2007; 251
Brandt (C9SC06460E-(cit51)/*[position()=1]) 1954; 54
C9SC06460E-(cit81)/*[position()=1]
Wang (C9SC06460E-(cit79)/*[position()=1]) 2019; 58
De Boer (C9SC06460E-(cit18)/*[position()=1]) 2000; 14
Li (C9SC06460E-(cit58)/*[position()=1]) 2015; 44
Sierra (C9SC06460E-(cit42)/*[position()=1]) 2019; 25
Minandri (C9SC06460E-(cit32)/*[position()=1]) 2014; 9
Banin (C9SC06460E-(cit33)/*[position()=1]) 2008; 105
Li (C9SC06460E-(cit78)/*[position()=1]) 2019; 52
Rosenthal (C9SC06460E-(cit66)/*[position()=1]) 2009; 14
Yu (C9SC06460E-(cit75)/*[position()=1]) 2013; 14
Kalyakina (C9SC06460E-(cit67)/*[position()=1]) 2015; 21
Kalyakina (C9SC06460E-(cit69)/*[position()=1]) 2017; 23
Zeng (C9SC06460E-(cit12)/*[position()=1]) 2017; 46
MaGee (C9SC06460E-(cit50)/*[position()=1]) 2013; 42
Roope (C9SC06460E-(cit2)/*[position()=1]) 2019; 364
Lovering (C9SC06460E-(cit24)/*[position()=1]) 2009; 52
Li (C9SC06460E-(cit55)/*[position()=1]) 2015; 44
Li (C9SC06460E-(cit56)/*[position()=1]) 2012; 67
Choi (C9SC06460E-(cit34)/*[position()=1]) 2019; 5
Li (C9SC06460E-(cit62)/*[position()=1]) 2015; 44
Mohamed (C9SC06460E-(cit38)/*[position()=1]) 2015; 44
Gorle (C9SC06460E-(cit54)/*[position()=1]) 2014; 43
Gorle (C9SC06460E-(cit76)/*[position()=1]) 2014; 43
Kenny (C9SC06460E-(cit13)/*[position()=1]) 2019; 119
Wang (C9SC06460E-(cit43)/*[position()=1]) 2019; 17
Liang (C9SC06460E-(cit41)/*[position()=1]) 2018; 157
Wang (C9SC06460E-(cit44)/*[position()=1]) 2019; 10
Aziz (C9SC06460E-(cit21)/*[position()=1]) 2012; 38
Morrison (C9SC06460E-(cit26)/*[position()=1]) 2020; 11
Rashaan (C9SC06460E-(cit23)/*[position()=1]) 2019; 27
Yu (C9SC06460E-(cit74)/*[position()=1]) 2014; 6
Frei (C9SC06460E-(cit63)/*[position()=1]) 2014; 57
Wolff (C9SC06460E-(cit48)/*[position()=1]) 2014; 95
Barillo (C9SC06460E-(cit19)/*[position()=1]) 2017; 43
Cooper (C9SC06460E-(cit5)/*[position()=1]) 2015; 14
Gasser (C9SC06460E-(cit27)/*[position()=1]) 2012; 16
C9SC06460E-(cit20)/*[position()=1]
Lipinski (C9SC06460E-(cit4)/*[position()=1]) 1997; 23
Johnson (C9SC06460E-(cit40)/*[position()=1]) 2017; 22
Lloyd (C9SC06460E-(cit7)/*[position()=1]) 2005; 44
Payne (C9SC06460E-(cit29)/*[position()=1]) 2006; 6
Utochnikova (C9SC06460E-(cit70)/*[position()=1]) 2018; 202
King (C9SC06460E-(cit35)/*[position()=1]) 2019; 48
C9SC06460E-(cit1)/*[position()=1]
Gasser (C9SC06460E-(cit8)/*[position()=1]) 2015; 69
Azócar (C9SC06460E-(cit39)/*[position()=1]) 2014; 67
Kalyakina (C9SC06460E-(cit71)/*[position()=1]) 2016; 28
Spain (C9SC06460E-(cit72)/*[position()=1]) 2018; 61
Dwyer (C9SC06460E-(cit53)/*[position()=1]) 1952; 170
Korfel (C9SC06460E-(cit82)/*[position()=1]) 1998; 4
Kalyakina (C9SC06460E-(cit68)/*[position()=1]) 2018; 54
34122912 - Chem Sci. 2020 Apr 16;11(17):4531. doi: 10.1039/d0sc90075c.
References_xml – issn: 2018
  issue: 36
  end-page: 555
  publication-title: Nat. Biotechnol.
– ident: C9SC06460E-(cit1)/*[position()=1]
– volume: 69
  start-page: 442
  year: 2015
  ident: C9SC06460E-(cit8)/*[position()=1]
  publication-title: Chimia
  doi: 10.2533/chimia.2015.442
– volume: 23
  start-page: 14944
  year: 2017
  ident: C9SC06460E-(cit69)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201703543
– volume: 95
  start-page: 588
  year: 2014
  ident: C9SC06460E-(cit48)/*[position()=1]
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2014.08.034
– volume: 44
  start-page: 2529
  year: 2015
  ident: C9SC06460E-(cit55)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00343H
– volume: 43
  start-page: 16713
  year: 2014
  ident: C9SC06460E-(cit76)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02139H
– volume: 36
  start-page: 555
  volume-title: Nat. Biotechnol.
  year: 2018
  ident: C9SC06460E-(cit3)/*[position()=1]
– volume: 18
  start-page: 207
  year: 2011
  ident: C9SC06460E-(cit10)/*[position()=1]
  publication-title: Parasite
  doi: 10.1051/parasite/2011183207
– volume: 54
  start-page: 5221
  year: 2018
  ident: C9SC06460E-(cit68)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02930J
– volume: 105
  start-page: 16761
  year: 2008
  ident: C9SC06460E-(cit33)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0808608105
– volume: 51
  start-page: 14038
  year: 2015
  ident: C9SC06460E-(cit37)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05172J
– volume: 33
  start-page: 4027
  year: 2014
  ident: C9SC06460E-(cit49)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om500540x
– volume: 61
  start-page: 7330
  year: 2018
  ident: C9SC06460E-(cit36)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00906
– volume: 44
  start-page: 2529
  year: 2015
  ident: C9SC06460E-(cit62)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00343H
– volume: 52
  start-page: 1636
  year: 2013
  ident: C9SC06460E-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205923
– volume: 11
  start-page: 1216
  year: 2020
  ident: C9SC06460E-(cit26)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05586J
– ident: C9SC06460E-(cit83)/*[position()=1]
– volume: 59
  start-page: 5917
  year: 2016
  ident: C9SC06460E-(cit73)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00432
– volume: 54
  start-page: 959
  year: 1954
  ident: C9SC06460E-(cit51)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr60172a003
– volume: 58
  start-page: 13673
  year: 2019
  ident: C9SC06460E-(cit79)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01199
– volume: 48
  start-page: 5987
  year: 2019
  ident: C9SC06460E-(cit35)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04606A
– volume: 364
  start-page: eaau4679
  year: 2019
  ident: C9SC06460E-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aau4679
– volume: 75
  start-page: 3
  year: 2020
  ident: C9SC06460E-(cit14)/*[position()=1]
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/bs.adioch.2019.11.001
– volume: 40
  start-page: 5032
  year: 2011
  ident: C9SC06460E-(cit57)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10250h
– volume: 57
  start-page: 7280
  year: 2014
  ident: C9SC06460E-(cit63)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm500566f
– volume: 27
  start-page: 257
  year: 2019
  ident: C9SC06460E-(cit23)/*[position()=1]
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12699
– volume: 5
  start-page: 1559
  year: 2019
  ident: C9SC06460E-(cit34)/*[position()=1]
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.9b00100
– volume: 377
  start-page: 905
  year: 2011
  ident: C9SC06460E-(cit17)/*[position()=1]
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60020-2
– volume: 9
  start-page: 379
  year: 2014
  ident: C9SC06460E-(cit32)/*[position()=1]
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.14.3
– volume: 114
  start-page: 4540
  year: 2014
  ident: C9SC06460E-(cit16)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400460s
– volume: 38
  start-page: 307
  year: 2012
  ident: C9SC06460E-(cit21)/*[position()=1]
  publication-title: Burns
  doi: 10.1016/j.burns.2011.09.020
– volume: 4
  start-page: 515
  year: 2013
  ident: C9SC06460E-(cit25)/*[position()=1]
  publication-title: MedChemComm
  doi: 10.1039/c2md20347b
– volume: 44
  start-page: 941
  year: 2005
  ident: C9SC06460E-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461471
– volume: 47
  start-page: 203
  year: 1969
  ident: C9SC06460E-(cit52)/*[position()=1]
  publication-title: Aust. J. Exp. Biol. Med. Sci.
  doi: 10.1038/icb.1969.21
– volume: 119
  start-page: 1058
  year: 2019
  ident: C9SC06460E-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00271
– volume: 8
  start-page: 496
  year: 2019
  ident: C9SC06460E-(cit64)/*[position()=1]
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201900088
– volume: 25
  start-page: 7232
  year: 2019
  ident: C9SC06460E-(cit42)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201805985
– volume: 170
  start-page: 190
  year: 1952
  ident: C9SC06460E-(cit53)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/170190a0
– volume: 22
  start-page: 1263
  year: 2017
  ident: C9SC06460E-(cit40)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules22081263
– volume: 67
  start-page: 2686
  year: 2012
  ident: C9SC06460E-(cit56)/*[position()=1]
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dks291
– start-page: 7588
  year: 2009
  ident: C9SC06460E-(cit28)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/b905798f
– volume: 157
  start-page: 62
  year: 2018
  ident: C9SC06460E-(cit41)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.07.057
– volume: 43
  start-page: 1189
  year: 2017
  ident: C9SC06460E-(cit19)/*[position()=1]
  publication-title: Burns
  doi: 10.1016/j.burns.2016.10.023
– volume: 14
  start-page: 85
  year: 2000
  ident: C9SC06460E-(cit18)/*[position()=1]
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1046/j.1365-2036.2000.00686.x
– volume: 6
  start-page: 1931
  year: 2014
  ident: C9SC06460E-(cit74)/*[position()=1]
  publication-title: Metallomics
  doi: 10.1039/C4MT00122B
– volume: 19
  start-page: 12794
  year: 2013
  ident: C9SC06460E-(cit47)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201301191
– volume: 116
  start-page: 3436
  year: 2016
  ident: C9SC06460E-(cit9)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00597
– volume: 373
  start-page: 20140182
  year: 2015
  ident: C9SC06460E-(cit15)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2014.0182
– ident: C9SC06460E-(cit80)/*[position()=1]
– ident: C9SC06460E-(cit20)/*[position()=1]
– volume: 14
  start-page: 979
  year: 2009
  ident: C9SC06460E-(cit66)/*[position()=1]
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-009-0550-4
– volume: 21
  start-page: 17921
  year: 2015
  ident: C9SC06460E-(cit67)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201501816
– ident: C9SC06460E-(cit81)/*[position()=1]
– volume: 52
  start-page: 1636
  year: 2013
  ident: C9SC06460E-(cit45)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205923
– volume: 202
  start-page: 38
  year: 2018
  ident: C9SC06460E-(cit70)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.05.022
– volume: 28
  start-page: 319
  year: 2016
  ident: C9SC06460E-(cit71)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.11.006
– volume: 43
  start-page: 16713
  year: 2014
  ident: C9SC06460E-(cit54)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02139H
– volume: 13
  start-page: 5133
  year: 2019
  ident: C9SC06460E-(cit61)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08440
– volume: 42
  start-page: 4233
  year: 2013
  ident: C9SC06460E-(cit50)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt50225b
– volume: 17
  start-page: e3000292
  year: 2019
  ident: C9SC06460E-(cit43)/*[position()=1]
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000292
– volume: 44
  start-page: 3594
  year: 2015
  ident: C9SC06460E-(cit58)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02575J
– volume: 23
  start-page: 3
  year: 1997
  ident: C9SC06460E-(cit4)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 14
  start-page: 587
  year: 2015
  ident: C9SC06460E-(cit5)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd4706
– volume: 119
  start-page: 797
  year: 2019
  ident: C9SC06460E-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00211
– volume: 16
  start-page: 84
  year: 2012
  ident: C9SC06460E-(cit27)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2012.01.013
– volume: 10
  start-page: 6099
  year: 2019
  ident: C9SC06460E-(cit77)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01480B
– volume: 251
  start-page: 884
  year: 2007
  ident: C9SC06460E-(cit31)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2006.08.019
– volume: 36
  start-page: 1391
  year: 2018
  ident: C9SC06460E-(cit46)/*[position()=1]
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.05.004
– volume: 1
  start-page: 285
  year: 2015
  ident: C9SC06460E-(cit6)/*[position()=1]
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.5b00044
– volume: 46
  start-page: 5771
  year: 2017
  ident: C9SC06460E-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00195A
– volume: 52
  start-page: 6752
  year: 2009
  ident: C9SC06460E-(cit24)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901241e
– volume: 44
  start-page: 7563
  year: 2015
  ident: C9SC06460E-(cit38)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03679D
– volume: 138
  start-page: 15267
  year: 2016
  ident: C9SC06460E-(cit60)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09996
– volume: 61
  start-page: 3595
  year: 2018
  ident: C9SC06460E-(cit72)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b01569
– volume: 16
  start-page: 45
  year: 2017
  ident: C9SC06460E-(cit22)/*[position()=1]
  publication-title: Int. J. Lower Extremity Wounds
  doi: 10.1177/1534734617690949
– volume: 42
  start-page: 4686
  year: 2013
  ident: C9SC06460E-(cit59)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt32775b
– volume: 11
  start-page: 70
  year: 2020
  ident: C9SC06460E-(cit65)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04710G
– volume: 4
  start-page: 2701
  year: 1998
  ident: C9SC06460E-(cit82)/*[position()=1]
  publication-title: et al. Clin. Cancer Res.
– volume: 52
  start-page: 216
  year: 2019
  ident: C9SC06460E-(cit78)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00439
– volume: 6
  start-page: 29
  year: 2006
  ident: C9SC06460E-(cit29)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2201
– volume: 10
  start-page: 7193
  year: 2019
  ident: C9SC06460E-(cit44)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02032B
– volume: 67
  start-page: 3840
  year: 2014
  ident: C9SC06460E-(cit39)/*[position()=1]
  publication-title: J. Coord. Chem.
  doi: 10.1080/00958972.2014.974582
– volume: 14
  start-page: 224
  year: 2013
  ident: C9SC06460E-(cit75)/*[position()=1]
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201200637
– reference: 34122912 - Chem Sci. 2020 Apr 16;11(17):4531. doi: 10.1039/d0sc90075c.
SSID ssj0000331527
Score 2.6782315
Snippet There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug...
There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2627
SubjectTerms Antibiotics
Antimicrobial agents
Chemistry
Cobalt
Coordination compounds
Iridium
Malaria
Organic chemistry
Platinum
Silver
Toxicity
Zinc
Title Metal complexes as a promising source for new antibiotics
URI https://www.ncbi.nlm.nih.gov/pubmed/32206266
https://www.proquest.com/docview/2375920129
https://www.proquest.com/docview/2382660818
https://pubmed.ncbi.nlm.nih.gov/PMC7069370
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJsFeJr4GGWMKgheEwlw7TuLHUW2akMYDrKg8RY5jb5VKWrWpxPjrOTuxk9IiAVIVVbGVD_8ul7vL3e8QepPBW5_xTEdFLMFBSRWOeMx0RAktJCuLUmSmdvjqU3I5ij-O2bjrtmmrS-rivfy5ta7kf1CFfYCrqZL9B2T9QWEH_Ad8YQsIw_avML5StaX3MAy_P9TS9IwRJuMKsLNhAhuYt4mEYDy_gzWcFJNZ7fLbHT-BowxwFT7mu66r5OoFCi4WatKkQN6o6cwHnFfqxuX0CtDZnYneJYOcTe-Wt6Lr4vVBtKkcgPKiTeJpAw_gZZostrjTTwTHgyhhBK8p00FfaHBfNSYNCcCGzsbUUJ5KvpRgHiVY9SfBes-_W_RA8WBwvn6jzW5exO3QDtoj4CyAttv7_HU0_uZjbZjStnuvv2bHVEv5aXfmfXTfHWvdTNnwPTZTaHcWrmOMtUyuH6KD1qUIzxr5eITuqeoxejB0nfyeIG7lJPRyEgr4hV5OwkZOQpCTEOQk7MnJUzS6OL8eXkZty4xIwk3VEeVM0lLFVOuCMZ2wlJAB1RSsOqZIWmRyoMFg1hwLmikBBqJMBeayZBoLKQg9RLvVrFLPUch4LFRGigRciLggglOGFegdXSYsVrEI0Fu3Qrls-eRNW5NpbvMaKM-H_MvQLux5gF77ufOGRWXrrGO30Hn7lC1zQlPGiQmXBuiVH4b1MR-2RKVmKzMHnOTEkDMG6FmDiz-NAzRA6RpifoLhV18fqSa3lmc9xQkY7zhAh4Ctn9-JS4COtg_k81If_fFKXqD97nE6Rrv1YqVegmVbFyc2InTSiu8vBSOiNg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+complexes+as+a+promising+source+for+new+antibiotics&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Frei%2C+Angelo&rft.au=Zuegg%2C+Johannes&rft.au=Elliott%2C+Alysha+G&rft.au=Baker%2C+Murray&rft.date=2020-03-14&rft.issn=2041-6520&rft.volume=11&rft.issue=10&rft.spage=2627&rft_id=info:doi/10.1039%2Fc9sc06460e&rft_id=info%3Apmid%2F32206266&rft.externalDocID=32206266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon