Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water

More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 94; no. 4; pp. 1142 - 1155
Main Authors Yuan, Gaoqian, Li, Faliang, Li, Kezhuo, Liu, Jie, Li, Junyi, Zhang, Shaowei, Jia, Quanli, Zhang, Haijun
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 2021
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward.
AbstractList More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward. Different methods about the removal of toxic Cr(VI) were introduced and the effects of photocatalysts structure on their photocatalytic Cr(VI) reduction performance were emphasized.
More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward.
Author Liu, Jie
Li, Junyi
Yuan, Gaoqian
Zhang, Haijun
Li, Faliang
Li, Kezhuo
Zhang, Shaowei
Jia, Quanli
Author_xml – sequence: 1
  givenname: Gaoqian
  surname: Yuan
  fullname: Yuan, Gaoqian
– sequence: 2
  givenname: Faliang
  surname: Li
  fullname: Li, Faliang
– sequence: 3
  givenname: Kezhuo
  surname: Li
  fullname: Li, Kezhuo
– sequence: 4
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
– sequence: 5
  givenname: Junyi
  surname: Li
  fullname: Li, Junyi
– sequence: 6
  givenname: Shaowei
  surname: Zhang
  fullname: Zhang, Shaowei
– sequence: 7
  givenname: Quanli
  surname: Jia
  fullname: Jia, Quanli
– sequence: 8
  givenname: Haijun
  surname: Zhang
  fullname: Zhang, Haijun
BookMark eNp1kMtLw0AQxhepYFs9eg940UPqZjfZTbxJ8VEQLMXHMUw2E7slzdbdzaH_vVtaEUTnMgzz--bxjcigMx0Scp7QScJScV0pt5owyijliTwiw4SneUwFTwdkSCktYiYkPyEj51ahzLO0GJLZAh2CVctobs2HReci00XzpfFGgYd267WKFlj3yuvQME00tZdvs6tIB8q0be-xjt7Boz0lxw20Ds8OeUxe7-9epo_x0_PDbHr7FKuMUR-zVFIAmTUIIFKsmJS14JjXlVCUiqTOixryXAqWqxCc14VEBCEaqZpKJHxMLvZzN9Z89uh8uTK97cLKkmU8K2ghMxGoeE8pa5yz2JQbq9dgt2VCy51b5c6t8tutwPNfvNIedj97C7r9V3VzUC1xrVW4wSiNfruCDXQ_d_0t_gJc3IQL
CitedBy_id crossref_primary_10_1021_acsaenm_4c00039
crossref_primary_10_1039_D3NJ05008D
crossref_primary_10_1039_D3QI00102D
crossref_primary_10_1021_acsami_2c03946
crossref_primary_10_1142_S1793292022500655
crossref_primary_10_3390_ma15155404
crossref_primary_10_1038_s41598_023_48299_8
crossref_primary_10_2139_ssrn_4184273
crossref_primary_10_3390_catal14050289
crossref_primary_10_1007_s10098_023_02727_5
crossref_primary_10_1016_j_jphotochem_2024_115584
crossref_primary_10_2139_ssrn_4150464
crossref_primary_10_1016_j_jphotochem_2023_114949
crossref_primary_10_26599_POM_2023_9140027
crossref_primary_10_1016_j_apt_2022_103562
crossref_primary_10_1016_j_ceramint_2022_10_116
crossref_primary_10_1016_j_jece_2024_114306
crossref_primary_10_1039_D2CE00872F
crossref_primary_10_1016_j_jece_2022_108742
crossref_primary_10_1016_j_colsurfa_2024_134199
crossref_primary_10_1007_s10008_022_05351_3
crossref_primary_10_1016_j_apt_2022_103722
crossref_primary_10_2139_ssrn_4169742
crossref_primary_10_1038_s41545_023_00246_w
crossref_primary_10_1016_j_seppur_2023_125523
crossref_primary_10_1016_j_ijhydene_2023_12_125
crossref_primary_10_1016_j_seppur_2021_120434
crossref_primary_10_1021_acs_cgd_2c01534
crossref_primary_10_1080_14686996_2022_2054666
crossref_primary_10_1016_j_diamond_2024_111779
crossref_primary_10_1016_S1872_2067_23_64553_X
crossref_primary_10_1039_D4MA00431K
crossref_primary_10_1016_j_seppur_2022_122065
crossref_primary_10_1016_j_jssc_2023_124001
crossref_primary_10_1142_S1793292022500035
crossref_primary_10_1016_j_envres_2023_117122
crossref_primary_10_1016_j_mtcomm_2022_103825
crossref_primary_10_1246_bcsj_20220071
crossref_primary_10_3390_min12020182
crossref_primary_10_1016_j_jcis_2022_10_080
crossref_primary_10_1016_j_jhazmat_2022_130400
crossref_primary_10_1016_j_micromeso_2023_112512
crossref_primary_10_1021_acsanm_3c06058
crossref_primary_10_1016_j_coche_2024_101043
crossref_primary_10_1016_j_cej_2024_150766
crossref_primary_10_1016_j_jiec_2022_06_014
crossref_primary_10_3390_c7040073
crossref_primary_10_1016_j_coche_2024_101042
crossref_primary_10_1007_s10971_024_06551_1
crossref_primary_10_1016_j_seppur_2024_131008
crossref_primary_10_1016_j_cej_2022_136703
crossref_primary_10_1016_j_jallcom_2023_170521
crossref_primary_10_1016_j_jallcom_2024_174425
crossref_primary_10_1007_s44246_024_00174_5
Cites_doi 10.1016/j.apcatb.2016.11.046
10.1016/j.seppur.2019.06.002
10.1021/cm049293b
10.1016/j.apcatb.2017.02.050
10.1002/slct.201700967
10.1016/j.matlet.2016.10.094
10.1016/j.chemosphere.2005.08.064
10.1016/j.carbpol.2019.02.003
10.1016/j.jcis.2017.12.045
10.1039/C7RA02608K
10.1016/j.jphotochem.2003.12.001
10.1016/S1872-2067(17)62962-0
10.1002/adfm.200902390
10.1016/j.apcatb.2018.11.033
10.3109/10408449709078442
10.1016/j.chemosphere.2019.01.087
10.1002/aoc.4621
10.1016/j.jcis.2015.06.014
10.1016/j.jhazmat.2020.123432
10.1016/j.apt.2019.09.016
10.1016/j.apsusc.2017.12.249
10.1016/j.scitotenv.2020.141901
10.1016/j.nanoen.2015.05.024
10.1016/j.materresbull.2019.110671
10.1016/j.jhazmat.2012.04.054
10.1016/j.jhazmat.2008.11.058
10.1016/j.jclepro.2020.123408
10.1016/S1872-2067(19)63422-4
10.1021/ie400812m
10.1016/j.jallcom.2018.12.386
10.1016/S1010-6030(00)00370-1
10.1016/j.molliq.2017.09.107
10.1016/j.apsusc.2017.07.050
10.1016/j.psep.2016.04.023
10.1016/j.pnsc.2019.03.003
10.1016/j.apcatb.2013.05.078
10.1039/c1cc10665a
10.1016/j.jpowsour.2018.10.081
10.1016/j.cej.2020.124522
10.1016/j.cej.2019.121990
10.1016/S1872-2067(20)63629-4
10.1002/jctb.895
10.1039/C7NR09049H
10.1016/j.ijhydene.2018.02.191
10.1016/j.arabjc.2020.04.029
10.1016/j.mssp.2015.01.030
10.1016/j.cej.2020.126648
10.3762/bjnano.9.137
10.1016/j.matchemphys.2018.03.034
10.1016/j.seppur.2011.03.019
10.1016/j.apcatb.2014.07.022
10.1016/j.jallcom.2011.07.008
10.1016/j.envpol.2019.113417
10.1021/ja2002132
10.1080/10643380903392817
10.1016/j.cplett.2016.08.020
10.1016/j.jhazmat.2020.123085
10.1016/j.seppur.2016.01.030
10.1016/j.actamat.2013.11.076
10.1002/smtd.201700080
10.1016/j.apcatb.2015.12.023
10.1016/j.arabjc.2010.07.019
10.1039/C4RA10192H
10.3390/nano9121657
10.1016/j.crci.2005.02.055
10.1016/j.jcis.2018.02.045
10.1166/jnn.2018.14604
10.1016/j.apcatb.2015.04.047
10.1038/srep30543
10.1016/j.materresbull.2016.02.017
10.1016/j.matlet.2013.12.106
10.1021/acssuschemeng.6b00922
10.1016/j.jallcom.2020.156147
10.1016/j.eti.2016.01.007
10.1007/s10562-017-2118-1
10.1039/C5DT03173G
10.1016/j.scitotenv.2020.141425
10.1016/j.cej.2019.123428
10.1016/j.jhazmat.2014.11.039
10.1016/j.cej.2019.121944
10.1016/j.micromeso.2018.04.036
10.1016/j.susc.2019.121469
10.1016/j.jhazmat.2020.122205
10.1016/j.apcatb.2012.09.054
10.1016/j.jiec.2017.09.008
10.1016/j.jhazmat.2010.10.061
10.1002/tcr.201900046
10.1016/j.apsusc.2019.02.017
10.1016/j.apcatb.2016.04.030
10.1080/00986449108910875
10.1016/j.jhazmat.2016.05.044
10.1016/j.jes.2014.06.047
10.1016/j.envint.2019.04.020
10.1016/j.talanta.2018.02.054
10.1016/j.cattod.2019.01.038
10.1016/j.apcatb.2018.03.017
10.1016/j.watres.2013.04.023
10.1016/j.jallcom.2015.11.055
10.1016/j.ceramint.2017.11.032
10.1016/j.catcom.2014.12.003
10.1007/s11270-015-2570-8
10.1007/s10853-016-0096-0
10.1016/j.talanta.2019.120521
10.1016/j.chemosphere.2018.05.050
10.1016/j.jcis.2019.02.056
10.1016/j.cej.2010.02.013
10.1016/j.seppur.2008.05.001
10.1016/S0926-3373(97)00073-8
10.1016/j.cattod.2018.04.008
10.1016/j.cattod.2018.01.021
10.1002/tcr.201800153
10.1016/j.apsusc.2016.09.099
10.1016/j.jallcom.2020.155567
10.1016/j.jece.2019.102909
10.1007/s11164-019-03805-4
10.1016/j.jes.2019.12.003
10.1016/j.ijms.2015.06.015
10.1039/C4TA04526B
10.1016/j.apsusc.2016.10.066
10.1016/j.jhazmat.2018.11.069
10.1016/j.cattod.2018.11.012
10.1016/j.cej.2016.07.043
10.1016/j.apsusc.2009.10.005
10.1016/j.apsusc.2017.05.160
10.1016/j.matlet.2012.05.121
10.1007/s13762-014-0740-7
10.1016/j.cej.2016.08.120
10.1016/j.catcom.2015.03.016
10.1016/j.cej.2017.05.009
10.1016/j.jallcom.2018.12.050
10.1016/j.apcatb.2017.10.029
10.1016/j.matchar.2014.06.024
10.1016/j.jallcom.2015.08.265
10.1016/j.cej.2019.03.096
10.1002/jctb.5657
10.1002/anie.202000503
10.1016/j.jhazmat.2013.01.048
10.1016/j.jallcom.2016.03.090
10.1039/C7QI00120G
10.1039/C4RA08044K
10.1016/j.jcis.2018.04.094
10.1016/j.cej.2018.09.084
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2021
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20200317
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water
EISSN 1348-0634
EndPage 1155
ExternalDocumentID 10_1246_bcsj_20200317
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
-~X
0R~
6J9
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ACGFO
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
BCRHZ
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
~02
7SR
8BQ
8FD
H13
JG9
ID FETCH-LOGICAL-c520t-2470aa75feaa64eb277d63e8db6c0061d89da887628cccc33d97eea66f7cfb613
ISSN 0009-2673
IngestDate Wed Aug 13 07:39:33 EDT 2025
Tue Jul 01 00:34:46 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Apr 21 04:13:08 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Photocatalytic reduction
Photocatalyst
Cr(VI) removal
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-2470aa75feaa64eb277d63e8db6c0061d89da887628cccc33d97eea66f7cfb613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20200317
PQID 2535909756
PQPubID 1996365
PageCount 14
ParticipantIDs proquest_journals_2535909756
crossref_primary_10_1246_bcsj_20200317
crossref_citationtrail_10_1246_bcsj_20200317
chemicalsocietyjapan_journals_10_1246_bcsj_20200317
ProviderPackageCode RAD
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2021
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 136Y. T. Lin, C. P. Huang, Sep. Purif. Technol. 2008, 63, 191. 10.1016/j.seppur.2008.05.001
90W. S. Tang, Y. Su, Q. Li, S. Gao, J. K. Shang, Water Res. 2013, 47, 3624. 10.1016/j.watres.2013.04.02323726698
128X. H. Yi, S. Q. Ma, X. D. Du, C. Zhao, H. F. Fu, P. Wang, C. C. Wang, Chem. Eng. J. 2019, 375, 121944. 10.1016/j.cej.2019.121944
2Z. Y. Zhao, H. An, J. Lin, M. C. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. M. Mai, N. Wang, H. B. Gu, S. Angaiah, Z. H. Guo, Chem. Rec. 2019, 19, 873. 10.1002/tcr.20180015330426677
137G. P. Ren, Y. Sun, A. H. Lu, Y. Li, H. R. Ding, J. Power Sources 2018, 408, 46. 10.1016/j.jpowsour.2018.10.081
12J. H. Qiu, M. Li, L. Y. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990
71S. Wojtyla, T. Baran, Mater. Chem. Phys. 2018, 212, 103. 10.1016/j.matchemphys.2018.03.034
145Q. Y. Luo, H. M. Yuan, M. Zhang, P. Jiang, M. Liu, D. Xu, X. Guo, Y. Q. Wu, J. Hazard. Mater. 2021, 401, 123432. 10.1016/j.jhazmat.2020.12343232763714
129H. Peng, D. X. Liu, X. G. Zheng, X. J. Fu, Nanomaterials 2019, 9, 1657. 10.3390/nano9121657
30S. R. Zheng, Z. Y. Xu, Y. D. Wang, J. Photochem. Photobiol., A 2000, 137, 185. 10.1016/S1010-6030(00)00370-1
73J. F. Qu, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2017, 207, 404. 10.1016/j.apcatb.2017.02.050
79J. W. Pan, Z. J. Guan, J. J. Yang, Q. Y. Li, Chin. J. Catal. 2020, 41, 200. 10.1016/S1872-2067(19)63422-4
146J. Zhou, M. Li, W. Zhou, J. Hu, Y. C. Long, Y. F. Tsang, S. Q. Zhou, Sci. Total Environ. 2020, 748, 141425. 10.1016/j.scitotenv.2020.14142532798878
9Q. Zhou, Y. Li, H. Yang, Y. Gao, J. Environ. Sci. 2020, 90, 385. 10.1016/j.jes.2019.12.003
104B. Xu, T. Ding, Y. C. Zhang, Y. T. Wen, Z. J. Yang, M. Zhang, Mater. Lett. 2017, 187, 123. 10.1016/j.matlet.2016.10.094
14M. Zare-Moghadam, M. Shamsipur, F. Molaabasi, B. Hajipour-Verdom, Talanta 2020, 209, 120521. 10.1016/j.talanta.2019.12052131892071
110M. R. Li, C. Song, Y. Wu, M. Wang, Z. P. Pan, Y. Sun, L. Meng, S. G. Han, L. J. Xu, L. Gan, Appl. Surf. Sci. 2019, 478, 744. 10.1016/j.apsusc.2019.02.017
23Q. Cheng, C. W. Wang, K. Doudrick, C. Chen, Appl. Catal., B 2015, 176–177, 740. 10.1016/j.apcatb.2015.04.047
37M. Lu, Y. Cheng, S. L. Pan, Water Air Soil Pollut. 2015, 226, 295. 10.1007/s11270-015-2570-8
52E. I. García-López, G. Marcì, M. V. Dozzi, L. Palmisano, E. Selli, Catal. Today 2019, 328, 118. 10.1016/j.cattod.2019.01.038
59J. Zhang, L. L. Zhang, Y. X. Shi, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, Appl. Surf. Sci. 2017, 420, 839. 10.1016/j.apsusc.2017.05.160
142C. B. Liu, Y. B. Ding, W. Q. Wu, Y. R. Teng, Chem. Eng. J. 2016, 306, 22. 10.1016/j.cej.2016.07.043
49S. X. Zhang, H. Y. Niu, Y. Q. Cai, X. L. Zhao, Y. L. Shi, Chem. Eng. J. 2010, 158, 599. 10.1016/j.cej.2010.02.013
119K. R. Zhu, Y. Gao, X. L. Tan, C. L. Chen, ACS Sustainable Chem. Eng. 2016, 4, 4361. 10.1021/acssuschemeng.6b00922
144Z. M. Lv, X. L. Tan, C. M. Wang, A. Alsaedi, T. Hayat, C. L. Chen, Chem. Eng. J. 2020, 389, 123428. 10.1016/j.cej.2019.123428
130M. A. Barakat, Arabian J. Chem. 2011, 4, 361. 10.1016/j.arabjc.2010.07.019
122X. Wang, Y. X. Li, X. H. Yi, C. Zhao, P. Wang, J. G. Deng, C. C. Wang, Chin. J. Catal. 2021, 42, 259. 10.1016/S1872-2067(20)63629-4
76G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Colloid Interface Sci. 2018, 514, 306. 10.1016/j.jcis.2017.12.04529275249
115J. W. Wang, F. G. Qiu, P. Wang, C. J. Ge, C. C. Wang, J. Clean. Prod. 2021, 279, 123408. 10.1016/j.jclepro.2020.123408
80J. H. Qiu, M. Li, L. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990
34N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, J. Hazard. Mater. 2011, 185, 1398. 10.1016/j.jhazmat.2010.10.06121075516
86Y. L. Zhao, C. P. Lin, H. J. Bi, Y. G. Liu, Q. S. Yan, Appl. Surf. Sci. 2017, 392, 701. 10.1016/j.apsusc.2016.09.099
132S. Sessarego, S. C. G. Rodrigues, Y. Xiao, Q. Y. Lu, J. M. Hill, Carbohydr. Polym. 2019, 211, 249. 10.1016/j.carbpol.2019.02.00330824086
15S. Catalani, J. Fostinelli, M. E. Gilberti, P. Apostoli, Int. J. Mass Spectrom. 2015, 387, 31. 10.1016/j.ijms.2015.06.015
141D. Pan, S. S. Ge, J. Y. Tian, Q. Shao, L. Guo, H. Liu, S. D. Wu, T. Ding, Z. H. Guo, Chem. Rec. 2020, 20, 355. 10.1002/tcr.20190004631454151
47X. F. Lei, C. Chen, X. Li, X. X. Xue, H. Yang, Sep. Purif. Technol. 2016, 161, 8. 10.1016/j.seppur.2016.01.030
25Y. F. Li, D. Xu, J. I. Oh, W. Z. Shen, X. Li, Y. Yu, J. Am. Chem. Soc. 2012, 2, 391.
107K. Z. Qi, B. Cheng, J. G. Yu, W. K. Ho, Chin. J. Catal. 2017, 38, 1936. 10.1016/S1872-2067(17)62962-0
22http://www.webofscience.com/.
40S. Patnaik, G. Swain, K. M. Parida, Nanoscale 2018, 10, 5950. 10.1039/C7NR09049H29542755
61R. J. Wei, J. C. Hu, T. F. Zhou, X. L. Zhou, J. X. Liu, J. J. Li, Acta Mater. 2014, 66, 163.10.1016/j.actamat.2013.11.076
96X. Gao, X. X. Liu, Z. M. Zhu, X. G. Wang, Z. Xie, Sci. Rep. 2016, 6, 30543. 10.1038/srep3054327464888
39F. W. Zhang, Q. J. Wen, M. Z. Hong, Z. Y. Zhang, Y. Yu, Chem. Eng. J. 2017, 307, 593. 10.1016/j.cej.2016.08.120
74F. Zhang, Y. C. Zhang, C. Q. Zhou, Z. J. Yang, H. G. Xue, D. D. Dionysiou, Chem. Eng. J. 2017, 324, 140. 10.1016/j.cej.2017.05.009
26Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, J. H. Ye, J. Am. Chem. Soc. 2011, 133, 6490. 10.1021/ja200213221486031
36J. Hou, C. Yang, Z. Wang, Q. Ji, Y. Li, G. Huang, S. Jiao, H. Zhu, Appl. Catal., B 2013, 142–143, 579. 10.1016/j.apcatb.2013.05.078
44Y. Bessekhouad, D. Robert, J. V. Weber, N. Chaoui, J. Photochem. Photobiol., A 2004, 167, 49. 10.1016/j.jphotochem.2003.12.001
92N. R. Su, P. Lv, M. Li, X. L. Zhang, M. H. Li, J. S. Niu, Mater. Lett. 2014, 122, 201. 10.1016/j.matlet.2013.12.106
53E. Carbo-Argibay, X. Q. Bao, C. Rodriguez-Abreu, M. F. Cerqueira, D. Y. Petrovykh, L. F. Liu, Y. V. Kolen’ko, J. Colloid Interface Sci. 2015, 456, 219. 10.1016/j.jcis.2015.06.01426133278
75M. Sun, K. L. Mu, Q. Q. Wei, Z. Yin, W. Y. Yan, L. Sun, Y. Shao, J. Colloid Interface Sci. 2018, 518, 298. 10.1016/j.jcis.2018.02.04529475051
85S. Gautam, S. Muthurani, M. Balaji, P. Thakur, D. Pathinettam Padiyan, K. H. Chae, S. S. Kim, K. Asokan, Nanotechnology 2011, 11, 386.
3M. Costa, Crit. Rev. Toxicol. 1997, 27, 431. 10.3109/104084497090784429347224
127Y. X. Li, H. F. Fu, P. Wang, C. Zhao, W. Liu, C. C. Wang, Environ. Pollut. 2020, 256, 113417. 10.1016/j.envpol.2019.11341731662269
11R. Gaur, P. Jeevanandam, J. Nanosci. Nanotechnol. 2018, 18, 165. 10.1166/jnn.2018.1460429768828
68S. L. Wang, Surf. Sci. 2019, 690, 121469. 10.1016/j.susc.2019.121469
89R. M. Khafagy, J. Alloys Compd. 2011, 509, 9849. 10.1016/j.jallcom.2011.07.008
28M. A. Aguado, J. Giménez, S. Cervera-March, Chem. Eng. Commun. 1991, 104, 71. 10.1080/00986449108910875
69T. X. Wang, S. H. Xu, F. X. Yang, Mater. Lett. 2012, 83, 46. 10.1016/j.matlet.2012.05.121
100Y. Q. Guo, Y. D. Guo, D. Tang, Y. Y. Liu, X. G. Wang, P. Li, G. H. Wang, J. Alloys Compd. 2019, 781, 1101. 10.1016/j.jallcom.2018.12.050
109C. R. Chen, L. J. Xun, P. Zhang, J. L. Zhang, B. Z. Tian, Res. Chem. Intermed. 2019, 45, 3513. 10.1007/s11164-019-03805-4
64M. A. Lara, C. Jaramillo-Páez, J. A. Navío, P. Sánchez-Cid, M. C. Hidalgo, Catal. Today 2019, 328, 142. 10.1016/j.cattod.2018.11.012
72L. Han, Y. L. Zhong, Y. Su, L. T. Wang, L. S. Zhu, X. F. Fei, Y. Z. Dong, G. Hong, Y. T. Zhou, D. Fang, Chem. Eng. J. 2019, 369, 1138. 10.1016/j.cej.2019.03.096
140H. Selcuk, J. J. Sene, M. A. Anderson, J. Chem. Technol. Biotechnol. 2003, 78, 979. 10.1002/jctb.895
18A. Shokati Poursani, A. Nilchi, A. H. Hassani, M. Shariat, J. Nouri, Int. J. Environ. Sci. Technol. 2015, 12, 2003. 10.1007/s13762-014-0740-7
8C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 2012, 223–224, 1. 10.1016/j.jhazmat.2012.04.05422608208
6B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey, J. Hazard. Mater. 2013, 250–251, 272. 10.1016/j.jhazmat.2013.01.04823467183
48X. Fang, J. Xiao, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2015, 162, 544. 10.1016/j.apcatb.2014.07.022
82G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Angew. Chem., Int. Ed. 2020, 59, 8255. 10.1002/anie.202000503
113Q. X. Liu, C. M. Zeng, L. H. Ai, Z. Hao, J. Jiang, Appl. Catal., B 2018, 224, 38. 10.1016/j.apcatb.2017.10.029
21A. Fujishima, X. Zhang, C. R. Chim. 2006, 9, 750. 10.1016/j.crci.2005.02.055
54F. P. Peng, Q. Zhou, C. H. Lu, Y. R. Ni, J. H. Kou, Z. Z. Xu, Appl. Surf. Sci. 2017, 394, 115. 10.1016/j.apsusc.2016.10.066
98Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. 10.1002/adfm.200902390
13O. A. Zelekew, D. H. Kuo, H. Abdullah, Adv. Powder Technol. 2019, 30, 3099. 10.1016/j.apt.2019.09.016
105S. Patnaik, K. K. Das, A. Mohanty, K. Parida, Catal. Today 2018, 315, 52. 10.1016/j.cattod.2018.04.008
114W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci. 2017, 425, 107. 10.1016/j.apsusc.2017.07.050
143Q. Wang, Q. Y. Gao, H. Wu, Y. J. Fan, D. G. Lin, Q. He, Y. Zhang, Y. Q. Cong, Sep. Purif. Technol. 2019, 226, 232. 10.1016/j.seppur.2019.06.002
46R. Ravindranath, P. Roy, A. P. Periasamy, H. T. Chang, RSC Adv. 2014, 4, 57290. 10.1039/C4RA10192H
32B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Chemosphere 2006, 63, 956. 10.1016/j.chemosphere.2005.08.06416297430
55Y. Jiang, J. G. Sun, S. J. Wu, Catal. Lett. 2017, 147, 2006. 10.1007/s10562-017-2118-1
24R. Acharya, B. Naik, K. Parida, Beilstein J. Nanotechnol. 2018, 9, 1448. 10.3762/bjnano.9.13729977679
138H. A. Maitlo, K. H. Kim, V. Kumar, S. Kim, J. W. Park, Environ. Int. 2019, 130, 104748. 10.1016/j.envint.2019.04.02031252168
124Y. X. Li, X. Wang, C. C. Wang, H. F. Fu, Y. B. Liu, P. Wang, C. Zhao, J. Hazard. Mater. 2020, 399, 123085. 10.1016/j.jhazmat.2020.12308532534399
131Y. C. Du, L. P. Wang, J. S. Wang, G. S. Wu, H. X. Dai, J. Environ. Sci. 2015, 29, 71. 10.1016/j.jes.2014.06.047
56C. N. Van, W. S. Chang, J. W. Chen, K. A. Tsai, W. Y. Tzeng, Y. C. Lin, H. H. Kuo, H. J. Liu, K. D. Chang, W. C. Chou, C. L. Wu, Y. C. Chen, C. W. Luo, Y. J. Hsu, Y. H. Chu, Nano Energy 2015, 15, 625.10.1016/j.nanoen.2015.05.024
87P. Chen, X. Xing, H. F. Xie, Q
Ferreira (2024012104374659600_r16) 2018; 183
Sessarego (2024012104374659600_r132) 2019; 211
Wang (2024012104374659600_r38) 2016; 317
Hussain (2024012104374659600_r78) 2020; 13
Maitlo (2024012104374659600_r138) 2019; 130
Zhang (2024012104374659600_r49) 2010; 158
Xu (2024012104374659600_r104) 2017; 187
Zhao (2024012104374659600_r2) 2019; 19
Yi (2024012104374659600_r126) 2019; 33
Chen (2024012104374659600_r87) 2016; 660
Abdullah (2024012104374659600_r67) 2016; 51
Nasrallah (2024012104374659600_r34) 2011; 185
Hou (2024012104374659600_r98) 2010; 20
Ren (2024012104374659600_r1) 2018; 315
Barakat (2024012104374659600_r130) 2011; 4
Zhou (2024012104374659600_r9) 2020; 90
Dhal (2024012104374659600_r6) 2013; 250–251
Lu (2024012104374659600_r19) 2016; 104
Lara (2024012104374659600_r64) 2019; 328
Qu (2024012104374659600_r73) 2017; 207
Guo (2024012104374659600_r125) 2019; 7
2024012104374659600_r22
Xie (2024012104374659600_r27) 2019; 784
Wang (2024012104374659600_r108) 2019; 244
Zhao (2024012104374659600_r121) 2021; 752
Yao (2024012104374659600_r33) 2010; 256
Zhang (2024012104374659600_r57) 2016; 676
Paschoal (2024012104374659600_r20) 2009; 166
Zelekew (2024012104374659600_r13) 2019; 30
Gaur (2024012104374659600_r11) 2018; 18
Barrera-Díaz (2024012104374659600_r8) 2012; 223–224
Zare-Moghadam (2024012104374659600_r14) 2020; 209
Liu (2024012104374659600_r51) 2011; 47
Malaviya (2024012104374659600_r135) 2011; 41
Shokati Poursani (2024012104374659600_r18) 2015; 12
Bessekhouad (2024012104374659600_r44) 2004; 167
Selcuk (2024012104374659600_r140) 2003; 78
Li (2024012104374659600_r25) 2012; 2
Liu (2024012104374659600_r142) 2016; 306
Liu (2024012104374659600_r113) 2018; 224
Cheng (2024012104374659600_r77) 2020; 391
García-López (2024012104374659600_r52) 2019; 328
Carbo-Argibay (2024012104374659600_r53) 2015; 456
Feng (2024012104374659600_r97) 2017; 4
Van (2024012104374659600_r56) 2015; 15
Jiang (2024012104374659600_r55) 2017; 147
Low (2024012104374659600_r106) 2017; 1
Zhao (2024012104374659600_r84) 2018; 44
Xie (2024012104374659600_r32) 2006; 63
Ravishankar (2024012104374659600_r45) 2016; 78
Gautam (2024012104374659600_r85) 2011; 11
Zhang (2024012104374659600_r83) 2018; 232
Ravindranath (2024012104374659600_r46) 2014; 4
Peng (2024012104374659600_r54) 2017; 394
Patnaik (2024012104374659600_r40) 2018; 10
Wang (2024012104374659600_r60) 2018; 43
Fu (2024012104374659600_r120) 2020; 837
Navío (2024012104374659600_r29) 1998; 16
Kaur (2024012104374659600_r134) 2015; 653
Aguado (2024012104374659600_r28) 1991; 104
Wang (2024012104374659600_r69) 2012; 83
Lu (2024012104374659600_r37) 2015; 226
Du (2024012104374659600_r95) 2018; 271
Du (2024012104374659600_r112) 2019; 356
Huang (2024012104374659600_r65) 2019; 221
He (2024012104374659600_r35) 2013; 52
Wang (2024012104374659600_r68) 2019; 690
Chen (2024012104374659600_r118) 2018; 526
Ren (2024012104374659600_r137) 2018; 408
Sun (2024012104374659600_r75) 2018; 518
Wang (2024012104374659600_r70) 2013; 129
Fujishima (2024012104374659600_r21) 2006; 9
Bi (2024012104374659600_r26) 2011; 133
Khafagy (2024012104374659600_r89) 2011; 509
Wang (2024012104374659600_r143) 2019; 226
Wang (2024012104374659600_r139) 2017; 205
Zhou (2024012104374659600_r146) 2020; 748
Wojtyla (2024012104374659600_r71) 2018; 212
Fang (2024012104374659600_r103) 2018; 58
Luo (2024012104374659600_r145) 2021; 401
Li (2024012104374659600_r116) 2020; 844
Yi (2024012104374659600_r128) 2019; 375
Lu (2024012104374659600_r133) 2017; 247
Ye (2024012104374659600_r111) 2019; 365
Costa (2024012104374659600_r3) 1997; 27
Wang (2024012104374659600_r63) 2018; 439
Patnaik (2024012104374659600_r105) 2018; 315
Acharya (2024012104374659600_r24) 2018; 9
Wang (2024012104374659600_r115) 2021; 279
Jobby (2024012104374659600_r10) 2018; 207
Huang (2024012104374659600_r114) 2017; 425
Li (2024012104374659600_r58) 2014; 4
Peng (2024012104374659600_r129) 2019; 9
Celebi (2024012104374659600_r5) 2017; 2
Li (2024012104374659600_r4) 2021; 405
Habibi-Yangjeh (2024012104374659600_r41) 2019; 29
Du (2024012104374659600_r131) 2015; 29
Somasundaram (2024012104374659600_r31) 2004; 16
Su (2024012104374659600_r92) 2014; 122
Zhao (2024012104374659600_r86) 2017; 392
Gao (2024012104374659600_r96) 2016; 6
Pan (2024012104374659600_r141) 2020; 20
Rai (2024012104374659600_r91) 2014; 95
Lin (2024012104374659600_r136) 2008; 63
Wang (2024012104374659600_r66) 2017; 7
Yuan (2024012104374659600_r93) 2015; 61
Shakir (2024012104374659600_r94) 2016; 660
Luo (2024012104374659600_r99) 2011; 79
Lv (2024012104374659600_r144) 2020; 389
Catalani (2024012104374659600_r15) 2015; 387
Fang (2024012104374659600_r48) 2015; 162
Guo (2024012104374659600_r100) 2019; 781
Lei (2024012104374659600_r47) 2016; 161
Chen (2024012104374659600_r109) 2019; 45
Yang (2024012104374659600_r42) 2020; 390
Jia (2024012104374659600_r7) 2018; 93
Li (2024012104374659600_r127) 2020; 256
Cheng (2024012104374659600_r23) 2015; 176–177
Qi (2024012104374659600_r107) 2017; 38
Zhu (2024012104374659600_r119) 2016; 4
Zhang (2024012104374659600_r82) 2020; 59
Wei (2024012104374659600_r61) 2014; 66
Zhang (2024012104374659600_r76) 2018; 514
Tang (2024012104374659600_r90) 2013; 47
Behera (2024012104374659600_r102) 2019; 544
Zheng (2024012104374659600_r30) 2000; 137
Ali (2024012104374659600_r50) 2015; 33
Hou (2024012104374659600_r36) 2013; 142–143
Zhao (2024012104374659600_r43) 2016; 185
Li (2024012104374659600_r81) 2020; 122
Wang (2024012104374659600_r123) 2015; 286
Li (2024012104374659600_r110) 2019; 478
Patil (2024012104374659600_r88) 2015; 44
Yu (2024012104374659600_r17) 2015; 3
Wang (2024012104374659600_r117) 2016; 193
Wang (2024012104374659600_r122) 2021; 42
Li (2024012104374659600_r124) 2020; 399
Rekhila (2024012104374659600_r101) 2016; 5
Shi (2024012104374659600_r62) 2015; 66
Qiu (2024012104374659600_r80) 2019; 375
Zhang (2024012104374659600_r39) 2017; 307
Zhang (2024012104374659600_r59) 2017; 420
Zhang (2024012104374659600_r74) 2017; 324
Pan (2024012104374659600_r79) 2020; 41
Qiu (2024012104374659600_r12) 2019; 375
Han (2024012104374659600_r72) 2019; 369
References_xml – reference: 72L. Han, Y. L. Zhong, Y. Su, L. T. Wang, L. S. Zhu, X. F. Fei, Y. Z. Dong, G. Hong, Y. T. Zhou, D. Fang, Chem. Eng. J. 2019, 369, 1138. 10.1016/j.cej.2019.03.096
– reference: 33Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, X. Bai, Appl. Surf. Sci. 2010, 256, 1793. 10.1016/j.apsusc.2009.10.005
– reference: 106J. X. Low, C. J. Jiang, B. Cheng, S. Wageh, A. A. AI-Ghamdi, J. G. Yu, Small Methods 2017, 1, 1700080. 10.1002/smtd.201700080
– reference: 114W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci. 2017, 425, 107. 10.1016/j.apsusc.2017.07.050
– reference: 82G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Angew. Chem., Int. Ed. 2020, 59, 8255. 10.1002/anie.202000503
– reference: 32B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Chemosphere 2006, 63, 956. 10.1016/j.chemosphere.2005.08.06416297430
– reference: 27J. Xie, N. N. Guo, A. J. Liu, Y. L. Gao, J. D. Hu, D. Z. Jia, J. Alloys Compd. 2019, 784, 377. 10.1016/j.jallcom.2018.12.386
– reference: 132S. Sessarego, S. C. G. Rodrigues, Y. Xiao, Q. Y. Lu, J. M. Hill, Carbohydr. Polym. 2019, 211, 249. 10.1016/j.carbpol.2019.02.00330824086
– reference: 78M. B. Hussain, U. Azhar, H. M. Loussala, R. Razaq, Arabian J. Chem. 2020, 13, 5939. 10.1016/j.arabjc.2020.04.029
– reference: 17J. Y. Yu, S. D. Zhuang, X. Y. Xu, W. C. Zhu, B. Feng, J. G. Hu, J. Mater. Chem. A 2015, 3, 1199. 10.1039/C4TA04526B
– reference: 22http://www.webofscience.com/.
– reference: 94I. Shakir, M. Sarfraz, Z. Ali, M. F. A. Aboud, P. O. Agboola, J. Alloys Compd. 2016, 660, 450. 10.1016/j.jallcom.2015.11.055
– reference: 144Z. M. Lv, X. L. Tan, C. M. Wang, A. Alsaedi, T. Hayat, C. L. Chen, Chem. Eng. J. 2020, 389, 123428. 10.1016/j.cej.2019.123428
– reference: 136Y. T. Lin, C. P. Huang, Sep. Purif. Technol. 2008, 63, 191. 10.1016/j.seppur.2008.05.001
– reference: 83G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2018, 232, 164. 10.1016/j.apcatb.2018.03.017
– reference: 48X. Fang, J. Xiao, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2015, 162, 544. 10.1016/j.apcatb.2014.07.022
– reference: 34N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, J. Hazard. Mater. 2011, 185, 1398. 10.1016/j.jhazmat.2010.10.06121075516
– reference: 140H. Selcuk, J. J. Sene, M. A. Anderson, J. Chem. Technol. Biotechnol. 2003, 78, 979. 10.1002/jctb.895
– reference: 59J. Zhang, L. L. Zhang, Y. X. Shi, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, Appl. Surf. Sci. 2017, 420, 839. 10.1016/j.apsusc.2017.05.160
– reference: 126X. H. Yi, F. X. Wang, X. D. Du, P. Wang, C. C. Wang, Appl. Organomet. Chem. 2019, 33, e4621. 10.1002/aoc.4621
– reference: 97J. T. Feng, Y. C. Wang, Y. H. Hou, L. C. Li, Inorg. Chem. Front. 2017, 4, 935. 10.1039/C7QI00120G
– reference: 115J. W. Wang, F. G. Qiu, P. Wang, C. J. Ge, C. C. Wang, J. Clean. Prod. 2021, 279, 123408. 10.1016/j.jclepro.2020.123408
– reference: 146J. Zhou, M. Li, W. Zhou, J. Hu, Y. C. Long, Y. F. Tsang, S. Q. Zhou, Sci. Total Environ. 2020, 748, 141425. 10.1016/j.scitotenv.2020.14142532798878
– reference: 112X. D. Du, X. H. Yi, P. Wang, W. W. Zheng, J. G. Deng, C. C. Wang, Chem. Eng. J. 2019, 356, 393. 10.1016/j.cej.2018.09.084
– reference: 25Y. F. Li, D. Xu, J. I. Oh, W. Z. Shen, X. Li, Y. Yu, J. Am. Chem. Soc. 2012, 2, 391.
– reference: 21A. Fujishima, X. Zhang, C. R. Chim. 2006, 9, 750. 10.1016/j.crci.2005.02.055
– reference: 45T. N. Ravishankar, G. Nagaraju, J. Dupont, Mater. Res. Bull. 2016, 78, 103. 10.1016/j.materresbull.2016.02.017
– reference: 67H. Abdullah, D. H. Kuo, Y. H. Chen, J. Mater. Sci. 2016, 51, 8209. 10.1007/s10853-016-0096-0
– reference: 40S. Patnaik, G. Swain, K. M. Parida, Nanoscale 2018, 10, 5950. 10.1039/C7NR09049H29542755
– reference: 36J. Hou, C. Yang, Z. Wang, Q. Ji, Y. Li, G. Huang, S. Jiao, H. Zhu, Appl. Catal., B 2013, 142–143, 579. 10.1016/j.apcatb.2013.05.078
– reference: 105S. Patnaik, K. K. Das, A. Mohanty, K. Parida, Catal. Today 2018, 315, 52. 10.1016/j.cattod.2018.04.008
– reference: 75M. Sun, K. L. Mu, Q. Q. Wei, Z. Yin, W. Y. Yan, L. Sun, Y. Shao, J. Colloid Interface Sci. 2018, 518, 298. 10.1016/j.jcis.2018.02.04529475051
– reference: 119K. R. Zhu, Y. Gao, X. L. Tan, C. L. Chen, ACS Sustainable Chem. Eng. 2016, 4, 4361. 10.1021/acssuschemeng.6b00922
– reference: 24R. Acharya, B. Naik, K. Parida, Beilstein J. Nanotechnol. 2018, 9, 1448. 10.3762/bjnano.9.13729977679
– reference: 35Z. He, Q. Cai, M. Wu, Y. Shi, H. Fang, L. Li, J. Chen, J. Chen, S. Song, Ind. Eng. Chem. Res. 2013, 52, 9556. 10.1021/ie400812m
– reference: 63W. Wang, M. Lai, J. J. Fang, C. H. Lu, Appl. Surf. Sci. 2018, 439, 430. 10.1016/j.apsusc.2017.12.249
– reference: 1Z. X. Ren, L. Li, B. B. Liu, X. J. Liu, Z. Li, X. Lei, C. Li, Y. Y. Gong, L. Y. Niu, L. K. Pan, Catal. Today 2018, 315, 46. 10.1016/j.cattod.2018.01.021
– reference: 11R. Gaur, P. Jeevanandam, J. Nanosci. Nanotechnol. 2018, 18, 165. 10.1166/jnn.2018.1460429768828
– reference: 39F. W. Zhang, Q. J. Wen, M. Z. Hong, Z. Y. Zhang, Y. Yu, Chem. Eng. J. 2017, 307, 593. 10.1016/j.cej.2016.08.120
– reference: 90W. S. Tang, Y. Su, Q. Li, S. Gao, J. K. Shang, Water Res. 2013, 47, 3624. 10.1016/j.watres.2013.04.02323726698
– reference: 16T. A. Ferreira, J. A. Rodríguez, C. A. Galán-Vidal, Y. Castrillejo, E. Barrado, Talanta 2018, 183, 172. 10.1016/j.talanta.2018.02.05429567160
– reference: 19J. Lu, Z. R. Wang, Y. L. Liu, Q. Tang, Process Saf. Environ. Prot. 2016, 104, 436. 10.1016/j.psep.2016.04.023
– reference: 137G. P. Ren, Y. Sun, A. H. Lu, Y. Li, H. R. Ding, J. Power Sources 2018, 408, 46. 10.1016/j.jpowsour.2018.10.081
– reference: 64M. A. Lara, C. Jaramillo-Páez, J. A. Navío, P. Sánchez-Cid, M. C. Hidalgo, Catal. Today 2019, 328, 142. 10.1016/j.cattod.2018.11.012
– reference: 41A. Habibi-Yangjeh, M. Shekofteh-Gohari, Prog. Nat. Sci.: Mater. Int. 2019, 29, 145. 10.1016/j.pnsc.2019.03.003
– reference: 68S. L. Wang, Surf. Sci. 2019, 690, 121469. 10.1016/j.susc.2019.121469
– reference: 62J. W. Shi, C. Xie, C. He, C. Liu, C. Gao, S. H. Yang, J. W. Chen, G. D. Li, Catal. Commun. 2015, 66, 46. 10.1016/j.catcom.2015.03.016
– reference: 85S. Gautam, S. Muthurani, M. Balaji, P. Thakur, D. Pathinettam Padiyan, K. H. Chae, S. S. Kim, K. Asokan, Nanotechnology 2011, 11, 386.
– reference: 70W. J. Wang, T. W. Ng, W. K. Ho, J. H. Huang, S. J. Liang, T. C. An, G. Y. Li, J. C. Yu, P. K. Wong, Appl. Catal., B 2013, 129, 482. 10.1016/j.apcatb.2012.09.054
– reference: 74F. Zhang, Y. C. Zhang, C. Q. Zhou, Z. J. Yang, H. G. Xue, D. D. Dionysiou, Chem. Eng. J. 2017, 324, 140. 10.1016/j.cej.2017.05.009
– reference: 30S. R. Zheng, Z. Y. Xu, Y. D. Wang, J. Photochem. Photobiol., A 2000, 137, 185. 10.1016/S1010-6030(00)00370-1
– reference: 5M. Celebi, K. Karakas, I. E. Ertas, M. Kaya, M. Zahmarkiran, ChemistrySelect 2017, 2, 8312. 10.1002/slct.201700967
– reference: 29J. A. Navío, G. Colón, M. Trillas, J. Peral, X. Domènech, J. J. Testa, J. Padrón, D. Rodrı́guez, M. I. Litter, Appl. Catal., B 1998, 16, 187. 10.1016/S0926-3373(97)00073-8
– reference: 18A. Shokati Poursani, A. Nilchi, A. H. Hassani, M. Shariat, J. Nouri, Int. J. Environ. Sci. Technol. 2015, 12, 2003. 10.1007/s13762-014-0740-7
– reference: 84C. H. Zhao, W. Z. Lan, H. M. Gong, J. L. Bai, R. Ramachandran, S. Liu, F. Wang, Ceram. Int. 2018, 44, 2856. 10.1016/j.ceramint.2017.11.032
– reference: 6B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey, J. Hazard. Mater. 2013, 250–251, 272. 10.1016/j.jhazmat.2013.01.04823467183
– reference: 12J. H. Qiu, M. Li, L. Y. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990
– reference: 26Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, J. H. Ye, J. Am. Chem. Soc. 2011, 133, 6490. 10.1021/ja200213221486031
– reference: 113Q. X. Liu, C. M. Zeng, L. H. Ai, Z. Hao, J. Jiang, Appl. Catal., B 2018, 224, 38. 10.1016/j.apcatb.2017.10.029
– reference: 107K. Z. Qi, B. Cheng, J. G. Yu, W. K. Ho, Chin. J. Catal. 2017, 38, 1936. 10.1016/S1872-2067(17)62962-0
– reference: 141D. Pan, S. S. Ge, J. Y. Tian, Q. Shao, L. Guo, H. Liu, S. D. Wu, T. Ding, Z. H. Guo, Chem. Rec. 2020, 20, 355. 10.1002/tcr.20190004631454151
– reference: 100Y. Q. Guo, Y. D. Guo, D. Tang, Y. Y. Liu, X. G. Wang, P. Li, G. H. Wang, J. Alloys Compd. 2019, 781, 1101. 10.1016/j.jallcom.2018.12.050
– reference: 130M. A. Barakat, Arabian J. Chem. 2011, 4, 361. 10.1016/j.arabjc.2010.07.019
– reference: 58G. P. Li, Y. X. Wang, L. Q. Mao, RSC Adv. 2014, 4, 53649. 10.1039/C4RA08044K
– reference: 51G. Liu, J. C. Yu, G. Q. Lu, H. M. Cheng, Chem. Commun. 2011, 47, 6763. 10.1039/c1cc10665a
– reference: 53E. Carbo-Argibay, X. Q. Bao, C. Rodriguez-Abreu, M. F. Cerqueira, D. Y. Petrovykh, L. F. Liu, Y. V. Kolen’ko, J. Colloid Interface Sci. 2015, 456, 219. 10.1016/j.jcis.2015.06.01426133278
– reference: 95Y. C. Du, X. K. Wang, J. S. Wu, J. S. Wang, Y. Li, H. X. Dai, Microporous Mesoporous Mater. 2018, 271, 83. 10.1016/j.micromeso.2018.04.036
– reference: 61R. J. Wei, J. C. Hu, T. F. Zhou, X. L. Zhou, J. X. Liu, J. J. Li, Acta Mater. 2014, 66, 163.10.1016/j.actamat.2013.11.076
– reference: 110M. R. Li, C. Song, Y. Wu, M. Wang, Z. P. Pan, Y. Sun, L. Meng, S. G. Han, L. J. Xu, L. Gan, Appl. Surf. Sci. 2019, 478, 744. 10.1016/j.apsusc.2019.02.017
– reference: 101G. Rekhila, Y. Bessekhouad, M. Trari, Environ. Technol. Innovation 2016, 5, 127. 10.1016/j.eti.2016.01.007
– reference: 49S. X. Zhang, H. Y. Niu, Y. Q. Cai, X. L. Zhao, Y. L. Shi, Chem. Eng. J. 2010, 158, 599. 10.1016/j.cej.2010.02.013
– reference: 96X. Gao, X. X. Liu, Z. M. Zhu, X. G. Wang, Z. Xie, Sci. Rep. 2016, 6, 30543. 10.1038/srep3054327464888
– reference: 134M. Kaur, M. Singh, S. S. Mukhopadhyay, D. Singh, M. Gupta, J. Alloys Compd. 2015, 653, 202. 10.1016/j.jallcom.2015.08.265
– reference: 145Q. Y. Luo, H. M. Yuan, M. Zhang, P. Jiang, M. Liu, D. Xu, X. Guo, Y. Q. Wu, J. Hazard. Mater. 2021, 401, 123432. 10.1016/j.jhazmat.2020.12343232763714
– reference: 15S. Catalani, J. Fostinelli, M. E. Gilberti, P. Apostoli, Int. J. Mass Spectrom. 2015, 387, 31. 10.1016/j.ijms.2015.06.015
– reference: 52E. I. García-López, G. Marcì, M. V. Dozzi, L. Palmisano, E. Selli, Catal. Today 2019, 328, 118. 10.1016/j.cattod.2019.01.038
– reference: 118C. C. Chen, K. Zhu, K. Chen, A. Alsaedi, T. Hayat, J. Colloid Interface Sci. 2018, 526, 1. 10.1016/j.jcis.2018.04.09429709667
– reference: 92N. R. Su, P. Lv, M. Li, X. L. Zhang, M. H. Li, J. S. Niu, Mater. Lett. 2014, 122, 201. 10.1016/j.matlet.2013.12.106
– reference: 102A. Behera, S. Mansingh, K. K. Das, K. Parida, J. Colloid Interface Sci. 2019, 544, 96. 10.1016/j.jcis.2019.02.05630826534
– reference: 135P. Malaviya, A. Singh, Crit. Rev. Environ. Sci. Technol. 2011, 41, 1111. 10.1080/10643380903392817
– reference: 10R. Jobby, P. Jha, A. K. Yadav, N. Desai, Chemosphere 2018, 207, 255. 10.1016/j.chemosphere.2018.05.05029803157
– reference: 54F. P. Peng, Q. Zhou, C. H. Lu, Y. R. Ni, J. H. Kou, Z. Z. Xu, Appl. Surf. Sci. 2017, 394, 115. 10.1016/j.apsusc.2016.10.066
– reference: 111M. Ye, W. Wei, L. H. Zheng, Y. Z. Liu, D. W. Wu, X. Y. Gu, A. Wei, J. Hazard. Mater. 2019, 365, 674. 10.1016/j.jhazmat.2018.11.06930472453
– reference: 31S. Somasundaram, C. R. Chenthamarakshan, N. R. D. Tacconi, Y. Ming, K. Rajeshwar, Chem. Mater. 2004, 16, 3846. 10.1021/cm049293b
– reference: 57J. Zhang, L. H. Huang, L. X. Yang, Z. D. Lu, X. Y. Wang, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, J. Alloys Compd. 2016, 676, 37. 10.1016/j.jallcom.2016.03.090
– reference: 91A. K. Rai, T. V. Thi, J. Gim, J. Kim, Mater. Charact. 2014, 95, 259. 10.1016/j.matchar.2014.06.024
– reference: 2Z. Y. Zhao, H. An, J. Lin, M. C. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. M. Mai, N. Wang, H. B. Gu, S. Angaiah, Z. H. Guo, Chem. Rec. 2019, 19, 873. 10.1002/tcr.20180015330426677
– reference: 9Q. Zhou, Y. Li, H. Yang, Y. Gao, J. Environ. Sci. 2020, 90, 385. 10.1016/j.jes.2019.12.003
– reference: 127Y. X. Li, H. F. Fu, P. Wang, C. Zhao, W. Liu, C. C. Wang, Environ. Pollut. 2020, 256, 113417. 10.1016/j.envpol.2019.11341731662269
– reference: 42R. Yang, Z. Zhu, C. Hu, S. Zhong, L. Zhang, B. Liu, W. Wang, Chem. Eng. J. 2020, 390, 124522. 10.1016/j.cej.2020.124522
– reference: 103S. S. Fang, Y. W. Zhou, M. Zhou, Z. Y. Li, S. Xu, C. Yao, J. Ind. Eng. Chem. 2018, 58, 64. 10.1016/j.jiec.2017.09.008
– reference: 44Y. Bessekhouad, D. Robert, J. V. Weber, N. Chaoui, J. Photochem. Photobiol., A 2004, 167, 49. 10.1016/j.jphotochem.2003.12.001
– reference: 98Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. 10.1002/adfm.200902390
– reference: 129H. Peng, D. X. Liu, X. G. Zheng, X. J. Fu, Nanomaterials 2019, 9, 1657. 10.3390/nano9121657
– reference: 7J. Jia, P. Xue, R. M. Wang, X. Bai, X. Y. Hu, J. Fan, E. Z. Liu, J. Chem. Technol. Biotechnol. 2018, 93, 2988. 10.1002/jctb.5657
– reference: 124Y. X. Li, X. Wang, C. C. Wang, H. F. Fu, Y. B. Liu, P. Wang, C. Zhao, J. Hazard. Mater. 2020, 399, 123085. 10.1016/j.jhazmat.2020.12308532534399
– reference: 66Y. H. Wang, Y. X. Deng, L. G. Fan, Y. Zhao, B. Shen, D. Wu, Y. Zhou, C. C. Dong, M. Y. Xing, J. L. Zhang, RSC Adv. 2017, 7, 24064. 10.1039/C7RA02608K
– reference: 123H. Wang, X. Z. Yuan, Y. Wu, G. M. Zeng, X. H. Chen, L. J. Leng, Z. B. Wu, L. B. Jiang, H. Li, J. Hazard. Mater. 2015, 286, 187. 10.1016/j.jhazmat.2014.11.03925585267
– reference: 143Q. Wang, Q. Y. Gao, H. Wu, Y. J. Fan, D. G. Lin, Q. He, Y. Zhang, Y. Q. Cong, Sep. Purif. Technol. 2019, 226, 232. 10.1016/j.seppur.2019.06.002
– reference: 99S. L. Luo, X. Yan, L. X. Yang, C. B. Liu, F. Su, Y. Li, Q. Y. Cai, G. M. Zeng, Sep. Purif. Technol. 2011, 79, 85. 10.1016/j.seppur.2011.03.019
– reference: 8C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 2012, 223–224, 1. 10.1016/j.jhazmat.2012.04.05422608208
– reference: 55Y. Jiang, J. G. Sun, S. J. Wu, Catal. Lett. 2017, 147, 2006. 10.1007/s10562-017-2118-1
– reference: 65Z. Y. Huang, X. D. Dai, Z. J. Huang, T. L. Wang, L. H. Cui, J. Ye, P. X. Wu, Chemosphere 2019, 221, 824. 10.1016/j.chemosphere.2019.01.08730684780
– reference: 56C. N. Van, W. S. Chang, J. W. Chen, K. A. Tsai, W. Y. Tzeng, Y. C. Lin, H. H. Kuo, H. J. Liu, K. D. Chang, W. C. Chou, C. L. Wu, Y. C. Chen, C. W. Luo, Y. J. Hsu, Y. H. Chu, Nano Energy 2015, 15, 625.10.1016/j.nanoen.2015.05.024
– reference: 43W. Zhao, Y. Liu, Z. B. Wei, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2016, 185, 242. 10.1016/j.apcatb.2015.12.023
– reference: 121C. Zhao, J. S. Wang, X. Chen, Z. H. Wang, H. D. Ji, L. Chen, W. Liu, C. C. Wang, Sci. Total Environ. 2021, 752, 141901. 10.1016/j.scitotenv.2020.14190133207532
– reference: 122X. Wang, Y. X. Li, X. H. Yi, C. Zhao, P. Wang, J. G. Deng, C. C. Wang, Chin. J. Catal. 2021, 42, 259. 10.1016/S1872-2067(20)63629-4
– reference: 14M. Zare-Moghadam, M. Shamsipur, F. Molaabasi, B. Hajipour-Verdom, Talanta 2020, 209, 120521. 10.1016/j.talanta.2019.12052131892071
– reference: 138H. A. Maitlo, K. H. Kim, V. Kumar, S. Kim, J. W. Park, Environ. Int. 2019, 130, 104748. 10.1016/j.envint.2019.04.02031252168
– reference: 20F. M. M. Paschoal, M. A. Anderson, M. V. B. Zanoni, J. Hazard. Mater. 2009, 166, 531. 10.1016/j.jhazmat.2008.11.05819168284
– reference: 73J. F. Qu, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2017, 207, 404. 10.1016/j.apcatb.2017.02.050
– reference: 133F. F. Lu, C. Huang, L. J. You, Y. P. Yin, Q. Q. Zhang, J. Mol. Liq. 2017, 247, 141. 10.1016/j.molliq.2017.09.107
– reference: 37M. Lu, Y. Cheng, S. L. Pan, Water Air Soil Pollut. 2015, 226, 295. 10.1007/s11270-015-2570-8
– reference: 142C. B. Liu, Y. B. Ding, W. Q. Wu, Y. R. Teng, Chem. Eng. J. 2016, 306, 22. 10.1016/j.cej.2016.07.043
– reference: 80J. H. Qiu, M. Li, L. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990
– reference: 87P. Chen, X. Xing, H. F. Xie, Q. Sheng, H. X. Qu, Chem. Phys. Lett. 2016, 660, 176. 10.1016/j.cplett.2016.08.020
– reference: 88S. S. Patil, M. S. Tamboli, V. G. Deonikar, G. G. Umarji, J. D. Ambekar, M. V. Kulkarni, S. S. Kolekar, B. B. Kale, D. R. Patil, Dalton Trans. 2015, 44, 20426. 10.1039/C5DT03173G26508302
– reference: 93X. Z. Yuan, H. Wang, Y. Wu, X. H. Chen, G. M. Zeng, L. J. Leng, C. Zhang, Catal. Commun. 2015, 61, 62. 10.1016/j.catcom.2014.12.003
– reference: 38Q. Wang, X. D. Shi, E. Q. Liu, J. Hazard. Mater. 2016, 317, 8. 10.1016/j.jhazmat.2016.05.04427239723
– reference: 128X. H. Yi, S. Q. Ma, X. D. Du, C. Zhao, H. F. Fu, P. Wang, C. C. Wang, Chem. Eng. J. 2019, 375, 121944. 10.1016/j.cej.2019.121944
– reference: 47X. F. Lei, C. Chen, X. Li, X. X. Xue, H. Yang, Sep. Purif. Technol. 2016, 161, 8. 10.1016/j.seppur.2016.01.030
– reference: 81M. Li, J. H. Qiu, L. Yang, Y. Feng, J. F. Yao, Mater. Res. Bull. 2020, 122, 110671. 10.1016/j.materresbull.2019.110671
– reference: 4Y. X. Li, Y. C. Han, C. C. Wang, Chem. Eng. J. 2021, 405, 126648. 10.1016/j.cej.2020.126648
– reference: 46R. Ravindranath, P. Roy, A. P. Periasamy, H. T. Chang, RSC Adv. 2014, 4, 57290. 10.1039/C4RA10192H
– reference: 50I. O. Ali, A. G. Mostafa, Mater. Sci. Semicond. Process. 2015, 33, 189. 10.1016/j.mssp.2015.01.030
– reference: 109C. R. Chen, L. J. Xun, P. Zhang, J. L. Zhang, B. Z. Tian, Res. Chem. Intermed. 2019, 45, 3513. 10.1007/s11164-019-03805-4
– reference: 3M. Costa, Crit. Rev. Toxicol. 1997, 27, 431. 10.3109/104084497090784429347224
– reference: 77C. Cheng, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Hazard. Mater. 2020, 391, 122205. 10.1016/j.jhazmat.2020.12220532045805
– reference: 13O. A. Zelekew, D. H. Kuo, H. Abdullah, Adv. Powder Technol. 2019, 30, 3099. 10.1016/j.apt.2019.09.016
– reference: 69T. X. Wang, S. H. Xu, F. X. Yang, Mater. Lett. 2012, 83, 46. 10.1016/j.matlet.2012.05.121
– reference: 139Q. Wang, N. X. Zhu, E. Q. Liu, C. L. Zhang, J. C. Crittenden, Y. Zhang, Y. Q. Cong, Appl. Catal., B 2017, 205, 347. 10.1016/j.apcatb.2016.11.046
– reference: 76G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Colloid Interface Sci. 2018, 514, 306. 10.1016/j.jcis.2017.12.04529275249
– reference: 131Y. C. Du, L. P. Wang, J. S. Wang, G. S. Wu, H. X. Dai, J. Environ. Sci. 2015, 29, 71. 10.1016/j.jes.2014.06.047
– reference: 60J. M. Wang, Z. J. Wang, P. Qu, Q. C. Xu, J. F. Zheng, S. P. Jia, J. Z. Chen, Z. P. Zhu, Int. J. Hydrogen Energy 2018, 43, 7388. 10.1016/j.ijhydene.2018.02.191
– reference: 104B. Xu, T. Ding, Y. C. Zhang, Y. T. Wen, Z. J. Yang, M. Zhang, Mater. Lett. 2017, 187, 123. 10.1016/j.matlet.2016.10.094
– reference: 125J. Guo, J. J. Li, C. C. Wang, J. Environ. Chem. Eng. 2019, 7, 102909. 10.1016/j.jece.2019.102909
– reference: 23Q. Cheng, C. W. Wang, K. Doudrick, C. Chen, Appl. Catal., B 2015, 176–177, 740. 10.1016/j.apcatb.2015.04.047
– reference: 79J. W. Pan, Z. J. Guan, J. J. Yang, Q. Y. Li, Chin. J. Catal. 2020, 41, 200. 10.1016/S1872-2067(19)63422-4
– reference: 89R. M. Khafagy, J. Alloys Compd. 2011, 509, 9849. 10.1016/j.jallcom.2011.07.008
– reference: 116H. Li, C. Zhao, X. Li, H. F. Fu, Z. H. Wang, C. C. Wang, J. Alloys Compd. 2020, 844, 156147. 10.1016/j.jallcom.2020.156147
– reference: 86Y. L. Zhao, C. P. Lin, H. J. Bi, Y. G. Liu, Q. S. Yan, Appl. Surf. Sci. 2017, 392, 701. 10.1016/j.apsusc.2016.09.099
– reference: 120H. F. Fu, L. Wu, J. Hang, P. Wang, C. Zhao, C. C. Wang, J. Alloys Compd. 2020, 837, 155567. 10.1016/j.jallcom.2020.155567
– reference: 28M. A. Aguado, J. Giménez, S. Cervera-March, Chem. Eng. Commun. 1991, 104, 71. 10.1080/00986449108910875
– reference: 117C. C. Wang, X. D. Du, J. Li, X. X. Guo, P. Wang, J. Zhang, Appl. Catal., B 2016, 193, 198. 10.1016/j.apcatb.2016.04.030
– reference: 108Y. Wang, J. X. Zhao, Z. Chen, F. Zhang, W. Guo, H. M. Lin, F. Y. Qu, Appl. Catal., B 2019, 244, 76. 10.1016/j.apcatb.2018.11.033
– reference: 71S. Wojtyla, T. Baran, Mater. Chem. Phys. 2018, 212, 103. 10.1016/j.matchemphys.2018.03.034
– volume: 205
  start-page: 347
  year: 2017
  ident: 2024012104374659600_r139
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.11.046
– volume: 226
  start-page: 232
  year: 2019
  ident: 2024012104374659600_r143
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.06.002
– volume: 16
  start-page: 3846
  year: 2004
  ident: 2024012104374659600_r31
  publication-title: Chem. Mater.
  doi: 10.1021/cm049293b
– volume: 207
  start-page: 404
  year: 2017
  ident: 2024012104374659600_r73
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.02.050
– volume: 2
  start-page: 8312
  year: 2017
  ident: 2024012104374659600_r5
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201700967
– volume: 187
  start-page: 123
  year: 2017
  ident: 2024012104374659600_r104
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.10.094
– volume: 63
  start-page: 956
  year: 2006
  ident: 2024012104374659600_r32
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.08.064
– volume: 211
  start-page: 249
  year: 2019
  ident: 2024012104374659600_r132
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.02.003
– volume: 514
  start-page: 306
  year: 2018
  ident: 2024012104374659600_r76
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.12.045
– volume: 11
  start-page: 386
  year: 2011
  ident: 2024012104374659600_r85
  publication-title: Nanotechnology
– volume: 7
  start-page: 24064
  year: 2017
  ident: 2024012104374659600_r66
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02608K
– volume: 167
  start-page: 49
  year: 2004
  ident: 2024012104374659600_r44
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2003.12.001
– volume: 38
  start-page: 1936
  year: 2017
  ident: 2024012104374659600_r107
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62962-0
– volume: 20
  start-page: 2165
  year: 2010
  ident: 2024012104374659600_r98
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902390
– volume: 244
  start-page: 76
  year: 2019
  ident: 2024012104374659600_r108
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.033
– volume: 27
  start-page: 431
  year: 1997
  ident: 2024012104374659600_r3
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408449709078442
– volume: 221
  start-page: 824
  year: 2019
  ident: 2024012104374659600_r65
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.087
– volume: 33
  start-page: e4621
  year: 2019
  ident: 2024012104374659600_r126
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4621
– volume: 456
  start-page: 219
  year: 2015
  ident: 2024012104374659600_r53
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.06.014
– volume: 401
  start-page: 123432
  year: 2021
  ident: 2024012104374659600_r145
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123432
– volume: 30
  start-page: 3099
  year: 2019
  ident: 2024012104374659600_r13
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.09.016
– volume: 439
  start-page: 430
  year: 2018
  ident: 2024012104374659600_r63
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.249
– volume: 752
  start-page: 141901
  year: 2021
  ident: 2024012104374659600_r121
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141901
– volume: 15
  start-page: 625
  year: 2015
  ident: 2024012104374659600_r56
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.024
– volume: 122
  start-page: 110671
  year: 2020
  ident: 2024012104374659600_r81
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2019.110671
– volume: 223–224
  start-page: 1
  year: 2012
  ident: 2024012104374659600_r8
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.04.054
– volume: 166
  start-page: 531
  year: 2009
  ident: 2024012104374659600_r20
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.11.058
– volume: 279
  start-page: 123408
  year: 2021
  ident: 2024012104374659600_r115
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123408
– volume: 41
  start-page: 200
  year: 2020
  ident: 2024012104374659600_r79
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63422-4
– volume: 52
  start-page: 9556
  year: 2013
  ident: 2024012104374659600_r35
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400812m
– volume: 784
  start-page: 377
  year: 2019
  ident: 2024012104374659600_r27
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.386
– volume: 137
  start-page: 185
  year: 2000
  ident: 2024012104374659600_r30
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/S1010-6030(00)00370-1
– volume: 247
  start-page: 141
  year: 2017
  ident: 2024012104374659600_r133
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.09.107
– volume: 425
  start-page: 107
  year: 2017
  ident: 2024012104374659600_r114
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.050
– volume: 104
  start-page: 436
  year: 2016
  ident: 2024012104374659600_r19
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2016.04.023
– volume: 29
  start-page: 145
  year: 2019
  ident: 2024012104374659600_r41
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2019.03.003
– volume: 142–143
  start-page: 579
  year: 2013
  ident: 2024012104374659600_r36
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.05.078
– volume: 47
  start-page: 6763
  year: 2011
  ident: 2024012104374659600_r51
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10665a
– volume: 408
  start-page: 46
  year: 2018
  ident: 2024012104374659600_r137
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.081
– volume: 390
  start-page: 124522
  year: 2020
  ident: 2024012104374659600_r42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124522
– volume: 375
  start-page: 121990
  year: 2019
  ident: 2024012104374659600_r80
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121990
– volume: 42
  start-page: 259
  year: 2021
  ident: 2024012104374659600_r122
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63629-4
– volume: 375
  start-page: 121990
  year: 2019
  ident: 2024012104374659600_r12
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121990
– volume: 78
  start-page: 979
  year: 2003
  ident: 2024012104374659600_r140
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.895
– volume: 10
  start-page: 5950
  year: 2018
  ident: 2024012104374659600_r40
  publication-title: Nanoscale
  doi: 10.1039/C7NR09049H
– volume: 43
  start-page: 7388
  year: 2018
  ident: 2024012104374659600_r60
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.191
– volume: 13
  start-page: 5939
  year: 2020
  ident: 2024012104374659600_r78
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2020.04.029
– volume: 33
  start-page: 189
  year: 2015
  ident: 2024012104374659600_r50
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2015.01.030
– volume: 405
  start-page: 126648
  year: 2021
  ident: 2024012104374659600_r4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126648
– volume: 9
  start-page: 1448
  year: 2018
  ident: 2024012104374659600_r24
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.137
– volume: 212
  start-page: 103
  year: 2018
  ident: 2024012104374659600_r71
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.03.034
– volume: 2
  start-page: 391
  year: 2012
  ident: 2024012104374659600_r25
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 85
  year: 2011
  ident: 2024012104374659600_r99
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.03.019
– volume: 162
  start-page: 544
  year: 2015
  ident: 2024012104374659600_r48
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.07.022
– volume: 509
  start-page: 9849
  year: 2011
  ident: 2024012104374659600_r89
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.07.008
– volume: 256
  start-page: 113417
  year: 2020
  ident: 2024012104374659600_r127
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113417
– volume: 133
  start-page: 6490
  year: 2011
  ident: 2024012104374659600_r26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2002132
– volume: 41
  start-page: 1111
  year: 2011
  ident: 2024012104374659600_r135
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380903392817
– volume: 660
  start-page: 176
  year: 2016
  ident: 2024012104374659600_r87
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.08.020
– volume: 399
  start-page: 123085
  year: 2020
  ident: 2024012104374659600_r124
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123085
– volume: 161
  start-page: 8
  year: 2016
  ident: 2024012104374659600_r47
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.01.030
– volume: 66
  start-page: 163
  year: 2014
  ident: 2024012104374659600_r61
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.11.076
– volume: 1
  start-page: 1700080
  year: 2017
  ident: 2024012104374659600_r106
  publication-title: Small Methods
  doi: 10.1002/smtd.201700080
– volume: 185
  start-page: 242
  year: 2016
  ident: 2024012104374659600_r43
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.12.023
– volume: 4
  start-page: 361
  year: 2011
  ident: 2024012104374659600_r130
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2010.07.019
– volume: 4
  start-page: 57290
  year: 2014
  ident: 2024012104374659600_r46
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10192H
– volume: 9
  start-page: 1657
  year: 2019
  ident: 2024012104374659600_r129
  publication-title: Nanomaterials
  doi: 10.3390/nano9121657
– volume: 9
  start-page: 750
  year: 2006
  ident: 2024012104374659600_r21
  publication-title: C. R. Chim.
  doi: 10.1016/j.crci.2005.02.055
– volume: 518
  start-page: 298
  year: 2018
  ident: 2024012104374659600_r75
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.02.045
– volume: 18
  start-page: 165
  year: 2018
  ident: 2024012104374659600_r11
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.14604
– volume: 176–177
  start-page: 740
  year: 2015
  ident: 2024012104374659600_r23
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.04.047
– volume: 6
  start-page: 30543
  year: 2016
  ident: 2024012104374659600_r96
  publication-title: Sci. Rep.
  doi: 10.1038/srep30543
– volume: 78
  start-page: 103
  year: 2016
  ident: 2024012104374659600_r45
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.02.017
– volume: 122
  start-page: 201
  year: 2014
  ident: 2024012104374659600_r92
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.12.106
– volume: 4
  start-page: 4361
  year: 2016
  ident: 2024012104374659600_r119
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00922
– volume: 844
  start-page: 156147
  year: 2020
  ident: 2024012104374659600_r116
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156147
– volume: 5
  start-page: 127
  year: 2016
  ident: 2024012104374659600_r101
  publication-title: Environ. Technol. Innovation
  doi: 10.1016/j.eti.2016.01.007
– volume: 147
  start-page: 2006
  year: 2017
  ident: 2024012104374659600_r55
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-017-2118-1
– volume: 44
  start-page: 20426
  year: 2015
  ident: 2024012104374659600_r88
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT03173G
– volume: 748
  start-page: 141425
  year: 2020
  ident: 2024012104374659600_r146
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141425
– volume: 389
  start-page: 123428
  year: 2020
  ident: 2024012104374659600_r144
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123428
– volume: 286
  start-page: 187
  year: 2015
  ident: 2024012104374659600_r123
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.11.039
– volume: 375
  start-page: 121944
  year: 2019
  ident: 2024012104374659600_r128
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121944
– volume: 271
  start-page: 83
  year: 2018
  ident: 2024012104374659600_r95
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.04.036
– volume: 690
  start-page: 121469
  year: 2019
  ident: 2024012104374659600_r68
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2019.121469
– volume: 391
  start-page: 122205
  year: 2020
  ident: 2024012104374659600_r77
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122205
– volume: 129
  start-page: 482
  year: 2013
  ident: 2024012104374659600_r70
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2012.09.054
– volume: 58
  start-page: 64
  year: 2018
  ident: 2024012104374659600_r103
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.09.008
– volume: 185
  start-page: 1398
  year: 2011
  ident: 2024012104374659600_r34
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.061
– volume: 20
  start-page: 355
  year: 2020
  ident: 2024012104374659600_r141
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201900046
– volume: 478
  start-page: 744
  year: 2019
  ident: 2024012104374659600_r110
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.017
– volume: 193
  start-page: 198
  year: 2016
  ident: 2024012104374659600_r117
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.04.030
– volume: 104
  start-page: 71
  year: 1991
  ident: 2024012104374659600_r28
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986449108910875
– volume: 317
  start-page: 8
  year: 2016
  ident: 2024012104374659600_r38
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.05.044
– volume: 29
  start-page: 71
  year: 2015
  ident: 2024012104374659600_r131
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2014.06.047
– volume: 130
  start-page: 104748
  year: 2019
  ident: 2024012104374659600_r138
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.04.020
– volume: 183
  start-page: 172
  year: 2018
  ident: 2024012104374659600_r16
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.02.054
– ident: 2024012104374659600_r22
– volume: 328
  start-page: 118
  year: 2019
  ident: 2024012104374659600_r52
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.01.038
– volume: 232
  start-page: 164
  year: 2018
  ident: 2024012104374659600_r83
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.03.017
– volume: 47
  start-page: 3624
  year: 2013
  ident: 2024012104374659600_r90
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.023
– volume: 660
  start-page: 450
  year: 2016
  ident: 2024012104374659600_r94
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.11.055
– volume: 44
  start-page: 2856
  year: 2018
  ident: 2024012104374659600_r84
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.032
– volume: 61
  start-page: 62
  year: 2015
  ident: 2024012104374659600_r93
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.12.003
– volume: 226
  start-page: 295
  year: 2015
  ident: 2024012104374659600_r37
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-015-2570-8
– volume: 51
  start-page: 8209
  year: 2016
  ident: 2024012104374659600_r67
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0096-0
– volume: 209
  start-page: 120521
  year: 2020
  ident: 2024012104374659600_r14
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.120521
– volume: 207
  start-page: 255
  year: 2018
  ident: 2024012104374659600_r10
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.050
– volume: 544
  start-page: 96
  year: 2019
  ident: 2024012104374659600_r102
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.02.056
– volume: 158
  start-page: 599
  year: 2010
  ident: 2024012104374659600_r49
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.02.013
– volume: 63
  start-page: 191
  year: 2008
  ident: 2024012104374659600_r136
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2008.05.001
– volume: 16
  start-page: 187
  year: 1998
  ident: 2024012104374659600_r29
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(97)00073-8
– volume: 315
  start-page: 52
  year: 2018
  ident: 2024012104374659600_r105
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.04.008
– volume: 315
  start-page: 46
  year: 2018
  ident: 2024012104374659600_r1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.01.021
– volume: 19
  start-page: 873
  year: 2019
  ident: 2024012104374659600_r2
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201800153
– volume: 392
  start-page: 701
  year: 2017
  ident: 2024012104374659600_r86
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.09.099
– volume: 837
  start-page: 155567
  year: 2020
  ident: 2024012104374659600_r120
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155567
– volume: 7
  start-page: 102909
  year: 2019
  ident: 2024012104374659600_r125
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.102909
– volume: 45
  start-page: 3513
  year: 2019
  ident: 2024012104374659600_r109
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-019-03805-4
– volume: 90
  start-page: 385
  year: 2020
  ident: 2024012104374659600_r9
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.12.003
– volume: 387
  start-page: 31
  year: 2015
  ident: 2024012104374659600_r15
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2015.06.015
– volume: 3
  start-page: 1199
  year: 2015
  ident: 2024012104374659600_r17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04526B
– volume: 394
  start-page: 115
  year: 2017
  ident: 2024012104374659600_r54
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.066
– volume: 365
  start-page: 674
  year: 2019
  ident: 2024012104374659600_r111
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.11.069
– volume: 328
  start-page: 142
  year: 2019
  ident: 2024012104374659600_r64
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.11.012
– volume: 306
  start-page: 22
  year: 2016
  ident: 2024012104374659600_r142
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.043
– volume: 256
  start-page: 1793
  year: 2010
  ident: 2024012104374659600_r33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.10.005
– volume: 420
  start-page: 839
  year: 2017
  ident: 2024012104374659600_r59
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.160
– volume: 83
  start-page: 46
  year: 2012
  ident: 2024012104374659600_r69
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.05.121
– volume: 12
  start-page: 2003
  year: 2015
  ident: 2024012104374659600_r18
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0740-7
– volume: 307
  start-page: 593
  year: 2017
  ident: 2024012104374659600_r39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.120
– volume: 66
  start-page: 46
  year: 2015
  ident: 2024012104374659600_r62
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2015.03.016
– volume: 324
  start-page: 140
  year: 2017
  ident: 2024012104374659600_r74
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.009
– volume: 781
  start-page: 1101
  year: 2019
  ident: 2024012104374659600_r100
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.050
– volume: 224
  start-page: 38
  year: 2018
  ident: 2024012104374659600_r113
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.10.029
– volume: 95
  start-page: 259
  year: 2014
  ident: 2024012104374659600_r91
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2014.06.024
– volume: 653
  start-page: 202
  year: 2015
  ident: 2024012104374659600_r134
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.08.265
– volume: 369
  start-page: 1138
  year: 2019
  ident: 2024012104374659600_r72
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.096
– volume: 93
  start-page: 2988
  year: 2018
  ident: 2024012104374659600_r7
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5657
– volume: 59
  start-page: 8255
  year: 2020
  ident: 2024012104374659600_r82
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000503
– volume: 250–251
  start-page: 272
  year: 2013
  ident: 2024012104374659600_r6
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.01.048
– volume: 676
  start-page: 37
  year: 2016
  ident: 2024012104374659600_r57
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.03.090
– volume: 4
  start-page: 935
  year: 2017
  ident: 2024012104374659600_r97
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00120G
– volume: 4
  start-page: 53649
  year: 2014
  ident: 2024012104374659600_r58
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08044K
– volume: 526
  start-page: 1
  year: 2018
  ident: 2024012104374659600_r118
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.04.094
– volume: 356
  start-page: 393
  year: 2019
  ident: 2024012104374659600_r112
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.084
SSID ssj0008549
Score 2.5101395
SecondaryResourceType review_article
Snippet More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1142
SubjectTerms Accounts
Chromium
Heterostructures
Hexavalent chromium
Organs
Photocatalysis
Photocatalysts
Reagents
Reduction
Sludge
Solar energy
Wastewater
Title Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water
URI http://dx.doi.org/10.1246/bcsj.20200317
https://www.proquest.com/docview/2535909756
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHIADAgbaYCAfEAKJjM6xE-eIqnXrKINDO8op8q-wTiiBNT2wv55nO04aqZuAHqLKtSz7va_P7718fkboFewgitqSs4ZTFdFUsYgzxqIDYRQlIjZG2nzHp9PkeEZP5mzevdF1p0tqua-uNp4r-R-tQhvo1Z6S_QfNtoNCA3wH_cITNAzPv9JxoM1Zur-Lm23q_8t5VVcuK_O7dix57QvEOuIF6IefjW0qYFFa7hvMDjzOryKQdMPr3aYod2AQtGUFAskT2k9gm22R9W3lE6lHovq1BriJ4wqMXC7le7_xo7k6X1Vd28rhaWHW0xCkS0DcPINgdrOIJP7Okn3jLW1MeQT-EV03xf6-4wZydM2u2hO_Gw0-cZWOpVpeQKxviXb-JGi_sPbp53w0m0zy6eF8ehvdIRBRWBt-NO_YQJyFSMnPtCnHCsO_7w1-H22rZsFLv94Lu9a-V9Pf1J2nMn2IHjQhBv7g8fII3TLlY3R3GG7220bjgBsccIOrEvdxg1vc4KrAw8s3Z-O3eAG9Gsxgh5knaDY6nA6Po-ZKjUgxMqgjQtOBECkrjBAJNRJEoZPYcC0TZb1ZzTMtuN0huYJPHOssNUYkSZGqQoLr9xRtlVVpdhDOpKD6wAxcRUHCpeCUZZrEOi1SA27-Loo3SSpv_j_L3IafIN_cyjcP8t1F74Igc9VUqbeXpfy4rvvrtvtPX57luo57QSvdDAiLWTbIUpY8u_nn5-iexbxPve2hrfpyZV6AM1rLlw5GfwA4v4uj
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+on+Photocatalytic+Reduction+of+Cr%28VI%29+in+Polluted+Water&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Yuan%2C+Gaoqian&rft.au=Li%2C+Faliang&rft.au=Li%2C+Kezhuo&rft.au=Liu%2C+Jie&rft.date=2021&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=94&rft.issue=4&rft.spage=1142&rft_id=info:doi/10.1246%2Fbcsj.20200317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon