SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways

Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylo...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 50; no. 6; pp. 919 - 930
Main Authors Park, Jeongsoon, Chen, Yue, Tishkoff, Daniel X., Peng, Chao, Tan, Minjia, Dai, Lunzhai, Xie, Zhongyu, Zhang, Yi, Zwaans, Bernadette M.M., Skinner, Mary E., Lombard, David B., Zhao, Yingming
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. •Lysine succinylation is a posttranslational modification regulated by SIRT5•We profile lysine succinylation in mammalian fibroblasts and liver tissue•Succinylation is present on diverse mitochondrial and nonmitochondrial proteins•SIRT5 suppresses pyruvate dehydrogenase complex and succinate dehydrogenase
AbstractList Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extra-mitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions. •Lysine succinylation is a posttranslational modification regulated by SIRT5•We profile lysine succinylation in mammalian fibroblasts and liver tissue•Succinylation is present on diverse mitochondrial and nonmitochondrial proteins•SIRT5 suppresses pyruvate dehydrogenase complex and succinate dehydrogenase
Author Tishkoff, Daniel X.
Park, Jeongsoon
Lombard, David B.
Tan, Minjia
Zwaans, Bernadette M.M.
Xie, Zhongyu
Zhang, Yi
Zhao, Yingming
Peng, Chao
Skinner, Mary E.
Dai, Lunzhai
Chen, Yue
AuthorAffiliation 4 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
3 Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
1 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
2 Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
AuthorAffiliation_xml – name: 1 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– name: 3 Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– name: 2 Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
– name: 4 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Author_xml – sequence: 1
  givenname: Jeongsoon
  surname: Park
  fullname: Park, Jeongsoon
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 2
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– sequence: 3
  givenname: Daniel X.
  surname: Tishkoff
  fullname: Tishkoff, Daniel X.
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 4
  givenname: Chao
  surname: Peng
  fullname: Peng, Chao
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– sequence: 5
  givenname: Minjia
  surname: Tan
  fullname: Tan, Minjia
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– sequence: 6
  givenname: Lunzhai
  surname: Dai
  fullname: Dai, Lunzhai
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– sequence: 7
  givenname: Zhongyu
  surname: Xie
  fullname: Xie, Zhongyu
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
– sequence: 8
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 9
  givenname: Bernadette M.M.
  surname: Zwaans
  fullname: Zwaans, Bernadette M.M.
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 10
  givenname: Mary E.
  surname: Skinner
  fullname: Skinner, Mary E.
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 11
  givenname: David B.
  surname: Lombard
  fullname: Lombard, David B.
  email: davidlom@umich.edu
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 12
  givenname: Yingming
  surname: Zhao
  fullname: Zhao, Yingming
  email: yingming.zhao@uchicago.edu
  organization: Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23806337$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URB_wDxDMks1M_XaGBRJqaRspFYi2a8vjudM6mhkH2wnKv8dp0kK7oCtfyd-5vvccH6K90Y-A0HuCK4KJPJ5Xg-8t9BXFhFVYVhiTV-iA4FqVnEi-t6upkmIfHcY4zwAXk_oN2qdsgiVj6gBdXE1_XovyElpnErTFbB3dCMUpxKW1blz3Jjk_FtNhYWyKxalbQYhQXEIyje-dLX6YdPfbrONb9LozfYR3u_MI3Zx9uz65KGffz6cnX2elFRSnkhrDiKRAVScIpg1vALeWgKgpCEVNxzmW1koBoIiYTCQ1tKkl64zEkgBhR-jLtu9i2QzQWhhTML1eBDeYsNbeOP30ZnR3-tavNFOyrtWmwaddg-B_LSEmPbiYfezNCH4ZNcXZJ4wFly-ihCmqMGX36Id_x3qc58HpDPAtYIOPMUD3iBCsN4Hqud4GqjeBaix1niPLPj-TWZfuM8nLuf4l8cetuDNem9vgor65yoDMK1IuFP_rJuTIVg6CjtbBaPN3CGCTbr37_xN_AP98xrY
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1016_j_phymed_2022_153994
crossref_primary_10_1038_s41569_019_0235_9
crossref_primary_10_1038_nrm_2016_140
crossref_primary_10_1016_j_tcb_2017_10_009
crossref_primary_10_1016_j_yjmcc_2019_11_146
crossref_primary_10_1177_1535370218759636
crossref_primary_10_1021_cr500457h
crossref_primary_10_1002_cmdc_201300421
crossref_primary_10_1007_s12975_017_0569_8
crossref_primary_10_1172_jci_insight_170521
crossref_primary_10_1073_pnas_2123065119
crossref_primary_10_1155_2015_296167
crossref_primary_10_1002_advs_202200546
crossref_primary_10_3389_jpps_2024_13080
crossref_primary_10_3389_fimmu_2024_1404441
crossref_primary_10_1016_j_abb_2022_109446
crossref_primary_10_1111_pce_13100
crossref_primary_10_1186_s12859_018_2394_9
crossref_primary_10_1016_j_gde_2016_05_004
crossref_primary_10_1038_srep42053
crossref_primary_10_1016_j_jprot_2021_104149
crossref_primary_10_3390_biom13050869
crossref_primary_10_1016_j_cmet_2018_01_016
crossref_primary_10_1089_ars_2017_7264
crossref_primary_10_1016_j_molcel_2014_03_027
crossref_primary_10_1016_j_yjmcc_2019_11_159
crossref_primary_10_1002_rco2_14
crossref_primary_10_1158_0008_5472_CAN_17_1912
crossref_primary_10_3390_cells11101654
crossref_primary_10_1038_nrneph_2017_5
crossref_primary_10_1371_journal_pone_0259798
crossref_primary_10_3390_cancers17061009
crossref_primary_10_2174_1389203723666220628121817
crossref_primary_10_1039_C5MB00853K
crossref_primary_10_1038_s41598_017_10337_7
crossref_primary_10_1089_ars_2017_7270
crossref_primary_10_1002_chem_201905338
crossref_primary_10_1002_advs_202300032
crossref_primary_10_1016_j_jbc_2024_107976
crossref_primary_10_1038_ncomms12235
crossref_primary_10_1038_s41598_017_02128_x
crossref_primary_10_1016_j_jbior_2018_09_002
crossref_primary_10_1152_ajpcell_00137_2020
crossref_primary_10_1016_j_lfs_2023_121572
crossref_primary_10_1007_s11064_019_02780_x
crossref_primary_10_1016_j_celrep_2017_12_061
crossref_primary_10_1038_s41598_020_72833_7
crossref_primary_10_1038_s41598_022_18114_x
crossref_primary_10_1093_lambio_ovaf004
crossref_primary_10_1080_10641963_2024_2358030
crossref_primary_10_1186_s12974_022_02665_x
crossref_primary_10_1016_j_freeradbiomed_2024_03_011
crossref_primary_10_1038_s41388_020_01637_w
crossref_primary_10_1016_j_lfs_2021_119803
crossref_primary_10_1186_s12953_016_0092_y
crossref_primary_10_1002_1873_3468_12692
crossref_primary_10_1038_s41580_021_00441_y
crossref_primary_10_1016_j_ejmech_2020_112676
crossref_primary_10_1016_j_molcel_2015_05_022
crossref_primary_10_1093_bib_bbae415
crossref_primary_10_1016_j_gene_2018_10_052
crossref_primary_10_1515_hsz_2021_0139
crossref_primary_10_1530_JOE_13_0397
crossref_primary_10_1016_j_isci_2024_109796
crossref_primary_10_1016_j_molcel_2018_10_023
crossref_primary_10_1111_cpr_13796
crossref_primary_10_14348_molcells_2015_0167
crossref_primary_10_1016_j_ejphar_2017_11_005
crossref_primary_10_1186_s12860_019_0240_1
crossref_primary_10_1681_ASN_2019020163
crossref_primary_10_1007_s00018_016_2280_4
crossref_primary_10_1083_jcb_202006151
crossref_primary_10_1007_s00018_023_05104_z
crossref_primary_10_1128_msystems_00424_19
crossref_primary_10_1016_j_bbadis_2015_07_003
crossref_primary_10_1016_j_jprot_2017_08_021
crossref_primary_10_1093_jmcb_mjac016
crossref_primary_10_3109_10715762_2014_920956
crossref_primary_10_1007_s11427_016_0060_7
crossref_primary_10_3390_cimb46020065
crossref_primary_10_1111_nph_19683
crossref_primary_10_1016_j_celrep_2022_111770
crossref_primary_10_1186_s13046_016_0461_5
crossref_primary_10_1038_s41419_022_05516_y
crossref_primary_10_1016_j_celrep_2017_02_031
crossref_primary_10_1038_s41598_017_14477_8
crossref_primary_10_1038_s41392_022_01245_y
crossref_primary_10_1016_j_yjmcc_2015_09_005
crossref_primary_10_1016_j_biopha_2023_115713
crossref_primary_10_1038_srep02806
crossref_primary_10_1038_nrm3841
crossref_primary_10_1016_j_bbadis_2020_165756
crossref_primary_10_1016_j_isci_2018_03_012
crossref_primary_10_3389_fcvm_2021_723996
crossref_primary_10_1155_2020_3240198
crossref_primary_10_1016_j_bbcan_2019_02_003
crossref_primary_10_1038_srep22643
crossref_primary_10_1097_MD_0000000000031493
crossref_primary_10_15252_embr_202154391
crossref_primary_10_1002_pmic_201800001
crossref_primary_10_1016_j_jhep_2022_02_030
crossref_primary_10_3390_nu16234088
crossref_primary_10_4049_jimmunol_2100983
crossref_primary_10_3389_fonc_2020_00722
crossref_primary_10_15212_AMM_2023_0010
crossref_primary_10_1002_jssc_201900804
crossref_primary_10_1016_j_lfs_2022_121188
crossref_primary_10_1016_j_bmcl_2024_130017
crossref_primary_10_1016_j_ejmech_2022_115024
crossref_primary_10_1189_jlb_4MR0216_066R
crossref_primary_10_3390_cells11162518
crossref_primary_10_1186_s12974_024_03284_4
crossref_primary_10_1007_s00244_022_00930_x
crossref_primary_10_1002_1878_0261_12408
crossref_primary_10_1007_s12975_017_0544_4
crossref_primary_10_1016_j_ygeno_2019_12_004
crossref_primary_10_3389_fphar_2021_784231
crossref_primary_10_1002_ptr_8177
crossref_primary_10_1016_j_celrep_2024_115060
crossref_primary_10_1016_j_bcp_2024_116331
crossref_primary_10_1016_j_tibs_2015_12_006
crossref_primary_10_1371_journal_pone_0200283
crossref_primary_10_1146_annurev_biochem_060815_014537
crossref_primary_10_3389_fcell_2020_603292
crossref_primary_10_18632_oncotarget_14346
crossref_primary_10_3390_antiox10071047
crossref_primary_10_3389_fendo_2021_679655
crossref_primary_10_1021_acs_analchem_9b05394
crossref_primary_10_1161_CIRCHEARTFAILURE_114_001469
crossref_primary_10_15252_embr_201745124
crossref_primary_10_7554_eLife_75583
crossref_primary_10_1002_ijc_29564
crossref_primary_10_1007_s11427_022_2296_0
crossref_primary_10_1093_nar_gkaa663
crossref_primary_10_1016_j_coi_2015_10_005
crossref_primary_10_3390_ijms232012416
crossref_primary_10_1016_j_cbpb_2020_110520
crossref_primary_10_1002_jimd_12617
crossref_primary_10_1007_s00210_024_03263_9
crossref_primary_10_1016_j_bbcan_2014_08_005
crossref_primary_10_3389_fcell_2021_761193
crossref_primary_10_1007_s13311_013_0214_5
crossref_primary_10_1371_journal_pone_0106028
crossref_primary_10_1016_j_jtbi_2016_01_020
crossref_primary_10_1053_j_gastro_2021_06_045
crossref_primary_10_1073_pnas_1519858113
crossref_primary_10_1016_j_bbrc_2015_04_154
crossref_primary_10_1016_j_exger_2016_03_015
crossref_primary_10_15252_embr_202051009
crossref_primary_10_1016_j_chembiol_2017_11_005
crossref_primary_10_1016_j_freeradbiomed_2019_01_030
crossref_primary_10_1074_mcp_M114_045922
crossref_primary_10_1016_j_prp_2022_153943
crossref_primary_10_3389_fphys_2018_01094
crossref_primary_10_1093_jxb_erad406
crossref_primary_10_3390_ijms232012302
crossref_primary_10_1101_gad_229724_113
crossref_primary_10_1016_j_scienta_2019_108943
crossref_primary_10_1016_j_toxicon_2019_11_009
crossref_primary_10_1016_j_semcancer_2018_11_003
crossref_primary_10_1002_pmic_202000156
crossref_primary_10_3109_10409238_2015_1031879
crossref_primary_10_3390_ijms17040572
crossref_primary_10_1002_JLB_3MIR1118_415R
crossref_primary_10_1016_j_bbamcr_2016_10_015
crossref_primary_10_1515_hsz_2020_0118
crossref_primary_10_1186_s12864_018_5383_5
crossref_primary_10_1186_s40168_023_01468_3
crossref_primary_10_1016_j_scitotenv_2020_137062
crossref_primary_10_1002_med_22076
crossref_primary_10_3390_ijms21010295
crossref_primary_10_1016_j_pneurobio_2015_05_001
crossref_primary_10_1016_j_bbabio_2017_02_006
crossref_primary_10_3389_fonc_2022_1014748
crossref_primary_10_1002_1873_3468_14441
crossref_primary_10_1038_srep21764
crossref_primary_10_1016_j_copbio_2020_09_013
crossref_primary_10_1007_s11064_016_2110_y
crossref_primary_10_4155_fmc_14_44
crossref_primary_10_1007_s00018_016_2180_7
crossref_primary_10_1016_j_jbc_2021_101435
crossref_primary_10_1016_j_toxlet_2018_04_005
crossref_primary_10_1074_mcp_RA120_002144
crossref_primary_10_1073_pnas_2007827117
crossref_primary_10_1016_j_jtbi_2015_04_016
crossref_primary_10_1155_2017_8529404
crossref_primary_10_3389_fphys_2023_1131201
crossref_primary_10_1038_srep10184
crossref_primary_10_3390_ijms22169094
crossref_primary_10_1021_acschembio_7b00754
crossref_primary_10_1111_jnc_15377
crossref_primary_10_3389_fimmu_2018_02675
crossref_primary_10_1007_s13361_016_1476_z
crossref_primary_10_4155_fmc_15_24
crossref_primary_10_1016_j_ab_2017_03_021
crossref_primary_10_1089_dna_2018_4454
crossref_primary_10_1128_AAC_04694_14
crossref_primary_10_1038_nchembio_2217
crossref_primary_10_1158_0008_5472_CAN_15_2733
crossref_primary_10_3390_ijms242216172
crossref_primary_10_1016_j_bbrc_2021_11_016
crossref_primary_10_1038_srep31576
crossref_primary_10_1074_mcp_RA120_002150
crossref_primary_10_1007_s00792_016_0901_3
crossref_primary_10_1002_anie_201810569
crossref_primary_10_1016_j_molmed_2017_02_005
crossref_primary_10_1021_acs_jmedchem_5b00293
crossref_primary_10_1016_j_jmb_2017_03_010
crossref_primary_10_1038_s41598_017_03369_6
crossref_primary_10_1038_s41392_023_01439_y
crossref_primary_10_3892_etm_2018_6301
crossref_primary_10_1074_jbc_M113_483396
crossref_primary_10_1186_s13148_020_00928_z
crossref_primary_10_1016_j_bbabio_2016_02_004
crossref_primary_10_1371_journal_pone_0152467
crossref_primary_10_1016_j_bbrc_2013_10_033
crossref_primary_10_1016_j_jprot_2025_105400
crossref_primary_10_1111_os_12519
crossref_primary_10_1016_j_fochx_2023_100962
crossref_primary_10_1016_j_freeradbiomed_2022_02_014
crossref_primary_10_1038_nrendo_2015_181
crossref_primary_10_1038_s41598_017_17756_6
crossref_primary_10_4093_dmj_2018_0101
crossref_primary_10_1016_j_bbabio_2018_05_001
crossref_primary_10_1016_S1875_5364_25_60838_7
crossref_primary_10_1186_s40104_024_01058_9
crossref_primary_10_1016_j_neubiorev_2021_10_047
crossref_primary_10_1007_s11064_022_03560_w
crossref_primary_10_3389_fphys_2014_00301
crossref_primary_10_1172_JCI138926
crossref_primary_10_3389_fimmu_2019_01462
crossref_primary_10_1016_j_cub_2015_05_012
crossref_primary_10_2174_0929866530666230529152209
crossref_primary_10_2139_ssrn_4045474
crossref_primary_10_3390_ijms21186686
crossref_primary_10_1111_raq_12643
crossref_primary_10_1093_jb_mvac027
crossref_primary_10_1038_s41401_021_00841_y
crossref_primary_10_1038_s41418_024_01408_0
crossref_primary_10_1074_mcp_M113_031567
crossref_primary_10_1111_jnc_13096
crossref_primary_10_1152_ajpcell_00292_2022
crossref_primary_10_1186_s12864_017_3698_2
crossref_primary_10_3390_ijms20153673
crossref_primary_10_1007_s11427_015_4902_8
crossref_primary_10_1186_s12864_020_6750_6
crossref_primary_10_1111_acel_12685
crossref_primary_10_1007_s00360_016_1022_0
crossref_primary_10_33160_yam_2022_05_006
crossref_primary_10_3389_fendo_2018_00455
crossref_primary_10_3390_cells10113031
crossref_primary_10_3389_fmicb_2020_00575
crossref_primary_10_3389_fimmu_2021_696061
crossref_primary_10_1002_wjo2_186
crossref_primary_10_1152_ajpheart_00900_2015
crossref_primary_10_1126_scitranslmed_abn4772
crossref_primary_10_1002_anie_202115805
crossref_primary_10_3389_fmicb_2019_01604
crossref_primary_10_1007_s00216_019_02006_7
crossref_primary_10_1007_s00216_015_9206_0
crossref_primary_10_1080_10409238_2018_1458071
crossref_primary_10_1097_MD_0000000000038631
crossref_primary_10_1155_2016_9831825
crossref_primary_10_1016_j_gene_2018_07_010
crossref_primary_10_1038_s41420_021_00683_x
crossref_primary_10_1038_s41467_018_02951_4
crossref_primary_10_1016_j_molcel_2019_03_021
crossref_primary_10_1186_s12967_021_03178_6
crossref_primary_10_1186_s12964_024_02021_x
crossref_primary_10_1074_mcp_M114_041947
crossref_primary_10_1111_cbdd_13077
crossref_primary_10_1039_C6MB00069J
crossref_primary_10_34175_jno201903002
crossref_primary_10_1016_j_cmet_2024_11_005
crossref_primary_10_1016_j_compbiolchem_2018_03_006
crossref_primary_10_1186_s12885_024_12792_8
crossref_primary_10_3389_fcimb_2024_1403915
crossref_primary_10_1016_j_cca_2019_05_002
crossref_primary_10_1074_jbc_M113_486753
crossref_primary_10_1098_rsfs_2016_0100
crossref_primary_10_1134_S0006297916120129
crossref_primary_10_1016_j_yexcr_2022_113319
crossref_primary_10_1021_acs_jproteome_8b00800
crossref_primary_10_3390_ijms22116085
crossref_primary_10_1128_MCB_00269_20
crossref_primary_10_1016_j_ygeno_2023_110773
crossref_primary_10_1016_j_heliyon_2024_e32466
crossref_primary_10_1111_boc_201500015
crossref_primary_10_1093_burnst_tkac041
crossref_primary_10_1016_j_abb_2016_03_025
crossref_primary_10_1039_D1CB00070E
crossref_primary_10_1021_acs_jproteome_5b00805
crossref_primary_10_1111_jcmm_17507
crossref_primary_10_1002_advs_202402030
crossref_primary_10_1002_pmic_201600221
crossref_primary_10_1101_gad_249748_114
crossref_primary_10_1212_NXI_0000000000000562
crossref_primary_10_1152_ajpcell_00148_2017
crossref_primary_10_1016_j_celrep_2016_08_073
crossref_primary_10_3389_fphys_2021_763417
crossref_primary_10_3389_fpls_2021_649147
crossref_primary_10_1038_s41581_019_0210_z
crossref_primary_10_3390_genes11121524
crossref_primary_10_3390_biom12111655
crossref_primary_10_3389_fonc_2019_00949
crossref_primary_10_3390_biomedicines10123089
crossref_primary_10_1016_j_bbadis_2018_08_032
crossref_primary_10_1186_s12958_023_01088_4
crossref_primary_10_1126_sciadv_ads0643
crossref_primary_10_1186_s12864_021_07567_5
crossref_primary_10_15252_embj_2019103285
crossref_primary_10_37349_etat_2023_00196
crossref_primary_10_1126_sciadv_adp7423
crossref_primary_10_1523_JNEUROSCI_2672_20_2021
crossref_primary_10_1002_pmic_201900158
crossref_primary_10_1038_s41467_020_19743_4
crossref_primary_10_3390_genes11121431
crossref_primary_10_1016_j_molcel_2015_10_017
crossref_primary_10_1111_exd_13845
crossref_primary_10_3390_ph18010041
crossref_primary_10_2217_epi_2020_0273
crossref_primary_10_1016_j_cellsig_2024_111580
crossref_primary_10_1016_j_molcel_2021_04_002
crossref_primary_10_1152_physrev_00058_2021
crossref_primary_10_1016_j_freeradbiomed_2016_04_197
crossref_primary_10_1172_JCI158447
crossref_primary_10_1016_j_cellsig_2025_111744
crossref_primary_10_3389_fcell_2022_894874
crossref_primary_10_1021_acs_jmedchem_2c00687
crossref_primary_10_3390_cells8020095
crossref_primary_10_1016_j_isci_2024_109991
crossref_primary_10_3390_biology6010018
crossref_primary_10_1039_C7RA05824A
crossref_primary_10_3389_fgene_2022_832668
crossref_primary_10_15252_embj_201591271
crossref_primary_10_1002_anie_201402679
crossref_primary_10_1007_s10571_022_01277_6
crossref_primary_10_1016_j_exger_2014_12_004
crossref_primary_10_3390_cells10020460
crossref_primary_10_1016_j_mito_2018_12_002
crossref_primary_10_1016_j_molcel_2015_04_010
crossref_primary_10_1016_j_survophthal_2021_04_003
crossref_primary_10_1371_journal_pone_0211796
crossref_primary_10_1093_pcp_pcy080
crossref_primary_10_1016_j_jbc_2021_101155
crossref_primary_10_3389_fcell_2023_1266973
crossref_primary_10_1089_dna_2018_4385
crossref_primary_10_1016_j_cellsig_2024_111570
crossref_primary_10_1089_ars_2022_0067
crossref_primary_10_1186_s13148_025_01838_8
crossref_primary_10_1042_BSR20211558
crossref_primary_10_1016_j_jbc_2023_102960
crossref_primary_10_1016_j_bmc_2023_117455
crossref_primary_10_1038_s41419_024_06599_5
crossref_primary_10_1038_s12276_023_00928_y
crossref_primary_10_1016_j_isci_2023_106193
crossref_primary_10_1002_med_21436
crossref_primary_10_1038_s41589_021_00906_3
crossref_primary_10_1016_j_celrep_2018_01_030
crossref_primary_10_1016_j_str_2015_08_004
crossref_primary_10_1016_j_yjmcc_2021_04_007
crossref_primary_10_1038_s42255_018_0014_7
crossref_primary_10_1016_j_mcpro_2022_100490
crossref_primary_10_1016_j_jare_2019_11_003
crossref_primary_10_1021_acschembio_7b00125
crossref_primary_10_1007_s00253_022_12060_4
crossref_primary_10_1042_BST20210798
crossref_primary_10_1152_physrev_00030_2018
crossref_primary_10_1016_j_gde_2014_05_005
crossref_primary_10_1089_ars_2020_8121
crossref_primary_10_1016_j_jprot_2017_12_019
crossref_primary_10_1517_17460441_2014_875526
crossref_primary_10_1093_gpbjnl_qzae019
crossref_primary_10_3389_fonc_2022_1081712
crossref_primary_10_1038_s41420_022_00861_5
crossref_primary_10_1016_j_celrep_2017_07_065
crossref_primary_10_1016_j_ebiom_2018_09_037
crossref_primary_10_1074_mcp_RA118_001035
crossref_primary_10_1016_j_molcel_2023_02_015
crossref_primary_10_3389_fnut_2022_894278
crossref_primary_10_3389_fphar_2023_1238706
crossref_primary_10_1016_j_molcel_2023_02_016
crossref_primary_10_1042_BCJ20180745
crossref_primary_10_1074_jbc_M117_809897
crossref_primary_10_1016_j_phrs_2019_104502
crossref_primary_10_1093_nar_gkt1093
crossref_primary_10_1007_s13238_014_0102_8
crossref_primary_10_3390_ijms20235911
crossref_primary_10_1002_asia_202200197
crossref_primary_10_1093_cvr_cvac166
crossref_primary_10_3389_fpls_2022_1001935
crossref_primary_10_1158_2159_8290_CD_20_1227
crossref_primary_10_1016_j_bbapap_2016_11_009
crossref_primary_10_1016_j_cmet_2013_11_013
crossref_primary_10_1016_j_taap_2023_116650
crossref_primary_10_1016_j_molcel_2019_08_018
crossref_primary_10_1016_j_heliyon_2024_e27450
crossref_primary_10_1021_acs_chemrev_7b00181
crossref_primary_10_15252_embj_2021108306
crossref_primary_10_1074_mcp_RA119_001426
crossref_primary_10_1016_j_cellsig_2021_110087
crossref_primary_10_1016_j_molcel_2023_11_042
crossref_primary_10_1016_j_cryobiol_2021_06_006
crossref_primary_10_1042_BCJ20180617
crossref_primary_10_3390_ijms26062488
crossref_primary_10_1016_j_bbagen_2016_09_008
crossref_primary_10_1089_cmb_2016_0206
crossref_primary_10_1016_j_phrs_2020_105161
crossref_primary_10_1038_nrc3985
crossref_primary_10_1089_ars_2014_6213
crossref_primary_10_1016_j_celrep_2020_108021
crossref_primary_10_1080_17512433_2018_1546119
crossref_primary_10_2337_db18_1103
crossref_primary_10_3389_fendo_2018_00748
crossref_primary_10_3390_biomedicines12020386
crossref_primary_10_1186_s40170_021_00275_4
crossref_primary_10_2174_1570178615666180830101540
crossref_primary_10_1002_ange_202115805
crossref_primary_10_1016_j_mcpro_2022_100231
crossref_primary_10_1016_j_molcel_2020_04_002
crossref_primary_10_1371_journal_pone_0208973
crossref_primary_10_1073_pnas_1700796114
crossref_primary_10_1002_pmic_201700292
crossref_primary_10_1038_srep29790
crossref_primary_10_1016_j_cmet_2017_03_006
crossref_primary_10_1002_jimd_12254
crossref_primary_10_1038_s41586_024_08348_2
crossref_primary_10_3390_ijms25021057
crossref_primary_10_1016_j_gendis_2022_03_009
crossref_primary_10_1021_acs_jmedchem_2c01215
crossref_primary_10_1016_j_celrep_2024_114839
crossref_primary_10_1093_jnci_djx071
crossref_primary_10_1007_s10545_016_9939_8
crossref_primary_10_1016_j_isci_2023_107757
crossref_primary_10_1111_jcmm_16676
crossref_primary_10_1016_j_gendis_2022_10_028
crossref_primary_10_1089_ars_2024_0694
crossref_primary_10_1073_pnas_1911954116
crossref_primary_10_1097_SHK_0000000000002392
crossref_primary_10_1093_nutrit_nuad084
crossref_primary_10_7759_cureus_9651
crossref_primary_10_1039_D2AN01370C
crossref_primary_10_1074_jbc_M115_707091
crossref_primary_10_1007_s12035_014_9040_y
crossref_primary_10_1080_13102818_2024_2425694
crossref_primary_10_1002_mco2_261
crossref_primary_10_1016_j_neuro_2014_10_008
crossref_primary_10_3389_fcell_2021_664553
crossref_primary_10_1016_j_celrep_2018_02_037
crossref_primary_10_1042_EBC20180061
crossref_primary_10_1002_2211_5463_13090
crossref_primary_10_1186_s13148_024_01650_w
crossref_primary_10_5604_01_3001_0014_7866
crossref_primary_10_1007_s12640_016_9664_y
crossref_primary_10_1038_s41598_025_92716_z
crossref_primary_10_1186_s13046_022_02338_w
crossref_primary_10_1002_pmic_202100371
crossref_primary_10_1007_s10930_023_10178_6
crossref_primary_10_1074_mcp_M114_044255
crossref_primary_10_1073_pnas_1505995112
crossref_primary_10_1007_s11427_019_1587_x
crossref_primary_10_1186_s12864_021_08285_8
crossref_primary_10_1186_s12917_025_04496_3
crossref_primary_10_1177_1947603521993209
crossref_primary_10_1002_pmic_201700230
crossref_primary_10_1021_acs_jmedchem_3c01031
crossref_primary_10_1111_jnc_13150
crossref_primary_10_1371_journal_pone_0122297
crossref_primary_10_1038_s41438_019_0216_5
crossref_primary_10_3389_fcvm_2022_850340
crossref_primary_10_2174_2665978601666200213121512
crossref_primary_10_1039_C4OB00773E
crossref_primary_10_1021_jacs_8b12083
crossref_primary_10_1128_JVI_03220_14
crossref_primary_10_1074_mcp_M115_048850
crossref_primary_10_1038_s43587_023_00366_5
crossref_primary_10_3389_fphys_2019_00078
crossref_primary_10_3390_ijms22083804
crossref_primary_10_1002_pmic_202100381
crossref_primary_10_1016_j_gendis_2023_04_033
crossref_primary_10_1016_j_it_2020_11_004
crossref_primary_10_3892_etm_2024_12584
crossref_primary_10_15252_embr_202050967
crossref_primary_10_3390_cells8050417
crossref_primary_10_1186_s12864_017_4336_8
crossref_primary_10_3389_fcell_2020_00378
crossref_primary_10_1016_j_metabol_2025_156144
crossref_primary_10_1681_ASN_0000000000000266
crossref_primary_10_1038_s41557_024_01500_5
crossref_primary_10_1007_s11357_015_9804_y
crossref_primary_10_1074_mcp_R114_046664
crossref_primary_10_1038_s41418_023_01157_6
crossref_primary_10_1096_fj_201901175R
crossref_primary_10_1016_j_ab_2015_12_009
crossref_primary_10_1016_j_semcdb_2016_02_011
crossref_primary_10_3390_cancers11050683
crossref_primary_10_1016_j_freeradbiomed_2019_12_037
crossref_primary_10_1021_pr500859a
crossref_primary_10_1002_pmic_201700137
crossref_primary_10_3390_microorganisms9061338
crossref_primary_10_1039_C5OB02609A
crossref_primary_10_3390_ijms21155266
crossref_primary_10_1016_j_freeradbiomed_2023_07_023
crossref_primary_10_1016_j_mocell_2024_100029
crossref_primary_10_1074_mcp_RA118_001298
crossref_primary_10_1016_j_yexcr_2018_08_011
crossref_primary_10_1021_acs_jproteome_5b01097
crossref_primary_10_1165_rcmb_2020_0551OC
crossref_primary_10_1007_s00018_018_2784_1
crossref_primary_10_1016_j_ecoenv_2021_112334
crossref_primary_10_1038_s41421_023_00573_9
crossref_primary_10_1074_jbc_M117_785022
crossref_primary_10_1128_MMBR_00020_15
crossref_primary_10_1038_cr_2017_68
crossref_primary_10_1016_j_cophys_2018_03_011
crossref_primary_10_1038_nchembio_1497
crossref_primary_10_1007_s10571_021_01144_w
crossref_primary_10_31083_j_fbl2810250
crossref_primary_10_1016_j_bbrc_2018_06_073
crossref_primary_10_1042_CS20160685
crossref_primary_10_4103_1673_5374_355821
crossref_primary_10_1021_cr500491u
crossref_primary_10_1242_jeb_160325
crossref_primary_10_1007_s11418_024_01871_6
crossref_primary_10_3390_biology5040053
crossref_primary_10_1038_s41418_024_01264_y
crossref_primary_10_1038_ijo_2016_131
crossref_primary_10_1016_j_ejmech_2022_114623
crossref_primary_10_1111_mmi_13867
crossref_primary_10_1002_ange_201402679
crossref_primary_10_3389_fimmu_2023_1121495
crossref_primary_10_1097_SHK_0000000000001931
crossref_primary_10_1016_j_biochi_2023_02_008
crossref_primary_10_1038_s41564_025_01931_x
crossref_primary_10_1021_acscatal_1c03330
crossref_primary_10_1038_s41598_019_40177_6
crossref_primary_10_1016_j_ejmech_2022_114363
crossref_primary_10_1016_j_bbapap_2017_11_011
crossref_primary_10_3390_metabo12070651
crossref_primary_10_1007_s00467_020_04866_z
crossref_primary_10_1038_s41467_021_27572_2
crossref_primary_10_1096_fj_13_245241
crossref_primary_10_1016_j_yexcr_2019_06_028
crossref_primary_10_3390_ijms22126256
crossref_primary_10_1111_febs_15327
crossref_primary_10_1016_j_pharmthera_2020_107521
crossref_primary_10_1007_s11055_023_01379_8
crossref_primary_10_1016_j_ijbiomac_2023_126499
crossref_primary_10_1042_CS20210392
crossref_primary_10_1186_s12014_024_09509_1
crossref_primary_10_3390_metabo11080474
crossref_primary_10_1016_j_molcel_2018_04_011
crossref_primary_10_3390_antiox10081198
crossref_primary_10_1007_s10545_014_9684_9
crossref_primary_10_1021_acs_jafc_3c08332
crossref_primary_10_1007_s11684_022_0943_0
crossref_primary_10_3389_fphys_2019_00435
crossref_primary_10_1002_ctm2_172
crossref_primary_10_1002_jnr_24103
crossref_primary_10_3389_fmed_2021_703076
crossref_primary_10_1128_mBio_01096_17
crossref_primary_10_1515_hsz_2019_0264
crossref_primary_10_1016_j_tibs_2017_01_003
crossref_primary_10_2217_fon_2020_1155
crossref_primary_10_1016_j_semcdb_2015_07_008
crossref_primary_10_1186_s12864_017_3977_y
crossref_primary_10_1016_j_celrep_2017_05_065
crossref_primary_10_1016_j_freeradbiomed_2024_09_021
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_1038_srep07331
crossref_primary_10_1016_j_cmet_2014_03_014
crossref_primary_10_1016_j_freeradbiomed_2015_11_031
crossref_primary_10_1039_C5OB00283D
crossref_primary_10_1016_j_chembiol_2018_04_007
crossref_primary_10_1038_srep08529
crossref_primary_10_3390_ijms22115574
crossref_primary_10_5483_BMBRep_2013_46_9_180
crossref_primary_10_1038_s41598_018_36203_8
crossref_primary_10_1007_s10142_024_01338_7
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_3390_biom11060872
crossref_primary_10_1186_s12870_019_2072_8
crossref_primary_10_1016_j_gpb_2019_11_010
crossref_primary_10_1016_j_exger_2014_03_006
crossref_primary_10_4254_wjh_v16_i3_344
crossref_primary_10_1007_s10741_016_9570_7
crossref_primary_10_1016_j_mcpro_2022_100193
crossref_primary_10_1016_j_pharmthera_2020_107748
crossref_primary_10_3390_life11010069
crossref_primary_10_3390_nu16030396
crossref_primary_10_1016_j_jprot_2023_104889
crossref_primary_10_3390_antiox10071153
crossref_primary_10_1038_s41598_023_31900_5
crossref_primary_10_1016_j_devcel_2020_06_036
crossref_primary_10_3390_ijms23137467
crossref_primary_10_1016_j_jprot_2015_11_023
crossref_primary_10_7717_peerj_14752
crossref_primary_10_1021_acsinfecdis_0c00329
crossref_primary_10_1186_s12859_022_05001_5
crossref_primary_10_2174_1389202922666210219114211
crossref_primary_10_1016_j_pharmthera_2016_07_013
crossref_primary_10_1039_C8SC02483A
crossref_primary_10_1002_jhet_2732
crossref_primary_10_1016_j_bbadis_2016_07_020
crossref_primary_10_1158_2643_3230_BCD_20_0168
crossref_primary_10_3390_ijms25169125
crossref_primary_10_1038_s41419_018_1271_9
crossref_primary_10_1074_jbc_RA119_011988
crossref_primary_10_3390_cells12091329
crossref_primary_10_1074_mcp_RA117_000393
crossref_primary_10_3390_cells12060852
crossref_primary_10_3390_ijms20081996
crossref_primary_10_1007_s42764_025_00148_w
crossref_primary_10_1038_srep39517
crossref_primary_10_1039_C9CC05633E
crossref_primary_10_1007_s13277_014_2372_4
crossref_primary_10_1080_23723556_2020_1735284
crossref_primary_10_1097_TA_0000000000002918
crossref_primary_10_1111_omi_12255
crossref_primary_10_1038_s41418_021_00886_w
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1021_acs_jproteome_9b00462
crossref_primary_10_1126_sciadv_abe2771
crossref_primary_10_3892_ijmm_2018_3772
crossref_primary_10_1002_msb_134974
crossref_primary_10_1016_j_tcb_2013_11_008
crossref_primary_10_1021_acs_biochem_4c00257
crossref_primary_10_1111_mec_16122
crossref_primary_10_1038_s41388_021_02065_0
crossref_primary_10_1042_BSR20180768
crossref_primary_10_1161_STROKEAHA_121_034850
crossref_primary_10_1038_s41580_023_00650_7
crossref_primary_10_3389_fgene_2022_1007618
crossref_primary_10_1002_ange_201810569
crossref_primary_10_1038_s42255_024_01005_y
crossref_primary_10_3389_fendo_2018_00724
crossref_primary_10_1128_MMBR_00038_18
crossref_primary_10_14319_ijcto_42_15
crossref_primary_10_1007_s12017_014_8288_8
crossref_primary_10_1186_s12964_023_01253_7
crossref_primary_10_1038_s41598_019_52552_4
crossref_primary_10_1186_s12859_018_2249_4
crossref_primary_10_3803_EnM_2020_35_1_36
crossref_primary_10_1038_cr_2017_149
crossref_primary_10_1007_s11084_024_09660_7
crossref_primary_10_1002_advs_202402710
crossref_primary_10_1016_j_mito_2016_07_012
crossref_primary_10_1016_j_ejphar_2019_172520
crossref_primary_10_1016_j_gpb_2022_02_004
crossref_primary_10_1021_acs_jproteome_5b00485
crossref_primary_10_1002_pro_2546
crossref_primary_10_1016_j_jprot_2016_11_022
crossref_primary_10_1016_j_freeradbiomed_2025_03_025
crossref_primary_10_1016_j_apsb_2020_02_005
crossref_primary_10_1021_acs_jproteome_6b00240
crossref_primary_10_3390_ijms252011089
crossref_primary_10_1016_j_cell_2016_10_016
crossref_primary_10_1016_j_molcel_2013_12_026
crossref_primary_10_1016_j_jtbi_2017_05_005
crossref_primary_10_1016_j_pharep_2015_03_021
crossref_primary_10_1016_j_semcdb_2019_04_013
crossref_primary_10_1074_mcp_M113_035659
crossref_primary_10_1038_s41423_025_01266_x
crossref_primary_10_1042_EBC20230080
crossref_primary_10_3390_cells10092348
crossref_primary_10_3389_fcell_2021_667684
crossref_primary_10_1016_j_plaphy_2024_108841
crossref_primary_10_1016_j_bbrc_2018_07_047
crossref_primary_10_1016_j_scitotenv_2022_155813
crossref_primary_10_1242_dmm_016287
crossref_primary_10_1016_j_jgg_2021_11_005
crossref_primary_10_1002_pmic_202300162
crossref_primary_10_1089_ars_2016_6662
crossref_primary_10_1007_s13238_021_00846_7
crossref_primary_10_1016_j_mito_2016_07_006
crossref_primary_10_1371_journal_pbio_3000425
crossref_primary_10_1016_j_jprot_2023_104959
crossref_primary_10_1146_annurev_biochem_082520_125411
crossref_primary_10_1146_annurev_cancerbio_030518_055905
crossref_primary_10_1021_acs_jproteome_7b00017
crossref_primary_10_1111_febs_13047
crossref_primary_10_1146_annurev_immunol_081619_104850
crossref_primary_10_3389_fphys_2020_542950
crossref_primary_10_3390_molecules28166163
crossref_primary_10_4103_1673_5374_382229
crossref_primary_10_3389_fnins_2018_00032
crossref_primary_10_1093_bioinformatics_btv439
crossref_primary_10_1074_jbc_RA118_004947
crossref_primary_10_1139_apnm_2017_0068
crossref_primary_10_14336_AD_2019_0820
crossref_primary_10_1002_ijc_31812
crossref_primary_10_1016_j_freeradbiomed_2021_12_264
crossref_primary_10_1155_2019_4745132
crossref_primary_10_1016_j_jprot_2016_11_005
crossref_primary_10_1016_j_molmet_2020_01_005
crossref_primary_10_1002_mbo3_320
crossref_primary_10_1016_j_gendis_2019_09_011
crossref_primary_10_34133_research_0351
crossref_primary_10_34133_research_0350
crossref_primary_10_1016_j_ejmech_2022_114594
crossref_primary_10_1016_j_phrs_2024_107393
crossref_primary_10_3390_biology10030194
crossref_primary_10_1038_s41467_017_01384_9
crossref_primary_10_1111_jcmm_13920
crossref_primary_10_1007_s11064_015_1631_0
crossref_primary_10_1186_s12872_024_04120_6
crossref_primary_10_1038_s41598_018_36852_9
crossref_primary_10_15252_embr_201541643
crossref_primary_10_1021_acs_jproteome_8b00238
crossref_primary_10_1155_2021_6635836
crossref_primary_10_1038_s41392_021_00825_8
crossref_primary_10_15252_embj_201592927
crossref_primary_10_1038_s41417_022_00464_3
crossref_primary_10_1002_hep_32621
crossref_primary_10_1038_s41598_022_16506_7
crossref_primary_10_3390_molecules28020533
crossref_primary_10_1080_15548627_2015_1009778
Cites_doi 10.1001/jama.292.8.943
10.1042/BST0340217
10.1194/jlr.M600091-JLR200
10.1126/scisignal.2000475
10.1038/onc.2010.444
10.1002/path.1686
10.1016/j.ab.2006.06.017
10.1126/science.1179689
10.1016/j.cell.2009.02.026
10.1038/nchembio.495
10.1186/1476-4598-8-89
10.1002/humu.21136
10.1093/hmg/ddm275
10.1074/mcp.M800187-MCP200
10.1212/WNL.53.3.612
10.1016/j.addr.2008.02.014
10.1210/jc.2011-1043
10.1016/j.cell.2011.08.008
10.1038/nature08197
10.1042/BJ20100791
10.1126/science.1192632
10.1016/j.bbrc.2010.01.081
10.1074/mcp.M112.019547
10.1126/science.1175371
10.1111/j.1474-9726.2009.00503.x
10.1016/j.ccr.2004.11.022
10.1016/j.molcel.2006.06.026
10.1093/jnci/djn254
10.1126/science.1207861
10.1101/sqb.2011.76.010850
10.1091/mbc.e05-01-0033
10.1016/j.molcel.2012.10.024
10.1111/j.1432-1033.1972.tb01783.x
10.1021/ja908777t
10.1128/MCB.01636-07
10.1186/1471-2105-4-2
10.1016/j.febslet.2004.10.037
10.1074/mcp.M700021-MCP200
10.1038/81551
10.1016/j.cell.2008.06.016
10.1016/j.jmb.2008.07.048
10.1126/science.1175689
10.1038/nature05915
10.1373/clinchem.2004.033852
10.1016/j.tiv.2007.01.011
10.1093/nar/gkn760
10.1016/j.cell.2012.07.033
10.1016/j.molcel.2011.01.002
10.1016/j.molcel.2012.01.001
10.1038/modpathol.2012.186
10.1016/j.cell.2012.07.018
10.1021/cb100218d
10.1097/PAT.0b013e3283539932
10.1126/science.1077650
10.1016/j.febslet.2012.10.009
10.1016/j.ccr.2011.02.014
10.1074/mcp.M111.015875
10.1126/science.1179687
10.1126/science.1160809
10.1074/mcp.M111.012658
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
2013 Elsevier Inc. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: 2013 Elsevier Inc. 2013
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2013.06.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 930
ExternalDocumentID PMC3769971
23806337
10_1016_j_molcel_2013_06_001
US201600024574
S1097276513004383
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: T32 AG000114
– fundername: NIA NIH HHS
  grantid: P30 AG013283
– fundername: NIGMS NIH HHS
  grantid: U54 GM103520
– fundername: NIDDK NIH HHS
  grantid: P60DK020572
– fundername: NIGMS NIH HHS
  grantid: R01 GM101171
– fundername: NIGMS NIH HHS
  grantid: U54GM103520
– fundername: NIA NIH HHS
  grantid: P30AG024824
– fundername: NIA NIH HHS
  grantid: T32AG000114
– fundername: NIDDK NIH HHS
  grantid: P30DK089503
– fundername: NIDDK NIH HHS
  grantid: P30 DK089503
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: U54 GM103520 || GM
– fundername: National Institute on Aging : NIA
  grantid: T32 AG000114 || AG
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM101171 || GM
– fundername: National Institute on Aging : NIA
  grantid: P30 AG024824 || AG
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: P30 DK020572 || DK
– fundername: National Institute on Aging : NIA
  grantid: P30 AG013283 || AG
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: DP3 DK094292 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: P30 DK089503 || DK
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
AAHBH
AAMRU
AAQXK
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AKAPO
AKRWK
FBQ
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c520t-2aa3162e27f5102b4be0dc1e592e572af4406cc65ee7158862a2b963fa6061e13
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:17:11 EDT 2025
Fri Jul 11 16:58:40 EDT 2025
Fri Jul 11 11:30:17 EDT 2025
Mon Jul 21 05:49:59 EDT 2025
Tue Jul 01 03:40:41 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Thu Apr 03 09:46:37 EDT 2025
Fri Feb 23 02:19:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-2aa3162e27f5102b4be0dc1e592e572af4406cc65ee7158862a2b963fa6061e13
Notes http://dx.doi.org/10.1016/j.molcel.2013.06.001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: Emergent BioSolutions, Lansing, MI 48906, USA
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276513004383
PMID 23806337
PQID 1372702346
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3769971
proquest_miscellaneous_2000100546
proquest_miscellaneous_1372702346
pubmed_primary_23806337
crossref_primary_10_1016_j_molcel_2013_06_001
crossref_citationtrail_10_1016_j_molcel_2013_06_001
fao_agris_US201600024574
elsevier_sciencedirect_doi_10_1016_j_molcel_2013_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-27
PublicationDateYYYYMMDD 2013-06-27
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jensen, Kuhn, Stark, Chaffron, Creevey, Muller, Doerks, Julien, Roth, Simonovic (bib17) 2009; 37
Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li (bib62) 2010; 327
Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao (bib21) 2006; 23
Hebert, Dittenhafer-Reed, Yu, Bailey, Selen, Boersma, Carson, Tonelli, Balloon, Higbee (bib15) 2013; 49
Ricketts, Woodward, Killick, Morris, Astuti, Latif, Maher (bib41) 2008; 100
Wieland, Patzelt, Löffler (bib56) 1972; 26
Korpershoek, Favier, Gaal, Burnichon, van Gessel, Oudijk, Badoual, Gadessaud, Venisse, Bayley (bib22) 2011; 96
Lombard, Tishkoff, Zwaans (bib26) 2012
Finkel, Deng, Mostoslavsky (bib9) 2009; 460
Kranendijk, Struys, van Schaftingen, Gibson, Kanhai, van der Knaap, Amiel, Buist, Das, de Klerk (bib23) 2010; 330
Ruepp, Brauner, Dunger-Kaltenbach, Frishman, Montrone, Stransky, Waegele, Schmidt, Doudieu, Stümpflen, Mewes (bib44) 2008; 36
Choudhary, Kumar, Gnad, Nielsen, Rehman, Walther, Olsen, Mann (bib7) 2009; 325
Lian, Xu, Ceol, Wu, Larson, Dresser, Xu, Tan, Hu, Zhan (bib24) 2012; 150
Hirschey, Shimazu, Huang, Schwer, Verdin (bib16) 2011; 76
Smith, Janknecht, Maher (bib49) 2007; 16
Vander Heiden, Cantley, Thompson (bib54) 2009; 324
Xie, Dai, Dai, Tan, Cheng, Wu, Boeke, Zhao (bib57) 2012; 11
Chen, Zhao, Yang, Cheng, Luo, Lu, Tan, Gu, Zhao (bib6) 2012; 11
Yang, Xia, Hawke, Li, Liang, Xing, Aldape, Hunter, Alfred Yung, Lu (bib58) 2012; 150
Ricketts, Forman, Rattenberry, Bradshaw, Lalloo, Izatt, Cole, Armstrong, Kumar, Morrison (bib42) 2010; 31
Pollard, Wortham, Barclay, Alam, Elia, Manek, Poulsom, Tomlinson (bib40) 2005; 205
Yen, Bittinger, Su, Fantin (bib59) 2010; 29
Schwer, Eckersdorff, Li, Silva, Fermin, Kurtev, Giallourakis, Comb, Alt, Lombard (bib47) 2009; 8
Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi (bib8) 2011; 334
Starai, Celic, Cole, Boeke, Escalante-Semerena (bib52) 2002; 298
Nakagawa, Lomb, Haigis, Guarente (bib30) 2009; 137
Neumann, Pawlu, Peczkowska, Bausch, McWhinney, Muresan, Buchta, Franke, Klisch, Bley (bib32) 2004; 292
Peng, Lu, Xie, Cheng, Chen, Tan, Luo, Zhang, He, Yang (bib39) 2011; 10
Schlicker, Gertz, Papatheodorou, Kachholz, Becker, Steegborn (bib45) 2008; 382
Berger (bib3) 2007; 447
Michishita, Park, Burneskis, Barrett, Horikawa (bib27) 2005; 16
Smith, Settles, Hallows, Craven, Denu (bib50) 2011; 6
Stacpoole, Kurtz, Han, Langaee (bib51) 2008; 60
Kendrick, Choudhury, Rahman, McCurdy, Friederich, Van Hove, Watson, Birdsey, Bao, Gius (bib20) 2011; 433
Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib31) 2012; 586
Oudijk, Gaal, Korpershoek, van Nederveen, Kelly, Schiavon, Verweij, Mathijssen, den Bakker, Oldenburg (bib36) 2013; 26
Schwab, Kölker, van den Heuvel, Sauer, Wolf, Rating, Hoffmann, Smeitink, Okun (bib46) 2005; 51
Gao, Wang, Yang, Liu, Liu (bib11) 2012; 45
Zhang, Sprung, Pei, Tan, Kim, Zhu, Liu, Grishin, Zhao (bib60) 2009; 8
Acker, Bowers, Walsh (bib1) 2009; 131
Jeoung, Sanghani, Zhai, Harris (bib18) 2006; 356
Patel, Korotchkina (bib38) 2006; 34
Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish (bib10) 2011; 19
Ogura, Nakamura, Tanaka, Zhuang, Fujita, Obara, Hamasaki, Hosokawa, Inagaki (bib34) 2010; 393
Cervera, Bayley, Devilee, McCreath (bib4) 2009; 8
Wang, Zhang, Yang, Xiong, Lin, Yao, Li, Xie, Zhao, Yao (bib55) 2010; 327
Bader, Hogue (bib2) 2003; 4
Tan, Luo, Lee, Jin, Yang, Montellier, Buchou, Cheng, Rousseaux, Rajagopal (bib53) 2011; 146
Selak, Armour, MacKenzie, Boulahbel, Watson, Mansfield, Pan, Simon, Thompson, Gottlieb (bib48) 2005; 7
Hao, Khalimonchuk, Schraders, Dephoure, Bayley, Kunst, Devilee, Cremers, Schiffman, Bentz (bib14) 2009; 325
Pagliarini, Calvo, Chang, Sheth, Vafai, Ong, Walford, Sugiana, Boneh, Chen (bib37) 2008; 134
Rosen, Becher, Büttner, Biran, Hecker, Ron (bib43) 2004; 577
Chen, Sprung, Tang, Ball, Sangras, Kim, Falck, Peng, Gu, Zhao (bib5) 2007; 6
Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith (bib13) 2011; 41
Olsen, Vermeulen, Santamaria, Kumar, Miller, Jensen, Gnad, Cox, Jensen, Nigg (bib35) 2010; 3
Zhang, Tan, Xie, Dai, Chen, Zhao (bib61) 2011; 7
Gill (bib12) 2012; 44
Morten, Beattie, Brown, Matthews (bib28) 1999; 53
Nadanaciva, Bernal, Aggeler, Capaldi, Will (bib29) 2007; 21
Niemann, Müller (bib33) 2000; 26
Kawai, Fujii, Okada, Tsuchie, Uchida, Osawa (bib19) 2006; 47
Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy (bib25) 2007; 27
Acker (10.1016/j.molcel.2013.06.001_bib1) 2009; 131
Finley (10.1016/j.molcel.2013.06.001_bib10) 2011; 19
Hirschey (10.1016/j.molcel.2013.06.001_bib16) 2011; 76
Zhang (10.1016/j.molcel.2013.06.001_bib60) 2009; 8
Chen (10.1016/j.molcel.2013.06.001_bib6) 2012; 11
Nakagawa (10.1016/j.molcel.2013.06.001_bib30) 2009; 137
Olsen (10.1016/j.molcel.2013.06.001_bib35) 2010; 3
Kendrick (10.1016/j.molcel.2013.06.001_bib20) 2011; 433
Yen (10.1016/j.molcel.2013.06.001_bib59) 2010; 29
Schlicker (10.1016/j.molcel.2013.06.001_bib45) 2008; 382
Gao (10.1016/j.molcel.2013.06.001_bib11) 2012; 45
Korpershoek (10.1016/j.molcel.2013.06.001_bib22) 2011; 96
Jensen (10.1016/j.molcel.2013.06.001_bib17) 2009; 37
Nadanaciva (10.1016/j.molcel.2013.06.001_bib29) 2007; 21
Ricketts (10.1016/j.molcel.2013.06.001_bib41) 2008; 100
Cervera (10.1016/j.molcel.2013.06.001_bib4) 2009; 8
Nakamura (10.1016/j.molcel.2013.06.001_bib31) 2012; 586
Schwer (10.1016/j.molcel.2013.06.001_bib47) 2009; 8
Stacpoole (10.1016/j.molcel.2013.06.001_bib51) 2008; 60
Vander Heiden (10.1016/j.molcel.2013.06.001_bib54) 2009; 324
Pagliarini (10.1016/j.molcel.2013.06.001_bib37) 2008; 134
Ruepp (10.1016/j.molcel.2013.06.001_bib44) 2008; 36
Peng (10.1016/j.molcel.2013.06.001_bib39) 2011; 10
Kawai (10.1016/j.molcel.2013.06.001_bib19) 2006; 47
Finkel (10.1016/j.molcel.2013.06.001_bib9) 2009; 460
Du (10.1016/j.molcel.2013.06.001_bib8) 2011; 334
Patel (10.1016/j.molcel.2013.06.001_bib38) 2006; 34
Berger (10.1016/j.molcel.2013.06.001_bib3) 2007; 447
Ricketts (10.1016/j.molcel.2013.06.001_bib42) 2010; 31
Pollard (10.1016/j.molcel.2013.06.001_bib40) 2005; 205
Niemann (10.1016/j.molcel.2013.06.001_bib33) 2000; 26
Selak (10.1016/j.molcel.2013.06.001_bib48) 2005; 7
Lombard (10.1016/j.molcel.2013.06.001_bib25) 2007; 27
Choudhary (10.1016/j.molcel.2013.06.001_bib7) 2009; 325
Chen (10.1016/j.molcel.2013.06.001_bib5) 2007; 6
Hallows (10.1016/j.molcel.2013.06.001_bib13) 2011; 41
Yang (10.1016/j.molcel.2013.06.001_bib58) 2012; 150
Kim (10.1016/j.molcel.2013.06.001_bib21) 2006; 23
Starai (10.1016/j.molcel.2013.06.001_bib52) 2002; 298
Jeoung (10.1016/j.molcel.2013.06.001_bib18) 2006; 356
Oudijk (10.1016/j.molcel.2013.06.001_bib36) 2013; 26
Smith (10.1016/j.molcel.2013.06.001_bib49) 2007; 16
Xie (10.1016/j.molcel.2013.06.001_bib57) 2012; 11
Kranendijk (10.1016/j.molcel.2013.06.001_bib23) 2010; 330
Wieland (10.1016/j.molcel.2013.06.001_bib56) 1972; 26
Morten (10.1016/j.molcel.2013.06.001_bib28) 1999; 53
Bader (10.1016/j.molcel.2013.06.001_bib2) 2003; 4
Michishita (10.1016/j.molcel.2013.06.001_bib27) 2005; 16
Ogura (10.1016/j.molcel.2013.06.001_bib34) 2010; 393
Smith (10.1016/j.molcel.2013.06.001_bib50) 2011; 6
Zhang (10.1016/j.molcel.2013.06.001_bib61) 2011; 7
Lian (10.1016/j.molcel.2013.06.001_bib24) 2012; 150
Wang (10.1016/j.molcel.2013.06.001_bib55) 2010; 327
Lombard (10.1016/j.molcel.2013.06.001_bib26) 2012
Schwab (10.1016/j.molcel.2013.06.001_bib46) 2005; 51
Gill (10.1016/j.molcel.2013.06.001_bib12) 2012; 44
Neumann (10.1016/j.molcel.2013.06.001_bib32) 2004; 292
Tan (10.1016/j.molcel.2013.06.001_bib53) 2011; 146
Rosen (10.1016/j.molcel.2013.06.001_bib43) 2004; 577
Zhao (10.1016/j.molcel.2013.06.001_bib62) 2010; 327
Hao (10.1016/j.molcel.2013.06.001_bib14) 2009; 325
Hebert (10.1016/j.molcel.2013.06.001_bib15) 2013; 49
15550478 - Clin Chem. 2005 Jan;51(1):151-60
22076378 - Science. 2011 Nov 11;334(6057):806-9
19410549 - Cell. 2009 May 1;137(3):560-70
12525261 - BMC Bioinformatics. 2003 Jan 13;4:2
19594485 - Aging Cell. 2009 Sep;8(5):604-6
22389435 - Mol Cell Proteomics. 2012 May;11(5):100-7
5036975 - Eur J Biochem. 1972 Apr 11;26(3):426-33
17346924 - Toxicol In Vitro. 2007 Aug;21(5):902-11
21151122 - Nat Chem Biol. 2011 Jan;7(1):58-63
21752896 - J Clin Endocrinol Metab. 2011 Sep;96(9):E1472-6
16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22
12493915 - Science. 2002 Dec 20;298(5602):2390-2
21255725 - Mol Cell. 2011 Jan 21;41(2):139-49
19802898 - Hum Mutat. 2010 Jan;31(1):41-51
20068231 - Sci Signal. 2010;3(104):ra3
22901803 - Cell. 2012 Aug 17;150(4):685-96
23201123 - Mol Cell. 2013 Jan 10;49(1):186-99
16859625 - Anal Biochem. 2006 Sep 1;356(1):44-50
18723842 - Mol Cell Proteomics. 2009 Feb;8(2):215-25
20945913 - ACS Chem Biol. 2011 Feb 18;6(2):146-57
17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
19849834 - Mol Cancer. 2009;8:89
22114326 - Cold Spring Harb Symp Quant Biol. 2011;76:267-77
16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
18680753 - J Mol Biol. 2008 Oct 10;382(3):790-801
19641587 - Nature. 2009 Jul 30;460(7255):587-91
20847235 - Science. 2010 Oct 15;330(6002):336
20167786 - Science. 2010 Feb 19;327(5968):1000-4
20097174 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):73-8
18728283 - J Natl Cancer Inst. 2008 Sep 3;100(17):1260-2
22306293 - Mol Cell. 2012 Mar 9;45(5):598-609
18614015 - Cell. 2008 Jul 11;134(1):112-23
21908771 - Mol Cell Proteomics. 2011 Dec;10(12):M111.012658
22980977 - Cell. 2012 Sep 14;150(6):1135-46
18940858 - Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6
22826441 - Mol Cell Proteomics. 2012 Oct;11(10):1048-62
15652751 - Cancer Cell. 2005 Jan;7(1):77-85
17522673 - Nature. 2007 May 24;447(7143):407-12
15556615 - FEBS Lett. 2004 Nov 19;577(3):386-92
18647626 - Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1478-87
11062460 - Nat Genet. 2000 Nov;26(3):268-70
17267393 - Mol Cell Proteomics. 2007 May;6(5):812-9
21044047 - Biochem J. 2011 Feb 1;433(3):505-14
20167787 - Science. 2010 Feb 19;327(5968):1004-7
21925322 - Cell. 2011 Sep 16;146(6):1016-28
22544211 - Pathology. 2012 Jun;44(4):285-92
15586379 - J Pathol. 2005 Jan;205(1):41-9
23174939 - Mod Pathol. 2013 Mar;26(3):456-63
19460998 - Science. 2009 May 22;324(5930):1029-33
16916647 - Mol Cell. 2006 Aug;23(4):607-18
17884808 - Hum Mol Genet. 2007 Dec 15;16(24):3136-48
19608861 - Science. 2009 Aug 14;325(5942):834-40
21397863 - Cancer Cell. 2011 Mar 8;19(3):416-28
10449128 - Neurology. 1999 Aug 11;53(3):612-6
16582421 - J Lipid Res. 2006 Jul;47(7):1386-98
15328326 - JAMA. 2004 Aug 25;292(8):943-51
19628817 - Science. 2009 Aug 28;325(5944):1139-42
17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14
20972461 - Oncogene. 2010 Dec 9;29(49):6409-17
23085393 - FEBS Lett. 2012 Nov 30;586(23):4076-81
19911780 - J Am Chem Soc. 2009 Dec 9;131(48):17563-5
References_xml – volume: 11
  start-page: 100
  year: 2012
  end-page: 107
  ident: bib57
  article-title: Lysine succinylation and lysine malonylation in histones
  publication-title: Mol. Cell. Proteomics
– volume: 7
  start-page: 77
  year: 2005
  end-page: 85
  ident: bib48
  article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
  publication-title: Cancer Cell
– volume: 150
  start-page: 1135
  year: 2012
  end-page: 1146
  ident: bib24
  article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
  publication-title: Cell
– volume: 36
  start-page: D646
  year: 2008
  end-page: D650
  ident: bib44
  article-title: CORUM: the comprehensive resource of mammalian protein complexes
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: 1386
  year: 2006
  end-page: 1398
  ident: bib19
  article-title: Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification
  publication-title: J. Lipid Res.
– volume: 447
  start-page: 407
  year: 2007
  end-page: 412
  ident: bib3
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
– volume: 6
  start-page: 812
  year: 2007
  end-page: 819
  ident: bib5
  article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones
  publication-title: Mol. Cell. Proteomics
– volume: 45
  start-page: 598
  year: 2012
  end-page: 609
  ident: bib11
  article-title: Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase
  publication-title: Mol. Cell
– volume: 292
  start-page: 943
  year: 2004
  end-page: 951
  ident: bib32
  article-title: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations
  publication-title: JAMA
– volume: 96
  start-page: E1472
  year: 2011
  end-page: E1476
  ident: bib22
  article-title: SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 325
  start-page: 1139
  year: 2009
  end-page: 1142
  ident: bib14
  article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
  publication-title: Science
– volume: 31
  start-page: 41
  year: 2010
  end-page: 51
  ident: bib42
  article-title: Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD
  publication-title: Hum. Mutat.
– volume: 60
  start-page: 1478
  year: 2008
  end-page: 1487
  ident: bib51
  article-title: Role of dichloroacetate in the treatment of genetic mitochondrial diseases
  publication-title: Adv. Drug Deliv. Rev.
– volume: 433
  start-page: 505
  year: 2011
  end-page: 514
  ident: bib20
  article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
  publication-title: Biochem. J.
– volume: 137
  start-page: 560
  year: 2009
  end-page: 570
  ident: bib30
  article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
– volume: 11
  start-page: 1048
  year: 2012
  end-page: 1062
  ident: bib6
  article-title: Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways
  publication-title: Mol. Cell. Proteomics
– volume: 577
  start-page: 386
  year: 2004
  end-page: 392
  ident: bib43
  article-title: Probing the active site of homoserine trans-succinylase
  publication-title: FEBS Lett.
– volume: 7
  start-page: 58
  year: 2011
  end-page: 63
  ident: bib61
  article-title: Identification of lysine succinylation as a new post-translational modification
  publication-title: Nat. Chem. Biol.
– volume: 41
  start-page: 139
  year: 2011
  end-page: 149
  ident: bib13
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
– volume: 37
  start-page: D412
  year: 2009
  end-page: D416
  ident: bib17
  article-title: STRING 8—a global view on proteins and their functional interactions in 630 organisms
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 607
  year: 2006
  end-page: 618
  ident: bib21
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
– volume: 3
  start-page: ra3
  year: 2010
  ident: bib35
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci. Signal.
– volume: 27
  start-page: 8807
  year: 2007
  end-page: 8814
  ident: bib25
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell. Biol.
– volume: 327
  start-page: 1000
  year: 2010
  end-page: 1004
  ident: bib62
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
– volume: 53
  start-page: 612
  year: 1999
  end-page: 616
  ident: bib28
  article-title: Dichloroacetate stabilizes the mutant E1alpha subunit in pyruvate dehydrogenase deficiency
  publication-title: Neurology
– volume: 382
  start-page: 790
  year: 2008
  end-page: 801
  ident: bib45
  article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
  publication-title: J. Mol. Biol.
– volume: 327
  start-page: 1004
  year: 2010
  end-page: 1007
  ident: bib55
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
  publication-title: Science
– volume: 460
  start-page: 587
  year: 2009
  end-page: 591
  ident: bib9
  article-title: Recent progress in the biology and physiology of sirtuins
  publication-title: Nature
– volume: 34
  start-page: 217
  year: 2006
  end-page: 222
  ident: bib38
  article-title: Regulation of the pyruvate dehydrogenase complex
  publication-title: Biochem. Soc. Trans.
– volume: 49
  start-page: 186
  year: 2013
  end-page: 199
  ident: bib15
  article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
  publication-title: Mol. Cell
– volume: 8
  start-page: 89
  year: 2009
  ident: bib4
  article-title: Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells
  publication-title: Mol. Cancer
– volume: 393
  start-page: 73
  year: 2010
  end-page: 78
  ident: bib34
  article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 604
  year: 2009
  end-page: 606
  ident: bib47
  article-title: Calorie restriction alters mitochondrial protein acetylation
  publication-title: Aging Cell
– volume: 131
  start-page: 17563
  year: 2009
  end-page: 17565
  ident: bib1
  article-title: Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus
  publication-title: J. Am. Chem. Soc.
– volume: 356
  start-page: 44
  year: 2006
  end-page: 50
  ident: bib18
  article-title: Assay of the pyruvate dehydrogenase complex by coupling with recombinant chicken liver arylamine N-acetyltransferase
  publication-title: Anal. Biochem.
– volume: 4
  start-page: 2
  year: 2003
  ident: bib2
  article-title: An automated method for finding molecular complexes in large protein interaction networks
  publication-title: BMC Bioinformatics
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib54
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 16
  start-page: 4623
  year: 2005
  end-page: 4635
  ident: bib27
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
– volume: 586
  start-page: 4076
  year: 2012
  end-page: 4081
  ident: bib31
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
– volume: 44
  start-page: 285
  year: 2012
  end-page: 292
  ident: bib12
  article-title: Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia
  publication-title: Pathology
– volume: 298
  start-page: 2390
  year: 2002
  end-page: 2392
  ident: bib52
  article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
  publication-title: Science
– volume: 134
  start-page: 112
  year: 2008
  end-page: 123
  ident: bib37
  article-title: A mitochondrial protein compendium elucidates complex I disease biology
  publication-title: Cell
– volume: 26
  start-page: 426
  year: 1972
  end-page: 433
  ident: bib56
  article-title: Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion
  publication-title: Eur. J. Biochem.
– volume: 16
  start-page: 3136
  year: 2007
  end-page: 3148
  ident: bib49
  article-title: Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma
  publication-title: Hum. Mol. Genet.
– volume: 100
  start-page: 1260
  year: 2008
  end-page: 1262
  ident: bib41
  article-title: Germline SDHB mutations and familial renal cell carcinoma
  publication-title: J. Natl. Cancer Inst.
– volume: 325
  start-page: 834
  year: 2009
  end-page: 840
  ident: bib7
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
– volume: 51
  start-page: 151
  year: 2005
  end-page: 160
  ident: bib46
  article-title: Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts
  publication-title: Clin. Chem.
– volume: 205
  start-page: 41
  year: 2005
  end-page: 49
  ident: bib40
  article-title: Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome
  publication-title: J. Pathol.
– volume: 10
  year: 2011
  ident: bib39
  article-title: The first identification of lysine malonylation substrates and its regulatory enzyme
  publication-title: Mol Cell Proteomics
– volume: 76
  start-page: 267
  year: 2011
  end-page: 277
  ident: bib16
  article-title: SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 146
  start-page: 1016
  year: 2011
  end-page: 1028
  ident: bib53
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
– volume: 6
  start-page: 146
  year: 2011
  end-page: 157
  ident: bib50
  article-title: SIRT3 substrate specificity determined by peptide arrays and machine learning
  publication-title: ACS Chem. Biol.
– volume: 19
  start-page: 416
  year: 2011
  end-page: 428
  ident: bib10
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
– volume: 21
  start-page: 902
  year: 2007
  end-page: 911
  ident: bib29
  article-title: Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays
  publication-title: Toxicol. In Vitro
– start-page: 269
  year: 2012
  end-page: 298
  ident: bib26
  article-title: Mitochondrial regulation by protein acetylation
  publication-title: Mitochondrial Signaling in Health and Disease
– volume: 330
  start-page: 336
  year: 2010
  ident: bib23
  article-title: IDH2 mutations in patients with D-2-hydroxyglutaric aciduria
  publication-title: Science
– volume: 8
  start-page: 215
  year: 2009
  end-page: 225
  ident: bib60
  article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
  publication-title: Mol. Cell. Proteomics
– volume: 26
  start-page: 268
  year: 2000
  end-page: 270
  ident: bib33
  article-title: Mutations in SDHC cause autosomal dominant paraganglioma, type 3
  publication-title: Nat. Genet.
– volume: 26
  start-page: 456
  year: 2013
  end-page: 463
  ident: bib36
  article-title: SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors
  publication-title: Mod. Pathol.
– volume: 150
  start-page: 685
  year: 2012
  end-page: 696
  ident: bib58
  article-title: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis
  publication-title: Cell
– volume: 334
  start-page: 806
  year: 2011
  end-page: 809
  ident: bib8
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
– volume: 29
  start-page: 6409
  year: 2010
  end-page: 6417
  ident: bib59
  article-title: Cancer-associated IDH mutations: biomarker and therapeutic opportunities
  publication-title: Oncogene
– volume: 292
  start-page: 943
  year: 2004
  ident: 10.1016/j.molcel.2013.06.001_bib32
  article-title: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations
  publication-title: JAMA
  doi: 10.1001/jama.292.8.943
– volume: 34
  start-page: 217
  year: 2006
  ident: 10.1016/j.molcel.2013.06.001_bib38
  article-title: Regulation of the pyruvate dehydrogenase complex
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0340217
– volume: 47
  start-page: 1386
  year: 2006
  ident: 10.1016/j.molcel.2013.06.001_bib19
  article-title: Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M600091-JLR200
– volume: 3
  start-page: ra3
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib35
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000475
– volume: 29
  start-page: 6409
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib59
  article-title: Cancer-associated IDH mutations: biomarker and therapeutic opportunities
  publication-title: Oncogene
  doi: 10.1038/onc.2010.444
– volume: 205
  start-page: 41
  year: 2005
  ident: 10.1016/j.molcel.2013.06.001_bib40
  article-title: Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome
  publication-title: J. Pathol.
  doi: 10.1002/path.1686
– volume: 356
  start-page: 44
  year: 2006
  ident: 10.1016/j.molcel.2013.06.001_bib18
  article-title: Assay of the pyruvate dehydrogenase complex by coupling with recombinant chicken liver arylamine N-acetyltransferase
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2006.06.017
– volume: 327
  start-page: 1000
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib62
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
  doi: 10.1126/science.1179689
– volume: 137
  start-page: 560
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib30
  article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.026
– volume: 7
  start-page: 58
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib61
  article-title: Identification of lysine succinylation as a new post-translational modification
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.495
– volume: 8
  start-page: 89
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib4
  article-title: Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-8-89
– start-page: 269
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib26
  article-title: Mitochondrial regulation by protein acetylation
– volume: 31
  start-page: 41
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib42
  article-title: Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21136
– volume: 16
  start-page: 3136
  year: 2007
  ident: 10.1016/j.molcel.2013.06.001_bib49
  article-title: Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm275
– volume: 8
  start-page: 215
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib60
  article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M800187-MCP200
– volume: 53
  start-page: 612
  year: 1999
  ident: 10.1016/j.molcel.2013.06.001_bib28
  article-title: Dichloroacetate stabilizes the mutant E1alpha subunit in pyruvate dehydrogenase deficiency
  publication-title: Neurology
  doi: 10.1212/WNL.53.3.612
– volume: 60
  start-page: 1478
  year: 2008
  ident: 10.1016/j.molcel.2013.06.001_bib51
  article-title: Role of dichloroacetate in the treatment of genetic mitochondrial diseases
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.02.014
– volume: 96
  start-page: E1472
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib22
  article-title: SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-1043
– volume: 146
  start-page: 1016
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib53
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 460
  start-page: 587
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib9
  article-title: Recent progress in the biology and physiology of sirtuins
  publication-title: Nature
  doi: 10.1038/nature08197
– volume: 433
  start-page: 505
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib20
  article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100791
– volume: 330
  start-page: 336
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib23
  article-title: IDH2 mutations in patients with D-2-hydroxyglutaric aciduria
  publication-title: Science
  doi: 10.1126/science.1192632
– volume: 393
  start-page: 73
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib34
  article-title: Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.01.081
– volume: 11
  start-page: 1048
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib6
  article-title: Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M112.019547
– volume: 325
  start-page: 834
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib7
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 8
  start-page: 604
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib47
  article-title: Calorie restriction alters mitochondrial protein acetylation
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00503.x
– volume: 36
  start-page: D646
  issue: Database issue
  year: 2008
  ident: 10.1016/j.molcel.2013.06.001_bib44
  article-title: CORUM: the comprehensive resource of mammalian protein complexes
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 77
  year: 2005
  ident: 10.1016/j.molcel.2013.06.001_bib48
  article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.11.022
– volume: 23
  start-page: 607
  year: 2006
  ident: 10.1016/j.molcel.2013.06.001_bib21
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.026
– volume: 100
  start-page: 1260
  year: 2008
  ident: 10.1016/j.molcel.2013.06.001_bib41
  article-title: Germline SDHB mutations and familial renal cell carcinoma
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djn254
– volume: 334
  start-page: 806
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib8
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
  doi: 10.1126/science.1207861
– volume: 76
  start-page: 267
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib16
  article-title: SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2011.76.010850
– volume: 16
  start-page: 4623
  year: 2005
  ident: 10.1016/j.molcel.2013.06.001_bib27
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-01-0033
– volume: 49
  start-page: 186
  year: 2013
  ident: 10.1016/j.molcel.2013.06.001_bib15
  article-title: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.024
– volume: 26
  start-page: 426
  year: 1972
  ident: 10.1016/j.molcel.2013.06.001_bib56
  article-title: Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1972.tb01783.x
– volume: 131
  start-page: 17563
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib1
  article-title: Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908777t
– volume: 27
  start-page: 8807
  year: 2007
  ident: 10.1016/j.molcel.2013.06.001_bib25
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01636-07
– volume: 4
  start-page: 2
  year: 2003
  ident: 10.1016/j.molcel.2013.06.001_bib2
  article-title: An automated method for finding molecular complexes in large protein interaction networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-4-2
– volume: 577
  start-page: 386
  year: 2004
  ident: 10.1016/j.molcel.2013.06.001_bib43
  article-title: Probing the active site of homoserine trans-succinylase
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.10.037
– volume: 6
  start-page: 812
  year: 2007
  ident: 10.1016/j.molcel.2013.06.001_bib5
  article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M700021-MCP200
– volume: 26
  start-page: 268
  year: 2000
  ident: 10.1016/j.molcel.2013.06.001_bib33
  article-title: Mutations in SDHC cause autosomal dominant paraganglioma, type 3
  publication-title: Nat. Genet.
  doi: 10.1038/81551
– volume: 134
  start-page: 112
  year: 2008
  ident: 10.1016/j.molcel.2013.06.001_bib37
  article-title: A mitochondrial protein compendium elucidates complex I disease biology
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.016
– volume: 382
  start-page: 790
  year: 2008
  ident: 10.1016/j.molcel.2013.06.001_bib45
  article-title: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.07.048
– volume: 325
  start-page: 1139
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib14
  article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
  publication-title: Science
  doi: 10.1126/science.1175689
– volume: 447
  start-page: 407
  year: 2007
  ident: 10.1016/j.molcel.2013.06.001_bib3
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
  doi: 10.1038/nature05915
– volume: 51
  start-page: 151
  year: 2005
  ident: 10.1016/j.molcel.2013.06.001_bib46
  article-title: Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2004.033852
– volume: 21
  start-page: 902
  year: 2007
  ident: 10.1016/j.molcel.2013.06.001_bib29
  article-title: Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2007.01.011
– volume: 37
  start-page: D412
  issue: Database issue
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib17
  article-title: STRING 8—a global view on proteins and their functional interactions in 630 organisms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn760
– volume: 150
  start-page: 1135
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib24
  article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.033
– volume: 41
  start-page: 139
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib13
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.002
– volume: 45
  start-page: 598
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib11
  article-title: Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.001
– volume: 26
  start-page: 456
  year: 2013
  ident: 10.1016/j.molcel.2013.06.001_bib36
  article-title: SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2012.186
– volume: 150
  start-page: 685
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib58
  article-title: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.018
– volume: 6
  start-page: 146
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib50
  article-title: SIRT3 substrate specificity determined by peptide arrays and machine learning
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb100218d
– volume: 44
  start-page: 285
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib12
  article-title: Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia
  publication-title: Pathology
  doi: 10.1097/PAT.0b013e3283539932
– volume: 298
  start-page: 2390
  year: 2002
  ident: 10.1016/j.molcel.2013.06.001_bib52
  article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
  publication-title: Science
  doi: 10.1126/science.1077650
– volume: 586
  start-page: 4076
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib31
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.10.009
– volume: 19
  start-page: 416
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib10
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.014
– volume: 11
  start-page: 100
  year: 2012
  ident: 10.1016/j.molcel.2013.06.001_bib57
  article-title: Lysine succinylation and lysine malonylation in histones
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.015875
– volume: 327
  start-page: 1004
  year: 2010
  ident: 10.1016/j.molcel.2013.06.001_bib55
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
  publication-title: Science
  doi: 10.1126/science.1179687
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.molcel.2013.06.001_bib54
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 10
  year: 2011
  ident: 10.1016/j.molcel.2013.06.001_bib39
  article-title: The first identification of lysine malonylation substrates and its regulatory enzyme
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M111.012658
– reference: 18680753 - J Mol Biol. 2008 Oct 10;382(3):790-801
– reference: 21255725 - Mol Cell. 2011 Jan 21;41(2):139-49
– reference: 20167787 - Science. 2010 Feb 19;327(5968):1004-7
– reference: 22826441 - Mol Cell Proteomics. 2012 Oct;11(10):1048-62
– reference: 23085393 - FEBS Lett. 2012 Nov 30;586(23):4076-81
– reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
– reference: 15550478 - Clin Chem. 2005 Jan;51(1):151-60
– reference: 19628817 - Science. 2009 Aug 28;325(5944):1139-42
– reference: 22306293 - Mol Cell. 2012 Mar 9;45(5):598-609
– reference: 23201123 - Mol Cell. 2013 Jan 10;49(1):186-99
– reference: 17884808 - Hum Mol Genet. 2007 Dec 15;16(24):3136-48
– reference: 16859625 - Anal Biochem. 2006 Sep 1;356(1):44-50
– reference: 19608861 - Science. 2009 Aug 14;325(5942):834-40
– reference: 10449128 - Neurology. 1999 Aug 11;53(3):612-6
– reference: 18940858 - Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6
– reference: 21925322 - Cell. 2011 Sep 16;146(6):1016-28
– reference: 5036975 - Eur J Biochem. 1972 Apr 11;26(3):426-33
– reference: 16582421 - J Lipid Res. 2006 Jul;47(7):1386-98
– reference: 21908771 - Mol Cell Proteomics. 2011 Dec;10(12):M111.012658
– reference: 15556615 - FEBS Lett. 2004 Nov 19;577(3):386-92
– reference: 18647626 - Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1478-87
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 21752896 - J Clin Endocrinol Metab. 2011 Sep;96(9):E1472-6
– reference: 20097174 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):73-8
– reference: 15652751 - Cancer Cell. 2005 Jan;7(1):77-85
– reference: 17346924 - Toxicol In Vitro. 2007 Aug;21(5):902-11
– reference: 20167786 - Science. 2010 Feb 19;327(5968):1000-4
– reference: 15328326 - JAMA. 2004 Aug 25;292(8):943-51
– reference: 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2
– reference: 17522673 - Nature. 2007 May 24;447(7143):407-12
– reference: 16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22
– reference: 22980977 - Cell. 2012 Sep 14;150(6):1135-46
– reference: 21044047 - Biochem J. 2011 Feb 1;433(3):505-14
– reference: 16916647 - Mol Cell. 2006 Aug;23(4):607-18
– reference: 17267393 - Mol Cell Proteomics. 2007 May;6(5):812-9
– reference: 22389435 - Mol Cell Proteomics. 2012 May;11(5):100-7
– reference: 18723842 - Mol Cell Proteomics. 2009 Feb;8(2):215-25
– reference: 20972461 - Oncogene. 2010 Dec 9;29(49):6409-17
– reference: 22901803 - Cell. 2012 Aug 17;150(4):685-96
– reference: 19911780 - J Am Chem Soc. 2009 Dec 9;131(48):17563-5
– reference: 11062460 - Nat Genet. 2000 Nov;26(3):268-70
– reference: 22114326 - Cold Spring Harb Symp Quant Biol. 2011;76:267-77
– reference: 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
– reference: 21397863 - Cancer Cell. 2011 Mar 8;19(3):416-28
– reference: 22544211 - Pathology. 2012 Jun;44(4):285-92
– reference: 23174939 - Mod Pathol. 2013 Mar;26(3):456-63
– reference: 19849834 - Mol Cancer. 2009;8:89
– reference: 21151122 - Nat Chem Biol. 2011 Jan;7(1):58-63
– reference: 17923681 - Mol Cell Biol. 2007 Dec;27(24):8807-14
– reference: 20847235 - Science. 2010 Oct 15;330(6002):336
– reference: 20945913 - ACS Chem Biol. 2011 Feb 18;6(2):146-57
– reference: 15586379 - J Pathol. 2005 Jan;205(1):41-9
– reference: 18728283 - J Natl Cancer Inst. 2008 Sep 3;100(17):1260-2
– reference: 19410549 - Cell. 2009 May 1;137(3):560-70
– reference: 19802898 - Hum Mutat. 2010 Jan;31(1):41-51
– reference: 20068231 - Sci Signal. 2010;3(104):ra3
– reference: 18614015 - Cell. 2008 Jul 11;134(1):112-23
– reference: 19641587 - Nature. 2009 Jul 30;460(7255):587-91
– reference: 19594485 - Aging Cell. 2009 Sep;8(5):604-6
– reference: 22076378 - Science. 2011 Nov 11;334(6057):806-9
– reference: 12493915 - Science. 2002 Dec 20;298(5602):2390-2
SSID ssj0014589
Score 2.6162686
Snippet Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 919
SubjectTerms Acetylation
Amino Acid Sequence
Animals
Cell Respiration
Cells, Cultured
Consensus Sequence
fatty acid metabolism
Glycosylation
Kinetics
lysine
Lysine - metabolism
mammals
Metabolic Networks and Pathways
Mice
Mice, Knockout
Mitochondria - enzymology
Molecular Sequence Annotation
nuclear proteins
post-translational modification
Protein Interaction Maps
Protein Processing, Post-Translational
Protein Transport
proteins
Proteome - metabolism
pyruvate dehydrogenase (lipoamide)
Pyruvate Dehydrogenase Complex - metabolism
Sirtuins - genetics
Sirtuins - metabolism
succinate dehydrogenase (quinone)
Succinate Dehydrogenase - metabolism
tricarboxylic acid cycle
Title SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways
URI https://dx.doi.org/10.1016/j.molcel.2013.06.001
https://www.ncbi.nlm.nih.gov/pubmed/23806337
https://www.proquest.com/docview/1372702346
https://www.proquest.com/docview/2000100546
https://pubmed.ncbi.nlm.nih.gov/PMC3769971
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEBIviO-VjylIvJrWX3HyOAZTxxhC6yr6ZjnOGYJKOtFWqP89ZzupKGKaxGtylpLz-e5n3e_uCHktrbdM554ieiuo9JDTsi5HtBZl4TB8gHSRIPspH0_lh5ma7ZHjvhYm0Co73598evTW3ZNhp83hVdMMJyF3ynWuQkImNNxEPyxkEYv4Zm-3mQSp4hi8IEyDdF8-FzlePxZzByEBwcSblJW4Ljzd8nbxLxD6N5fyj-B0cp_c61BldpQ-_AHZg_YhuZPmTG4ekfHk9OJS0fM4lgPq7OMmsN0zvHOunWvaTeLDZaexYnKZvYtcDcjOYYUmMm9c9hlx4i-7WT4m05P3l8dj2o1QoE7x0YpyawXLOXDt8fDxSlYwqh0DVXJQmlsvMaA7lysAzVSB1xvLKzyT3uLFhgETT8h-u2jhgGRlheqzHIW9lc55W0jpcZtlXSPEqP2AiF5zxnX9xcOYi7npiWTfTdK3Cfo2iU83IHS76ir117hBXvebYnbsxGAIuGHlAe6hsV_ReZrphIfWejHxrOWAvOo31uDpCikT28JivTRM6FCwJ2R-vUwodmIB-qLM02QM219BQIQYUGj87B0z2QqE7t67b9rmW-zyjZ6_LDV79t8__Jzc5Wl2Bxr-C7K_-rmGl4igVtUhuX10dvHl7DAeld9U7Rk4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IcReEN8rn0GCR9PasePmgYfBmBrWToi2Ut-M49gsqKQTbTXl7-If3NlOKoqYJiHtNblEzvl894vud3cIvWHKKiISiwG99TGzJsFpkfZwEad9DeHDMO0JsqfJYMo-z_hsB_1ua2EcrbLx_cGne2_dXOk22uyel2V37HKnVCTcJWRcw82GWXli6gv4b1u-z45gk99Sevxp8nGAm9ECWHPaW2GqVEwSaqiwYJQ0Z7npFZoYnlLDBVWWQaDTOuHGCML7APsVzcFWrQLATwyJ4b276BagD-G8QTb7sEldMO7n7rnVYbe8tl7Pk8p-LubauIwHid-FNMhV8XDXqsW_UO_f5M0_ouHxPXS3gbHRYdDUfbRjqgfodhhsWT9Eg3H2dcLxyM8BMUU0rB29PoKf3LXWZVUHAl6U-RLNZXTkySEmGpkV2OS81NEXAKYXql4-QtMbUexjtFctKnOAojQH9SkKwlYxra3qM2bBrlhRAKYpbAfFreakbhqau7kac9ky137IoG_p9C0Dga-D8Oap89DQ4xp50W6K3DJMCTHnmicPYA-l-g7eWk7H1PXy85luwTrodbuxEo6zy9GoyizWS0li4SoEY5ZcLeOqq4jD2iDzJBjD5lMAgQHojAUse8tMNgKunfj2nao8823FIdSkqSBP__uDX6E7g8loKIfZ6ckztE_D4BA4BM_R3urX2rwA-LbKX_rjEqFvN30-LwEyN1OX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT5-mediated+lysine+desuccinylation+impacts+diverse+metabolic+pathways&rft.jtitle=Molecular+cell&rft.au=Park%2C+Jeongsoon&rft.au=Chen%2C+Yue&rft.au=Tishkoff%2C+Daniel+X&rft.au=Peng%2C+Chao&rft.date=2013-06-27&rft.eissn=1097-4164&rft.volume=50&rft.issue=6&rft.spage=919&rft_id=info:doi/10.1016%2Fj.molcel.2013.06.001&rft_id=info%3Apmid%2F23806337&rft.externalDocID=23806337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon