Deep Learning-Based Intrusion Detection With Adversaries
Deep neural networks have demonstrated their effectiveness in most machine learning tasks, with intrusion detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities...
Saved in:
Published in | IEEE access Vol. 6; pp. 38367 - 38384 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks have demonstrated their effectiveness in most machine learning tasks, with intrusion detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities for an attacker to fool the networks into misclassification by introducing imperceptible changes to the original pixels in an image. The vulnerability raises some concerns in applying deep neural networks in security-critical areas, such as intrusion detection. In this paper, we investigate the performances of the state-of-the-art attack algorithms against deep learning-based intrusion detection on the NSL-KDD data set. The vulnerabilities of neural networks employed by the intrusion detection systems are experimentally validated. The roles of individual features in generating adversarial examples are explored. Based on our findings, the feasibility and applicability of the attack methodologies are discussed. |
---|---|
AbstractList | Deep neural networks have demonstrated their effectiveness for most machine learning tasks, with Intrusion Detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities for an attacker to fool the networks into misclassification by introducing imperceptible changes to the original pixels in an image. The vulnerability raise some concerns in applying deep neural networks in security-critical areas such as Intrusion Detection. In this paper, we investigate the performances of the state-of-the-art attack algorithms against deep learning based Intrusion Detection on the NSL-KDD dataset. Based on the implementation of deep neural networks using TensorFlow, we examine the vulnerabilities of neural networks under attacks on the IDS. To gain insights into the nature of Intrusion Detection and its attacks, we also explore the roles of individual features in generating adversarial examples. Deep neural networks have demonstrated their effectiveness in most machine learning tasks, with intrusion detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities for an attacker to fool the networks into misclassification by introducing imperceptible changes to the original pixels in an image. The vulnerability raises some concerns in applying deep neural networks in security-critical areas, such as intrusion detection. In this paper, we investigate the performances of the state-of-the-art attack algorithms against deep learning-based intrusion detection on the NSL-KDD data set. The vulnerabilities of neural networks employed by the intrusion detection systems are experimentally validated. The roles of individual features in generating adversarial examples are explored. Based on our findings, the feasibility and applicability of the attack methodologies are discussed. Deep neural networks have demonstrated their effectiveness for most machine learning tasks, with Intrusion Detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities for an attacker to fool the networks into misclassification by introducing imperceptible changes to the original pixels in an image. The vulnerability raise some concerns in applying deep neural networks in security-critical areas such as Intrusion Detection. In this paper, we investigate the performances of the state-of-the-art attack algorithms against deep learning based Intrusion Detection on the NSL-KDD dataset. Based on the implementation of deep neural networks using TensorFlow, we examine the vulnerabilities of neural networks under attacks on the IDS. To gain insights into the nature of Intrusion Detection and its attacks, we also explore the roles of individual features in generating adversarial examples.Deep neural networks have demonstrated their effectiveness for most machine learning tasks, with Intrusion Detection included. Unfortunately, recent research found that deep neural networks are vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities for an attacker to fool the networks into misclassification by introducing imperceptible changes to the original pixels in an image. The vulnerability raise some concerns in applying deep neural networks in security-critical areas such as Intrusion Detection. In this paper, we investigate the performances of the state-of-the-art attack algorithms against deep learning based Intrusion Detection on the NSL-KDD dataset. Based on the implementation of deep neural networks using TensorFlow, we examine the vulnerabilities of neural networks under attacks on the IDS. To gain insights into the nature of Intrusion Detection and its attacks, we also explore the roles of individual features in generating adversarial examples. |
Author | Wang, Zheng |
Author_xml | – sequence: 1 givenname: Zheng orcidid: 0000-0003-2744-9345 surname: Wang fullname: Wang, Zheng email: zhengwang98@gmail.com organization: National Institute of Standards and Technology, Gaithersburg, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38882674$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUHaEiWkq_oBKKxIbNBL8fKxTSApEisSiIpXXHcyd1NJkJ9kwl_h6HCVHbDd746vqc4_s4r4uzru-wKK4pmVNK7IfFcnl7dzdnhJo5M1JIa18UF4wqW3LJ1dmj-Ly4SmlL8jE5JfWr4pwbY5jS4qIwN4j72RohdqHblJ8gYT1bdUMcU-i72Q0O6IdD9DMM97NF_YAxQQyY3hQvG2gTXh3vy-LH59vvy6_l-tuX1XKxLr1kZCi5oZVijZUADQB6WhleNYLLRlRMSVZRjtQT8AhEGKMFrwxh2lMlfS0t8MtiNenWPWzdPoYdxN-uh-D-Jvq4cRCH4Ft0FWFC1ZqoWtVCSwMeGk0Q6ppaNFpnrY-T1n6sdlh7zH1C-0T06UsX7t2mf3CUUq2NJlnh_VEh9r9GTIPbheSxbaHDfkyOE2WpFoqoDH33DLrtx9jlWTkmpLSMGSIy6u3jkk61_NtQBvAJ4GOfUsTmBKHEHazgJiu4gxXc0QqZZZ-xfBjgsMjcV2j_w72euAERT78ZQfIILf8DEwfAQw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s10207_022_00634_2 crossref_primary_10_1007_s00521_023_08511_2 crossref_primary_10_1109_JIOT_2020_3019225 crossref_primary_10_1016_j_jnca_2024_104102 crossref_primary_10_3390_s19112528 crossref_primary_10_1109_JSAC_2021_3087242 crossref_primary_10_1109_COMST_2020_2975048 crossref_primary_10_1109_ACCESS_2020_2974752 crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_3390_app13158830 crossref_primary_10_1016_j_neucom_2022_06_002 crossref_primary_10_3390_jcp2010010 crossref_primary_10_1007_s10207_024_00903_2 crossref_primary_10_1109_COMST_2021_3136132 crossref_primary_10_1016_j_cose_2023_103176 crossref_primary_10_32604_cmc_2022_025262 crossref_primary_10_3390_app13053089 crossref_primary_10_1007_s10207_024_00934_9 crossref_primary_10_3390_app8091535 crossref_primary_10_1007_s12243_021_00854_y crossref_primary_10_1016_j_asoc_2023_110173 crossref_primary_10_1016_j_cose_2022_102783 crossref_primary_10_1007_s13369_023_08092_1 crossref_primary_10_1016_j_cose_2021_102367 crossref_primary_10_1109_TNET_2021_3137084 crossref_primary_10_3390_s20061790 crossref_primary_10_1109_ACCESS_2019_2927376 crossref_primary_10_32604_cmc_2022_029858 crossref_primary_10_1007_s10586_023_04037_3 crossref_primary_10_1109_ACCESS_2022_3221400 crossref_primary_10_3390_app9020238 crossref_primary_10_1016_j_cose_2023_103483 crossref_primary_10_1109_COMST_2022_3233793 crossref_primary_10_1007_s10922_021_09621_9 crossref_primary_10_1007_s10207_019_00482_7 crossref_primary_10_1007_s12243_024_01046_0 crossref_primary_10_1007_s00521_020_04708_x crossref_primary_10_1016_j_cose_2023_103644 crossref_primary_10_1016_j_measurement_2019_107450 crossref_primary_10_3390_app11157050 crossref_primary_10_1109_ACCESS_2019_2923640 crossref_primary_10_1007_s42452_024_06044_4 crossref_primary_10_1109_ACCESS_2020_3010274 crossref_primary_10_1007_s11227_024_06392_3 crossref_primary_10_1016_j_cose_2022_102922 crossref_primary_10_1109_ACCESS_2020_2969276 crossref_primary_10_3390_info15030154 crossref_primary_10_3390_jcp1020014 crossref_primary_10_1093_comjnl_bxad014 crossref_primary_10_1109_ACCESS_2021_3097247 crossref_primary_10_1007_s42979_024_02911_4 crossref_primary_10_1016_j_comnet_2024_110255 crossref_primary_10_1016_j_iot_2021_100462 crossref_primary_10_1007_s11227_025_06980_x crossref_primary_10_3390_fi15020062 crossref_primary_10_1109_ACCESS_2022_3145002 crossref_primary_10_1145_3453158 crossref_primary_10_1007_s11277_023_10722_8 crossref_primary_10_1007_s10009_020_00594_9 crossref_primary_10_1016_j_comnet_2022_109073 crossref_primary_10_3390_electronics13245030 crossref_primary_10_1109_ACCESS_2022_3203568 crossref_primary_10_1145_3469659 crossref_primary_10_1109_ACCESS_2020_2983953 crossref_primary_10_1007_s10489_024_05311_6 crossref_primary_10_1007_s11277_022_09776_x crossref_primary_10_1016_j_jpdc_2025_105039 crossref_primary_10_1016_j_jisa_2023_103608 crossref_primary_10_1186_s40537_020_00379_6 crossref_primary_10_3390_app10175811 crossref_primary_10_1109_TII_2024_3435532 crossref_primary_10_1371_journal_pone_0283725 crossref_primary_10_3390_s21041140 crossref_primary_10_1007_s00530_021_00771_z crossref_primary_10_1002_ett_4150 crossref_primary_10_3390_app8122663 crossref_primary_10_1016_j_eswa_2020_113577 crossref_primary_10_1016_j_future_2022_02_019 crossref_primary_10_1111_exsy_13066 crossref_primary_10_1016_j_neucom_2021_12_015 crossref_primary_10_1007_s11235_024_01200_y crossref_primary_10_1016_j_jnca_2020_102767 crossref_primary_10_1016_j_jisa_2021_102923 crossref_primary_10_1016_j_future_2020_01_055 crossref_primary_10_1016_j_jisa_2021_102804 crossref_primary_10_1145_3712307 crossref_primary_10_3233_JIFS_233557 crossref_primary_10_4018_IJISP_356893 crossref_primary_10_1016_j_swevo_2024_101702 crossref_primary_10_32604_cmc_2023_039752 crossref_primary_10_1080_1206212X_2021_1885150 crossref_primary_10_3390_computers9030058 crossref_primary_10_1007_s11227_024_06021_z crossref_primary_10_1002_itl2_640 crossref_primary_10_3390_electronics14010189 crossref_primary_10_3390_app12136451 crossref_primary_10_1016_j_comcom_2023_09_030 crossref_primary_10_3390_electronics10151854 crossref_primary_10_1002_cpe_6918 crossref_primary_10_3390_su11143974 crossref_primary_10_1109_ACCESS_2019_2958068 crossref_primary_10_1016_j_compag_2022_106729 crossref_primary_10_1109_TDSC_2023_3247585 crossref_primary_10_3390_electronics12112427 crossref_primary_10_1016_j_heliyon_2023_e13520 crossref_primary_10_1016_j_cose_2024_103853 crossref_primary_10_1007_s10922_024_09871_3 crossref_primary_10_1080_01969722_2022_2088450 crossref_primary_10_1109_ACCESS_2020_3008433 crossref_primary_10_4018_IJISP_354884 crossref_primary_10_1016_j_cose_2025_104322 crossref_primary_10_1109_TIFS_2022_3201377 crossref_primary_10_1038_s41598_024_64664_7 crossref_primary_10_3390_s23042198 crossref_primary_10_1145_3544746 crossref_primary_10_1007_s12243_019_00743_5 crossref_primary_10_1007_s12083_024_01751_6 crossref_primary_10_1007_s11042_020_08804_x |
Cites_doi | 10.1109/SP.2017.49 10.1109/ACCESS.2017.2762418 10.1109/CISDA.2009.5356528 10.1109/TETCI.2017.2772792 10.1162/neco.1989.1.4.541 10.1109/CVPR.2016.282 10.1109/WINCOM.2016.7777224 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM DOA |
DOI | 10.1109/ACCESS.2018.2854599 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 38384 |
ExternalDocumentID | oai_doaj_org_article_b0246d706d6d4758acaf70eadd19e877 PMC11177870 38882674 10_1109_ACCESS_2018_2854599 8408779 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c520t-381b62f95aafaaec1b83bf435f4b2652b13e1c0acea0488743b8027c165cd59a3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Thu Aug 21 18:33:36 EDT 2025 Fri Jul 11 15:22:17 EDT 2025 Mon Jun 30 03:49:01 EDT 2025 Sat May 31 02:13:32 EDT 2025 Tue Jul 01 02:17:41 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 02:48:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NSL-KDD dataset intrusion detection deep neural networks adversarial examples |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-381b62f95aafaaec1b83bf435f4b2652b13e1c0acea0488743b8027c165cd59a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2744-9345 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8408779 |
PMID | 38882674 |
PQID | 2455922804 |
PQPubID | 4845423 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2018_2854599 proquest_journals_2455922804 crossref_citationtrail_10_1109_ACCESS_2018_2854599 proquest_miscellaneous_3069174606 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177870 pubmed_primary_38882674 doaj_primary_oai_doaj_org_article_b0246d706d6d4758acaf70eadd19e877 ieee_primary_8408779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationTitleAlternate | IEEE Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 papernot (ref9) 2015 ref11 ref10 (ref15) 2018 javaid (ref3) 2015 ref2 ref1 (ref14) 2018 kurakin (ref8) 2016 ref4 (ref13) 2018 szegedy (ref6) 2013 ref5 goodfellow (ref7) 2014 |
References_xml | – ident: ref11 doi: 10.1109/SP.2017.49 – year: 2018 ident: ref15 publication-title: TENSOR – year: 2014 ident: ref7 publication-title: Explaining and Harnessing Adversarial Examples – ident: ref2 doi: 10.1109/ACCESS.2017.2762418 – ident: ref12 doi: 10.1109/CISDA.2009.5356528 – ident: ref1 doi: 10.1109/TETCI.2017.2772792 – start-page: 21 year: 2015 ident: ref3 article-title: A deep learning approach for network intrusion detection system publication-title: Proc 9th EAI Int Conf Bio-Inspired Inf Commun Technol (BICT) – ident: ref5 doi: 10.1162/neco.1989.1.4.541 – year: 2018 ident: ref14 publication-title: NSL-KDD Dataset – year: 2018 ident: ref13 publication-title: Kdd Cup 99 Dataset – ident: ref10 doi: 10.1109/CVPR.2016.282 – year: 2016 ident: ref8 publication-title: Adversarial examples in the physical world – ident: ref4 doi: 10.1109/WINCOM.2016.7777224 – year: 2013 ident: ref6 publication-title: Intriguing properties of neural networks – start-page: 372 year: 2015 ident: ref9 article-title: The limitations of deep learning in adversarial settings publication-title: Proc IEEE Symp Privacy Secur |
SSID | ssj0000816957 |
Score | 2.5384214 |
Snippet | Deep neural networks have demonstrated their effectiveness in most machine learning tasks, with intrusion detection included. Unfortunately, recent research... Deep neural networks have demonstrated their effectiveness for most machine learning tasks, with Intrusion Detection included. Unfortunately, recent research... |
SourceID | doaj pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 38367 |
SubjectTerms | Algorithms Artificial neural networks classification algorithms Cognitive tasks data security Deep learning Feature extraction Image classification Intrusion detection Intrusion detection systems Machine learning Measurement Neural networks Perturbation methods Security management Task analysis |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_qigkerTZrnUVcXFfSk6C0kaaqCVGHX_-8kzdZdEb14zYtmMsnM12S-QejQNL4Et54UqjSkoKz2ha2oKDxzzjpSGRZTJ9zc8st7ev3IHqdSfYU3YR09cCe4EwtGhNei5DWvKTi3xplGlDD_GisvRYwjB5s3BabiGSwxV0wkmiFcqpPTwQBmFN5yyeMQNcgi2-uXKYqM_SnFyk_e5vdHk1NWaLiMlpL7mJ92n72C5ny7ihanSAXXkDz3_j1PvKlPxRmYqTq_akNwBaxBfu7H8fVVmz-8jJ_zmJB5FAHzOrofXtwNLouUH6FwjJTjAoyt5aRRzJjGGO-wlZVtwP9pqCWcEYsrj11pnDdhn4KvYCWgUIc5czVTptpA8-1b67dQDmIVnjdKgLtAnRK2DmGEjQiXcIRKnCEyEZV2iTw85LB41RFElEp38tVBvjrJN0NHfaf3jjvj9-ZnYQ36poH4OhaAOuikDvovdcjQWljBfhDAr1AKY-9OVlSnTTrShAKcCnRANEMHfTVsr3BnYlr_9jHSgKgA0FKAeRna7BSgH7uSAE-4gN5yRjVmZjBb0748RwpvHO7K4ajc_o8576CFIMfux9AumgeF8nvgKo3tftwVnw_TDbU priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Learning-Based Intrusion Detection With Adversaries |
URI | https://ieeexplore.ieee.org/document/8408779 https://www.ncbi.nlm.nih.gov/pubmed/38882674 https://www.proquest.com/docview/2455922804 https://www.proquest.com/docview/3069174606 https://pubmed.ncbi.nlm.nih.gov/PMC11177870 https://doaj.org/article/b0246d706d6d4758acaf70eadd19e877 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_bQF32kpSiVeiRL4tixfYSliFaip6Jys2xnUlCrLNJmL_x6xo43ZRGqeosSO4o9M_F89sw3AJ9thyW59azQpWUFFy0WruayQOG986y2IpZOOP_enF3wb5ficgsOplwYRIzBZzgLl_Esv134VdgqOyQwoqTU27BNwG3M1Zr2U0IBCS1kIhaqSn14NJ_TGEL0lpqFPEER-V3_Lj6Roz8VVXnMv3wYJnlv3Tl9DufrLx7DTX7PVoOb-dsHZI7_O6QX8Cw5oPnRqDEvYQv7V_D0Hi3hLqgTxJs8Ma_-Ko5poWvzr31IzyAp5ic4xPitPv95PVzlsaTzMkLu13Bx-uXH_KxIFRYKL1g5FLRcu4Z1WljbWYu-cqp2HXlQHXesEcxVNVa-tB5tsHTyNpwiHOurRvhWaFu_gZ1-0eM7yJX1EptOS3I4uNfStSERsZPhGI9xVWXA1lNvfKIfD1Uw_pgIQ0ptRnmZIC-T5JXBwdTpZmTf-Hfz4yDTqWmgzo43aMpNskTjyCtpWlk2bdNyQkvW206WZFBtpZFkkcFuENP0kiShDPbWGmKSmS8N4wTIAqEQz-DT9JgMNJy62B4Xq6UhTEaQmBNQzODtqFDTu2tFAKeR1FttqNrGCDaf9NdXkQS8Cqft9LN9__jnfoAnYWbGzaI92CEVwY_kPg1uP2477EfruQPWYxfC |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvMojUCBIcCPbxInj-MCh3aXapY9TK3oztjOhFShbaXeF4LfwV_hvjB1v6FYVt0rcojysxP7imc-e-QbgjW4wJbeeJTLVLCl4jYnJC5Egt9ZYlmvuSyccHJbj4-LjCT9Zg199Lgwi-uAzHLhDv5dfT-3CLZVtERmphJAhhHIPf3wngjZ7PxnRaL5lbPfD0XCchBoCieUsnSdkkEzJGsm1brRGm5kqNw35CE1hWMmZyXLMbKotaodlsqemIqZms5LbmkudU7s34Cb5GZx12WH9Co4rWSG5CFJGWSq3todD6jUXL1YNXGYi94qyf82drwoQyrhc5dFeDsy8YOl278HvZR91AS5fB4u5Gdifl-Qj_9dOvA93g4sdb3f_xANYw_Yh3LkgvLgB1QjxPA7asl-SHTLldTxpXQIK4TQe4dxHqLXxp7P5aeyLVs_8osIjOL6WV38M6-20xacQV9oKLBspyKUqrBSmdqmWjXAblayosgjYcqiVDQLrrs7HN-WJVipVhw_l8KECPiJ41z903umL_Pv2HYeh_lYnDu5P0BCrMNcoQ35XWYu0rMu6ID6orW5ESlNGnUmksY9gw8GibyQgIoLNJSJVmMhmihHwpZNMKiJ43V-mKcjtK-kWp4uZItZJpL8gKhzBkw7Afdt5RRSuFPR0tQLtlS9YvdKenXqZ88zFE5A5eXb1676CW-Ojg321Pzncew63XS91S2ObsE5wwRfkLM7NS__PxvD5uvH9B5YqdL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Intrusion+Detection+With+Adversaries&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zheng&rft.date=2018-01-01&rft.eissn=2169-3536&rft.volume=6&rft_id=info:doi/10.1109%2Faccess.2018.2854599&rft_id=info%3Apmid%2F38882674&rft.externalDocID=PMC11177870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |