Metal complexes as a promising source for new antibiotics
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in...
Saved in:
Published in | Chemical science (Cambridge) Vol. 11; no. 1; pp. 2627 - 2639 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant
S. aureus
(MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules. |
---|---|
AbstractList | There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules.
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant
S. aureus
(MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance. There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules. |
Author | Zuegg, Johannes Elliott, Alysha G Rutledge, Peter J Dowson, Christopher Massi, Massimiliano Cooper, Matthew A Frei, Angelo Blaskovich, Mark A. T Baker, Murray King, A. Paden Willans, Charlotte E Todd, Matthew H Dujardin, Gilles Braese, Stefan Brown, Christopher Moat, John Chen, Feng Jung, Nicole Mansour, Ahmed M Mohamed, Heba A Renfrew, Anna K Sadler, Peter J Wilson, Justin J |
AuthorAffiliation | The University of Sydney Centre for Superbug Solutions Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) University College London University of Warwick Department of Chemistry and Chemical Biology School of Chemistry Department of Chemistry University of Leeds Chemistry Department School of Pharmacy School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces University of Sydney Institute of Molecules and Matter of Le Mans (IMMM) Antimicrobial Screening Facility UMR 6283 CNRS The University of Western Australia Faculty of Science Cornell University Curtin University Karlsruhe Institute of Technology (KIT) The University of Queensland School of Medical Sciences (Discipline of Pharmacology) Institute of Organic Chemistry School of Molecular Sciences Institute for Molecular Bioscience School of Life Sciences Le Mans Université Cairo University |
AuthorAffiliation_xml | – name: School of Medical Sciences (Discipline of Pharmacology) – name: Institute of Molecules and Matter of Le Mans (IMMM) – name: Department of Chemistry – name: Antimicrobial Screening Facility – name: School of Pharmacy – name: UMR 6283 CNRS – name: Centre for Superbug Solutions – name: The University of Western Australia – name: University of Warwick – name: The University of Queensland – name: Institute of Organic Chemistry – name: Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) – name: Department of Chemistry and Chemical Biology – name: School of Molecular Sciences – name: University of Leeds – name: Cairo University – name: The University of Sydney – name: Karlsruhe Institute of Technology (KIT) – name: Institute for Molecular Bioscience – name: School of Life Sciences – name: Faculty of Science – name: Le Mans Université – name: Chemistry Department – name: Cornell University – name: Curtin University – name: University of Sydney – name: School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces – name: School of Chemistry – name: University College London – name: g Antimicrobial Screening Facility , School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK – name: h Institute of Molecules and Matter of Le Mans (IMMM) , UMR 6283 CNRS , Le Mans Université , France – name: b School of Molecular Sciences , The University of Western Australia , Stirling Highway , 6009 Perth , Australia – name: l School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK – name: m School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia – name: j Chemistry Department , Faculty of Science , Cairo University , Egypt – name: i Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA – name: f Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK – name: k School of Molecular and Life Sciences – Curtin Institute for Functional Materials and Interfaces , Curtin University , Kent Street , 6102 Bentley WA , Australia – name: n School of Pharmacy , University College London , London , WC1N 1AX , UK – name: c Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany – name: e School of Medical Sciences (Discipline of Pharmacology) , University of Sydney , Australia – name: a Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . Email: angelo.frei.ch@gmail.com ; Email: m.blaskovich@uq.edu.au – name: d Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany |
Author_xml | – sequence: 1 givenname: Angelo surname: Frei fullname: Frei, Angelo – sequence: 2 givenname: Johannes surname: Zuegg fullname: Zuegg, Johannes – sequence: 3 givenname: Alysha G surname: Elliott fullname: Elliott, Alysha G – sequence: 4 givenname: Murray surname: Baker fullname: Baker, Murray – sequence: 5 givenname: Stefan surname: Braese fullname: Braese, Stefan – sequence: 6 givenname: Christopher surname: Brown fullname: Brown, Christopher – sequence: 7 givenname: Feng surname: Chen fullname: Chen, Feng – sequence: 8 givenname: Christopher surname: Dowson fullname: Dowson, Christopher – sequence: 9 givenname: Gilles surname: Dujardin fullname: Dujardin, Gilles – sequence: 10 givenname: Nicole surname: Jung fullname: Jung, Nicole – sequence: 11 givenname: A. Paden surname: King fullname: King, A. Paden – sequence: 12 givenname: Ahmed M surname: Mansour fullname: Mansour, Ahmed M – sequence: 13 givenname: Massimiliano surname: Massi fullname: Massi, Massimiliano – sequence: 14 givenname: John surname: Moat fullname: Moat, John – sequence: 15 givenname: Heba A surname: Mohamed fullname: Mohamed, Heba A – sequence: 16 givenname: Anna K surname: Renfrew fullname: Renfrew, Anna K – sequence: 17 givenname: Peter J surname: Rutledge fullname: Rutledge, Peter J – sequence: 18 givenname: Peter J surname: Sadler fullname: Sadler, Peter J – sequence: 19 givenname: Matthew H surname: Todd fullname: Todd, Matthew H – sequence: 20 givenname: Charlotte E surname: Willans fullname: Willans, Charlotte E – sequence: 21 givenname: Justin J surname: Wilson fullname: Wilson, Justin J – sequence: 22 givenname: Matthew A surname: Cooper fullname: Cooper, Matthew A – sequence: 23 givenname: Mark A. T surname: Blaskovich fullname: Blaskovich, Mark A. T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32206266$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9LXDEQx0NRqq5eem95xYsIq5Nkk_dyEWTxFygetOeQzU5s5G3ymryt-t8b3XVbpTQEEpjPfDPfmWyRtRADEvKFwgEFrg6tyhbkSAJ-IpsMRnQoBVdrqzuDDbKT8z2UxTkVrP5MNjhjIJmUm0RdYW_aysZZ1-Ij5sqUXXUpznz24a7KcZ4sVi6mKuBDZULvJz723uZtsu5Mm3FneQ7Ij9OT2_H58PL67GJ8fDm05e1-yJWwfIoj7txECCdFzRjljlOmBLJ60ljqJAWnwPAGDUBtawPKToUDYw3jA3K00O3mkxlOLYY-mVZ3yc9MetLReP0-EvxPfRd_6xqk4jUUgb2lQIq_5ph7XbxZbFsTMM6zZrwprYCGNgXd_YDeF_-h2CtULRSDUnahvv1d0aqUt64WYH8B2BRzTuhWCAX9MjU9Vjfj16mdFBg-wNb3pvfxxY1v_53ydZGSsl1J__kIJf79f3HdTR1_BvWMrWI |
CitedBy_id | crossref_primary_10_1039_D1RA09027E crossref_primary_10_1039_D3DT01287E crossref_primary_10_1016_j_jinorgbio_2022_111887 crossref_primary_10_3390_biomedicines10123182 crossref_primary_10_2174_0929867330666230321110018 crossref_primary_10_1016_j_ccr_2023_215429 crossref_primary_10_1016_j_inoche_2025_114355 crossref_primary_10_1016_j_jinorgbio_2024_112735 crossref_primary_10_1016_j_ica_2024_122393 crossref_primary_10_1080_00958972_2024_2369911 crossref_primary_10_3390_molecules30030564 crossref_primary_10_1021_acsomega_4c11347 crossref_primary_10_1016_j_porgcoat_2024_108799 crossref_primary_10_1039_D4DT02068E crossref_primary_10_1039_D3DT00150D crossref_primary_10_1093_mtomcs_mfad049 crossref_primary_10_14233_ajchem_2021_23478 crossref_primary_10_1007_s10534_023_00565_y crossref_primary_10_3390_ijms22094847 crossref_primary_10_1016_j_colsurfb_2022_112432 crossref_primary_10_1099_jmm_0_001363 crossref_primary_10_3390_ijms25158525 crossref_primary_10_3390_antibiotics12091474 crossref_primary_10_1016_j_ejmech_2024_116712 crossref_primary_10_1093_mtomcs_mfac070 crossref_primary_10_3390_antibiotics9060321 crossref_primary_10_1002_cplu_202400543 crossref_primary_10_1007_s11356_021_14958_4 crossref_primary_10_1016_j_molstruc_2023_136603 crossref_primary_10_1016_j_poly_2025_117441 crossref_primary_10_1007_s00284_023_03232_0 crossref_primary_10_1002_cbic_202400678 crossref_primary_10_1002_cbic_202400435 crossref_primary_10_1002_slct_202101149 crossref_primary_10_1039_D1DT00979F crossref_primary_10_31857_S0132344X23700305 crossref_primary_10_1515_pac_2023_0212 crossref_primary_10_1016_j_envres_2023_117275 crossref_primary_10_1039_D2MD00430E crossref_primary_10_1002_cmdc_202300065 crossref_primary_10_3390_molecules28010040 crossref_primary_10_3390_antibiotics11111645 crossref_primary_10_1016_j_jinorgbio_2024_112755 crossref_primary_10_1002_ejic_202300767 crossref_primary_10_3390_chemistry2020026 crossref_primary_10_1016_j_jinorgbio_2024_112517 crossref_primary_10_1002_ange_202310040 crossref_primary_10_1186_s12934_024_02628_2 crossref_primary_10_1002_chem_202301603 crossref_primary_10_3390_inorganics11060252 crossref_primary_10_3390_antibiotics10010072 crossref_primary_10_1016_j_poly_2021_115390 crossref_primary_10_2174_2211352520666220104104747 crossref_primary_10_1039_D2DT02834D crossref_primary_10_1039_D1QI00512J crossref_primary_10_1080_02603594_2021_1962310 crossref_primary_10_3390_antibiotics9100649 crossref_primary_10_1039_D1DT03234H crossref_primary_10_1039_D1RA03063A crossref_primary_10_1039_D2DT02696A crossref_primary_10_1039_D2DT00752E crossref_primary_10_1016_j_bmcl_2021_127879 crossref_primary_10_1016_j_ica_2022_120996 crossref_primary_10_1039_D3DT01904G crossref_primary_10_1515_hsz_2021_0253 crossref_primary_10_2147_IJN_S328767 crossref_primary_10_3390_ijms24010188 crossref_primary_10_1002_ange_202414325 crossref_primary_10_1016_j_soilbio_2024_109362 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1016_j_ejmech_2021_113600 crossref_primary_10_1177_17475198211055098 crossref_primary_10_1016_j_bioorg_2025_108319 crossref_primary_10_1016_j_ejmech_2021_113602 crossref_primary_10_1002_ange_202420204 crossref_primary_10_1002_ange_202317901 crossref_primary_10_1016_j_poly_2024_117287 crossref_primary_10_1007_s00775_022_01967_y crossref_primary_10_1002_aoc_7943 crossref_primary_10_1039_D1BM01743H crossref_primary_10_1021_acsinfecdis_0c00163 crossref_primary_10_1039_D1DT02929K crossref_primary_10_1021_acsptsci_0c00159 crossref_primary_10_1039_D3DT00395G crossref_primary_10_1016_j_jinorgbio_2022_112052 crossref_primary_10_1016_j_poly_2021_115033 crossref_primary_10_1016_j_poly_2022_115857 crossref_primary_10_1039_D4CS01193G crossref_primary_10_1002_asia_202401060 crossref_primary_10_3390_inorganics9060048 crossref_primary_10_1016_j_ica_2024_122509 crossref_primary_10_3390_ijms241512296 crossref_primary_10_1021_acs_inorgchem_2c02690 crossref_primary_10_1039_D4DT00907J crossref_primary_10_1186_s12951_023_02208_3 crossref_primary_10_1002_ejoc_202101516 crossref_primary_10_1021_acs_inorgchem_3c01041 crossref_primary_10_1039_D2DT01310J crossref_primary_10_3390_pharmaceutics13121995 crossref_primary_10_1038_s41570_023_00463_4 crossref_primary_10_1016_j_ijbiomac_2023_125917 crossref_primary_10_1021_acs_inorgchem_4c05064 crossref_primary_10_1039_D4DT01867B crossref_primary_10_1080_08927014_2021_2015336 crossref_primary_10_1039_D4MD00860J crossref_primary_10_1093_mtomcs_mfaa011 crossref_primary_10_1002_cmdc_202000536 crossref_primary_10_1016_j_ejmech_2020_112533 crossref_primary_10_1016_j_jinorgbio_2024_112546 crossref_primary_10_1016_j_marpolbul_2023_115189 crossref_primary_10_1039_D4RA07449A crossref_primary_10_3390_pharmaceutics12100961 crossref_primary_10_3390_antibiotics10121443 crossref_primary_10_1002_cbic_202300247 crossref_primary_10_1016_j_ejmech_2022_114834 crossref_primary_10_1016_j_molstruc_2025_141859 crossref_primary_10_1016_j_poly_2024_117340 crossref_primary_10_1016_j_molstruc_2021_131595 crossref_primary_10_1134_S1070328423700665 crossref_primary_10_1002_aoc_6917 crossref_primary_10_1002_slct_202200280 crossref_primary_10_1016_j_molstruc_2022_132989 crossref_primary_10_1016_j_molstruc_2022_132506 crossref_primary_10_3390_biophysica1040027 crossref_primary_10_1016_j_ica_2020_120152 crossref_primary_10_1002_cmdc_202100157 crossref_primary_10_1039_D3DT01761C crossref_primary_10_3390_antibiotics11060711 crossref_primary_10_14233_ajchem_2021_23048 crossref_primary_10_3390_antibiotics12050909 crossref_primary_10_1016_j_jorganchem_2021_121960 crossref_primary_10_1002_chem_202400646 crossref_primary_10_1016_j_ica_2023_121656 crossref_primary_10_1016_j_poly_2023_116660 crossref_primary_10_59761_RCR5093 crossref_primary_10_1038_s41467_021_23659_y crossref_primary_10_1111_php_13435 crossref_primary_10_1021_acsami_4c02979 crossref_primary_10_1016_j_jorganchem_2024_123114 crossref_primary_10_1038_s41429_023_00629_8 crossref_primary_10_1002_aoc_7579 crossref_primary_10_1016_j_jare_2023_02_004 crossref_primary_10_1071_MA24026 crossref_primary_10_3390_molecules29051186 crossref_primary_10_1021_acs_cgd_3c00042 crossref_primary_10_1038_s41467_021_23953_9 crossref_primary_10_1038_s41467_023_40828_3 crossref_primary_10_1016_S2666_5247_24_00003_X crossref_primary_10_1080_00958972_2024_2448518 crossref_primary_10_3389_fmicb_2023_1198473 crossref_primary_10_3390_ijms26062436 crossref_primary_10_1002_ardp_202100305 crossref_primary_10_1016_j_heliyon_2022_e10378 crossref_primary_10_1021_acs_organomet_1c00166 crossref_primary_10_1016_j_inoche_2025_113967 crossref_primary_10_55230_mabjournal_v53i6_1 crossref_primary_10_1002_ejic_202300634 crossref_primary_10_1016_j_molstruc_2021_130006 crossref_primary_10_1111_cbdd_13943 crossref_primary_10_3390_inorganics10110200 crossref_primary_10_1039_D4RA03141E crossref_primary_10_1093_mtomcs_mfab007 crossref_primary_10_1134_S1070328421120046 crossref_primary_10_3390_ijms23137146 crossref_primary_10_3390_antibiotics11020158 crossref_primary_10_1016_j_molstruc_2025_141403 crossref_primary_10_1039_D0NJ03122D crossref_primary_10_1039_D3DT01678A crossref_primary_10_3390_ijms25158395 crossref_primary_10_1039_D4DT02562H crossref_primary_10_1016_j_mib_2023_102347 crossref_primary_10_1016_j_poly_2025_117414 crossref_primary_10_1016_j_ccr_2023_215608 crossref_primary_10_1016_j_jorganchem_2023_122633 crossref_primary_10_1016_j_arabjc_2020_102932 crossref_primary_10_1039_D1NJ04273D crossref_primary_10_1039_d0mt00206b crossref_primary_10_1002_chem_202003545 crossref_primary_10_1126_sciadv_adk6331 crossref_primary_10_3390_biomedicines10020222 crossref_primary_10_1002_anie_202414325 crossref_primary_10_3390_pharmaceutics14081664 crossref_primary_10_1002_anie_202420204 crossref_primary_10_1016_j_molstruc_2022_132814 crossref_primary_10_1016_j_jinorgbio_2021_111408 crossref_primary_10_1016_j_jallcom_2021_163073 crossref_primary_10_3390_pharmaceutics13060874 crossref_primary_10_1021_acsami_3c07354 crossref_primary_10_3390_inorganics11020063 crossref_primary_10_1002_EXP_20210117 crossref_primary_10_1039_D2DT02157A crossref_primary_10_1007_s00775_020_01843_7 crossref_primary_10_1039_D2DT00346E crossref_primary_10_1016_j_ica_2023_121749 crossref_primary_10_1002_aoc_7190 crossref_primary_10_1039_D1RA06559A crossref_primary_10_1039_D2RA07401J crossref_primary_10_3390_antibiotics11030388 crossref_primary_10_1016_j_molliq_2023_121841 crossref_primary_10_1016_j_molliq_2024_124616 crossref_primary_10_1016_j_ica_2020_119806 crossref_primary_10_1016_j_inoche_2024_113396 crossref_primary_10_1039_D4NJ01152J crossref_primary_10_3390_ph15040453 crossref_primary_10_1039_d0mt00142b crossref_primary_10_1016_j_molliq_2025_127269 crossref_primary_10_1016_j_jhazmat_2023_132375 crossref_primary_10_3390_chemistry2040056 crossref_primary_10_1007_s10904_024_03571_w crossref_primary_10_1016_j_jddst_2023_104428 crossref_primary_10_1021_acsami_3c06394 crossref_primary_10_1016_j_ijbiomac_2024_138617 crossref_primary_10_1016_j_molliq_2024_124183 crossref_primary_10_1039_D0SC03410J crossref_primary_10_1007_s10904_021_02148_1 crossref_primary_10_1016_j_inoche_2024_112620 crossref_primary_10_1016_j_jorganchem_2021_121928 crossref_primary_10_1007_s10534_021_00307_y crossref_primary_10_1039_D4DT01033G crossref_primary_10_1039_D2CC01259F crossref_primary_10_1021_jacsau_2c00308 crossref_primary_10_1039_D5DT00087D crossref_primary_10_1155_2022_8453159 crossref_primary_10_1021_acs_inorgchem_0c00982 crossref_primary_10_1039_D2DT03365H crossref_primary_10_1016_j_ica_2024_122337 crossref_primary_10_1016_j_molliq_2024_125161 crossref_primary_10_1080_17568919_2025_2458459 crossref_primary_10_3390_molecules28020902 crossref_primary_10_1016_j_bmc_2024_117842 crossref_primary_10_1002_ardp_202200041 crossref_primary_10_1080_00958972_2022_2101365 crossref_primary_10_1080_00958972_2023_2265037 crossref_primary_10_3390_ph15091107 crossref_primary_10_1016_j_jphotochem_2023_114769 crossref_primary_10_1055_s_0041_1741035 crossref_primary_10_19261_cjm_2023_1121 crossref_primary_10_3389_fchem_2024_1371637 crossref_primary_10_1002_cbdv_202402540 crossref_primary_10_3390_ph13120471 crossref_primary_10_35848_1347_4065_ac1c3d crossref_primary_10_3390_antibiotics9050277 crossref_primary_10_1002_aoc_5923 crossref_primary_10_1002_cbic_202000707 crossref_primary_10_1021_acsabm_0c01221 crossref_primary_10_1021_jacsau_1c00262 crossref_primary_10_3390_inorganics10040050 crossref_primary_10_1002_aoc_6695 crossref_primary_10_3390_antibiotics10020135 crossref_primary_10_1002_chem_202401712 crossref_primary_10_3390_ijms24065756 crossref_primary_10_1016_j_bcp_2024_116716 crossref_primary_10_1016_j_pmatsci_2021_100887 crossref_primary_10_1021_acs_inorgchem_4c05414 crossref_primary_10_3390_antibiotics12111578 crossref_primary_10_3390_molecules27207059 crossref_primary_10_1007_s00775_022_01979_8 crossref_primary_10_1039_D0CC06037B crossref_primary_10_1002_anie_202317901 crossref_primary_10_3390_app15031166 crossref_primary_10_3390_molecules28217453 crossref_primary_10_1039_D2DT00411A crossref_primary_10_1039_D0DT02225J crossref_primary_10_3390_molecules26175302 crossref_primary_10_3390_challe11020015 crossref_primary_10_1002_aoc_7394 crossref_primary_10_1039_D3DT00287J crossref_primary_10_3390_app13179854 crossref_primary_10_3390_molecules29020414 crossref_primary_10_1002_anie_202310040 crossref_primary_10_1016_j_microc_2024_111035 crossref_primary_10_1039_D3MD00067B crossref_primary_10_1016_j_poly_2020_114755 crossref_primary_10_1039_D2DT01657E crossref_primary_10_1039_D2RA08327B crossref_primary_10_1002_chem_202004822 crossref_primary_10_1016_j_biopha_2023_114690 crossref_primary_10_1039_D3DT01159C crossref_primary_10_1039_D3SC05326A crossref_primary_10_1016_j_ccr_2024_216147 crossref_primary_10_1039_D2CE01118B crossref_primary_10_1039_D0NJ01889A crossref_primary_10_1515_ract_2023_0249 crossref_primary_10_1039_D0SC03563G crossref_primary_10_1002_marc_202100274 crossref_primary_10_1016_j_ejmech_2021_113858 crossref_primary_10_3390_v13060980 crossref_primary_10_1016_j_ejmech_2021_113610 crossref_primary_10_1016_j_jinorgbio_2022_111980 crossref_primary_10_1021_acsorginorgau_2c00021 crossref_primary_10_1016_j_jinorgbio_2021_111667 crossref_primary_10_1016_j_ccr_2023_215326 crossref_primary_10_1016_j_jinorgbio_2021_111543 crossref_primary_10_1021_acs_inorgchem_3c00214 crossref_primary_10_1134_S0036023623600910 crossref_primary_10_1016_j_colsurfa_2021_126540 crossref_primary_10_1016_j_jorganchem_2024_123076 crossref_primary_10_1016_j_drudis_2022_02_021 crossref_primary_10_1002_ejoc_202400425 crossref_primary_10_1016_j_molstruc_2021_130774 crossref_primary_10_1016_j_compbiolchem_2024_108190 crossref_primary_10_1016_j_bpc_2025_107419 crossref_primary_10_1016_j_colsurfb_2024_114280 crossref_primary_10_1016_j_bioorg_2024_107262 crossref_primary_10_3390_ijms241411865 crossref_primary_10_1039_D2CC01772E crossref_primary_10_1016_j_crmicr_2021_100099 crossref_primary_10_1039_D0CB00218F crossref_primary_10_1039_D2NJ00283C crossref_primary_10_1007_s11172_024_4468_3 crossref_primary_10_1016_j_rechem_2023_100846 crossref_primary_10_3390_molecules28093887 crossref_primary_10_1021_acs_jmedchem_3c00322 crossref_primary_10_1016_j_jprot_2023_105011 crossref_primary_10_1039_D4DT00978A crossref_primary_10_3390_ijms23010418 crossref_primary_10_3390_inorganics11080331 crossref_primary_10_1021_acsanm_3c03781 crossref_primary_10_1021_acschembio_0c00732 crossref_primary_10_1016_j_poly_2022_116073 crossref_primary_10_1016_j_matpr_2022_04_303 crossref_primary_10_1016_j_envint_2021_106863 crossref_primary_10_1016_j_inoche_2020_108077 crossref_primary_10_1021_acs_inorgchem_0c02432 crossref_primary_10_1080_00958972_2021_1871608 crossref_primary_10_1016_j_molstruc_2024_139435 crossref_primary_10_3390_antibiotics10080942 crossref_primary_10_1021_acsinfecdis_3c00286 crossref_primary_10_1002_aoc_70057 crossref_primary_10_1021_acsomega_1c04034 crossref_primary_10_1016_j_ecoenv_2024_117390 crossref_primary_10_1016_j_poly_2023_116485 crossref_primary_10_1016_j_scitotenv_2022_157778 crossref_primary_10_3390_ph15050507 crossref_primary_10_1016_j_bioorg_2024_107938 |
Cites_doi | 10.2533/chimia.2015.442 10.1002/chem.201703543 10.1016/j.supflu.2014.08.034 10.1039/C4CS00343H 10.1039/C4DT02139H 10.1051/parasite/2011183207 10.1039/C8CC02930J 10.1073/pnas.0808608105 10.1039/C5CC05172J 10.1021/om500540x 10.1021/acs.jmedchem.8b00906 10.1002/anie.201205923 10.1039/C9SC05586J 10.1021/acs.jmedchem.6b00432 10.1021/cr60172a003 10.1021/acs.inorgchem.9b01199 10.1039/C8DT04606A 10.1126/science.aau4679 10.1016/bs.adioch.2019.11.001 10.1039/c1dt10250h 10.1021/jm500566f 10.1111/wrr.12699 10.1021/acsinfecdis.9b00100 10.1016/S0140-6736(11)60020-2 10.2217/fmb.14.3 10.1021/cr400460s 10.1016/j.burns.2011.09.020 10.1039/c2md20347b 10.1002/anie.200461471 10.1038/icb.1969.21 10.1021/acs.chemrev.8b00271 10.1002/ajoc.201900088 10.1002/chem.201805985 10.1038/170190a0 10.3390/molecules22081263 10.1093/jac/dks291 10.1039/b905798f 10.1016/j.ejmech.2018.07.057 10.1016/j.burns.2016.10.023 10.1046/j.1365-2036.2000.00686.x 10.1039/C4MT00122B 10.1002/chem.201301191 10.1021/acs.chemrev.5b00597 10.1098/rsta.2014.0182 10.1007/s00775-009-0550-4 10.1002/chem.201501816 10.1016/j.jlumin.2018.05.022 10.1016/j.orgel.2015.11.006 10.1021/acsnano.8b08440 10.1039/c3dt50225b 10.1371/journal.pbio.3000292 10.1039/C4DT02575J 10.1016/S0169-409X(96)00423-1 10.1038/nrd4706 10.1021/acs.chemrev.8b00211 10.1016/j.cbpa.2012.01.013 10.1039/C9SC01480B 10.1016/j.ccr.2006.08.019 10.1016/j.biotechadv.2018.05.004 10.1021/acsinfecdis.5b00044 10.1039/C7CS00195A 10.1021/jm901241e 10.1039/C4DT03679D 10.1021/jacs.6b09996 10.1021/acs.jmedchem.7b01569 10.1177/1534734617690949 10.1039/c3dt32775b 10.1039/C9SC04710G 10.1021/acs.accounts.8b00439 10.1038/nrd2201 10.1039/C9SC02032B 10.1080/00958972.2014.974582 10.1002/cbic.201200637 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2020. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 2020 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2020. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 2020 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/c9sc06460e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 2639 |
ExternalDocumentID | PMC7069370 32206266 10_1039_C9SC06460E c9sc06460e |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0400848 – fundername: Medical Research Council grantid: MR/P007503/1 – fundername: Medical Research Council grantid: MR/N002679/1 – fundername: NIGMS NIH HHS grantid: T32 GM008500 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c520t-395c3de43ffb55f6572213f31295e27b8c1f610f90a38ea007c7a09cd5f0aca23 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:03:16 EDT 2025 Fri Jul 11 03:39:03 EDT 2025 Fri Jul 25 07:04:10 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Tue Jul 01 03:46:35 EDT 2025 Sat Jan 08 03:40:05 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2020. This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-395c3de43ffb55f6572213f31295e27b8c1f610f90a38ea007c7a09cd5f0aca23 |
Notes | 10.1039/c9sc06460e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Joint first authors. |
ORCID | 0000-0002-0482-3421 0000-0003-3147-3460 0000-0002-2983-0484 0000-0003-4845-3191 0000-0002-0877-3636 0000-0002-0767-5196 0000-0003-0734-8109 0000-0003-0412-8821 0000-0001-9447-2292 0000-0001-9160-1941 0000-0002-8294-8836 0000-0002-0785-5787 0000-0001-6949-4019 0000-0002-4086-7982 0000-0001-6169-2491 0000-0001-9946-4080 0000-0001-7096-4751 0000-0001-6240-6020 |
OpenAccessLink | http://dx.doi.org/10.1039/c9sc06460e |
PMID | 32206266 |
PQID | 2375920129 |
PQPubID | 2047492 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1039_C9SC06460E pubmed_primary_32206266 proquest_journals_2375920129 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7069370 proquest_miscellaneous_2382660818 rsc_primary_c9sc06460e crossref_citationtrail_10_1039_C9SC06460E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-14 |
PublicationDateYYYYMMDD | 2020-03-14 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gianferrara (C9SC06460E-(cit28)/*[position()=1]) 2009 Karaoun (C9SC06460E-(cit37)/*[position()=1]) 2015; 51 Chernousova (C9SC06460E-(cit45)/*[position()=1]) 2013; 52 Chernousova (C9SC06460E-(cit30)/*[position()=1]) 2013; 52 Mjos (C9SC06460E-(cit16)/*[position()=1]) 2014; 114 Malfertheiner (C9SC06460E-(cit17)/*[position()=1]) 2011; 377 Yu (C9SC06460E-(cit73)/*[position()=1]) 2016; 59 Dwyer (C9SC06460E-(cit52)/*[position()=1]) 1969; 47 C9SC06460E-(cit83)/*[position()=1] van Hilst (C9SC06460E-(cit64)/*[position()=1]) 2019; 8 Chellan (C9SC06460E-(cit15)/*[position()=1]) 2015; 373 Pandrala (C9SC06460E-(cit59)/*[position()=1]) 2013; 42 Wattanaploy (C9SC06460E-(cit22)/*[position()=1]) 2017; 16 Li (C9SC06460E-(cit57)/*[position()=1]) 2011; 40 Smitten (C9SC06460E-(cit61)/*[position()=1]) 2019; 13 Wang (C9SC06460E-(cit77)/*[position()=1]) 2019; 10 Johnstone (C9SC06460E-(cit9)/*[position()=1]) 2016; 116 Blaskovich (C9SC06460E-(cit6)/*[position()=1]) 2015; 1 Möhler (C9SC06460E-(cit46)/*[position()=1]) 2018; 36 Weber (C9SC06460E-(cit60)/*[position()=1]) 2016; 138 C9SC06460E-(cit80)/*[position()=1] Smitten (C9SC06460E-(cit65)/*[position()=1]) 2020; 11 Imberti (C9SC06460E-(cit14)/*[position()=1]) 2020; 75 Lovering (C9SC06460E-(cit25)/*[position()=1]) 2013; 4 (C9SC06460E-(cit3)/*[position()=1]) 2018; 36 Biot (C9SC06460E-(cit10)/*[position()=1]) 2011; 18 Aggarwal (C9SC06460E-(cit47)/*[position()=1]) 2013; 19 Monro (C9SC06460E-(cit11)/*[position()=1]) 2019; 119 Chen (C9SC06460E-(cit36)/*[position()=1]) 2018; 61 Enders (C9SC06460E-(cit49)/*[position()=1]) 2014; 33 Kascatan-Nebioglu (C9SC06460E-(cit31)/*[position()=1]) 2007; 251 Brandt (C9SC06460E-(cit51)/*[position()=1]) 1954; 54 C9SC06460E-(cit81)/*[position()=1] Wang (C9SC06460E-(cit79)/*[position()=1]) 2019; 58 De Boer (C9SC06460E-(cit18)/*[position()=1]) 2000; 14 Li (C9SC06460E-(cit58)/*[position()=1]) 2015; 44 Sierra (C9SC06460E-(cit42)/*[position()=1]) 2019; 25 Minandri (C9SC06460E-(cit32)/*[position()=1]) 2014; 9 Banin (C9SC06460E-(cit33)/*[position()=1]) 2008; 105 Li (C9SC06460E-(cit78)/*[position()=1]) 2019; 52 Rosenthal (C9SC06460E-(cit66)/*[position()=1]) 2009; 14 Yu (C9SC06460E-(cit75)/*[position()=1]) 2013; 14 Kalyakina (C9SC06460E-(cit67)/*[position()=1]) 2015; 21 Kalyakina (C9SC06460E-(cit69)/*[position()=1]) 2017; 23 Zeng (C9SC06460E-(cit12)/*[position()=1]) 2017; 46 MaGee (C9SC06460E-(cit50)/*[position()=1]) 2013; 42 Roope (C9SC06460E-(cit2)/*[position()=1]) 2019; 364 Lovering (C9SC06460E-(cit24)/*[position()=1]) 2009; 52 Li (C9SC06460E-(cit55)/*[position()=1]) 2015; 44 Li (C9SC06460E-(cit56)/*[position()=1]) 2012; 67 Choi (C9SC06460E-(cit34)/*[position()=1]) 2019; 5 Li (C9SC06460E-(cit62)/*[position()=1]) 2015; 44 Mohamed (C9SC06460E-(cit38)/*[position()=1]) 2015; 44 Gorle (C9SC06460E-(cit54)/*[position()=1]) 2014; 43 Gorle (C9SC06460E-(cit76)/*[position()=1]) 2014; 43 Kenny (C9SC06460E-(cit13)/*[position()=1]) 2019; 119 Wang (C9SC06460E-(cit43)/*[position()=1]) 2019; 17 Liang (C9SC06460E-(cit41)/*[position()=1]) 2018; 157 Wang (C9SC06460E-(cit44)/*[position()=1]) 2019; 10 Aziz (C9SC06460E-(cit21)/*[position()=1]) 2012; 38 Morrison (C9SC06460E-(cit26)/*[position()=1]) 2020; 11 Rashaan (C9SC06460E-(cit23)/*[position()=1]) 2019; 27 Yu (C9SC06460E-(cit74)/*[position()=1]) 2014; 6 Frei (C9SC06460E-(cit63)/*[position()=1]) 2014; 57 Wolff (C9SC06460E-(cit48)/*[position()=1]) 2014; 95 Barillo (C9SC06460E-(cit19)/*[position()=1]) 2017; 43 Cooper (C9SC06460E-(cit5)/*[position()=1]) 2015; 14 Gasser (C9SC06460E-(cit27)/*[position()=1]) 2012; 16 C9SC06460E-(cit20)/*[position()=1] Lipinski (C9SC06460E-(cit4)/*[position()=1]) 1997; 23 Johnson (C9SC06460E-(cit40)/*[position()=1]) 2017; 22 Lloyd (C9SC06460E-(cit7)/*[position()=1]) 2005; 44 Payne (C9SC06460E-(cit29)/*[position()=1]) 2006; 6 Utochnikova (C9SC06460E-(cit70)/*[position()=1]) 2018; 202 King (C9SC06460E-(cit35)/*[position()=1]) 2019; 48 C9SC06460E-(cit1)/*[position()=1] Gasser (C9SC06460E-(cit8)/*[position()=1]) 2015; 69 Azócar (C9SC06460E-(cit39)/*[position()=1]) 2014; 67 Kalyakina (C9SC06460E-(cit71)/*[position()=1]) 2016; 28 Spain (C9SC06460E-(cit72)/*[position()=1]) 2018; 61 Dwyer (C9SC06460E-(cit53)/*[position()=1]) 1952; 170 Korfel (C9SC06460E-(cit82)/*[position()=1]) 1998; 4 Kalyakina (C9SC06460E-(cit68)/*[position()=1]) 2018; 54 34122912 - Chem Sci. 2020 Apr 16;11(17):4531. doi: 10.1039/d0sc90075c. |
References_xml | – issn: 2018 issue: 36 end-page: 555 publication-title: Nat. Biotechnol. – ident: C9SC06460E-(cit1)/*[position()=1] – volume: 69 start-page: 442 year: 2015 ident: C9SC06460E-(cit8)/*[position()=1] publication-title: Chimia doi: 10.2533/chimia.2015.442 – volume: 23 start-page: 14944 year: 2017 ident: C9SC06460E-(cit69)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201703543 – volume: 95 start-page: 588 year: 2014 ident: C9SC06460E-(cit48)/*[position()=1] publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2014.08.034 – volume: 44 start-page: 2529 year: 2015 ident: C9SC06460E-(cit55)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00343H – volume: 43 start-page: 16713 year: 2014 ident: C9SC06460E-(cit76)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT02139H – volume: 36 start-page: 555 volume-title: Nat. Biotechnol. year: 2018 ident: C9SC06460E-(cit3)/*[position()=1] – volume: 18 start-page: 207 year: 2011 ident: C9SC06460E-(cit10)/*[position()=1] publication-title: Parasite doi: 10.1051/parasite/2011183207 – volume: 54 start-page: 5221 year: 2018 ident: C9SC06460E-(cit68)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC02930J – volume: 105 start-page: 16761 year: 2008 ident: C9SC06460E-(cit33)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0808608105 – volume: 51 start-page: 14038 year: 2015 ident: C9SC06460E-(cit37)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05172J – volume: 33 start-page: 4027 year: 2014 ident: C9SC06460E-(cit49)/*[position()=1] publication-title: Organometallics doi: 10.1021/om500540x – volume: 61 start-page: 7330 year: 2018 ident: C9SC06460E-(cit36)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00906 – volume: 44 start-page: 2529 year: 2015 ident: C9SC06460E-(cit62)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00343H – volume: 52 start-page: 1636 year: 2013 ident: C9SC06460E-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205923 – volume: 11 start-page: 1216 year: 2020 ident: C9SC06460E-(cit26)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC05586J – ident: C9SC06460E-(cit83)/*[position()=1] – volume: 59 start-page: 5917 year: 2016 ident: C9SC06460E-(cit73)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00432 – volume: 54 start-page: 959 year: 1954 ident: C9SC06460E-(cit51)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr60172a003 – volume: 58 start-page: 13673 year: 2019 ident: C9SC06460E-(cit79)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01199 – volume: 48 start-page: 5987 year: 2019 ident: C9SC06460E-(cit35)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT04606A – volume: 364 start-page: eaau4679 year: 2019 ident: C9SC06460E-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.aau4679 – volume: 75 start-page: 3 year: 2020 ident: C9SC06460E-(cit14)/*[position()=1] publication-title: Adv. Inorg. Chem. doi: 10.1016/bs.adioch.2019.11.001 – volume: 40 start-page: 5032 year: 2011 ident: C9SC06460E-(cit57)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c1dt10250h – volume: 57 start-page: 7280 year: 2014 ident: C9SC06460E-(cit63)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm500566f – volume: 27 start-page: 257 year: 2019 ident: C9SC06460E-(cit23)/*[position()=1] publication-title: Wound Repair Regen. doi: 10.1111/wrr.12699 – volume: 5 start-page: 1559 year: 2019 ident: C9SC06460E-(cit34)/*[position()=1] publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.9b00100 – volume: 377 start-page: 905 year: 2011 ident: C9SC06460E-(cit17)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(11)60020-2 – volume: 9 start-page: 379 year: 2014 ident: C9SC06460E-(cit32)/*[position()=1] publication-title: Future Microbiol. doi: 10.2217/fmb.14.3 – volume: 114 start-page: 4540 year: 2014 ident: C9SC06460E-(cit16)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400460s – volume: 38 start-page: 307 year: 2012 ident: C9SC06460E-(cit21)/*[position()=1] publication-title: Burns doi: 10.1016/j.burns.2011.09.020 – volume: 4 start-page: 515 year: 2013 ident: C9SC06460E-(cit25)/*[position()=1] publication-title: MedChemComm doi: 10.1039/c2md20347b – volume: 44 start-page: 941 year: 2005 ident: C9SC06460E-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461471 – volume: 47 start-page: 203 year: 1969 ident: C9SC06460E-(cit52)/*[position()=1] publication-title: Aust. J. Exp. Biol. Med. Sci. doi: 10.1038/icb.1969.21 – volume: 119 start-page: 1058 year: 2019 ident: C9SC06460E-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00271 – volume: 8 start-page: 496 year: 2019 ident: C9SC06460E-(cit64)/*[position()=1] publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201900088 – volume: 25 start-page: 7232 year: 2019 ident: C9SC06460E-(cit42)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201805985 – volume: 170 start-page: 190 year: 1952 ident: C9SC06460E-(cit53)/*[position()=1] publication-title: Nature doi: 10.1038/170190a0 – volume: 22 start-page: 1263 year: 2017 ident: C9SC06460E-(cit40)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules22081263 – volume: 67 start-page: 2686 year: 2012 ident: C9SC06460E-(cit56)/*[position()=1] publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dks291 – start-page: 7588 year: 2009 ident: C9SC06460E-(cit28)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b905798f – volume: 157 start-page: 62 year: 2018 ident: C9SC06460E-(cit41)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.07.057 – volume: 43 start-page: 1189 year: 2017 ident: C9SC06460E-(cit19)/*[position()=1] publication-title: Burns doi: 10.1016/j.burns.2016.10.023 – volume: 14 start-page: 85 year: 2000 ident: C9SC06460E-(cit18)/*[position()=1] publication-title: Aliment. Pharmacol. Ther. doi: 10.1046/j.1365-2036.2000.00686.x – volume: 6 start-page: 1931 year: 2014 ident: C9SC06460E-(cit74)/*[position()=1] publication-title: Metallomics doi: 10.1039/C4MT00122B – volume: 19 start-page: 12794 year: 2013 ident: C9SC06460E-(cit47)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201301191 – volume: 116 start-page: 3436 year: 2016 ident: C9SC06460E-(cit9)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00597 – volume: 373 start-page: 20140182 year: 2015 ident: C9SC06460E-(cit15)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2014.0182 – ident: C9SC06460E-(cit80)/*[position()=1] – ident: C9SC06460E-(cit20)/*[position()=1] – volume: 14 start-page: 979 year: 2009 ident: C9SC06460E-(cit66)/*[position()=1] publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-009-0550-4 – volume: 21 start-page: 17921 year: 2015 ident: C9SC06460E-(cit67)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201501816 – ident: C9SC06460E-(cit81)/*[position()=1] – volume: 52 start-page: 1636 year: 2013 ident: C9SC06460E-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205923 – volume: 202 start-page: 38 year: 2018 ident: C9SC06460E-(cit70)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.05.022 – volume: 28 start-page: 319 year: 2016 ident: C9SC06460E-(cit71)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.11.006 – volume: 43 start-page: 16713 year: 2014 ident: C9SC06460E-(cit54)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT02139H – volume: 13 start-page: 5133 year: 2019 ident: C9SC06460E-(cit61)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b08440 – volume: 42 start-page: 4233 year: 2013 ident: C9SC06460E-(cit50)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt50225b – volume: 17 start-page: e3000292 year: 2019 ident: C9SC06460E-(cit43)/*[position()=1] publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000292 – volume: 44 start-page: 3594 year: 2015 ident: C9SC06460E-(cit58)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT02575J – volume: 23 start-page: 3 year: 1997 ident: C9SC06460E-(cit4)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(96)00423-1 – volume: 14 start-page: 587 year: 2015 ident: C9SC06460E-(cit5)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd4706 – volume: 119 start-page: 797 year: 2019 ident: C9SC06460E-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00211 – volume: 16 start-page: 84 year: 2012 ident: C9SC06460E-(cit27)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2012.01.013 – volume: 10 start-page: 6099 year: 2019 ident: C9SC06460E-(cit77)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC01480B – volume: 251 start-page: 884 year: 2007 ident: C9SC06460E-(cit31)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2006.08.019 – volume: 36 start-page: 1391 year: 2018 ident: C9SC06460E-(cit46)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.05.004 – volume: 1 start-page: 285 year: 2015 ident: C9SC06460E-(cit6)/*[position()=1] publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.5b00044 – volume: 46 start-page: 5771 year: 2017 ident: C9SC06460E-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00195A – volume: 52 start-page: 6752 year: 2009 ident: C9SC06460E-(cit24)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm901241e – volume: 44 start-page: 7563 year: 2015 ident: C9SC06460E-(cit38)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT03679D – volume: 138 start-page: 15267 year: 2016 ident: C9SC06460E-(cit60)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09996 – volume: 61 start-page: 3595 year: 2018 ident: C9SC06460E-(cit72)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b01569 – volume: 16 start-page: 45 year: 2017 ident: C9SC06460E-(cit22)/*[position()=1] publication-title: Int. J. Lower Extremity Wounds doi: 10.1177/1534734617690949 – volume: 42 start-page: 4686 year: 2013 ident: C9SC06460E-(cit59)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt32775b – volume: 11 start-page: 70 year: 2020 ident: C9SC06460E-(cit65)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC04710G – volume: 4 start-page: 2701 year: 1998 ident: C9SC06460E-(cit82)/*[position()=1] publication-title: et al. Clin. Cancer Res. – volume: 52 start-page: 216 year: 2019 ident: C9SC06460E-(cit78)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00439 – volume: 6 start-page: 29 year: 2006 ident: C9SC06460E-(cit29)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2201 – volume: 10 start-page: 7193 year: 2019 ident: C9SC06460E-(cit44)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02032B – volume: 67 start-page: 3840 year: 2014 ident: C9SC06460E-(cit39)/*[position()=1] publication-title: J. Coord. Chem. doi: 10.1080/00958972.2014.974582 – volume: 14 start-page: 224 year: 2013 ident: C9SC06460E-(cit75)/*[position()=1] publication-title: ChemBioChem doi: 10.1002/cbic.201200637 – reference: 34122912 - Chem Sci. 2020 Apr 16;11(17):4531. doi: 10.1039/d0sc90075c. |
SSID | ssj0000331527 |
Score | 2.6782315 |
Snippet | There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug... There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2627 |
SubjectTerms | Antibiotics Antimicrobial agents Chemistry Cobalt Coordination compounds Iridium Malaria Organic chemistry Platinum Silver Toxicity Zinc |
Title | Metal complexes as a promising source for new antibiotics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32206266 https://www.proquest.com/docview/2375920129 https://www.proquest.com/docview/2382660818 https://pubmed.ncbi.nlm.nih.gov/PMC7069370 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJsFeJr4GGWMKgheEwlw7TuLHUW2akMYDrKg8RY5jb5VKWrWpxPjrOTuxk9IiAVIVVbGVD_8ul7vL3e8QepPBW5_xTEdFLMFBSRWOeMx0RAktJCuLUmSmdvjqU3I5ij-O2bjrtmmrS-rivfy5ta7kf1CFfYCrqZL9B2T9QWEH_Ad8YQsIw_avML5StaX3MAy_P9TS9IwRJuMKsLNhAhuYt4mEYDy_gzWcFJNZ7fLbHT-BowxwFT7mu66r5OoFCi4WatKkQN6o6cwHnFfqxuX0CtDZnYneJYOcTe-Wt6Lr4vVBtKkcgPKiTeJpAw_gZZostrjTTwTHgyhhBK8p00FfaHBfNSYNCcCGzsbUUJ5KvpRgHiVY9SfBes-_W_RA8WBwvn6jzW5exO3QDtoj4CyAttv7_HU0_uZjbZjStnuvv2bHVEv5aXfmfXTfHWvdTNnwPTZTaHcWrmOMtUyuH6KD1qUIzxr5eITuqeoxejB0nfyeIG7lJPRyEgr4hV5OwkZOQpCTEOQk7MnJUzS6OL8eXkZty4xIwk3VEeVM0lLFVOuCMZ2wlJAB1RSsOqZIWmRyoMFg1hwLmikBBqJMBeayZBoLKQg9RLvVrFLPUch4LFRGigRciLggglOGFegdXSYsVrEI0Fu3Qrls-eRNW5NpbvMaKM-H_MvQLux5gF77ufOGRWXrrGO30Hn7lC1zQlPGiQmXBuiVH4b1MR-2RKVmKzMHnOTEkDMG6FmDiz-NAzRA6RpifoLhV18fqSa3lmc9xQkY7zhAh4Ctn9-JS4COtg_k81If_fFKXqD97nE6Rrv1YqVegmVbFyc2InTSiu8vBSOiNg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+complexes+as+a+promising+source+for+new+antibiotics&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Frei%2C+Angelo&rft.au=Zuegg%2C+Johannes&rft.au=Elliott%2C+Alysha+G&rft.au=Baker%2C+Murray&rft.date=2020-03-14&rft.issn=2041-6520&rft.volume=11&rft.issue=10&rft.spage=2627&rft_id=info:doi/10.1039%2Fc9sc06460e&rft_id=info%3Apmid%2F32206266&rft.externalDocID=32206266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |