SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylo...
Saved in:
Published in | Molecular cell Vol. 50; no. 6; pp. 919 - 930 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
•Lysine succinylation is a posttranslational modification regulated by SIRT5•We profile lysine succinylation in mammalian fibroblasts and liver tissue•Succinylation is present on diverse mitochondrial and nonmitochondrial proteins•SIRT5 suppresses pyruvate dehydrogenase complex and succinate dehydrogenase |
---|---|
AbstractList | Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extra-mitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. •Lysine succinylation is a posttranslational modification regulated by SIRT5•We profile lysine succinylation in mammalian fibroblasts and liver tissue•Succinylation is present on diverse mitochondrial and nonmitochondrial proteins•SIRT5 suppresses pyruvate dehydrogenase complex and succinate dehydrogenase |
Author | Tishkoff, Daniel X. Park, Jeongsoon Lombard, David B. Tan, Minjia Zwaans, Bernadette M.M. Xie, Zhongyu Zhang, Yi Zhao, Yingming Peng, Chao Skinner, Mary E. Dai, Lunzhai Chen, Yue |
AuthorAffiliation | 4 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 3 Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA 1 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA 2 Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA |
AuthorAffiliation_xml | – name: 1 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – name: 3 Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – name: 2 Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA – name: 4 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China |
Author_xml | – sequence: 1 givenname: Jeongsoon surname: Park fullname: Park, Jeongsoon organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 2 givenname: Yue surname: Chen fullname: Chen, Yue organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – sequence: 3 givenname: Daniel X. surname: Tishkoff fullname: Tishkoff, Daniel X. organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 4 givenname: Chao surname: Peng fullname: Peng, Chao organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – sequence: 5 givenname: Minjia surname: Tan fullname: Tan, Minjia organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – sequence: 6 givenname: Lunzhai surname: Dai fullname: Dai, Lunzhai organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – sequence: 7 givenname: Zhongyu surname: Xie fullname: Xie, Zhongyu organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA – sequence: 8 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 9 givenname: Bernadette M.M. surname: Zwaans fullname: Zwaans, Bernadette M.M. organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 10 givenname: Mary E. surname: Skinner fullname: Skinner, Mary E. organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 11 givenname: David B. surname: Lombard fullname: Lombard, David B. email: davidlom@umich.edu organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 12 givenname: Yingming surname: Zhao fullname: Zhao, Yingming email: yingming.zhao@uchicago.edu organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23806337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URB_wDxDMks1M_XaGBRJqaRspFYi2a8vjudM6mhkH2wnKv8dp0kK7oCtfyd-5vvccH6K90Y-A0HuCK4KJPJ5Xg-8t9BXFhFVYVhiTV-iA4FqVnEi-t6upkmIfHcY4zwAXk_oN2qdsgiVj6gBdXE1_XovyElpnErTFbB3dCMUpxKW1blz3Jjk_FtNhYWyKxalbQYhQXEIyje-dLX6YdPfbrONb9LozfYR3u_MI3Zx9uz65KGffz6cnX2elFRSnkhrDiKRAVScIpg1vALeWgKgpCEVNxzmW1koBoIiYTCQ1tKkl64zEkgBhR-jLtu9i2QzQWhhTML1eBDeYsNbeOP30ZnR3-tavNFOyrtWmwaddg-B_LSEmPbiYfezNCH4ZNcXZJ4wFly-ihCmqMGX36Id_x3qc58HpDPAtYIOPMUD3iBCsN4Hqud4GqjeBaix1niPLPj-TWZfuM8nLuf4l8cetuDNem9vgor65yoDMK1IuFP_rJuTIVg6CjtbBaPN3CGCTbr37_xN_AP98xrY |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_1016_j_phymed_2022_153994 crossref_primary_10_1038_s41569_019_0235_9 crossref_primary_10_1038_nrm_2016_140 crossref_primary_10_1016_j_tcb_2017_10_009 crossref_primary_10_1016_j_yjmcc_2019_11_146 crossref_primary_10_1177_1535370218759636 crossref_primary_10_1021_cr500457h crossref_primary_10_1002_cmdc_201300421 crossref_primary_10_1007_s12975_017_0569_8 crossref_primary_10_1172_jci_insight_170521 crossref_primary_10_1073_pnas_2123065119 crossref_primary_10_1155_2015_296167 crossref_primary_10_1002_advs_202200546 crossref_primary_10_3389_jpps_2024_13080 crossref_primary_10_3389_fimmu_2024_1404441 crossref_primary_10_1016_j_abb_2022_109446 crossref_primary_10_1111_pce_13100 crossref_primary_10_1186_s12859_018_2394_9 crossref_primary_10_1016_j_gde_2016_05_004 crossref_primary_10_1038_srep42053 crossref_primary_10_1016_j_jprot_2021_104149 crossref_primary_10_3390_biom13050869 crossref_primary_10_1016_j_cmet_2018_01_016 crossref_primary_10_1089_ars_2017_7264 crossref_primary_10_1016_j_molcel_2014_03_027 crossref_primary_10_1016_j_yjmcc_2019_11_159 crossref_primary_10_1002_rco2_14 crossref_primary_10_1158_0008_5472_CAN_17_1912 crossref_primary_10_3390_cells11101654 crossref_primary_10_1038_nrneph_2017_5 crossref_primary_10_1371_journal_pone_0259798 crossref_primary_10_3390_cancers17061009 crossref_primary_10_2174_1389203723666220628121817 crossref_primary_10_1039_C5MB00853K crossref_primary_10_1038_s41598_017_10337_7 crossref_primary_10_1089_ars_2017_7270 crossref_primary_10_1002_chem_201905338 crossref_primary_10_1002_advs_202300032 crossref_primary_10_1016_j_jbc_2024_107976 crossref_primary_10_1038_ncomms12235 crossref_primary_10_1038_s41598_017_02128_x crossref_primary_10_1016_j_jbior_2018_09_002 crossref_primary_10_1152_ajpcell_00137_2020 crossref_primary_10_1016_j_lfs_2023_121572 crossref_primary_10_1007_s11064_019_02780_x crossref_primary_10_1016_j_celrep_2017_12_061 crossref_primary_10_1038_s41598_020_72833_7 crossref_primary_10_1038_s41598_022_18114_x crossref_primary_10_1093_lambio_ovaf004 crossref_primary_10_1080_10641963_2024_2358030 crossref_primary_10_1186_s12974_022_02665_x crossref_primary_10_1016_j_freeradbiomed_2024_03_011 crossref_primary_10_1038_s41388_020_01637_w crossref_primary_10_1016_j_lfs_2021_119803 crossref_primary_10_1186_s12953_016_0092_y crossref_primary_10_1002_1873_3468_12692 crossref_primary_10_1038_s41580_021_00441_y crossref_primary_10_1016_j_ejmech_2020_112676 crossref_primary_10_1016_j_molcel_2015_05_022 crossref_primary_10_1093_bib_bbae415 crossref_primary_10_1016_j_gene_2018_10_052 crossref_primary_10_1515_hsz_2021_0139 crossref_primary_10_1530_JOE_13_0397 crossref_primary_10_1016_j_isci_2024_109796 crossref_primary_10_1016_j_molcel_2018_10_023 crossref_primary_10_1111_cpr_13796 crossref_primary_10_14348_molcells_2015_0167 crossref_primary_10_1016_j_ejphar_2017_11_005 crossref_primary_10_1186_s12860_019_0240_1 crossref_primary_10_1681_ASN_2019020163 crossref_primary_10_1007_s00018_016_2280_4 crossref_primary_10_1083_jcb_202006151 crossref_primary_10_1007_s00018_023_05104_z crossref_primary_10_1128_msystems_00424_19 crossref_primary_10_1016_j_bbadis_2015_07_003 crossref_primary_10_1016_j_jprot_2017_08_021 crossref_primary_10_1093_jmcb_mjac016 crossref_primary_10_3109_10715762_2014_920956 crossref_primary_10_1007_s11427_016_0060_7 crossref_primary_10_3390_cimb46020065 crossref_primary_10_1111_nph_19683 crossref_primary_10_1016_j_celrep_2022_111770 crossref_primary_10_1186_s13046_016_0461_5 crossref_primary_10_1038_s41419_022_05516_y crossref_primary_10_1016_j_celrep_2017_02_031 crossref_primary_10_1038_s41598_017_14477_8 crossref_primary_10_1038_s41392_022_01245_y crossref_primary_10_1016_j_yjmcc_2015_09_005 crossref_primary_10_1016_j_biopha_2023_115713 crossref_primary_10_1038_srep02806 crossref_primary_10_1038_nrm3841 crossref_primary_10_1016_j_bbadis_2020_165756 crossref_primary_10_1016_j_isci_2018_03_012 crossref_primary_10_3389_fcvm_2021_723996 crossref_primary_10_1155_2020_3240198 crossref_primary_10_1016_j_bbcan_2019_02_003 crossref_primary_10_1038_srep22643 crossref_primary_10_1097_MD_0000000000031493 crossref_primary_10_15252_embr_202154391 crossref_primary_10_1002_pmic_201800001 crossref_primary_10_1016_j_jhep_2022_02_030 crossref_primary_10_3390_nu16234088 crossref_primary_10_4049_jimmunol_2100983 crossref_primary_10_3389_fonc_2020_00722 crossref_primary_10_15212_AMM_2023_0010 crossref_primary_10_1002_jssc_201900804 crossref_primary_10_1016_j_lfs_2022_121188 crossref_primary_10_1016_j_bmcl_2024_130017 crossref_primary_10_1016_j_ejmech_2022_115024 crossref_primary_10_1189_jlb_4MR0216_066R crossref_primary_10_3390_cells11162518 crossref_primary_10_1186_s12974_024_03284_4 crossref_primary_10_1007_s00244_022_00930_x crossref_primary_10_1002_1878_0261_12408 crossref_primary_10_1007_s12975_017_0544_4 crossref_primary_10_1016_j_ygeno_2019_12_004 crossref_primary_10_3389_fphar_2021_784231 crossref_primary_10_1002_ptr_8177 crossref_primary_10_1016_j_celrep_2024_115060 crossref_primary_10_1016_j_bcp_2024_116331 crossref_primary_10_1016_j_tibs_2015_12_006 crossref_primary_10_1371_journal_pone_0200283 crossref_primary_10_1146_annurev_biochem_060815_014537 crossref_primary_10_3389_fcell_2020_603292 crossref_primary_10_18632_oncotarget_14346 crossref_primary_10_3390_antiox10071047 crossref_primary_10_3389_fendo_2021_679655 crossref_primary_10_1021_acs_analchem_9b05394 crossref_primary_10_1161_CIRCHEARTFAILURE_114_001469 crossref_primary_10_15252_embr_201745124 crossref_primary_10_7554_eLife_75583 crossref_primary_10_1002_ijc_29564 crossref_primary_10_1007_s11427_022_2296_0 crossref_primary_10_1093_nar_gkaa663 crossref_primary_10_1016_j_coi_2015_10_005 crossref_primary_10_3390_ijms232012416 crossref_primary_10_1016_j_cbpb_2020_110520 crossref_primary_10_1002_jimd_12617 crossref_primary_10_1007_s00210_024_03263_9 crossref_primary_10_1016_j_bbcan_2014_08_005 crossref_primary_10_3389_fcell_2021_761193 crossref_primary_10_1007_s13311_013_0214_5 crossref_primary_10_1371_journal_pone_0106028 crossref_primary_10_1016_j_jtbi_2016_01_020 crossref_primary_10_1053_j_gastro_2021_06_045 crossref_primary_10_1073_pnas_1519858113 crossref_primary_10_1016_j_bbrc_2015_04_154 crossref_primary_10_1016_j_exger_2016_03_015 crossref_primary_10_15252_embr_202051009 crossref_primary_10_1016_j_chembiol_2017_11_005 crossref_primary_10_1016_j_freeradbiomed_2019_01_030 crossref_primary_10_1074_mcp_M114_045922 crossref_primary_10_1016_j_prp_2022_153943 crossref_primary_10_3389_fphys_2018_01094 crossref_primary_10_1093_jxb_erad406 crossref_primary_10_3390_ijms232012302 crossref_primary_10_1101_gad_229724_113 crossref_primary_10_1016_j_scienta_2019_108943 crossref_primary_10_1016_j_toxicon_2019_11_009 crossref_primary_10_1016_j_semcancer_2018_11_003 crossref_primary_10_1002_pmic_202000156 crossref_primary_10_3109_10409238_2015_1031879 crossref_primary_10_3390_ijms17040572 crossref_primary_10_1002_JLB_3MIR1118_415R crossref_primary_10_1016_j_bbamcr_2016_10_015 crossref_primary_10_1515_hsz_2020_0118 crossref_primary_10_1186_s12864_018_5383_5 crossref_primary_10_1186_s40168_023_01468_3 crossref_primary_10_1016_j_scitotenv_2020_137062 crossref_primary_10_1002_med_22076 crossref_primary_10_3390_ijms21010295 crossref_primary_10_1016_j_pneurobio_2015_05_001 crossref_primary_10_1016_j_bbabio_2017_02_006 crossref_primary_10_3389_fonc_2022_1014748 crossref_primary_10_1002_1873_3468_14441 crossref_primary_10_1038_srep21764 crossref_primary_10_1016_j_copbio_2020_09_013 crossref_primary_10_1007_s11064_016_2110_y crossref_primary_10_4155_fmc_14_44 crossref_primary_10_1007_s00018_016_2180_7 crossref_primary_10_1016_j_jbc_2021_101435 crossref_primary_10_1016_j_toxlet_2018_04_005 crossref_primary_10_1074_mcp_RA120_002144 crossref_primary_10_1073_pnas_2007827117 crossref_primary_10_1016_j_jtbi_2015_04_016 crossref_primary_10_1155_2017_8529404 crossref_primary_10_3389_fphys_2023_1131201 crossref_primary_10_1038_srep10184 crossref_primary_10_3390_ijms22169094 crossref_primary_10_1021_acschembio_7b00754 crossref_primary_10_1111_jnc_15377 crossref_primary_10_3389_fimmu_2018_02675 crossref_primary_10_1007_s13361_016_1476_z crossref_primary_10_4155_fmc_15_24 crossref_primary_10_1016_j_ab_2017_03_021 crossref_primary_10_1089_dna_2018_4454 crossref_primary_10_1128_AAC_04694_14 crossref_primary_10_1038_nchembio_2217 crossref_primary_10_1158_0008_5472_CAN_15_2733 crossref_primary_10_3390_ijms242216172 crossref_primary_10_1016_j_bbrc_2021_11_016 crossref_primary_10_1038_srep31576 crossref_primary_10_1074_mcp_RA120_002150 crossref_primary_10_1007_s00792_016_0901_3 crossref_primary_10_1002_anie_201810569 crossref_primary_10_1016_j_molmed_2017_02_005 crossref_primary_10_1021_acs_jmedchem_5b00293 crossref_primary_10_1016_j_jmb_2017_03_010 crossref_primary_10_1038_s41598_017_03369_6 crossref_primary_10_1038_s41392_023_01439_y crossref_primary_10_3892_etm_2018_6301 crossref_primary_10_1074_jbc_M113_483396 crossref_primary_10_1186_s13148_020_00928_z crossref_primary_10_1016_j_bbabio_2016_02_004 crossref_primary_10_1371_journal_pone_0152467 crossref_primary_10_1016_j_bbrc_2013_10_033 crossref_primary_10_1016_j_jprot_2025_105400 crossref_primary_10_1111_os_12519 crossref_primary_10_1016_j_fochx_2023_100962 crossref_primary_10_1016_j_freeradbiomed_2022_02_014 crossref_primary_10_1038_nrendo_2015_181 crossref_primary_10_1038_s41598_017_17756_6 crossref_primary_10_4093_dmj_2018_0101 crossref_primary_10_1016_j_bbabio_2018_05_001 crossref_primary_10_1016_S1875_5364_25_60838_7 crossref_primary_10_1186_s40104_024_01058_9 crossref_primary_10_1016_j_neubiorev_2021_10_047 crossref_primary_10_1007_s11064_022_03560_w crossref_primary_10_3389_fphys_2014_00301 crossref_primary_10_1172_JCI138926 crossref_primary_10_3389_fimmu_2019_01462 crossref_primary_10_1016_j_cub_2015_05_012 crossref_primary_10_2174_0929866530666230529152209 crossref_primary_10_2139_ssrn_4045474 crossref_primary_10_3390_ijms21186686 crossref_primary_10_1111_raq_12643 crossref_primary_10_1093_jb_mvac027 crossref_primary_10_1038_s41401_021_00841_y crossref_primary_10_1038_s41418_024_01408_0 crossref_primary_10_1074_mcp_M113_031567 crossref_primary_10_1111_jnc_13096 crossref_primary_10_1152_ajpcell_00292_2022 crossref_primary_10_1186_s12864_017_3698_2 crossref_primary_10_3390_ijms20153673 crossref_primary_10_1007_s11427_015_4902_8 crossref_primary_10_1186_s12864_020_6750_6 crossref_primary_10_1111_acel_12685 crossref_primary_10_1007_s00360_016_1022_0 crossref_primary_10_33160_yam_2022_05_006 crossref_primary_10_3389_fendo_2018_00455 crossref_primary_10_3390_cells10113031 crossref_primary_10_3389_fmicb_2020_00575 crossref_primary_10_3389_fimmu_2021_696061 crossref_primary_10_1002_wjo2_186 crossref_primary_10_1152_ajpheart_00900_2015 crossref_primary_10_1126_scitranslmed_abn4772 crossref_primary_10_1002_anie_202115805 crossref_primary_10_3389_fmicb_2019_01604 crossref_primary_10_1007_s00216_019_02006_7 crossref_primary_10_1007_s00216_015_9206_0 crossref_primary_10_1080_10409238_2018_1458071 crossref_primary_10_1097_MD_0000000000038631 crossref_primary_10_1155_2016_9831825 crossref_primary_10_1016_j_gene_2018_07_010 crossref_primary_10_1038_s41420_021_00683_x crossref_primary_10_1038_s41467_018_02951_4 crossref_primary_10_1016_j_molcel_2019_03_021 crossref_primary_10_1186_s12967_021_03178_6 crossref_primary_10_1186_s12964_024_02021_x crossref_primary_10_1074_mcp_M114_041947 crossref_primary_10_1111_cbdd_13077 crossref_primary_10_1039_C6MB00069J crossref_primary_10_34175_jno201903002 crossref_primary_10_1016_j_cmet_2024_11_005 crossref_primary_10_1016_j_compbiolchem_2018_03_006 crossref_primary_10_1186_s12885_024_12792_8 crossref_primary_10_3389_fcimb_2024_1403915 crossref_primary_10_1016_j_cca_2019_05_002 crossref_primary_10_1074_jbc_M113_486753 crossref_primary_10_1098_rsfs_2016_0100 crossref_primary_10_1134_S0006297916120129 crossref_primary_10_1016_j_yexcr_2022_113319 crossref_primary_10_1021_acs_jproteome_8b00800 crossref_primary_10_3390_ijms22116085 crossref_primary_10_1128_MCB_00269_20 crossref_primary_10_1016_j_ygeno_2023_110773 crossref_primary_10_1016_j_heliyon_2024_e32466 crossref_primary_10_1111_boc_201500015 crossref_primary_10_1093_burnst_tkac041 crossref_primary_10_1016_j_abb_2016_03_025 crossref_primary_10_1039_D1CB00070E crossref_primary_10_1021_acs_jproteome_5b00805 crossref_primary_10_1111_jcmm_17507 crossref_primary_10_1002_advs_202402030 crossref_primary_10_1002_pmic_201600221 crossref_primary_10_1101_gad_249748_114 crossref_primary_10_1212_NXI_0000000000000562 crossref_primary_10_1152_ajpcell_00148_2017 crossref_primary_10_1016_j_celrep_2016_08_073 crossref_primary_10_3389_fphys_2021_763417 crossref_primary_10_3389_fpls_2021_649147 crossref_primary_10_1038_s41581_019_0210_z crossref_primary_10_3390_genes11121524 crossref_primary_10_3390_biom12111655 crossref_primary_10_3389_fonc_2019_00949 crossref_primary_10_3390_biomedicines10123089 crossref_primary_10_1016_j_bbadis_2018_08_032 crossref_primary_10_1186_s12958_023_01088_4 crossref_primary_10_1126_sciadv_ads0643 crossref_primary_10_1186_s12864_021_07567_5 crossref_primary_10_15252_embj_2019103285 crossref_primary_10_37349_etat_2023_00196 crossref_primary_10_1126_sciadv_adp7423 crossref_primary_10_1523_JNEUROSCI_2672_20_2021 crossref_primary_10_1002_pmic_201900158 crossref_primary_10_1038_s41467_020_19743_4 crossref_primary_10_3390_genes11121431 crossref_primary_10_1016_j_molcel_2015_10_017 crossref_primary_10_1111_exd_13845 crossref_primary_10_3390_ph18010041 crossref_primary_10_2217_epi_2020_0273 crossref_primary_10_1016_j_cellsig_2024_111580 crossref_primary_10_1016_j_molcel_2021_04_002 crossref_primary_10_1152_physrev_00058_2021 crossref_primary_10_1016_j_freeradbiomed_2016_04_197 crossref_primary_10_1172_JCI158447 crossref_primary_10_1016_j_cellsig_2025_111744 crossref_primary_10_3389_fcell_2022_894874 crossref_primary_10_1021_acs_jmedchem_2c00687 crossref_primary_10_3390_cells8020095 crossref_primary_10_1016_j_isci_2024_109991 crossref_primary_10_3390_biology6010018 crossref_primary_10_1039_C7RA05824A crossref_primary_10_3389_fgene_2022_832668 crossref_primary_10_15252_embj_201591271 crossref_primary_10_1002_anie_201402679 crossref_primary_10_1007_s10571_022_01277_6 crossref_primary_10_1016_j_exger_2014_12_004 crossref_primary_10_3390_cells10020460 crossref_primary_10_1016_j_mito_2018_12_002 crossref_primary_10_1016_j_molcel_2015_04_010 crossref_primary_10_1016_j_survophthal_2021_04_003 crossref_primary_10_1371_journal_pone_0211796 crossref_primary_10_1093_pcp_pcy080 crossref_primary_10_1016_j_jbc_2021_101155 crossref_primary_10_3389_fcell_2023_1266973 crossref_primary_10_1089_dna_2018_4385 crossref_primary_10_1016_j_cellsig_2024_111570 crossref_primary_10_1089_ars_2022_0067 crossref_primary_10_1186_s13148_025_01838_8 crossref_primary_10_1042_BSR20211558 crossref_primary_10_1016_j_jbc_2023_102960 crossref_primary_10_1016_j_bmc_2023_117455 crossref_primary_10_1038_s41419_024_06599_5 crossref_primary_10_1038_s12276_023_00928_y crossref_primary_10_1016_j_isci_2023_106193 crossref_primary_10_1002_med_21436 crossref_primary_10_1038_s41589_021_00906_3 crossref_primary_10_1016_j_celrep_2018_01_030 crossref_primary_10_1016_j_str_2015_08_004 crossref_primary_10_1016_j_yjmcc_2021_04_007 crossref_primary_10_1038_s42255_018_0014_7 crossref_primary_10_1016_j_mcpro_2022_100490 crossref_primary_10_1016_j_jare_2019_11_003 crossref_primary_10_1021_acschembio_7b00125 crossref_primary_10_1007_s00253_022_12060_4 crossref_primary_10_1042_BST20210798 crossref_primary_10_1152_physrev_00030_2018 crossref_primary_10_1016_j_gde_2014_05_005 crossref_primary_10_1089_ars_2020_8121 crossref_primary_10_1016_j_jprot_2017_12_019 crossref_primary_10_1517_17460441_2014_875526 crossref_primary_10_1093_gpbjnl_qzae019 crossref_primary_10_3389_fonc_2022_1081712 crossref_primary_10_1038_s41420_022_00861_5 crossref_primary_10_1016_j_celrep_2017_07_065 crossref_primary_10_1016_j_ebiom_2018_09_037 crossref_primary_10_1074_mcp_RA118_001035 crossref_primary_10_1016_j_molcel_2023_02_015 crossref_primary_10_3389_fnut_2022_894278 crossref_primary_10_3389_fphar_2023_1238706 crossref_primary_10_1016_j_molcel_2023_02_016 crossref_primary_10_1042_BCJ20180745 crossref_primary_10_1074_jbc_M117_809897 crossref_primary_10_1016_j_phrs_2019_104502 crossref_primary_10_1093_nar_gkt1093 crossref_primary_10_1007_s13238_014_0102_8 crossref_primary_10_3390_ijms20235911 crossref_primary_10_1002_asia_202200197 crossref_primary_10_1093_cvr_cvac166 crossref_primary_10_3389_fpls_2022_1001935 crossref_primary_10_1158_2159_8290_CD_20_1227 crossref_primary_10_1016_j_bbapap_2016_11_009 crossref_primary_10_1016_j_cmet_2013_11_013 crossref_primary_10_1016_j_taap_2023_116650 crossref_primary_10_1016_j_molcel_2019_08_018 crossref_primary_10_1016_j_heliyon_2024_e27450 crossref_primary_10_1021_acs_chemrev_7b00181 crossref_primary_10_15252_embj_2021108306 crossref_primary_10_1074_mcp_RA119_001426 crossref_primary_10_1016_j_cellsig_2021_110087 crossref_primary_10_1016_j_molcel_2023_11_042 crossref_primary_10_1016_j_cryobiol_2021_06_006 crossref_primary_10_1042_BCJ20180617 crossref_primary_10_3390_ijms26062488 crossref_primary_10_1016_j_bbagen_2016_09_008 crossref_primary_10_1089_cmb_2016_0206 crossref_primary_10_1016_j_phrs_2020_105161 crossref_primary_10_1038_nrc3985 crossref_primary_10_1089_ars_2014_6213 crossref_primary_10_1016_j_celrep_2020_108021 crossref_primary_10_1080_17512433_2018_1546119 crossref_primary_10_2337_db18_1103 crossref_primary_10_3389_fendo_2018_00748 crossref_primary_10_3390_biomedicines12020386 crossref_primary_10_1186_s40170_021_00275_4 crossref_primary_10_2174_1570178615666180830101540 crossref_primary_10_1002_ange_202115805 crossref_primary_10_1016_j_mcpro_2022_100231 crossref_primary_10_1016_j_molcel_2020_04_002 crossref_primary_10_1371_journal_pone_0208973 crossref_primary_10_1073_pnas_1700796114 crossref_primary_10_1002_pmic_201700292 crossref_primary_10_1038_srep29790 crossref_primary_10_1016_j_cmet_2017_03_006 crossref_primary_10_1002_jimd_12254 crossref_primary_10_1038_s41586_024_08348_2 crossref_primary_10_3390_ijms25021057 crossref_primary_10_1016_j_gendis_2022_03_009 crossref_primary_10_1021_acs_jmedchem_2c01215 crossref_primary_10_1016_j_celrep_2024_114839 crossref_primary_10_1093_jnci_djx071 crossref_primary_10_1007_s10545_016_9939_8 crossref_primary_10_1016_j_isci_2023_107757 crossref_primary_10_1111_jcmm_16676 crossref_primary_10_1016_j_gendis_2022_10_028 crossref_primary_10_1089_ars_2024_0694 crossref_primary_10_1073_pnas_1911954116 crossref_primary_10_1097_SHK_0000000000002392 crossref_primary_10_1093_nutrit_nuad084 crossref_primary_10_7759_cureus_9651 crossref_primary_10_1039_D2AN01370C crossref_primary_10_1074_jbc_M115_707091 crossref_primary_10_1007_s12035_014_9040_y crossref_primary_10_1080_13102818_2024_2425694 crossref_primary_10_1002_mco2_261 crossref_primary_10_1016_j_neuro_2014_10_008 crossref_primary_10_3389_fcell_2021_664553 crossref_primary_10_1016_j_celrep_2018_02_037 crossref_primary_10_1042_EBC20180061 crossref_primary_10_1002_2211_5463_13090 crossref_primary_10_1186_s13148_024_01650_w crossref_primary_10_5604_01_3001_0014_7866 crossref_primary_10_1007_s12640_016_9664_y crossref_primary_10_1038_s41598_025_92716_z crossref_primary_10_1186_s13046_022_02338_w crossref_primary_10_1002_pmic_202100371 crossref_primary_10_1007_s10930_023_10178_6 crossref_primary_10_1074_mcp_M114_044255 crossref_primary_10_1073_pnas_1505995112 crossref_primary_10_1007_s11427_019_1587_x crossref_primary_10_1186_s12864_021_08285_8 crossref_primary_10_1186_s12917_025_04496_3 crossref_primary_10_1177_1947603521993209 crossref_primary_10_1002_pmic_201700230 crossref_primary_10_1021_acs_jmedchem_3c01031 crossref_primary_10_1111_jnc_13150 crossref_primary_10_1371_journal_pone_0122297 crossref_primary_10_1038_s41438_019_0216_5 crossref_primary_10_3389_fcvm_2022_850340 crossref_primary_10_2174_2665978601666200213121512 crossref_primary_10_1039_C4OB00773E crossref_primary_10_1021_jacs_8b12083 crossref_primary_10_1128_JVI_03220_14 crossref_primary_10_1074_mcp_M115_048850 crossref_primary_10_1038_s43587_023_00366_5 crossref_primary_10_3389_fphys_2019_00078 crossref_primary_10_3390_ijms22083804 crossref_primary_10_1002_pmic_202100381 crossref_primary_10_1016_j_gendis_2023_04_033 crossref_primary_10_1016_j_it_2020_11_004 crossref_primary_10_3892_etm_2024_12584 crossref_primary_10_15252_embr_202050967 crossref_primary_10_3390_cells8050417 crossref_primary_10_1186_s12864_017_4336_8 crossref_primary_10_3389_fcell_2020_00378 crossref_primary_10_1016_j_metabol_2025_156144 crossref_primary_10_1681_ASN_0000000000000266 crossref_primary_10_1038_s41557_024_01500_5 crossref_primary_10_1007_s11357_015_9804_y crossref_primary_10_1074_mcp_R114_046664 crossref_primary_10_1038_s41418_023_01157_6 crossref_primary_10_1096_fj_201901175R crossref_primary_10_1016_j_ab_2015_12_009 crossref_primary_10_1016_j_semcdb_2016_02_011 crossref_primary_10_3390_cancers11050683 crossref_primary_10_1016_j_freeradbiomed_2019_12_037 crossref_primary_10_1021_pr500859a crossref_primary_10_1002_pmic_201700137 crossref_primary_10_3390_microorganisms9061338 crossref_primary_10_1039_C5OB02609A crossref_primary_10_3390_ijms21155266 crossref_primary_10_1016_j_freeradbiomed_2023_07_023 crossref_primary_10_1016_j_mocell_2024_100029 crossref_primary_10_1074_mcp_RA118_001298 crossref_primary_10_1016_j_yexcr_2018_08_011 crossref_primary_10_1021_acs_jproteome_5b01097 crossref_primary_10_1165_rcmb_2020_0551OC crossref_primary_10_1007_s00018_018_2784_1 crossref_primary_10_1016_j_ecoenv_2021_112334 crossref_primary_10_1038_s41421_023_00573_9 crossref_primary_10_1074_jbc_M117_785022 crossref_primary_10_1128_MMBR_00020_15 crossref_primary_10_1038_cr_2017_68 crossref_primary_10_1016_j_cophys_2018_03_011 crossref_primary_10_1038_nchembio_1497 crossref_primary_10_1007_s10571_021_01144_w crossref_primary_10_31083_j_fbl2810250 crossref_primary_10_1016_j_bbrc_2018_06_073 crossref_primary_10_1042_CS20160685 crossref_primary_10_4103_1673_5374_355821 crossref_primary_10_1021_cr500491u crossref_primary_10_1242_jeb_160325 crossref_primary_10_1007_s11418_024_01871_6 crossref_primary_10_3390_biology5040053 crossref_primary_10_1038_s41418_024_01264_y crossref_primary_10_1038_ijo_2016_131 crossref_primary_10_1016_j_ejmech_2022_114623 crossref_primary_10_1111_mmi_13867 crossref_primary_10_1002_ange_201402679 crossref_primary_10_3389_fimmu_2023_1121495 crossref_primary_10_1097_SHK_0000000000001931 crossref_primary_10_1016_j_biochi_2023_02_008 crossref_primary_10_1038_s41564_025_01931_x crossref_primary_10_1021_acscatal_1c03330 crossref_primary_10_1038_s41598_019_40177_6 crossref_primary_10_1016_j_ejmech_2022_114363 crossref_primary_10_1016_j_bbapap_2017_11_011 crossref_primary_10_3390_metabo12070651 crossref_primary_10_1007_s00467_020_04866_z crossref_primary_10_1038_s41467_021_27572_2 crossref_primary_10_1096_fj_13_245241 crossref_primary_10_1016_j_yexcr_2019_06_028 crossref_primary_10_3390_ijms22126256 crossref_primary_10_1111_febs_15327 crossref_primary_10_1016_j_pharmthera_2020_107521 crossref_primary_10_1007_s11055_023_01379_8 crossref_primary_10_1016_j_ijbiomac_2023_126499 crossref_primary_10_1042_CS20210392 crossref_primary_10_1186_s12014_024_09509_1 crossref_primary_10_3390_metabo11080474 crossref_primary_10_1016_j_molcel_2018_04_011 crossref_primary_10_3390_antiox10081198 crossref_primary_10_1007_s10545_014_9684_9 crossref_primary_10_1021_acs_jafc_3c08332 crossref_primary_10_1007_s11684_022_0943_0 crossref_primary_10_3389_fphys_2019_00435 crossref_primary_10_1002_ctm2_172 crossref_primary_10_1002_jnr_24103 crossref_primary_10_3389_fmed_2021_703076 crossref_primary_10_1128_mBio_01096_17 crossref_primary_10_1515_hsz_2019_0264 crossref_primary_10_1016_j_tibs_2017_01_003 crossref_primary_10_2217_fon_2020_1155 crossref_primary_10_1016_j_semcdb_2015_07_008 crossref_primary_10_1186_s12864_017_3977_y crossref_primary_10_1016_j_celrep_2017_05_065 crossref_primary_10_1016_j_freeradbiomed_2024_09_021 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1038_srep07331 crossref_primary_10_1016_j_cmet_2014_03_014 crossref_primary_10_1016_j_freeradbiomed_2015_11_031 crossref_primary_10_1039_C5OB00283D crossref_primary_10_1016_j_chembiol_2018_04_007 crossref_primary_10_1038_srep08529 crossref_primary_10_3390_ijms22115574 crossref_primary_10_5483_BMBRep_2013_46_9_180 crossref_primary_10_1038_s41598_018_36203_8 crossref_primary_10_1007_s10142_024_01338_7 crossref_primary_10_1042_BCJ20220550 crossref_primary_10_3390_biom11060872 crossref_primary_10_1186_s12870_019_2072_8 crossref_primary_10_1016_j_gpb_2019_11_010 crossref_primary_10_1016_j_exger_2014_03_006 crossref_primary_10_4254_wjh_v16_i3_344 crossref_primary_10_1007_s10741_016_9570_7 crossref_primary_10_1016_j_mcpro_2022_100193 crossref_primary_10_1016_j_pharmthera_2020_107748 crossref_primary_10_3390_life11010069 crossref_primary_10_3390_nu16030396 crossref_primary_10_1016_j_jprot_2023_104889 crossref_primary_10_3390_antiox10071153 crossref_primary_10_1038_s41598_023_31900_5 crossref_primary_10_1016_j_devcel_2020_06_036 crossref_primary_10_3390_ijms23137467 crossref_primary_10_1016_j_jprot_2015_11_023 crossref_primary_10_7717_peerj_14752 crossref_primary_10_1021_acsinfecdis_0c00329 crossref_primary_10_1186_s12859_022_05001_5 crossref_primary_10_2174_1389202922666210219114211 crossref_primary_10_1016_j_pharmthera_2016_07_013 crossref_primary_10_1039_C8SC02483A crossref_primary_10_1002_jhet_2732 crossref_primary_10_1016_j_bbadis_2016_07_020 crossref_primary_10_1158_2643_3230_BCD_20_0168 crossref_primary_10_3390_ijms25169125 crossref_primary_10_1038_s41419_018_1271_9 crossref_primary_10_1074_jbc_RA119_011988 crossref_primary_10_3390_cells12091329 crossref_primary_10_1074_mcp_RA117_000393 crossref_primary_10_3390_cells12060852 crossref_primary_10_3390_ijms20081996 crossref_primary_10_1007_s42764_025_00148_w crossref_primary_10_1038_srep39517 crossref_primary_10_1039_C9CC05633E crossref_primary_10_1007_s13277_014_2372_4 crossref_primary_10_1080_23723556_2020_1735284 crossref_primary_10_1097_TA_0000000000002918 crossref_primary_10_1111_omi_12255 crossref_primary_10_1038_s41418_021_00886_w crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1021_acs_jproteome_9b00462 crossref_primary_10_1126_sciadv_abe2771 crossref_primary_10_3892_ijmm_2018_3772 crossref_primary_10_1002_msb_134974 crossref_primary_10_1016_j_tcb_2013_11_008 crossref_primary_10_1021_acs_biochem_4c00257 crossref_primary_10_1111_mec_16122 crossref_primary_10_1038_s41388_021_02065_0 crossref_primary_10_1042_BSR20180768 crossref_primary_10_1161_STROKEAHA_121_034850 crossref_primary_10_1038_s41580_023_00650_7 crossref_primary_10_3389_fgene_2022_1007618 crossref_primary_10_1002_ange_201810569 crossref_primary_10_1038_s42255_024_01005_y crossref_primary_10_3389_fendo_2018_00724 crossref_primary_10_1128_MMBR_00038_18 crossref_primary_10_14319_ijcto_42_15 crossref_primary_10_1007_s12017_014_8288_8 crossref_primary_10_1186_s12964_023_01253_7 crossref_primary_10_1038_s41598_019_52552_4 crossref_primary_10_1186_s12859_018_2249_4 crossref_primary_10_3803_EnM_2020_35_1_36 crossref_primary_10_1038_cr_2017_149 crossref_primary_10_1007_s11084_024_09660_7 crossref_primary_10_1002_advs_202402710 crossref_primary_10_1016_j_mito_2016_07_012 crossref_primary_10_1016_j_ejphar_2019_172520 crossref_primary_10_1016_j_gpb_2022_02_004 crossref_primary_10_1021_acs_jproteome_5b00485 crossref_primary_10_1002_pro_2546 crossref_primary_10_1016_j_jprot_2016_11_022 crossref_primary_10_1016_j_freeradbiomed_2025_03_025 crossref_primary_10_1016_j_apsb_2020_02_005 crossref_primary_10_1021_acs_jproteome_6b00240 crossref_primary_10_3390_ijms252011089 crossref_primary_10_1016_j_cell_2016_10_016 crossref_primary_10_1016_j_molcel_2013_12_026 crossref_primary_10_1016_j_jtbi_2017_05_005 crossref_primary_10_1016_j_pharep_2015_03_021 crossref_primary_10_1016_j_semcdb_2019_04_013 crossref_primary_10_1074_mcp_M113_035659 crossref_primary_10_1038_s41423_025_01266_x crossref_primary_10_1042_EBC20230080 crossref_primary_10_3390_cells10092348 crossref_primary_10_3389_fcell_2021_667684 crossref_primary_10_1016_j_plaphy_2024_108841 crossref_primary_10_1016_j_bbrc_2018_07_047 crossref_primary_10_1016_j_scitotenv_2022_155813 crossref_primary_10_1242_dmm_016287 crossref_primary_10_1016_j_jgg_2021_11_005 crossref_primary_10_1002_pmic_202300162 crossref_primary_10_1089_ars_2016_6662 crossref_primary_10_1007_s13238_021_00846_7 crossref_primary_10_1016_j_mito_2016_07_006 crossref_primary_10_1371_journal_pbio_3000425 crossref_primary_10_1016_j_jprot_2023_104959 crossref_primary_10_1146_annurev_biochem_082520_125411 crossref_primary_10_1146_annurev_cancerbio_030518_055905 crossref_primary_10_1021_acs_jproteome_7b00017 crossref_primary_10_1111_febs_13047 crossref_primary_10_1146_annurev_immunol_081619_104850 crossref_primary_10_3389_fphys_2020_542950 crossref_primary_10_3390_molecules28166163 crossref_primary_10_4103_1673_5374_382229 crossref_primary_10_3389_fnins_2018_00032 crossref_primary_10_1093_bioinformatics_btv439 crossref_primary_10_1074_jbc_RA118_004947 crossref_primary_10_1139_apnm_2017_0068 crossref_primary_10_14336_AD_2019_0820 crossref_primary_10_1002_ijc_31812 crossref_primary_10_1016_j_freeradbiomed_2021_12_264 crossref_primary_10_1155_2019_4745132 crossref_primary_10_1016_j_jprot_2016_11_005 crossref_primary_10_1016_j_molmet_2020_01_005 crossref_primary_10_1002_mbo3_320 crossref_primary_10_1016_j_gendis_2019_09_011 crossref_primary_10_34133_research_0351 crossref_primary_10_34133_research_0350 crossref_primary_10_1016_j_ejmech_2022_114594 crossref_primary_10_1016_j_phrs_2024_107393 crossref_primary_10_3390_biology10030194 crossref_primary_10_1038_s41467_017_01384_9 crossref_primary_10_1111_jcmm_13920 crossref_primary_10_1007_s11064_015_1631_0 crossref_primary_10_1186_s12872_024_04120_6 crossref_primary_10_1038_s41598_018_36852_9 crossref_primary_10_15252_embr_201541643 crossref_primary_10_1021_acs_jproteome_8b00238 crossref_primary_10_1155_2021_6635836 crossref_primary_10_1038_s41392_021_00825_8 crossref_primary_10_15252_embj_201592927 crossref_primary_10_1038_s41417_022_00464_3 crossref_primary_10_1002_hep_32621 crossref_primary_10_1038_s41598_022_16506_7 crossref_primary_10_3390_molecules28020533 crossref_primary_10_1080_15548627_2015_1009778 |
Cites_doi | 10.1001/jama.292.8.943 10.1042/BST0340217 10.1194/jlr.M600091-JLR200 10.1126/scisignal.2000475 10.1038/onc.2010.444 10.1002/path.1686 10.1016/j.ab.2006.06.017 10.1126/science.1179689 10.1016/j.cell.2009.02.026 10.1038/nchembio.495 10.1186/1476-4598-8-89 10.1002/humu.21136 10.1093/hmg/ddm275 10.1074/mcp.M800187-MCP200 10.1212/WNL.53.3.612 10.1016/j.addr.2008.02.014 10.1210/jc.2011-1043 10.1016/j.cell.2011.08.008 10.1038/nature08197 10.1042/BJ20100791 10.1126/science.1192632 10.1016/j.bbrc.2010.01.081 10.1074/mcp.M112.019547 10.1126/science.1175371 10.1111/j.1474-9726.2009.00503.x 10.1016/j.ccr.2004.11.022 10.1016/j.molcel.2006.06.026 10.1093/jnci/djn254 10.1126/science.1207861 10.1101/sqb.2011.76.010850 10.1091/mbc.e05-01-0033 10.1016/j.molcel.2012.10.024 10.1111/j.1432-1033.1972.tb01783.x 10.1021/ja908777t 10.1128/MCB.01636-07 10.1186/1471-2105-4-2 10.1016/j.febslet.2004.10.037 10.1074/mcp.M700021-MCP200 10.1038/81551 10.1016/j.cell.2008.06.016 10.1016/j.jmb.2008.07.048 10.1126/science.1175689 10.1038/nature05915 10.1373/clinchem.2004.033852 10.1016/j.tiv.2007.01.011 10.1093/nar/gkn760 10.1016/j.cell.2012.07.033 10.1016/j.molcel.2011.01.002 10.1016/j.molcel.2012.01.001 10.1038/modpathol.2012.186 10.1016/j.cell.2012.07.018 10.1021/cb100218d 10.1097/PAT.0b013e3283539932 10.1126/science.1077650 10.1016/j.febslet.2012.10.009 10.1016/j.ccr.2011.02.014 10.1074/mcp.M111.015875 10.1126/science.1179687 10.1126/science.1160809 10.1074/mcp.M111.012658 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. 2013 Elsevier Inc. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: 2013 Elsevier Inc. 2013 |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2013.06.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 930 |
ExternalDocumentID | PMC3769971 23806337 10_1016_j_molcel_2013_06_001 US201600024574 S1097276513004383 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: T32 AG000114 – fundername: NIA NIH HHS grantid: P30 AG013283 – fundername: NIGMS NIH HHS grantid: U54 GM103520 – fundername: NIDDK NIH HHS grantid: P60DK020572 – fundername: NIGMS NIH HHS grantid: R01 GM101171 – fundername: NIGMS NIH HHS grantid: U54GM103520 – fundername: NIA NIH HHS grantid: P30AG024824 – fundername: NIA NIH HHS grantid: T32AG000114 – fundername: NIDDK NIH HHS grantid: P30DK089503 – fundername: NIDDK NIH HHS grantid: P30 DK089503 – fundername: National Institute of General Medical Sciences : NIGMS grantid: U54 GM103520 || GM – fundername: National Institute on Aging : NIA grantid: T32 AG000114 || AG – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM101171 || GM – fundername: National Institute on Aging : NIA grantid: P30 AG024824 || AG – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: P30 DK020572 || DK – fundername: National Institute on Aging : NIA grantid: P30 AG013283 || AG – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: DP3 DK094292 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: P30 DK089503 || DK |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAHBH AAMRU AAQXK ABWVN ACRPL ADMUD ADNMO ADVLN AKAPO AKRWK FBQ FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c520t-2aa3162e27f5102b4be0dc1e592e572af4406cc65ee7158862a2b963fa6061e13 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:17:11 EDT 2025 Fri Jul 11 16:58:40 EDT 2025 Fri Jul 11 11:30:17 EDT 2025 Mon Jul 21 05:49:59 EDT 2025 Tue Jul 01 03:40:41 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Thu Apr 03 09:46:37 EDT 2025 Fri Feb 23 02:19:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-2aa3162e27f5102b4be0dc1e592e572af4406cc65ee7158862a2b963fa6061e13 |
Notes | http://dx.doi.org/10.1016/j.molcel.2013.06.001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Present address: Emergent BioSolutions, Lansing, MI 48906, USA |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276513004383 |
PMID | 23806337 |
PQID | 1372702346 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3769971 proquest_miscellaneous_2000100546 proquest_miscellaneous_1372702346 pubmed_primary_23806337 crossref_primary_10_1016_j_molcel_2013_06_001 crossref_citationtrail_10_1016_j_molcel_2013_06_001 fao_agris_US201600024574 elsevier_sciencedirect_doi_10_1016_j_molcel_2013_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-27 |
PublicationDateYYYYMMDD | 2013-06-27 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Jensen, Kuhn, Stark, Chaffron, Creevey, Muller, Doerks, Julien, Roth, Simonovic (bib17) 2009; 37 Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li (bib62) 2010; 327 Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao (bib21) 2006; 23 Hebert, Dittenhafer-Reed, Yu, Bailey, Selen, Boersma, Carson, Tonelli, Balloon, Higbee (bib15) 2013; 49 Ricketts, Woodward, Killick, Morris, Astuti, Latif, Maher (bib41) 2008; 100 Wieland, Patzelt, Löffler (bib56) 1972; 26 Korpershoek, Favier, Gaal, Burnichon, van Gessel, Oudijk, Badoual, Gadessaud, Venisse, Bayley (bib22) 2011; 96 Lombard, Tishkoff, Zwaans (bib26) 2012 Finkel, Deng, Mostoslavsky (bib9) 2009; 460 Kranendijk, Struys, van Schaftingen, Gibson, Kanhai, van der Knaap, Amiel, Buist, Das, de Klerk (bib23) 2010; 330 Ruepp, Brauner, Dunger-Kaltenbach, Frishman, Montrone, Stransky, Waegele, Schmidt, Doudieu, Stümpflen, Mewes (bib44) 2008; 36 Choudhary, Kumar, Gnad, Nielsen, Rehman, Walther, Olsen, Mann (bib7) 2009; 325 Lian, Xu, Ceol, Wu, Larson, Dresser, Xu, Tan, Hu, Zhan (bib24) 2012; 150 Hirschey, Shimazu, Huang, Schwer, Verdin (bib16) 2011; 76 Smith, Janknecht, Maher (bib49) 2007; 16 Vander Heiden, Cantley, Thompson (bib54) 2009; 324 Xie, Dai, Dai, Tan, Cheng, Wu, Boeke, Zhao (bib57) 2012; 11 Chen, Zhao, Yang, Cheng, Luo, Lu, Tan, Gu, Zhao (bib6) 2012; 11 Yang, Xia, Hawke, Li, Liang, Xing, Aldape, Hunter, Alfred Yung, Lu (bib58) 2012; 150 Ricketts, Forman, Rattenberry, Bradshaw, Lalloo, Izatt, Cole, Armstrong, Kumar, Morrison (bib42) 2010; 31 Pollard, Wortham, Barclay, Alam, Elia, Manek, Poulsom, Tomlinson (bib40) 2005; 205 Yen, Bittinger, Su, Fantin (bib59) 2010; 29 Schwer, Eckersdorff, Li, Silva, Fermin, Kurtev, Giallourakis, Comb, Alt, Lombard (bib47) 2009; 8 Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi (bib8) 2011; 334 Starai, Celic, Cole, Boeke, Escalante-Semerena (bib52) 2002; 298 Nakagawa, Lomb, Haigis, Guarente (bib30) 2009; 137 Neumann, Pawlu, Peczkowska, Bausch, McWhinney, Muresan, Buchta, Franke, Klisch, Bley (bib32) 2004; 292 Peng, Lu, Xie, Cheng, Chen, Tan, Luo, Zhang, He, Yang (bib39) 2011; 10 Schlicker, Gertz, Papatheodorou, Kachholz, Becker, Steegborn (bib45) 2008; 382 Berger (bib3) 2007; 447 Michishita, Park, Burneskis, Barrett, Horikawa (bib27) 2005; 16 Smith, Settles, Hallows, Craven, Denu (bib50) 2011; 6 Stacpoole, Kurtz, Han, Langaee (bib51) 2008; 60 Kendrick, Choudhury, Rahman, McCurdy, Friederich, Van Hove, Watson, Birdsey, Bao, Gius (bib20) 2011; 433 Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib31) 2012; 586 Oudijk, Gaal, Korpershoek, van Nederveen, Kelly, Schiavon, Verweij, Mathijssen, den Bakker, Oldenburg (bib36) 2013; 26 Schwab, Kölker, van den Heuvel, Sauer, Wolf, Rating, Hoffmann, Smeitink, Okun (bib46) 2005; 51 Gao, Wang, Yang, Liu, Liu (bib11) 2012; 45 Zhang, Sprung, Pei, Tan, Kim, Zhu, Liu, Grishin, Zhao (bib60) 2009; 8 Acker, Bowers, Walsh (bib1) 2009; 131 Jeoung, Sanghani, Zhai, Harris (bib18) 2006; 356 Patel, Korotchkina (bib38) 2006; 34 Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish (bib10) 2011; 19 Ogura, Nakamura, Tanaka, Zhuang, Fujita, Obara, Hamasaki, Hosokawa, Inagaki (bib34) 2010; 393 Cervera, Bayley, Devilee, McCreath (bib4) 2009; 8 Wang, Zhang, Yang, Xiong, Lin, Yao, Li, Xie, Zhao, Yao (bib55) 2010; 327 Bader, Hogue (bib2) 2003; 4 Tan, Luo, Lee, Jin, Yang, Montellier, Buchou, Cheng, Rousseaux, Rajagopal (bib53) 2011; 146 Selak, Armour, MacKenzie, Boulahbel, Watson, Mansfield, Pan, Simon, Thompson, Gottlieb (bib48) 2005; 7 Hao, Khalimonchuk, Schraders, Dephoure, Bayley, Kunst, Devilee, Cremers, Schiffman, Bentz (bib14) 2009; 325 Pagliarini, Calvo, Chang, Sheth, Vafai, Ong, Walford, Sugiana, Boneh, Chen (bib37) 2008; 134 Rosen, Becher, Büttner, Biran, Hecker, Ron (bib43) 2004; 577 Chen, Sprung, Tang, Ball, Sangras, Kim, Falck, Peng, Gu, Zhao (bib5) 2007; 6 Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith (bib13) 2011; 41 Olsen, Vermeulen, Santamaria, Kumar, Miller, Jensen, Gnad, Cox, Jensen, Nigg (bib35) 2010; 3 Zhang, Tan, Xie, Dai, Chen, Zhao (bib61) 2011; 7 Gill (bib12) 2012; 44 Morten, Beattie, Brown, Matthews (bib28) 1999; 53 Nadanaciva, Bernal, Aggeler, Capaldi, Will (bib29) 2007; 21 Niemann, Müller (bib33) 2000; 26 Kawai, Fujii, Okada, Tsuchie, Uchida, Osawa (bib19) 2006; 47 Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy (bib25) 2007; 27 Acker (10.1016/j.molcel.2013.06.001_bib1) 2009; 131 Finley (10.1016/j.molcel.2013.06.001_bib10) 2011; 19 Hirschey (10.1016/j.molcel.2013.06.001_bib16) 2011; 76 Zhang (10.1016/j.molcel.2013.06.001_bib60) 2009; 8 Chen (10.1016/j.molcel.2013.06.001_bib6) 2012; 11 Nakagawa (10.1016/j.molcel.2013.06.001_bib30) 2009; 137 Olsen (10.1016/j.molcel.2013.06.001_bib35) 2010; 3 Kendrick (10.1016/j.molcel.2013.06.001_bib20) 2011; 433 Yen (10.1016/j.molcel.2013.06.001_bib59) 2010; 29 Schlicker (10.1016/j.molcel.2013.06.001_bib45) 2008; 382 Gao (10.1016/j.molcel.2013.06.001_bib11) 2012; 45 Korpershoek (10.1016/j.molcel.2013.06.001_bib22) 2011; 96 Jensen (10.1016/j.molcel.2013.06.001_bib17) 2009; 37 Nadanaciva (10.1016/j.molcel.2013.06.001_bib29) 2007; 21 Ricketts (10.1016/j.molcel.2013.06.001_bib41) 2008; 100 Cervera (10.1016/j.molcel.2013.06.001_bib4) 2009; 8 Nakamura (10.1016/j.molcel.2013.06.001_bib31) 2012; 586 Schwer (10.1016/j.molcel.2013.06.001_bib47) 2009; 8 Stacpoole (10.1016/j.molcel.2013.06.001_bib51) 2008; 60 Vander Heiden (10.1016/j.molcel.2013.06.001_bib54) 2009; 324 Pagliarini (10.1016/j.molcel.2013.06.001_bib37) 2008; 134 Ruepp (10.1016/j.molcel.2013.06.001_bib44) 2008; 36 Peng (10.1016/j.molcel.2013.06.001_bib39) 2011; 10 Kawai (10.1016/j.molcel.2013.06.001_bib19) 2006; 47 Finkel (10.1016/j.molcel.2013.06.001_bib9) 2009; 460 Du (10.1016/j.molcel.2013.06.001_bib8) 2011; 334 Patel (10.1016/j.molcel.2013.06.001_bib38) 2006; 34 Berger (10.1016/j.molcel.2013.06.001_bib3) 2007; 447 Ricketts (10.1016/j.molcel.2013.06.001_bib42) 2010; 31 Pollard (10.1016/j.molcel.2013.06.001_bib40) 2005; 205 Niemann (10.1016/j.molcel.2013.06.001_bib33) 2000; 26 Selak (10.1016/j.molcel.2013.06.001_bib48) 2005; 7 Lombard (10.1016/j.molcel.2013.06.001_bib25) 2007; 27 Choudhary (10.1016/j.molcel.2013.06.001_bib7) 2009; 325 Chen (10.1016/j.molcel.2013.06.001_bib5) 2007; 6 Hallows (10.1016/j.molcel.2013.06.001_bib13) 2011; 41 Yang (10.1016/j.molcel.2013.06.001_bib58) 2012; 150 Kim (10.1016/j.molcel.2013.06.001_bib21) 2006; 23 Starai (10.1016/j.molcel.2013.06.001_bib52) 2002; 298 Jeoung (10.1016/j.molcel.2013.06.001_bib18) 2006; 356 Oudijk (10.1016/j.molcel.2013.06.001_bib36) 2013; 26 Smith (10.1016/j.molcel.2013.06.001_bib49) 2007; 16 Xie (10.1016/j.molcel.2013.06.001_bib57) 2012; 11 Kranendijk (10.1016/j.molcel.2013.06.001_bib23) 2010; 330 Wieland (10.1016/j.molcel.2013.06.001_bib56) 1972; 26 Morten (10.1016/j.molcel.2013.06.001_bib28) 1999; 53 Bader (10.1016/j.molcel.2013.06.001_bib2) 2003; 4 Michishita (10.1016/j.molcel.2013.06.001_bib27) 2005; 16 Ogura (10.1016/j.molcel.2013.06.001_bib34) 2010; 393 Smith (10.1016/j.molcel.2013.06.001_bib50) 2011; 6 Zhang (10.1016/j.molcel.2013.06.001_bib61) 2011; 7 Lian (10.1016/j.molcel.2013.06.001_bib24) 2012; 150 Wang (10.1016/j.molcel.2013.06.001_bib55) 2010; 327 Lombard (10.1016/j.molcel.2013.06.001_bib26) 2012 Schwab (10.1016/j.molcel.2013.06.001_bib46) 2005; 51 Gill (10.1016/j.molcel.2013.06.001_bib12) 2012; 44 Neumann (10.1016/j.molcel.2013.06.001_bib32) 2004; 292 Tan (10.1016/j.molcel.2013.06.001_bib53) 2011; 146 Rosen (10.1016/j.molcel.2013.06.001_bib43) 2004; 577 Zhao (10.1016/j.molcel.2013.06.001_bib62) 2010; 327 Hao (10.1016/j.molcel.2013.06.001_bib14) 2009; 325 Hebert (10.1016/j.molcel.2013.06.001_bib15) 2013; 49 15550478 - Clin Chem. 2005 Jan;51(1):151-60 22076378 - Science. 2011 Nov 11;334(6057):806-9 19410549 - Cell. 2009 May 1;137(3):560-70 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 19594485 - Aging Cell. 2009 Sep;8(5):604-6 22389435 - Mol Cell Proteomics. 2012 May;11(5):100-7 5036975 - Eur J Biochem. 1972 Apr 11;26(3):426-33 17346924 - Toxicol In Vitro. 2007 Aug;21(5):902-11 21151122 - Nat Chem Biol. 2011 Jan;7(1):58-63 21752896 - J Clin Endocrinol Metab. 2011 Sep;96(9):E1472-6 16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22 12493915 - Science. 2002 Dec 20;298(5602):2390-2 21255725 - Mol Cell. 2011 Jan 21;41(2):139-49 19802898 - Hum Mutat. 2010 Jan;31(1):41-51 20068231 - Sci Signal. 2010;3(104):ra3 22901803 - Cell. 2012 Aug 17;150(4):685-96 23201123 - Mol Cell. 2013 Jan 10;49(1):186-99 16859625 - Anal Biochem. 2006 Sep 1;356(1):44-50 18723842 - Mol Cell Proteomics. 2009 Feb;8(2):215-25 20945913 - ACS Chem Biol. 2011 Feb 18;6(2):146-57 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 19849834 - Mol Cancer. 2009;8:89 22114326 - Cold Spring Harb Symp Quant Biol. 2011;76:267-77 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35 18680753 - J Mol Biol. 2008 Oct 10;382(3):790-801 19641587 - Nature. 2009 Jul 30;460(7255):587-91 20847235 - Science. 2010 Oct 15;330(6002):336 20167786 - Science. 2010 Feb 19;327(5968):1000-4 20097174 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):73-8 18728283 - J Natl Cancer Inst. 2008 Sep 3;100(17):1260-2 22306293 - Mol Cell. 2012 Mar 9;45(5):598-609 18614015 - Cell. 2008 Jul 11;134(1):112-23 21908771 - Mol Cell Proteomics. 2011 Dec;10(12):M111.012658 22980977 - Cell. 2012 Sep 14;150(6):1135-46 18940858 - Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6 22826441 - Mol Cell Proteomics. 2012 Oct;11(10):1048-62 15652751 - Cancer Cell. 2005 Jan;7(1):77-85 17522673 - Nature. 2007 May 24;447(7143):407-12 15556615 - FEBS Lett. 2004 Nov 19;577(3):386-92 18647626 - Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1478-87 11062460 - Nat Genet. 2000 Nov;26(3):268-70 17267393 - Mol Cell Proteomics. 2007 May;6(5):812-9 21044047 - Biochem J. 2011 Feb 1;433(3):505-14 20167787 - Science. 2010 Feb 19;327(5968):1004-7 21925322 - Cell. 2011 Sep 16;146(6):1016-28 22544211 - Pathology. 2012 Jun;44(4):285-92 15586379 - J Pathol. 2005 Jan;205(1):41-9 23174939 - Mod Pathol. 2013 Mar;26(3):456-63 19460998 - Science. 2009 May 22;324(5930):1029-33 16916647 - Mol Cell. 2006 Aug;23(4):607-18 17884808 - Hum Mol Genet. 2007 Dec 15;16(24):3136-48 19608861 - Science. 2009 Aug 14;325(5942):834-40 21397863 - Cancer Cell. 2011 Mar 8;19(3):416-28 10449128 - Neurology. 1999 Aug 11;53(3):612-6 16582421 - J Lipid Res. 2006 Jul;47(7):1386-98 15328326 - JAMA. 2004 Aug 25;292(8):943-51 19628817 - Science. 2009 Aug 28;325(5944):1139-42 17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14 20972461 - Oncogene. 2010 Dec 9;29(49):6409-17 23085393 - FEBS Lett. 2012 Nov 30;586(23):4076-81 19911780 - J Am Chem Soc. 2009 Dec 9;131(48):17563-5 |
References_xml | – volume: 11 start-page: 100 year: 2012 end-page: 107 ident: bib57 article-title: Lysine succinylation and lysine malonylation in histones publication-title: Mol. Cell. Proteomics – volume: 7 start-page: 77 year: 2005 end-page: 85 ident: bib48 article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase publication-title: Cancer Cell – volume: 150 start-page: 1135 year: 2012 end-page: 1146 ident: bib24 article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma publication-title: Cell – volume: 36 start-page: D646 year: 2008 end-page: D650 ident: bib44 article-title: CORUM: the comprehensive resource of mammalian protein complexes publication-title: Nucleic Acids Res. – volume: 47 start-page: 1386 year: 2006 end-page: 1398 ident: bib19 article-title: Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification publication-title: J. Lipid Res. – volume: 447 start-page: 407 year: 2007 end-page: 412 ident: bib3 article-title: The complex language of chromatin regulation during transcription publication-title: Nature – volume: 6 start-page: 812 year: 2007 end-page: 819 ident: bib5 article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones publication-title: Mol. Cell. Proteomics – volume: 45 start-page: 598 year: 2012 end-page: 609 ident: bib11 article-title: Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase publication-title: Mol. Cell – volume: 292 start-page: 943 year: 2004 end-page: 951 ident: bib32 article-title: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations publication-title: JAMA – volume: 96 start-page: E1472 year: 2011 end-page: E1476 ident: bib22 article-title: SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas publication-title: J. Clin. Endocrinol. Metab. – volume: 325 start-page: 1139 year: 2009 end-page: 1142 ident: bib14 article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma publication-title: Science – volume: 31 start-page: 41 year: 2010 end-page: 51 ident: bib42 article-title: Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD publication-title: Hum. Mutat. – volume: 60 start-page: 1478 year: 2008 end-page: 1487 ident: bib51 article-title: Role of dichloroacetate in the treatment of genetic mitochondrial diseases publication-title: Adv. Drug Deliv. Rev. – volume: 433 start-page: 505 year: 2011 end-page: 514 ident: bib20 article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation publication-title: Biochem. J. – volume: 137 start-page: 560 year: 2009 end-page: 570 ident: bib30 article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell – volume: 11 start-page: 1048 year: 2012 end-page: 1062 ident: bib6 article-title: Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways publication-title: Mol. Cell. Proteomics – volume: 577 start-page: 386 year: 2004 end-page: 392 ident: bib43 article-title: Probing the active site of homoserine trans-succinylase publication-title: FEBS Lett. – volume: 7 start-page: 58 year: 2011 end-page: 63 ident: bib61 article-title: Identification of lysine succinylation as a new post-translational modification publication-title: Nat. Chem. Biol. – volume: 41 start-page: 139 year: 2011 end-page: 149 ident: bib13 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell – volume: 37 start-page: D412 year: 2009 end-page: D416 ident: bib17 article-title: STRING 8—a global view on proteins and their functional interactions in 630 organisms publication-title: Nucleic Acids Res. – volume: 23 start-page: 607 year: 2006 end-page: 618 ident: bib21 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell – volume: 3 start-page: ra3 year: 2010 ident: bib35 article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis publication-title: Sci. Signal. – volume: 27 start-page: 8807 year: 2007 end-page: 8814 ident: bib25 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Mol. Cell. Biol. – volume: 327 start-page: 1000 year: 2010 end-page: 1004 ident: bib62 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science – volume: 53 start-page: 612 year: 1999 end-page: 616 ident: bib28 article-title: Dichloroacetate stabilizes the mutant E1alpha subunit in pyruvate dehydrogenase deficiency publication-title: Neurology – volume: 382 start-page: 790 year: 2008 end-page: 801 ident: bib45 article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 publication-title: J. Mol. Biol. – volume: 327 start-page: 1004 year: 2010 end-page: 1007 ident: bib55 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux publication-title: Science – volume: 460 start-page: 587 year: 2009 end-page: 591 ident: bib9 article-title: Recent progress in the biology and physiology of sirtuins publication-title: Nature – volume: 34 start-page: 217 year: 2006 end-page: 222 ident: bib38 article-title: Regulation of the pyruvate dehydrogenase complex publication-title: Biochem. Soc. Trans. – volume: 49 start-page: 186 year: 2013 end-page: 199 ident: bib15 article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome publication-title: Mol. Cell – volume: 8 start-page: 89 year: 2009 ident: bib4 article-title: Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells publication-title: Mol. Cancer – volume: 393 start-page: 73 year: 2010 end-page: 78 ident: bib34 article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1 publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 604 year: 2009 end-page: 606 ident: bib47 article-title: Calorie restriction alters mitochondrial protein acetylation publication-title: Aging Cell – volume: 131 start-page: 17563 year: 2009 end-page: 17565 ident: bib1 article-title: Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus publication-title: J. Am. Chem. Soc. – volume: 356 start-page: 44 year: 2006 end-page: 50 ident: bib18 article-title: Assay of the pyruvate dehydrogenase complex by coupling with recombinant chicken liver arylamine N-acetyltransferase publication-title: Anal. Biochem. – volume: 4 start-page: 2 year: 2003 ident: bib2 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinformatics – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bib54 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 16 start-page: 4623 year: 2005 end-page: 4635 ident: bib27 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell – volume: 586 start-page: 4076 year: 2012 end-page: 4081 ident: bib31 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. – volume: 44 start-page: 285 year: 2012 end-page: 292 ident: bib12 article-title: Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia publication-title: Pathology – volume: 298 start-page: 2390 year: 2002 end-page: 2392 ident: bib52 article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine publication-title: Science – volume: 134 start-page: 112 year: 2008 end-page: 123 ident: bib37 article-title: A mitochondrial protein compendium elucidates complex I disease biology publication-title: Cell – volume: 26 start-page: 426 year: 1972 end-page: 433 ident: bib56 article-title: Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion publication-title: Eur. J. Biochem. – volume: 16 start-page: 3136 year: 2007 end-page: 3148 ident: bib49 article-title: Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma publication-title: Hum. Mol. Genet. – volume: 100 start-page: 1260 year: 2008 end-page: 1262 ident: bib41 article-title: Germline SDHB mutations and familial renal cell carcinoma publication-title: J. Natl. Cancer Inst. – volume: 325 start-page: 834 year: 2009 end-page: 840 ident: bib7 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science – volume: 51 start-page: 151 year: 2005 end-page: 160 ident: bib46 article-title: Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts publication-title: Clin. Chem. – volume: 205 start-page: 41 year: 2005 end-page: 49 ident: bib40 article-title: Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome publication-title: J. Pathol. – volume: 10 year: 2011 ident: bib39 article-title: The first identification of lysine malonylation substrates and its regulatory enzyme publication-title: Mol Cell Proteomics – volume: 76 start-page: 267 year: 2011 end-page: 277 ident: bib16 article-title: SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 146 start-page: 1016 year: 2011 end-page: 1028 ident: bib53 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell – volume: 6 start-page: 146 year: 2011 end-page: 157 ident: bib50 article-title: SIRT3 substrate specificity determined by peptide arrays and machine learning publication-title: ACS Chem. Biol. – volume: 19 start-page: 416 year: 2011 end-page: 428 ident: bib10 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell – volume: 21 start-page: 902 year: 2007 end-page: 911 ident: bib29 article-title: Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays publication-title: Toxicol. In Vitro – start-page: 269 year: 2012 end-page: 298 ident: bib26 article-title: Mitochondrial regulation by protein acetylation publication-title: Mitochondrial Signaling in Health and Disease – volume: 330 start-page: 336 year: 2010 ident: bib23 article-title: IDH2 mutations in patients with D-2-hydroxyglutaric aciduria publication-title: Science – volume: 8 start-page: 215 year: 2009 end-page: 225 ident: bib60 article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli publication-title: Mol. Cell. Proteomics – volume: 26 start-page: 268 year: 2000 end-page: 270 ident: bib33 article-title: Mutations in SDHC cause autosomal dominant paraganglioma, type 3 publication-title: Nat. Genet. – volume: 26 start-page: 456 year: 2013 end-page: 463 ident: bib36 article-title: SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors publication-title: Mod. Pathol. – volume: 150 start-page: 685 year: 2012 end-page: 696 ident: bib58 article-title: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis publication-title: Cell – volume: 334 start-page: 806 year: 2011 end-page: 809 ident: bib8 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science – volume: 29 start-page: 6409 year: 2010 end-page: 6417 ident: bib59 article-title: Cancer-associated IDH mutations: biomarker and therapeutic opportunities publication-title: Oncogene – volume: 292 start-page: 943 year: 2004 ident: 10.1016/j.molcel.2013.06.001_bib32 article-title: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations publication-title: JAMA doi: 10.1001/jama.292.8.943 – volume: 34 start-page: 217 year: 2006 ident: 10.1016/j.molcel.2013.06.001_bib38 article-title: Regulation of the pyruvate dehydrogenase complex publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0340217 – volume: 47 start-page: 1386 year: 2006 ident: 10.1016/j.molcel.2013.06.001_bib19 article-title: Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification publication-title: J. Lipid Res. doi: 10.1194/jlr.M600091-JLR200 – volume: 3 start-page: ra3 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib35 article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis publication-title: Sci. Signal. doi: 10.1126/scisignal.2000475 – volume: 29 start-page: 6409 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib59 article-title: Cancer-associated IDH mutations: biomarker and therapeutic opportunities publication-title: Oncogene doi: 10.1038/onc.2010.444 – volume: 205 start-page: 41 year: 2005 ident: 10.1016/j.molcel.2013.06.001_bib40 article-title: Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome publication-title: J. Pathol. doi: 10.1002/path.1686 – volume: 356 start-page: 44 year: 2006 ident: 10.1016/j.molcel.2013.06.001_bib18 article-title: Assay of the pyruvate dehydrogenase complex by coupling with recombinant chicken liver arylamine N-acetyltransferase publication-title: Anal. Biochem. doi: 10.1016/j.ab.2006.06.017 – volume: 327 start-page: 1000 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib62 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science doi: 10.1126/science.1179689 – volume: 137 start-page: 560 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib30 article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell doi: 10.1016/j.cell.2009.02.026 – volume: 7 start-page: 58 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib61 article-title: Identification of lysine succinylation as a new post-translational modification publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.495 – volume: 8 start-page: 89 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib4 article-title: Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells publication-title: Mol. Cancer doi: 10.1186/1476-4598-8-89 – start-page: 269 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib26 article-title: Mitochondrial regulation by protein acetylation – volume: 31 start-page: 41 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib42 article-title: Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD publication-title: Hum. Mutat. doi: 10.1002/humu.21136 – volume: 16 start-page: 3136 year: 2007 ident: 10.1016/j.molcel.2013.06.001_bib49 article-title: Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm275 – volume: 8 start-page: 215 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib60 article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800187-MCP200 – volume: 53 start-page: 612 year: 1999 ident: 10.1016/j.molcel.2013.06.001_bib28 article-title: Dichloroacetate stabilizes the mutant E1alpha subunit in pyruvate dehydrogenase deficiency publication-title: Neurology doi: 10.1212/WNL.53.3.612 – volume: 60 start-page: 1478 year: 2008 ident: 10.1016/j.molcel.2013.06.001_bib51 article-title: Role of dichloroacetate in the treatment of genetic mitochondrial diseases publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.02.014 – volume: 96 start-page: E1472 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib22 article-title: SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-1043 – volume: 146 start-page: 1016 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib53 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 460 start-page: 587 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib9 article-title: Recent progress in the biology and physiology of sirtuins publication-title: Nature doi: 10.1038/nature08197 – volume: 433 start-page: 505 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib20 article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation publication-title: Biochem. J. doi: 10.1042/BJ20100791 – volume: 330 start-page: 336 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib23 article-title: IDH2 mutations in patients with D-2-hydroxyglutaric aciduria publication-title: Science doi: 10.1126/science.1192632 – volume: 393 start-page: 73 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib34 article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.01.081 – volume: 11 start-page: 1048 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib6 article-title: Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M112.019547 – volume: 325 start-page: 834 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib7 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 8 start-page: 604 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib47 article-title: Calorie restriction alters mitochondrial protein acetylation publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00503.x – volume: 36 start-page: D646 issue: Database issue year: 2008 ident: 10.1016/j.molcel.2013.06.001_bib44 article-title: CORUM: the comprehensive resource of mammalian protein complexes publication-title: Nucleic Acids Res. – volume: 7 start-page: 77 year: 2005 ident: 10.1016/j.molcel.2013.06.001_bib48 article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.11.022 – volume: 23 start-page: 607 year: 2006 ident: 10.1016/j.molcel.2013.06.001_bib21 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.026 – volume: 100 start-page: 1260 year: 2008 ident: 10.1016/j.molcel.2013.06.001_bib41 article-title: Germline SDHB mutations and familial renal cell carcinoma publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djn254 – volume: 334 start-page: 806 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib8 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science doi: 10.1126/science.1207861 – volume: 76 start-page: 267 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib16 article-title: SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2011.76.010850 – volume: 16 start-page: 4623 year: 2005 ident: 10.1016/j.molcel.2013.06.001_bib27 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-01-0033 – volume: 49 start-page: 186 year: 2013 ident: 10.1016/j.molcel.2013.06.001_bib15 article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.024 – volume: 26 start-page: 426 year: 1972 ident: 10.1016/j.molcel.2013.06.001_bib56 article-title: Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1972.tb01783.x – volume: 131 start-page: 17563 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib1 article-title: Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908777t – volume: 27 start-page: 8807 year: 2007 ident: 10.1016/j.molcel.2013.06.001_bib25 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01636-07 – volume: 4 start-page: 2 year: 2003 ident: 10.1016/j.molcel.2013.06.001_bib2 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-4-2 – volume: 577 start-page: 386 year: 2004 ident: 10.1016/j.molcel.2013.06.001_bib43 article-title: Probing the active site of homoserine trans-succinylase publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.10.037 – volume: 6 start-page: 812 year: 2007 ident: 10.1016/j.molcel.2013.06.001_bib5 article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M700021-MCP200 – volume: 26 start-page: 268 year: 2000 ident: 10.1016/j.molcel.2013.06.001_bib33 article-title: Mutations in SDHC cause autosomal dominant paraganglioma, type 3 publication-title: Nat. Genet. doi: 10.1038/81551 – volume: 134 start-page: 112 year: 2008 ident: 10.1016/j.molcel.2013.06.001_bib37 article-title: A mitochondrial protein compendium elucidates complex I disease biology publication-title: Cell doi: 10.1016/j.cell.2008.06.016 – volume: 382 start-page: 790 year: 2008 ident: 10.1016/j.molcel.2013.06.001_bib45 article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.07.048 – volume: 325 start-page: 1139 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib14 article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma publication-title: Science doi: 10.1126/science.1175689 – volume: 447 start-page: 407 year: 2007 ident: 10.1016/j.molcel.2013.06.001_bib3 article-title: The complex language of chromatin regulation during transcription publication-title: Nature doi: 10.1038/nature05915 – volume: 51 start-page: 151 year: 2005 ident: 10.1016/j.molcel.2013.06.001_bib46 article-title: Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts publication-title: Clin. Chem. doi: 10.1373/clinchem.2004.033852 – volume: 21 start-page: 902 year: 2007 ident: 10.1016/j.molcel.2013.06.001_bib29 article-title: Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2007.01.011 – volume: 37 start-page: D412 issue: Database issue year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib17 article-title: STRING 8—a global view on proteins and their functional interactions in 630 organisms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn760 – volume: 150 start-page: 1135 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib24 article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma publication-title: Cell doi: 10.1016/j.cell.2012.07.033 – volume: 41 start-page: 139 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib13 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.002 – volume: 45 start-page: 598 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib11 article-title: Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.01.001 – volume: 26 start-page: 456 year: 2013 ident: 10.1016/j.molcel.2013.06.001_bib36 article-title: SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors publication-title: Mod. Pathol. doi: 10.1038/modpathol.2012.186 – volume: 150 start-page: 685 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib58 article-title: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis publication-title: Cell doi: 10.1016/j.cell.2012.07.018 – volume: 6 start-page: 146 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib50 article-title: SIRT3 substrate specificity determined by peptide arrays and machine learning publication-title: ACS Chem. Biol. doi: 10.1021/cb100218d – volume: 44 start-page: 285 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib12 article-title: Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia publication-title: Pathology doi: 10.1097/PAT.0b013e3283539932 – volume: 298 start-page: 2390 year: 2002 ident: 10.1016/j.molcel.2013.06.001_bib52 article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine publication-title: Science doi: 10.1126/science.1077650 – volume: 586 start-page: 4076 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib31 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.10.009 – volume: 19 start-page: 416 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib10 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.014 – volume: 11 start-page: 100 year: 2012 ident: 10.1016/j.molcel.2013.06.001_bib57 article-title: Lysine succinylation and lysine malonylation in histones publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.015875 – volume: 327 start-page: 1004 year: 2010 ident: 10.1016/j.molcel.2013.06.001_bib55 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux publication-title: Science doi: 10.1126/science.1179687 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.molcel.2013.06.001_bib54 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 10 year: 2011 ident: 10.1016/j.molcel.2013.06.001_bib39 article-title: The first identification of lysine malonylation substrates and its regulatory enzyme publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M111.012658 – reference: 18680753 - J Mol Biol. 2008 Oct 10;382(3):790-801 – reference: 21255725 - Mol Cell. 2011 Jan 21;41(2):139-49 – reference: 20167787 - Science. 2010 Feb 19;327(5968):1004-7 – reference: 22826441 - Mol Cell Proteomics. 2012 Oct;11(10):1048-62 – reference: 23085393 - FEBS Lett. 2012 Nov 30;586(23):4076-81 – reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 – reference: 15550478 - Clin Chem. 2005 Jan;51(1):151-60 – reference: 19628817 - Science. 2009 Aug 28;325(5944):1139-42 – reference: 22306293 - Mol Cell. 2012 Mar 9;45(5):598-609 – reference: 23201123 - Mol Cell. 2013 Jan 10;49(1):186-99 – reference: 17884808 - Hum Mol Genet. 2007 Dec 15;16(24):3136-48 – reference: 16859625 - Anal Biochem. 2006 Sep 1;356(1):44-50 – reference: 19608861 - Science. 2009 Aug 14;325(5942):834-40 – reference: 10449128 - Neurology. 1999 Aug 11;53(3):612-6 – reference: 18940858 - Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6 – reference: 21925322 - Cell. 2011 Sep 16;146(6):1016-28 – reference: 5036975 - Eur J Biochem. 1972 Apr 11;26(3):426-33 – reference: 16582421 - J Lipid Res. 2006 Jul;47(7):1386-98 – reference: 21908771 - Mol Cell Proteomics. 2011 Dec;10(12):M111.012658 – reference: 15556615 - FEBS Lett. 2004 Nov 19;577(3):386-92 – reference: 18647626 - Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1478-87 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 21752896 - J Clin Endocrinol Metab. 2011 Sep;96(9):E1472-6 – reference: 20097174 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):73-8 – reference: 15652751 - Cancer Cell. 2005 Jan;7(1):77-85 – reference: 17346924 - Toxicol In Vitro. 2007 Aug;21(5):902-11 – reference: 20167786 - Science. 2010 Feb 19;327(5968):1000-4 – reference: 15328326 - JAMA. 2004 Aug 25;292(8):943-51 – reference: 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 – reference: 17522673 - Nature. 2007 May 24;447(7143):407-12 – reference: 16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22 – reference: 22980977 - Cell. 2012 Sep 14;150(6):1135-46 – reference: 21044047 - Biochem J. 2011 Feb 1;433(3):505-14 – reference: 16916647 - Mol Cell. 2006 Aug;23(4):607-18 – reference: 17267393 - Mol Cell Proteomics. 2007 May;6(5):812-9 – reference: 22389435 - Mol Cell Proteomics. 2012 May;11(5):100-7 – reference: 18723842 - Mol Cell Proteomics. 2009 Feb;8(2):215-25 – reference: 20972461 - Oncogene. 2010 Dec 9;29(49):6409-17 – reference: 22901803 - Cell. 2012 Aug 17;150(4):685-96 – reference: 19911780 - J Am Chem Soc. 2009 Dec 9;131(48):17563-5 – reference: 11062460 - Nat Genet. 2000 Nov;26(3):268-70 – reference: 22114326 - Cold Spring Harb Symp Quant Biol. 2011;76:267-77 – reference: 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35 – reference: 21397863 - Cancer Cell. 2011 Mar 8;19(3):416-28 – reference: 22544211 - Pathology. 2012 Jun;44(4):285-92 – reference: 23174939 - Mod Pathol. 2013 Mar;26(3):456-63 – reference: 19849834 - Mol Cancer. 2009;8:89 – reference: 21151122 - Nat Chem Biol. 2011 Jan;7(1):58-63 – reference: 17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14 – reference: 20847235 - Science. 2010 Oct 15;330(6002):336 – reference: 20945913 - ACS Chem Biol. 2011 Feb 18;6(2):146-57 – reference: 15586379 - J Pathol. 2005 Jan;205(1):41-9 – reference: 18728283 - J Natl Cancer Inst. 2008 Sep 3;100(17):1260-2 – reference: 19410549 - Cell. 2009 May 1;137(3):560-70 – reference: 19802898 - Hum Mutat. 2010 Jan;31(1):41-51 – reference: 20068231 - Sci Signal. 2010;3(104):ra3 – reference: 18614015 - Cell. 2008 Jul 11;134(1):112-23 – reference: 19641587 - Nature. 2009 Jul 30;460(7255):587-91 – reference: 19594485 - Aging Cell. 2009 Sep;8(5):604-6 – reference: 22076378 - Science. 2011 Nov 11;334(6057):806-9 – reference: 12493915 - Science. 2002 Dec 20;298(5602):2390-2 |
SSID | ssj0014589 |
Score | 2.6162686 |
Snippet | Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 919 |
SubjectTerms | Acetylation Amino Acid Sequence Animals Cell Respiration Cells, Cultured Consensus Sequence fatty acid metabolism Glycosylation Kinetics lysine Lysine - metabolism mammals Metabolic Networks and Pathways Mice Mice, Knockout Mitochondria - enzymology Molecular Sequence Annotation nuclear proteins post-translational modification Protein Interaction Maps Protein Processing, Post-Translational Protein Transport proteins Proteome - metabolism pyruvate dehydrogenase (lipoamide) Pyruvate Dehydrogenase Complex - metabolism Sirtuins - genetics Sirtuins - metabolism succinate dehydrogenase (quinone) Succinate Dehydrogenase - metabolism tricarboxylic acid cycle |
Title | SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways |
URI | https://dx.doi.org/10.1016/j.molcel.2013.06.001 https://www.ncbi.nlm.nih.gov/pubmed/23806337 https://www.proquest.com/docview/1372702346 https://www.proquest.com/docview/2000100546 https://pubmed.ncbi.nlm.nih.gov/PMC3769971 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEBIviO-VjylIvJrWX3HyOAZTxxhC6yr6ZjnOGYJKOtFWqP89ZzupKGKaxGtylpLz-e5n3e_uCHktrbdM554ieiuo9JDTsi5HtBZl4TB8gHSRIPspH0_lh5ma7ZHjvhYm0Co73598evTW3ZNhp83hVdMMJyF3ynWuQkImNNxEPyxkEYv4Zm-3mQSp4hi8IEyDdF8-FzlePxZzByEBwcSblJW4Ljzd8nbxLxD6N5fyj-B0cp_c61BldpQ-_AHZg_YhuZPmTG4ekfHk9OJS0fM4lgPq7OMmsN0zvHOunWvaTeLDZaexYnKZvYtcDcjOYYUmMm9c9hlx4i-7WT4m05P3l8dj2o1QoE7x0YpyawXLOXDt8fDxSlYwqh0DVXJQmlsvMaA7lysAzVSB1xvLKzyT3uLFhgETT8h-u2jhgGRlheqzHIW9lc55W0jpcZtlXSPEqP2AiF5zxnX9xcOYi7npiWTfTdK3Cfo2iU83IHS76ir117hBXvebYnbsxGAIuGHlAe6hsV_ReZrphIfWejHxrOWAvOo31uDpCikT28JivTRM6FCwJ2R-vUwodmIB-qLM02QM219BQIQYUGj87B0z2QqE7t67b9rmW-zyjZ6_LDV79t8__Jzc5Wl2Bxr-C7K_-rmGl4igVtUhuX10dvHl7DAeld9U7Rk4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IcReEN8rn0GCR9PasePmgYfBmBrWToi2Ut-M49gsqKQTbTXl7-If3NlOKoqYJiHtNblEzvl894vud3cIvWHKKiISiwG99TGzJsFpkfZwEad9DeHDMO0JsqfJYMo-z_hsB_1ua2EcrbLx_cGne2_dXOk22uyel2V37HKnVCTcJWRcw82GWXli6gv4b1u-z45gk99Sevxp8nGAm9ECWHPaW2GqVEwSaqiwYJQ0Z7npFZoYnlLDBVWWQaDTOuHGCML7APsVzcFWrQLATwyJ4b276BagD-G8QTb7sEldMO7n7rnVYbe8tl7Pk8p-LubauIwHid-FNMhV8XDXqsW_UO_f5M0_ouHxPXS3gbHRYdDUfbRjqgfodhhsWT9Eg3H2dcLxyM8BMUU0rB29PoKf3LXWZVUHAl6U-RLNZXTkySEmGpkV2OS81NEXAKYXql4-QtMbUexjtFctKnOAojQH9SkKwlYxra3qM2bBrlhRAKYpbAfFreakbhqau7kac9ky137IoG_p9C0Dga-D8Oap89DQ4xp50W6K3DJMCTHnmicPYA-l-g7eWk7H1PXy85luwTrodbuxEo6zy9GoyizWS0li4SoEY5ZcLeOqq4jD2iDzJBjD5lMAgQHojAUse8tMNgKunfj2nao8823FIdSkqSBP__uDX6E7g8loKIfZ6ckztE_D4BA4BM_R3urX2rwA-LbKX_rjEqFvN30-LwEyN1OX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT5-mediated+lysine+desuccinylation+impacts+diverse+metabolic+pathways&rft.jtitle=Molecular+cell&rft.au=Park%2C+Jeongsoon&rft.au=Chen%2C+Yue&rft.au=Tishkoff%2C+Daniel+X&rft.au=Peng%2C+Chao&rft.date=2013-06-27&rft.eissn=1097-4164&rft.volume=50&rft.issue=6&rft.spage=919&rft_id=info:doi/10.1016%2Fj.molcel.2013.06.001&rft_id=info%3Apmid%2F23806337&rft.externalDocID=23806337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |