Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water
More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 94; no. 4; pp. 1142 - 1155 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
2021
Chemical Society of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward. |
---|---|
AbstractList | More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward. Different methods about the removal of toxic Cr(VI) were introduced and the effects of photocatalysts structure on their photocatalytic Cr(VI) reduction performance were emphasized. More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or organisms, soil inactivation and canceration of human organs, has been caused by rapid industrial growth. Various methods, such as photocatalytic reduction, physical adsorption, electrochemical and photoelectrochemical approaches have been proposed to detoxify/remove Cr(VI) contained in wastewater. Quite significantly, photocatalytic Cr(VI) reduction grabs increasing attention with many advantages, including environmental friendliness, no sludge, low secondary pollution risk, high utilization of solar energy and low dosage of chemical reagents. For the purpose of improving the Cr(VI) removal efficiency during the photocatalytic reduction process, various kinds of catalysts were developed. In this mini-review, the photocatalytic reduction of Cr(VI) by ion doping photocatalysts, faceted photocatalysts, and heterostructure photocatalysts are briefly introduced. Furthermore, some suggestions for modifying photocatalysts to enhance their photocatalytic performance on Cr(VI) reduction are put forward. |
Author | Liu, Jie Li, Junyi Yuan, Gaoqian Zhang, Haijun Li, Faliang Li, Kezhuo Zhang, Shaowei Jia, Quanli |
Author_xml | – sequence: 1 givenname: Gaoqian surname: Yuan fullname: Yuan, Gaoqian – sequence: 2 givenname: Faliang surname: Li fullname: Li, Faliang – sequence: 3 givenname: Kezhuo surname: Li fullname: Li, Kezhuo – sequence: 4 givenname: Jie surname: Liu fullname: Liu, Jie – sequence: 5 givenname: Junyi surname: Li fullname: Li, Junyi – sequence: 6 givenname: Shaowei surname: Zhang fullname: Zhang, Shaowei – sequence: 7 givenname: Quanli surname: Jia fullname: Jia, Quanli – sequence: 8 givenname: Haijun surname: Zhang fullname: Zhang, Haijun |
BookMark | eNp1kMtLw0AQxhepYFs9eg940UPqZjfZTbxJ8VEQLMXHMUw2E7slzdbdzaH_vVtaEUTnMgzz--bxjcigMx0Scp7QScJScV0pt5owyijliTwiw4SneUwFTwdkSCktYiYkPyEj51ahzLO0GJLZAh2CVctobs2HReci00XzpfFGgYd267WKFlj3yuvQME00tZdvs6tIB8q0be-xjt7Boz0lxw20Ds8OeUxe7-9epo_x0_PDbHr7FKuMUR-zVFIAmTUIIFKsmJS14JjXlVCUiqTOixryXAqWqxCc14VEBCEaqZpKJHxMLvZzN9Z89uh8uTK97cLKkmU8K2ghMxGoeE8pa5yz2JQbq9dgt2VCy51b5c6t8tutwPNfvNIedj97C7r9V3VzUC1xrVW4wSiNfruCDXQ_d_0t_gJc3IQL |
CitedBy_id | crossref_primary_10_1021_acsaenm_4c00039 crossref_primary_10_1039_D3NJ05008D crossref_primary_10_1039_D3QI00102D crossref_primary_10_1021_acsami_2c03946 crossref_primary_10_1142_S1793292022500655 crossref_primary_10_3390_ma15155404 crossref_primary_10_1038_s41598_023_48299_8 crossref_primary_10_2139_ssrn_4184273 crossref_primary_10_3390_catal14050289 crossref_primary_10_1007_s10098_023_02727_5 crossref_primary_10_1016_j_jphotochem_2024_115584 crossref_primary_10_2139_ssrn_4150464 crossref_primary_10_1016_j_jphotochem_2023_114949 crossref_primary_10_26599_POM_2023_9140027 crossref_primary_10_1016_j_apt_2022_103562 crossref_primary_10_1016_j_ceramint_2022_10_116 crossref_primary_10_1016_j_jece_2024_114306 crossref_primary_10_1039_D2CE00872F crossref_primary_10_1016_j_jece_2022_108742 crossref_primary_10_1016_j_colsurfa_2024_134199 crossref_primary_10_1007_s10008_022_05351_3 crossref_primary_10_1016_j_apt_2022_103722 crossref_primary_10_2139_ssrn_4169742 crossref_primary_10_1038_s41545_023_00246_w crossref_primary_10_1016_j_seppur_2023_125523 crossref_primary_10_1016_j_ijhydene_2023_12_125 crossref_primary_10_1016_j_seppur_2021_120434 crossref_primary_10_1021_acs_cgd_2c01534 crossref_primary_10_1080_14686996_2022_2054666 crossref_primary_10_1016_j_diamond_2024_111779 crossref_primary_10_1016_S1872_2067_23_64553_X crossref_primary_10_1039_D4MA00431K crossref_primary_10_1016_j_seppur_2022_122065 crossref_primary_10_1016_j_jssc_2023_124001 crossref_primary_10_1142_S1793292022500035 crossref_primary_10_1016_j_envres_2023_117122 crossref_primary_10_1016_j_mtcomm_2022_103825 crossref_primary_10_1246_bcsj_20220071 crossref_primary_10_3390_min12020182 crossref_primary_10_1016_j_jcis_2022_10_080 crossref_primary_10_1016_j_jhazmat_2022_130400 crossref_primary_10_1016_j_micromeso_2023_112512 crossref_primary_10_1021_acsanm_3c06058 crossref_primary_10_1016_j_coche_2024_101043 crossref_primary_10_1016_j_cej_2024_150766 crossref_primary_10_1016_j_jiec_2022_06_014 crossref_primary_10_3390_c7040073 crossref_primary_10_1016_j_coche_2024_101042 crossref_primary_10_1007_s10971_024_06551_1 crossref_primary_10_1016_j_seppur_2024_131008 crossref_primary_10_1016_j_cej_2022_136703 crossref_primary_10_1016_j_jallcom_2023_170521 crossref_primary_10_1016_j_jallcom_2024_174425 crossref_primary_10_1007_s44246_024_00174_5 |
Cites_doi | 10.1016/j.apcatb.2016.11.046 10.1016/j.seppur.2019.06.002 10.1021/cm049293b 10.1016/j.apcatb.2017.02.050 10.1002/slct.201700967 10.1016/j.matlet.2016.10.094 10.1016/j.chemosphere.2005.08.064 10.1016/j.carbpol.2019.02.003 10.1016/j.jcis.2017.12.045 10.1039/C7RA02608K 10.1016/j.jphotochem.2003.12.001 10.1016/S1872-2067(17)62962-0 10.1002/adfm.200902390 10.1016/j.apcatb.2018.11.033 10.3109/10408449709078442 10.1016/j.chemosphere.2019.01.087 10.1002/aoc.4621 10.1016/j.jcis.2015.06.014 10.1016/j.jhazmat.2020.123432 10.1016/j.apt.2019.09.016 10.1016/j.apsusc.2017.12.249 10.1016/j.scitotenv.2020.141901 10.1016/j.nanoen.2015.05.024 10.1016/j.materresbull.2019.110671 10.1016/j.jhazmat.2012.04.054 10.1016/j.jhazmat.2008.11.058 10.1016/j.jclepro.2020.123408 10.1016/S1872-2067(19)63422-4 10.1021/ie400812m 10.1016/j.jallcom.2018.12.386 10.1016/S1010-6030(00)00370-1 10.1016/j.molliq.2017.09.107 10.1016/j.apsusc.2017.07.050 10.1016/j.psep.2016.04.023 10.1016/j.pnsc.2019.03.003 10.1016/j.apcatb.2013.05.078 10.1039/c1cc10665a 10.1016/j.jpowsour.2018.10.081 10.1016/j.cej.2020.124522 10.1016/j.cej.2019.121990 10.1016/S1872-2067(20)63629-4 10.1002/jctb.895 10.1039/C7NR09049H 10.1016/j.ijhydene.2018.02.191 10.1016/j.arabjc.2020.04.029 10.1016/j.mssp.2015.01.030 10.1016/j.cej.2020.126648 10.3762/bjnano.9.137 10.1016/j.matchemphys.2018.03.034 10.1016/j.seppur.2011.03.019 10.1016/j.apcatb.2014.07.022 10.1016/j.jallcom.2011.07.008 10.1016/j.envpol.2019.113417 10.1021/ja2002132 10.1080/10643380903392817 10.1016/j.cplett.2016.08.020 10.1016/j.jhazmat.2020.123085 10.1016/j.seppur.2016.01.030 10.1016/j.actamat.2013.11.076 10.1002/smtd.201700080 10.1016/j.apcatb.2015.12.023 10.1016/j.arabjc.2010.07.019 10.1039/C4RA10192H 10.3390/nano9121657 10.1016/j.crci.2005.02.055 10.1016/j.jcis.2018.02.045 10.1166/jnn.2018.14604 10.1016/j.apcatb.2015.04.047 10.1038/srep30543 10.1016/j.materresbull.2016.02.017 10.1016/j.matlet.2013.12.106 10.1021/acssuschemeng.6b00922 10.1016/j.jallcom.2020.156147 10.1016/j.eti.2016.01.007 10.1007/s10562-017-2118-1 10.1039/C5DT03173G 10.1016/j.scitotenv.2020.141425 10.1016/j.cej.2019.123428 10.1016/j.jhazmat.2014.11.039 10.1016/j.cej.2019.121944 10.1016/j.micromeso.2018.04.036 10.1016/j.susc.2019.121469 10.1016/j.jhazmat.2020.122205 10.1016/j.apcatb.2012.09.054 10.1016/j.jiec.2017.09.008 10.1016/j.jhazmat.2010.10.061 10.1002/tcr.201900046 10.1016/j.apsusc.2019.02.017 10.1016/j.apcatb.2016.04.030 10.1080/00986449108910875 10.1016/j.jhazmat.2016.05.044 10.1016/j.jes.2014.06.047 10.1016/j.envint.2019.04.020 10.1016/j.talanta.2018.02.054 10.1016/j.cattod.2019.01.038 10.1016/j.apcatb.2018.03.017 10.1016/j.watres.2013.04.023 10.1016/j.jallcom.2015.11.055 10.1016/j.ceramint.2017.11.032 10.1016/j.catcom.2014.12.003 10.1007/s11270-015-2570-8 10.1007/s10853-016-0096-0 10.1016/j.talanta.2019.120521 10.1016/j.chemosphere.2018.05.050 10.1016/j.jcis.2019.02.056 10.1016/j.cej.2010.02.013 10.1016/j.seppur.2008.05.001 10.1016/S0926-3373(97)00073-8 10.1016/j.cattod.2018.04.008 10.1016/j.cattod.2018.01.021 10.1002/tcr.201800153 10.1016/j.apsusc.2016.09.099 10.1016/j.jallcom.2020.155567 10.1016/j.jece.2019.102909 10.1007/s11164-019-03805-4 10.1016/j.jes.2019.12.003 10.1016/j.ijms.2015.06.015 10.1039/C4TA04526B 10.1016/j.apsusc.2016.10.066 10.1016/j.jhazmat.2018.11.069 10.1016/j.cattod.2018.11.012 10.1016/j.cej.2016.07.043 10.1016/j.apsusc.2009.10.005 10.1016/j.apsusc.2017.05.160 10.1016/j.matlet.2012.05.121 10.1007/s13762-014-0740-7 10.1016/j.cej.2016.08.120 10.1016/j.catcom.2015.03.016 10.1016/j.cej.2017.05.009 10.1016/j.jallcom.2018.12.050 10.1016/j.apcatb.2017.10.029 10.1016/j.matchar.2014.06.024 10.1016/j.jallcom.2015.08.265 10.1016/j.cej.2019.03.096 10.1002/jctb.5657 10.1002/anie.202000503 10.1016/j.jhazmat.2013.01.048 10.1016/j.jallcom.2016.03.090 10.1039/C7QI00120G 10.1039/C4RA08044K 10.1016/j.jcis.2018.04.094 10.1016/j.cej.2018.09.084 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2021 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20200317 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water |
EISSN | 1348-0634 |
EndPage | 1155 |
ExternalDocumentID | 10_1246_bcsj_20200317 |
FullText_t_NoSnippeting | true |
GroupedDBID | 02 23N 5GY ABEFU ABFLS ABZEH ACCUC ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P GX1 JSI JSP P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 X XPZ -~X 0R~ 6J9 AAUAY AAYXX ABDFA ABEJV ABGNP ABJNI ABVGC ABXVV ACGFO ADIPN ADNBA ADVOB AGMDO AGORE AJNCP BCRHZ CITATION KOP NU- OJZSN OWPYF ROX ~02 7SR 8BQ 8FD H13 JG9 |
ID | FETCH-LOGICAL-c520t-2470aa75feaa64eb277d63e8db6c0061d89da887628cccc33d97eea66f7cfb613 |
ISSN | 0009-2673 |
IngestDate | Wed Aug 13 07:39:33 EDT 2025 Tue Jul 01 00:34:46 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Apr 21 04:13:08 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Photocatalytic reduction Photocatalyst Cr(VI) removal |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-2470aa75feaa64eb277d63e8db6c0061d89da887628cccc33d97eea66f7cfb613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20200317 |
PQID | 2535909756 |
PQPubID | 1996365 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2535909756 crossref_primary_10_1246_bcsj_20200317 crossref_citationtrail_10_1246_bcsj_20200317 chemicalsocietyjapan_journals_10_1246_bcsj_20200317 |
ProviderPackageCode | RAD CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2021 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 136Y. T. Lin, C. P. Huang, Sep. Purif. Technol. 2008, 63, 191. 10.1016/j.seppur.2008.05.001 90W. S. Tang, Y. Su, Q. Li, S. Gao, J. K. Shang, Water Res. 2013, 47, 3624. 10.1016/j.watres.2013.04.02323726698 128X. H. Yi, S. Q. Ma, X. D. Du, C. Zhao, H. F. Fu, P. Wang, C. C. Wang, Chem. Eng. J. 2019, 375, 121944. 10.1016/j.cej.2019.121944 2Z. Y. Zhao, H. An, J. Lin, M. C. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. M. Mai, N. Wang, H. B. Gu, S. Angaiah, Z. H. Guo, Chem. Rec. 2019, 19, 873. 10.1002/tcr.20180015330426677 137G. P. Ren, Y. Sun, A. H. Lu, Y. Li, H. R. Ding, J. Power Sources 2018, 408, 46. 10.1016/j.jpowsour.2018.10.081 12J. H. Qiu, M. Li, L. Y. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990 71S. Wojtyla, T. Baran, Mater. Chem. Phys. 2018, 212, 103. 10.1016/j.matchemphys.2018.03.034 145Q. Y. Luo, H. M. Yuan, M. Zhang, P. Jiang, M. Liu, D. Xu, X. Guo, Y. Q. Wu, J. Hazard. Mater. 2021, 401, 123432. 10.1016/j.jhazmat.2020.12343232763714 129H. Peng, D. X. Liu, X. G. Zheng, X. J. Fu, Nanomaterials 2019, 9, 1657. 10.3390/nano9121657 30S. R. Zheng, Z. Y. Xu, Y. D. Wang, J. Photochem. Photobiol., A 2000, 137, 185. 10.1016/S1010-6030(00)00370-1 73J. F. Qu, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2017, 207, 404. 10.1016/j.apcatb.2017.02.050 79J. W. Pan, Z. J. Guan, J. J. Yang, Q. Y. Li, Chin. J. Catal. 2020, 41, 200. 10.1016/S1872-2067(19)63422-4 146J. Zhou, M. Li, W. Zhou, J. Hu, Y. C. Long, Y. F. Tsang, S. Q. Zhou, Sci. Total Environ. 2020, 748, 141425. 10.1016/j.scitotenv.2020.14142532798878 9Q. Zhou, Y. Li, H. Yang, Y. Gao, J. Environ. Sci. 2020, 90, 385. 10.1016/j.jes.2019.12.003 104B. Xu, T. Ding, Y. C. Zhang, Y. T. Wen, Z. J. Yang, M. Zhang, Mater. Lett. 2017, 187, 123. 10.1016/j.matlet.2016.10.094 14M. Zare-Moghadam, M. Shamsipur, F. Molaabasi, B. Hajipour-Verdom, Talanta 2020, 209, 120521. 10.1016/j.talanta.2019.12052131892071 110M. R. Li, C. Song, Y. Wu, M. Wang, Z. P. Pan, Y. Sun, L. Meng, S. G. Han, L. J. Xu, L. Gan, Appl. Surf. Sci. 2019, 478, 744. 10.1016/j.apsusc.2019.02.017 23Q. Cheng, C. W. Wang, K. Doudrick, C. Chen, Appl. Catal., B 2015, 176–177, 740. 10.1016/j.apcatb.2015.04.047 37M. Lu, Y. Cheng, S. L. Pan, Water Air Soil Pollut. 2015, 226, 295. 10.1007/s11270-015-2570-8 52E. I. García-López, G. Marcì, M. V. Dozzi, L. Palmisano, E. Selli, Catal. Today 2019, 328, 118. 10.1016/j.cattod.2019.01.038 59J. Zhang, L. L. Zhang, Y. X. Shi, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, Appl. Surf. Sci. 2017, 420, 839. 10.1016/j.apsusc.2017.05.160 142C. B. Liu, Y. B. Ding, W. Q. Wu, Y. R. Teng, Chem. Eng. J. 2016, 306, 22. 10.1016/j.cej.2016.07.043 49S. X. Zhang, H. Y. Niu, Y. Q. Cai, X. L. Zhao, Y. L. Shi, Chem. Eng. J. 2010, 158, 599. 10.1016/j.cej.2010.02.013 119K. R. Zhu, Y. Gao, X. L. Tan, C. L. Chen, ACS Sustainable Chem. Eng. 2016, 4, 4361. 10.1021/acssuschemeng.6b00922 144Z. M. Lv, X. L. Tan, C. M. Wang, A. Alsaedi, T. Hayat, C. L. Chen, Chem. Eng. J. 2020, 389, 123428. 10.1016/j.cej.2019.123428 130M. A. Barakat, Arabian J. Chem. 2011, 4, 361. 10.1016/j.arabjc.2010.07.019 122X. Wang, Y. X. Li, X. H. Yi, C. Zhao, P. Wang, J. G. Deng, C. C. Wang, Chin. J. Catal. 2021, 42, 259. 10.1016/S1872-2067(20)63629-4 76G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Colloid Interface Sci. 2018, 514, 306. 10.1016/j.jcis.2017.12.04529275249 115J. W. Wang, F. G. Qiu, P. Wang, C. J. Ge, C. C. Wang, J. Clean. Prod. 2021, 279, 123408. 10.1016/j.jclepro.2020.123408 80J. H. Qiu, M. Li, L. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990 34N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, J. Hazard. Mater. 2011, 185, 1398. 10.1016/j.jhazmat.2010.10.06121075516 86Y. L. Zhao, C. P. Lin, H. J. Bi, Y. G. Liu, Q. S. Yan, Appl. Surf. Sci. 2017, 392, 701. 10.1016/j.apsusc.2016.09.099 132S. Sessarego, S. C. G. Rodrigues, Y. Xiao, Q. Y. Lu, J. M. Hill, Carbohydr. Polym. 2019, 211, 249. 10.1016/j.carbpol.2019.02.00330824086 15S. Catalani, J. Fostinelli, M. E. Gilberti, P. Apostoli, Int. J. Mass Spectrom. 2015, 387, 31. 10.1016/j.ijms.2015.06.015 141D. Pan, S. S. Ge, J. Y. Tian, Q. Shao, L. Guo, H. Liu, S. D. Wu, T. Ding, Z. H. Guo, Chem. Rec. 2020, 20, 355. 10.1002/tcr.20190004631454151 47X. F. Lei, C. Chen, X. Li, X. X. Xue, H. Yang, Sep. Purif. Technol. 2016, 161, 8. 10.1016/j.seppur.2016.01.030 25Y. F. Li, D. Xu, J. I. Oh, W. Z. Shen, X. Li, Y. Yu, J. Am. Chem. Soc. 2012, 2, 391. 107K. Z. Qi, B. Cheng, J. G. Yu, W. K. Ho, Chin. J. Catal. 2017, 38, 1936. 10.1016/S1872-2067(17)62962-0 22http://www.webofscience.com/. 40S. Patnaik, G. Swain, K. M. Parida, Nanoscale 2018, 10, 5950. 10.1039/C7NR09049H29542755 61R. J. Wei, J. C. Hu, T. F. Zhou, X. L. Zhou, J. X. Liu, J. J. Li, Acta Mater. 2014, 66, 163.10.1016/j.actamat.2013.11.076 96X. Gao, X. X. Liu, Z. M. Zhu, X. G. Wang, Z. Xie, Sci. Rep. 2016, 6, 30543. 10.1038/srep3054327464888 39F. W. Zhang, Q. J. Wen, M. Z. Hong, Z. Y. Zhang, Y. Yu, Chem. Eng. J. 2017, 307, 593. 10.1016/j.cej.2016.08.120 74F. Zhang, Y. C. Zhang, C. Q. Zhou, Z. J. Yang, H. G. Xue, D. D. Dionysiou, Chem. Eng. J. 2017, 324, 140. 10.1016/j.cej.2017.05.009 26Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, J. H. Ye, J. Am. Chem. Soc. 2011, 133, 6490. 10.1021/ja200213221486031 36J. Hou, C. Yang, Z. Wang, Q. Ji, Y. Li, G. Huang, S. Jiao, H. Zhu, Appl. Catal., B 2013, 142–143, 579. 10.1016/j.apcatb.2013.05.078 44Y. Bessekhouad, D. Robert, J. V. Weber, N. Chaoui, J. Photochem. Photobiol., A 2004, 167, 49. 10.1016/j.jphotochem.2003.12.001 92N. R. Su, P. Lv, M. Li, X. L. Zhang, M. H. Li, J. S. Niu, Mater. Lett. 2014, 122, 201. 10.1016/j.matlet.2013.12.106 53E. Carbo-Argibay, X. Q. Bao, C. Rodriguez-Abreu, M. F. Cerqueira, D. Y. Petrovykh, L. F. Liu, Y. V. Kolen’ko, J. Colloid Interface Sci. 2015, 456, 219. 10.1016/j.jcis.2015.06.01426133278 75M. Sun, K. L. Mu, Q. Q. Wei, Z. Yin, W. Y. Yan, L. Sun, Y. Shao, J. Colloid Interface Sci. 2018, 518, 298. 10.1016/j.jcis.2018.02.04529475051 85S. Gautam, S. Muthurani, M. Balaji, P. Thakur, D. Pathinettam Padiyan, K. H. Chae, S. S. Kim, K. Asokan, Nanotechnology 2011, 11, 386. 3M. Costa, Crit. Rev. Toxicol. 1997, 27, 431. 10.3109/104084497090784429347224 127Y. X. Li, H. F. Fu, P. Wang, C. Zhao, W. Liu, C. C. Wang, Environ. Pollut. 2020, 256, 113417. 10.1016/j.envpol.2019.11341731662269 11R. Gaur, P. Jeevanandam, J. Nanosci. Nanotechnol. 2018, 18, 165. 10.1166/jnn.2018.1460429768828 68S. L. Wang, Surf. Sci. 2019, 690, 121469. 10.1016/j.susc.2019.121469 89R. M. Khafagy, J. Alloys Compd. 2011, 509, 9849. 10.1016/j.jallcom.2011.07.008 28M. A. Aguado, J. Giménez, S. Cervera-March, Chem. Eng. Commun. 1991, 104, 71. 10.1080/00986449108910875 69T. X. Wang, S. H. Xu, F. X. Yang, Mater. Lett. 2012, 83, 46. 10.1016/j.matlet.2012.05.121 100Y. Q. Guo, Y. D. Guo, D. Tang, Y. Y. Liu, X. G. Wang, P. Li, G. H. Wang, J. Alloys Compd. 2019, 781, 1101. 10.1016/j.jallcom.2018.12.050 109C. R. Chen, L. J. Xun, P. Zhang, J. L. Zhang, B. Z. Tian, Res. Chem. Intermed. 2019, 45, 3513. 10.1007/s11164-019-03805-4 64M. A. Lara, C. Jaramillo-Páez, J. A. Navío, P. Sánchez-Cid, M. C. Hidalgo, Catal. Today 2019, 328, 142. 10.1016/j.cattod.2018.11.012 72L. Han, Y. L. Zhong, Y. Su, L. T. Wang, L. S. Zhu, X. F. Fei, Y. Z. Dong, G. Hong, Y. T. Zhou, D. Fang, Chem. Eng. J. 2019, 369, 1138. 10.1016/j.cej.2019.03.096 140H. Selcuk, J. J. Sene, M. A. Anderson, J. Chem. Technol. Biotechnol. 2003, 78, 979. 10.1002/jctb.895 18A. Shokati Poursani, A. Nilchi, A. H. Hassani, M. Shariat, J. Nouri, Int. J. Environ. Sci. Technol. 2015, 12, 2003. 10.1007/s13762-014-0740-7 8C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 2012, 223–224, 1. 10.1016/j.jhazmat.2012.04.05422608208 6B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey, J. Hazard. Mater. 2013, 250–251, 272. 10.1016/j.jhazmat.2013.01.04823467183 48X. Fang, J. Xiao, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2015, 162, 544. 10.1016/j.apcatb.2014.07.022 82G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Angew. Chem., Int. Ed. 2020, 59, 8255. 10.1002/anie.202000503 113Q. X. Liu, C. M. Zeng, L. H. Ai, Z. Hao, J. Jiang, Appl. Catal., B 2018, 224, 38. 10.1016/j.apcatb.2017.10.029 21A. Fujishima, X. Zhang, C. R. Chim. 2006, 9, 750. 10.1016/j.crci.2005.02.055 54F. P. Peng, Q. Zhou, C. H. Lu, Y. R. Ni, J. H. Kou, Z. Z. Xu, Appl. Surf. Sci. 2017, 394, 115. 10.1016/j.apsusc.2016.10.066 98Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. 10.1002/adfm.200902390 13O. A. Zelekew, D. H. Kuo, H. Abdullah, Adv. Powder Technol. 2019, 30, 3099. 10.1016/j.apt.2019.09.016 105S. Patnaik, K. K. Das, A. Mohanty, K. Parida, Catal. Today 2018, 315, 52. 10.1016/j.cattod.2018.04.008 114W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci. 2017, 425, 107. 10.1016/j.apsusc.2017.07.050 143Q. Wang, Q. Y. Gao, H. Wu, Y. J. Fan, D. G. Lin, Q. He, Y. Zhang, Y. Q. Cong, Sep. Purif. Technol. 2019, 226, 232. 10.1016/j.seppur.2019.06.002 46R. Ravindranath, P. Roy, A. P. Periasamy, H. T. Chang, RSC Adv. 2014, 4, 57290. 10.1039/C4RA10192H 32B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Chemosphere 2006, 63, 956. 10.1016/j.chemosphere.2005.08.06416297430 55Y. Jiang, J. G. Sun, S. J. Wu, Catal. Lett. 2017, 147, 2006. 10.1007/s10562-017-2118-1 24R. Acharya, B. Naik, K. Parida, Beilstein J. Nanotechnol. 2018, 9, 1448. 10.3762/bjnano.9.13729977679 138H. A. Maitlo, K. H. Kim, V. Kumar, S. Kim, J. W. Park, Environ. Int. 2019, 130, 104748. 10.1016/j.envint.2019.04.02031252168 124Y. X. Li, X. Wang, C. C. Wang, H. F. Fu, Y. B. Liu, P. Wang, C. Zhao, J. Hazard. Mater. 2020, 399, 123085. 10.1016/j.jhazmat.2020.12308532534399 131Y. C. Du, L. P. Wang, J. S. Wang, G. S. Wu, H. X. Dai, J. Environ. Sci. 2015, 29, 71. 10.1016/j.jes.2014.06.047 56C. N. Van, W. S. Chang, J. W. Chen, K. A. Tsai, W. Y. Tzeng, Y. C. Lin, H. H. Kuo, H. J. Liu, K. D. Chang, W. C. Chou, C. L. Wu, Y. C. Chen, C. W. Luo, Y. J. Hsu, Y. H. Chu, Nano Energy 2015, 15, 625.10.1016/j.nanoen.2015.05.024 87P. Chen, X. Xing, H. F. Xie, Q Ferreira (2024012104374659600_r16) 2018; 183 Sessarego (2024012104374659600_r132) 2019; 211 Wang (2024012104374659600_r38) 2016; 317 Hussain (2024012104374659600_r78) 2020; 13 Maitlo (2024012104374659600_r138) 2019; 130 Zhang (2024012104374659600_r49) 2010; 158 Xu (2024012104374659600_r104) 2017; 187 Zhao (2024012104374659600_r2) 2019; 19 Yi (2024012104374659600_r126) 2019; 33 Chen (2024012104374659600_r87) 2016; 660 Abdullah (2024012104374659600_r67) 2016; 51 Nasrallah (2024012104374659600_r34) 2011; 185 Hou (2024012104374659600_r98) 2010; 20 Ren (2024012104374659600_r1) 2018; 315 Barakat (2024012104374659600_r130) 2011; 4 Zhou (2024012104374659600_r9) 2020; 90 Dhal (2024012104374659600_r6) 2013; 250–251 Lu (2024012104374659600_r19) 2016; 104 Lara (2024012104374659600_r64) 2019; 328 Qu (2024012104374659600_r73) 2017; 207 Guo (2024012104374659600_r125) 2019; 7 2024012104374659600_r22 Xie (2024012104374659600_r27) 2019; 784 Wang (2024012104374659600_r108) 2019; 244 Zhao (2024012104374659600_r121) 2021; 752 Yao (2024012104374659600_r33) 2010; 256 Zhang (2024012104374659600_r57) 2016; 676 Paschoal (2024012104374659600_r20) 2009; 166 Zelekew (2024012104374659600_r13) 2019; 30 Gaur (2024012104374659600_r11) 2018; 18 Barrera-Díaz (2024012104374659600_r8) 2012; 223–224 Zare-Moghadam (2024012104374659600_r14) 2020; 209 Liu (2024012104374659600_r51) 2011; 47 Malaviya (2024012104374659600_r135) 2011; 41 Shokati Poursani (2024012104374659600_r18) 2015; 12 Bessekhouad (2024012104374659600_r44) 2004; 167 Selcuk (2024012104374659600_r140) 2003; 78 Li (2024012104374659600_r25) 2012; 2 Liu (2024012104374659600_r142) 2016; 306 Liu (2024012104374659600_r113) 2018; 224 Cheng (2024012104374659600_r77) 2020; 391 García-López (2024012104374659600_r52) 2019; 328 Carbo-Argibay (2024012104374659600_r53) 2015; 456 Feng (2024012104374659600_r97) 2017; 4 Van (2024012104374659600_r56) 2015; 15 Jiang (2024012104374659600_r55) 2017; 147 Low (2024012104374659600_r106) 2017; 1 Zhao (2024012104374659600_r84) 2018; 44 Xie (2024012104374659600_r32) 2006; 63 Ravishankar (2024012104374659600_r45) 2016; 78 Gautam (2024012104374659600_r85) 2011; 11 Zhang (2024012104374659600_r83) 2018; 232 Ravindranath (2024012104374659600_r46) 2014; 4 Peng (2024012104374659600_r54) 2017; 394 Patnaik (2024012104374659600_r40) 2018; 10 Wang (2024012104374659600_r60) 2018; 43 Fu (2024012104374659600_r120) 2020; 837 Navío (2024012104374659600_r29) 1998; 16 Kaur (2024012104374659600_r134) 2015; 653 Aguado (2024012104374659600_r28) 1991; 104 Wang (2024012104374659600_r69) 2012; 83 Lu (2024012104374659600_r37) 2015; 226 Du (2024012104374659600_r95) 2018; 271 Du (2024012104374659600_r112) 2019; 356 Huang (2024012104374659600_r65) 2019; 221 He (2024012104374659600_r35) 2013; 52 Wang (2024012104374659600_r68) 2019; 690 Chen (2024012104374659600_r118) 2018; 526 Ren (2024012104374659600_r137) 2018; 408 Sun (2024012104374659600_r75) 2018; 518 Wang (2024012104374659600_r70) 2013; 129 Fujishima (2024012104374659600_r21) 2006; 9 Bi (2024012104374659600_r26) 2011; 133 Khafagy (2024012104374659600_r89) 2011; 509 Wang (2024012104374659600_r143) 2019; 226 Wang (2024012104374659600_r139) 2017; 205 Zhou (2024012104374659600_r146) 2020; 748 Wojtyla (2024012104374659600_r71) 2018; 212 Fang (2024012104374659600_r103) 2018; 58 Luo (2024012104374659600_r145) 2021; 401 Li (2024012104374659600_r116) 2020; 844 Yi (2024012104374659600_r128) 2019; 375 Lu (2024012104374659600_r133) 2017; 247 Ye (2024012104374659600_r111) 2019; 365 Costa (2024012104374659600_r3) 1997; 27 Wang (2024012104374659600_r63) 2018; 439 Patnaik (2024012104374659600_r105) 2018; 315 Acharya (2024012104374659600_r24) 2018; 9 Wang (2024012104374659600_r115) 2021; 279 Jobby (2024012104374659600_r10) 2018; 207 Huang (2024012104374659600_r114) 2017; 425 Li (2024012104374659600_r58) 2014; 4 Peng (2024012104374659600_r129) 2019; 9 Celebi (2024012104374659600_r5) 2017; 2 Li (2024012104374659600_r4) 2021; 405 Habibi-Yangjeh (2024012104374659600_r41) 2019; 29 Du (2024012104374659600_r131) 2015; 29 Somasundaram (2024012104374659600_r31) 2004; 16 Su (2024012104374659600_r92) 2014; 122 Zhao (2024012104374659600_r86) 2017; 392 Gao (2024012104374659600_r96) 2016; 6 Pan (2024012104374659600_r141) 2020; 20 Rai (2024012104374659600_r91) 2014; 95 Lin (2024012104374659600_r136) 2008; 63 Wang (2024012104374659600_r66) 2017; 7 Yuan (2024012104374659600_r93) 2015; 61 Shakir (2024012104374659600_r94) 2016; 660 Luo (2024012104374659600_r99) 2011; 79 Lv (2024012104374659600_r144) 2020; 389 Catalani (2024012104374659600_r15) 2015; 387 Fang (2024012104374659600_r48) 2015; 162 Guo (2024012104374659600_r100) 2019; 781 Lei (2024012104374659600_r47) 2016; 161 Chen (2024012104374659600_r109) 2019; 45 Yang (2024012104374659600_r42) 2020; 390 Jia (2024012104374659600_r7) 2018; 93 Li (2024012104374659600_r127) 2020; 256 Cheng (2024012104374659600_r23) 2015; 176–177 Qi (2024012104374659600_r107) 2017; 38 Zhu (2024012104374659600_r119) 2016; 4 Zhang (2024012104374659600_r82) 2020; 59 Wei (2024012104374659600_r61) 2014; 66 Zhang (2024012104374659600_r76) 2018; 514 Tang (2024012104374659600_r90) 2013; 47 Behera (2024012104374659600_r102) 2019; 544 Zheng (2024012104374659600_r30) 2000; 137 Ali (2024012104374659600_r50) 2015; 33 Hou (2024012104374659600_r36) 2013; 142–143 Zhao (2024012104374659600_r43) 2016; 185 Li (2024012104374659600_r81) 2020; 122 Wang (2024012104374659600_r123) 2015; 286 Li (2024012104374659600_r110) 2019; 478 Patil (2024012104374659600_r88) 2015; 44 Yu (2024012104374659600_r17) 2015; 3 Wang (2024012104374659600_r117) 2016; 193 Wang (2024012104374659600_r122) 2021; 42 Li (2024012104374659600_r124) 2020; 399 Rekhila (2024012104374659600_r101) 2016; 5 Shi (2024012104374659600_r62) 2015; 66 Qiu (2024012104374659600_r80) 2019; 375 Zhang (2024012104374659600_r39) 2017; 307 Zhang (2024012104374659600_r59) 2017; 420 Zhang (2024012104374659600_r74) 2017; 324 Pan (2024012104374659600_r79) 2020; 41 Qiu (2024012104374659600_r12) 2019; 375 Han (2024012104374659600_r72) 2019; 369 |
References_xml | – reference: 72L. Han, Y. L. Zhong, Y. Su, L. T. Wang, L. S. Zhu, X. F. Fei, Y. Z. Dong, G. Hong, Y. T. Zhou, D. Fang, Chem. Eng. J. 2019, 369, 1138. 10.1016/j.cej.2019.03.096 – reference: 33Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, X. Bai, Appl. Surf. Sci. 2010, 256, 1793. 10.1016/j.apsusc.2009.10.005 – reference: 106J. X. Low, C. J. Jiang, B. Cheng, S. Wageh, A. A. AI-Ghamdi, J. G. Yu, Small Methods 2017, 1, 1700080. 10.1002/smtd.201700080 – reference: 114W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci. 2017, 425, 107. 10.1016/j.apsusc.2017.07.050 – reference: 82G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Angew. Chem., Int. Ed. 2020, 59, 8255. 10.1002/anie.202000503 – reference: 32B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Chemosphere 2006, 63, 956. 10.1016/j.chemosphere.2005.08.06416297430 – reference: 27J. Xie, N. N. Guo, A. J. Liu, Y. L. Gao, J. D. Hu, D. Z. Jia, J. Alloys Compd. 2019, 784, 377. 10.1016/j.jallcom.2018.12.386 – reference: 132S. Sessarego, S. C. G. Rodrigues, Y. Xiao, Q. Y. Lu, J. M. Hill, Carbohydr. Polym. 2019, 211, 249. 10.1016/j.carbpol.2019.02.00330824086 – reference: 78M. B. Hussain, U. Azhar, H. M. Loussala, R. Razaq, Arabian J. Chem. 2020, 13, 5939. 10.1016/j.arabjc.2020.04.029 – reference: 17J. Y. Yu, S. D. Zhuang, X. Y. Xu, W. C. Zhu, B. Feng, J. G. Hu, J. Mater. Chem. A 2015, 3, 1199. 10.1039/C4TA04526B – reference: 22http://www.webofscience.com/. – reference: 94I. Shakir, M. Sarfraz, Z. Ali, M. F. A. Aboud, P. O. Agboola, J. Alloys Compd. 2016, 660, 450. 10.1016/j.jallcom.2015.11.055 – reference: 144Z. M. Lv, X. L. Tan, C. M. Wang, A. Alsaedi, T. Hayat, C. L. Chen, Chem. Eng. J. 2020, 389, 123428. 10.1016/j.cej.2019.123428 – reference: 136Y. T. Lin, C. P. Huang, Sep. Purif. Technol. 2008, 63, 191. 10.1016/j.seppur.2008.05.001 – reference: 83G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2018, 232, 164. 10.1016/j.apcatb.2018.03.017 – reference: 48X. Fang, J. Xiao, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2015, 162, 544. 10.1016/j.apcatb.2014.07.022 – reference: 34N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, J. Hazard. Mater. 2011, 185, 1398. 10.1016/j.jhazmat.2010.10.06121075516 – reference: 140H. Selcuk, J. J. Sene, M. A. Anderson, J. Chem. Technol. Biotechnol. 2003, 78, 979. 10.1002/jctb.895 – reference: 59J. Zhang, L. L. Zhang, Y. X. Shi, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, Appl. Surf. Sci. 2017, 420, 839. 10.1016/j.apsusc.2017.05.160 – reference: 126X. H. Yi, F. X. Wang, X. D. Du, P. Wang, C. C. Wang, Appl. Organomet. Chem. 2019, 33, e4621. 10.1002/aoc.4621 – reference: 97J. T. Feng, Y. C. Wang, Y. H. Hou, L. C. Li, Inorg. Chem. Front. 2017, 4, 935. 10.1039/C7QI00120G – reference: 115J. W. Wang, F. G. Qiu, P. Wang, C. J. Ge, C. C. Wang, J. Clean. Prod. 2021, 279, 123408. 10.1016/j.jclepro.2020.123408 – reference: 146J. Zhou, M. Li, W. Zhou, J. Hu, Y. C. Long, Y. F. Tsang, S. Q. Zhou, Sci. Total Environ. 2020, 748, 141425. 10.1016/j.scitotenv.2020.14142532798878 – reference: 112X. D. Du, X. H. Yi, P. Wang, W. W. Zheng, J. G. Deng, C. C. Wang, Chem. Eng. J. 2019, 356, 393. 10.1016/j.cej.2018.09.084 – reference: 25Y. F. Li, D. Xu, J. I. Oh, W. Z. Shen, X. Li, Y. Yu, J. Am. Chem. Soc. 2012, 2, 391. – reference: 21A. Fujishima, X. Zhang, C. R. Chim. 2006, 9, 750. 10.1016/j.crci.2005.02.055 – reference: 45T. N. Ravishankar, G. Nagaraju, J. Dupont, Mater. Res. Bull. 2016, 78, 103. 10.1016/j.materresbull.2016.02.017 – reference: 67H. Abdullah, D. H. Kuo, Y. H. Chen, J. Mater. Sci. 2016, 51, 8209. 10.1007/s10853-016-0096-0 – reference: 40S. Patnaik, G. Swain, K. M. Parida, Nanoscale 2018, 10, 5950. 10.1039/C7NR09049H29542755 – reference: 36J. Hou, C. Yang, Z. Wang, Q. Ji, Y. Li, G. Huang, S. Jiao, H. Zhu, Appl. Catal., B 2013, 142–143, 579. 10.1016/j.apcatb.2013.05.078 – reference: 105S. Patnaik, K. K. Das, A. Mohanty, K. Parida, Catal. Today 2018, 315, 52. 10.1016/j.cattod.2018.04.008 – reference: 75M. Sun, K. L. Mu, Q. Q. Wei, Z. Yin, W. Y. Yan, L. Sun, Y. Shao, J. Colloid Interface Sci. 2018, 518, 298. 10.1016/j.jcis.2018.02.04529475051 – reference: 119K. R. Zhu, Y. Gao, X. L. Tan, C. L. Chen, ACS Sustainable Chem. Eng. 2016, 4, 4361. 10.1021/acssuschemeng.6b00922 – reference: 24R. Acharya, B. Naik, K. Parida, Beilstein J. Nanotechnol. 2018, 9, 1448. 10.3762/bjnano.9.13729977679 – reference: 35Z. He, Q. Cai, M. Wu, Y. Shi, H. Fang, L. Li, J. Chen, J. Chen, S. Song, Ind. Eng. Chem. Res. 2013, 52, 9556. 10.1021/ie400812m – reference: 63W. Wang, M. Lai, J. J. Fang, C. H. Lu, Appl. Surf. Sci. 2018, 439, 430. 10.1016/j.apsusc.2017.12.249 – reference: 1Z. X. Ren, L. Li, B. B. Liu, X. J. Liu, Z. Li, X. Lei, C. Li, Y. Y. Gong, L. Y. Niu, L. K. Pan, Catal. Today 2018, 315, 46. 10.1016/j.cattod.2018.01.021 – reference: 11R. Gaur, P. Jeevanandam, J. Nanosci. Nanotechnol. 2018, 18, 165. 10.1166/jnn.2018.1460429768828 – reference: 39F. W. Zhang, Q. J. Wen, M. Z. Hong, Z. Y. Zhang, Y. Yu, Chem. Eng. J. 2017, 307, 593. 10.1016/j.cej.2016.08.120 – reference: 90W. S. Tang, Y. Su, Q. Li, S. Gao, J. K. Shang, Water Res. 2013, 47, 3624. 10.1016/j.watres.2013.04.02323726698 – reference: 16T. A. Ferreira, J. A. Rodríguez, C. A. Galán-Vidal, Y. Castrillejo, E. Barrado, Talanta 2018, 183, 172. 10.1016/j.talanta.2018.02.05429567160 – reference: 19J. Lu, Z. R. Wang, Y. L. Liu, Q. Tang, Process Saf. Environ. Prot. 2016, 104, 436. 10.1016/j.psep.2016.04.023 – reference: 137G. P. Ren, Y. Sun, A. H. Lu, Y. Li, H. R. Ding, J. Power Sources 2018, 408, 46. 10.1016/j.jpowsour.2018.10.081 – reference: 64M. A. Lara, C. Jaramillo-Páez, J. A. Navío, P. Sánchez-Cid, M. C. Hidalgo, Catal. Today 2019, 328, 142. 10.1016/j.cattod.2018.11.012 – reference: 41A. Habibi-Yangjeh, M. Shekofteh-Gohari, Prog. Nat. Sci.: Mater. Int. 2019, 29, 145. 10.1016/j.pnsc.2019.03.003 – reference: 68S. L. Wang, Surf. Sci. 2019, 690, 121469. 10.1016/j.susc.2019.121469 – reference: 62J. W. Shi, C. Xie, C. He, C. Liu, C. Gao, S. H. Yang, J. W. Chen, G. D. Li, Catal. Commun. 2015, 66, 46. 10.1016/j.catcom.2015.03.016 – reference: 85S. Gautam, S. Muthurani, M. Balaji, P. Thakur, D. Pathinettam Padiyan, K. H. Chae, S. S. Kim, K. Asokan, Nanotechnology 2011, 11, 386. – reference: 70W. J. Wang, T. W. Ng, W. K. Ho, J. H. Huang, S. J. Liang, T. C. An, G. Y. Li, J. C. Yu, P. K. Wong, Appl. Catal., B 2013, 129, 482. 10.1016/j.apcatb.2012.09.054 – reference: 74F. Zhang, Y. C. Zhang, C. Q. Zhou, Z. J. Yang, H. G. Xue, D. D. Dionysiou, Chem. Eng. J. 2017, 324, 140. 10.1016/j.cej.2017.05.009 – reference: 30S. R. Zheng, Z. Y. Xu, Y. D. Wang, J. Photochem. Photobiol., A 2000, 137, 185. 10.1016/S1010-6030(00)00370-1 – reference: 5M. Celebi, K. Karakas, I. E. Ertas, M. Kaya, M. Zahmarkiran, ChemistrySelect 2017, 2, 8312. 10.1002/slct.201700967 – reference: 29J. A. Navío, G. Colón, M. Trillas, J. Peral, X. Domènech, J. J. Testa, J. Padrón, D. Rodrı́guez, M. I. Litter, Appl. Catal., B 1998, 16, 187. 10.1016/S0926-3373(97)00073-8 – reference: 18A. Shokati Poursani, A. Nilchi, A. H. Hassani, M. Shariat, J. Nouri, Int. J. Environ. Sci. Technol. 2015, 12, 2003. 10.1007/s13762-014-0740-7 – reference: 84C. H. Zhao, W. Z. Lan, H. M. Gong, J. L. Bai, R. Ramachandran, S. Liu, F. Wang, Ceram. Int. 2018, 44, 2856. 10.1016/j.ceramint.2017.11.032 – reference: 6B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey, J. Hazard. Mater. 2013, 250–251, 272. 10.1016/j.jhazmat.2013.01.04823467183 – reference: 12J. H. Qiu, M. Li, L. Y. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990 – reference: 26Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, J. H. Ye, J. Am. Chem. Soc. 2011, 133, 6490. 10.1021/ja200213221486031 – reference: 113Q. X. Liu, C. M. Zeng, L. H. Ai, Z. Hao, J. Jiang, Appl. Catal., B 2018, 224, 38. 10.1016/j.apcatb.2017.10.029 – reference: 107K. Z. Qi, B. Cheng, J. G. Yu, W. K. Ho, Chin. J. Catal. 2017, 38, 1936. 10.1016/S1872-2067(17)62962-0 – reference: 141D. Pan, S. S. Ge, J. Y. Tian, Q. Shao, L. Guo, H. Liu, S. D. Wu, T. Ding, Z. H. Guo, Chem. Rec. 2020, 20, 355. 10.1002/tcr.20190004631454151 – reference: 100Y. Q. Guo, Y. D. Guo, D. Tang, Y. Y. Liu, X. G. Wang, P. Li, G. H. Wang, J. Alloys Compd. 2019, 781, 1101. 10.1016/j.jallcom.2018.12.050 – reference: 130M. A. Barakat, Arabian J. Chem. 2011, 4, 361. 10.1016/j.arabjc.2010.07.019 – reference: 58G. P. Li, Y. X. Wang, L. Q. Mao, RSC Adv. 2014, 4, 53649. 10.1039/C4RA08044K – reference: 51G. Liu, J. C. Yu, G. Q. Lu, H. M. Cheng, Chem. Commun. 2011, 47, 6763. 10.1039/c1cc10665a – reference: 53E. Carbo-Argibay, X. Q. Bao, C. Rodriguez-Abreu, M. F. Cerqueira, D. Y. Petrovykh, L. F. Liu, Y. V. Kolen’ko, J. Colloid Interface Sci. 2015, 456, 219. 10.1016/j.jcis.2015.06.01426133278 – reference: 95Y. C. Du, X. K. Wang, J. S. Wu, J. S. Wang, Y. Li, H. X. Dai, Microporous Mesoporous Mater. 2018, 271, 83. 10.1016/j.micromeso.2018.04.036 – reference: 61R. J. Wei, J. C. Hu, T. F. Zhou, X. L. Zhou, J. X. Liu, J. J. Li, Acta Mater. 2014, 66, 163.10.1016/j.actamat.2013.11.076 – reference: 110M. R. Li, C. Song, Y. Wu, M. Wang, Z. P. Pan, Y. Sun, L. Meng, S. G. Han, L. J. Xu, L. Gan, Appl. Surf. Sci. 2019, 478, 744. 10.1016/j.apsusc.2019.02.017 – reference: 101G. Rekhila, Y. Bessekhouad, M. Trari, Environ. Technol. Innovation 2016, 5, 127. 10.1016/j.eti.2016.01.007 – reference: 49S. X. Zhang, H. Y. Niu, Y. Q. Cai, X. L. Zhao, Y. L. Shi, Chem. Eng. J. 2010, 158, 599. 10.1016/j.cej.2010.02.013 – reference: 96X. Gao, X. X. Liu, Z. M. Zhu, X. G. Wang, Z. Xie, Sci. Rep. 2016, 6, 30543. 10.1038/srep3054327464888 – reference: 134M. Kaur, M. Singh, S. S. Mukhopadhyay, D. Singh, M. Gupta, J. Alloys Compd. 2015, 653, 202. 10.1016/j.jallcom.2015.08.265 – reference: 145Q. Y. Luo, H. M. Yuan, M. Zhang, P. Jiang, M. Liu, D. Xu, X. Guo, Y. Q. Wu, J. Hazard. Mater. 2021, 401, 123432. 10.1016/j.jhazmat.2020.12343232763714 – reference: 15S. Catalani, J. Fostinelli, M. E. Gilberti, P. Apostoli, Int. J. Mass Spectrom. 2015, 387, 31. 10.1016/j.ijms.2015.06.015 – reference: 52E. I. García-López, G. Marcì, M. V. Dozzi, L. Palmisano, E. Selli, Catal. Today 2019, 328, 118. 10.1016/j.cattod.2019.01.038 – reference: 118C. C. Chen, K. Zhu, K. Chen, A. Alsaedi, T. Hayat, J. Colloid Interface Sci. 2018, 526, 1. 10.1016/j.jcis.2018.04.09429709667 – reference: 92N. R. Su, P. Lv, M. Li, X. L. Zhang, M. H. Li, J. S. Niu, Mater. Lett. 2014, 122, 201. 10.1016/j.matlet.2013.12.106 – reference: 102A. Behera, S. Mansingh, K. K. Das, K. Parida, J. Colloid Interface Sci. 2019, 544, 96. 10.1016/j.jcis.2019.02.05630826534 – reference: 135P. Malaviya, A. Singh, Crit. Rev. Environ. Sci. Technol. 2011, 41, 1111. 10.1080/10643380903392817 – reference: 10R. Jobby, P. Jha, A. K. Yadav, N. Desai, Chemosphere 2018, 207, 255. 10.1016/j.chemosphere.2018.05.05029803157 – reference: 54F. P. Peng, Q. Zhou, C. H. Lu, Y. R. Ni, J. H. Kou, Z. Z. Xu, Appl. Surf. Sci. 2017, 394, 115. 10.1016/j.apsusc.2016.10.066 – reference: 111M. Ye, W. Wei, L. H. Zheng, Y. Z. Liu, D. W. Wu, X. Y. Gu, A. Wei, J. Hazard. Mater. 2019, 365, 674. 10.1016/j.jhazmat.2018.11.06930472453 – reference: 31S. Somasundaram, C. R. Chenthamarakshan, N. R. D. Tacconi, Y. Ming, K. Rajeshwar, Chem. Mater. 2004, 16, 3846. 10.1021/cm049293b – reference: 57J. Zhang, L. H. Huang, L. X. Yang, Z. D. Lu, X. Y. Wang, G. L. Xu, E. Zhang, H. B. Wang, Z. Kong, J. H. Xi, Z. G. Ji, J. Alloys Compd. 2016, 676, 37. 10.1016/j.jallcom.2016.03.090 – reference: 91A. K. Rai, T. V. Thi, J. Gim, J. Kim, Mater. Charact. 2014, 95, 259. 10.1016/j.matchar.2014.06.024 – reference: 2Z. Y. Zhao, H. An, J. Lin, M. C. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. M. Mai, N. Wang, H. B. Gu, S. Angaiah, Z. H. Guo, Chem. Rec. 2019, 19, 873. 10.1002/tcr.20180015330426677 – reference: 9Q. Zhou, Y. Li, H. Yang, Y. Gao, J. Environ. Sci. 2020, 90, 385. 10.1016/j.jes.2019.12.003 – reference: 127Y. X. Li, H. F. Fu, P. Wang, C. Zhao, W. Liu, C. C. Wang, Environ. Pollut. 2020, 256, 113417. 10.1016/j.envpol.2019.11341731662269 – reference: 42R. Yang, Z. Zhu, C. Hu, S. Zhong, L. Zhang, B. Liu, W. Wang, Chem. Eng. J. 2020, 390, 124522. 10.1016/j.cej.2020.124522 – reference: 103S. S. Fang, Y. W. Zhou, M. Zhou, Z. Y. Li, S. Xu, C. Yao, J. Ind. Eng. Chem. 2018, 58, 64. 10.1016/j.jiec.2017.09.008 – reference: 44Y. Bessekhouad, D. Robert, J. V. Weber, N. Chaoui, J. Photochem. Photobiol., A 2004, 167, 49. 10.1016/j.jphotochem.2003.12.001 – reference: 98Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. 10.1002/adfm.200902390 – reference: 129H. Peng, D. X. Liu, X. G. Zheng, X. J. Fu, Nanomaterials 2019, 9, 1657. 10.3390/nano9121657 – reference: 7J. Jia, P. Xue, R. M. Wang, X. Bai, X. Y. Hu, J. Fan, E. Z. Liu, J. Chem. Technol. Biotechnol. 2018, 93, 2988. 10.1002/jctb.5657 – reference: 124Y. X. Li, X. Wang, C. C. Wang, H. F. Fu, Y. B. Liu, P. Wang, C. Zhao, J. Hazard. Mater. 2020, 399, 123085. 10.1016/j.jhazmat.2020.12308532534399 – reference: 66Y. H. Wang, Y. X. Deng, L. G. Fan, Y. Zhao, B. Shen, D. Wu, Y. Zhou, C. C. Dong, M. Y. Xing, J. L. Zhang, RSC Adv. 2017, 7, 24064. 10.1039/C7RA02608K – reference: 123H. Wang, X. Z. Yuan, Y. Wu, G. M. Zeng, X. H. Chen, L. J. Leng, Z. B. Wu, L. B. Jiang, H. Li, J. Hazard. Mater. 2015, 286, 187. 10.1016/j.jhazmat.2014.11.03925585267 – reference: 143Q. Wang, Q. Y. Gao, H. Wu, Y. J. Fan, D. G. Lin, Q. He, Y. Zhang, Y. Q. Cong, Sep. Purif. Technol. 2019, 226, 232. 10.1016/j.seppur.2019.06.002 – reference: 99S. L. Luo, X. Yan, L. X. Yang, C. B. Liu, F. Su, Y. Li, Q. Y. Cai, G. M. Zeng, Sep. Purif. Technol. 2011, 79, 85. 10.1016/j.seppur.2011.03.019 – reference: 8C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater. 2012, 223–224, 1. 10.1016/j.jhazmat.2012.04.05422608208 – reference: 55Y. Jiang, J. G. Sun, S. J. Wu, Catal. Lett. 2017, 147, 2006. 10.1007/s10562-017-2118-1 – reference: 65Z. Y. Huang, X. D. Dai, Z. J. Huang, T. L. Wang, L. H. Cui, J. Ye, P. X. Wu, Chemosphere 2019, 221, 824. 10.1016/j.chemosphere.2019.01.08730684780 – reference: 56C. N. Van, W. S. Chang, J. W. Chen, K. A. Tsai, W. Y. Tzeng, Y. C. Lin, H. H. Kuo, H. J. Liu, K. D. Chang, W. C. Chou, C. L. Wu, Y. C. Chen, C. W. Luo, Y. J. Hsu, Y. H. Chu, Nano Energy 2015, 15, 625.10.1016/j.nanoen.2015.05.024 – reference: 43W. Zhao, Y. Liu, Z. B. Wei, S. G. Yang, H. He, C. Sun, Appl. Catal., B 2016, 185, 242. 10.1016/j.apcatb.2015.12.023 – reference: 121C. Zhao, J. S. Wang, X. Chen, Z. H. Wang, H. D. Ji, L. Chen, W. Liu, C. C. Wang, Sci. Total Environ. 2021, 752, 141901. 10.1016/j.scitotenv.2020.14190133207532 – reference: 122X. Wang, Y. X. Li, X. H. Yi, C. Zhao, P. Wang, J. G. Deng, C. C. Wang, Chin. J. Catal. 2021, 42, 259. 10.1016/S1872-2067(20)63629-4 – reference: 14M. Zare-Moghadam, M. Shamsipur, F. Molaabasi, B. Hajipour-Verdom, Talanta 2020, 209, 120521. 10.1016/j.talanta.2019.12052131892071 – reference: 138H. A. Maitlo, K. H. Kim, V. Kumar, S. Kim, J. W. Park, Environ. Int. 2019, 130, 104748. 10.1016/j.envint.2019.04.02031252168 – reference: 20F. M. M. Paschoal, M. A. Anderson, M. V. B. Zanoni, J. Hazard. Mater. 2009, 166, 531. 10.1016/j.jhazmat.2008.11.05819168284 – reference: 73J. F. Qu, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Appl. Catal., B 2017, 207, 404. 10.1016/j.apcatb.2017.02.050 – reference: 133F. F. Lu, C. Huang, L. J. You, Y. P. Yin, Q. Q. Zhang, J. Mol. Liq. 2017, 247, 141. 10.1016/j.molliq.2017.09.107 – reference: 37M. Lu, Y. Cheng, S. L. Pan, Water Air Soil Pollut. 2015, 226, 295. 10.1007/s11270-015-2570-8 – reference: 142C. B. Liu, Y. B. Ding, W. Q. Wu, Y. R. Teng, Chem. Eng. J. 2016, 306, 22. 10.1016/j.cej.2016.07.043 – reference: 80J. H. Qiu, M. Li, L. Yang, J. F. Yao, Chem. Eng. J. 2019, 375, 121990. 10.1016/j.cej.2019.121990 – reference: 87P. Chen, X. Xing, H. F. Xie, Q. Sheng, H. X. Qu, Chem. Phys. Lett. 2016, 660, 176. 10.1016/j.cplett.2016.08.020 – reference: 88S. S. Patil, M. S. Tamboli, V. G. Deonikar, G. G. Umarji, J. D. Ambekar, M. V. Kulkarni, S. S. Kolekar, B. B. Kale, D. R. Patil, Dalton Trans. 2015, 44, 20426. 10.1039/C5DT03173G26508302 – reference: 93X. Z. Yuan, H. Wang, Y. Wu, X. H. Chen, G. M. Zeng, L. J. Leng, C. Zhang, Catal. Commun. 2015, 61, 62. 10.1016/j.catcom.2014.12.003 – reference: 38Q. Wang, X. D. Shi, E. Q. Liu, J. Hazard. Mater. 2016, 317, 8. 10.1016/j.jhazmat.2016.05.04427239723 – reference: 128X. H. Yi, S. Q. Ma, X. D. Du, C. Zhao, H. F. Fu, P. Wang, C. C. Wang, Chem. Eng. J. 2019, 375, 121944. 10.1016/j.cej.2019.121944 – reference: 47X. F. Lei, C. Chen, X. Li, X. X. Xue, H. Yang, Sep. Purif. Technol. 2016, 161, 8. 10.1016/j.seppur.2016.01.030 – reference: 81M. Li, J. H. Qiu, L. Yang, Y. Feng, J. F. Yao, Mater. Res. Bull. 2020, 122, 110671. 10.1016/j.materresbull.2019.110671 – reference: 4Y. X. Li, Y. C. Han, C. C. Wang, Chem. Eng. J. 2021, 405, 126648. 10.1016/j.cej.2020.126648 – reference: 46R. Ravindranath, P. Roy, A. P. Periasamy, H. T. Chang, RSC Adv. 2014, 4, 57290. 10.1039/C4RA10192H – reference: 50I. O. Ali, A. G. Mostafa, Mater. Sci. Semicond. Process. 2015, 33, 189. 10.1016/j.mssp.2015.01.030 – reference: 109C. R. Chen, L. J. Xun, P. Zhang, J. L. Zhang, B. Z. Tian, Res. Chem. Intermed. 2019, 45, 3513. 10.1007/s11164-019-03805-4 – reference: 3M. Costa, Crit. Rev. Toxicol. 1997, 27, 431. 10.3109/104084497090784429347224 – reference: 77C. Cheng, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Hazard. Mater. 2020, 391, 122205. 10.1016/j.jhazmat.2020.12220532045805 – reference: 13O. A. Zelekew, D. H. Kuo, H. Abdullah, Adv. Powder Technol. 2019, 30, 3099. 10.1016/j.apt.2019.09.016 – reference: 69T. X. Wang, S. H. Xu, F. X. Yang, Mater. Lett. 2012, 83, 46. 10.1016/j.matlet.2012.05.121 – reference: 139Q. Wang, N. X. Zhu, E. Q. Liu, C. L. Zhang, J. C. Crittenden, Y. Zhang, Y. Q. Cong, Appl. Catal., B 2017, 205, 347. 10.1016/j.apcatb.2016.11.046 – reference: 76G. P. Zhang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, J. Colloid Interface Sci. 2018, 514, 306. 10.1016/j.jcis.2017.12.04529275249 – reference: 131Y. C. Du, L. P. Wang, J. S. Wang, G. S. Wu, H. X. Dai, J. Environ. Sci. 2015, 29, 71. 10.1016/j.jes.2014.06.047 – reference: 60J. M. Wang, Z. J. Wang, P. Qu, Q. C. Xu, J. F. Zheng, S. P. Jia, J. Z. Chen, Z. P. Zhu, Int. J. Hydrogen Energy 2018, 43, 7388. 10.1016/j.ijhydene.2018.02.191 – reference: 104B. Xu, T. Ding, Y. C. Zhang, Y. T. Wen, Z. J. Yang, M. Zhang, Mater. Lett. 2017, 187, 123. 10.1016/j.matlet.2016.10.094 – reference: 125J. Guo, J. J. Li, C. C. Wang, J. Environ. Chem. Eng. 2019, 7, 102909. 10.1016/j.jece.2019.102909 – reference: 23Q. Cheng, C. W. Wang, K. Doudrick, C. Chen, Appl. Catal., B 2015, 176–177, 740. 10.1016/j.apcatb.2015.04.047 – reference: 79J. W. Pan, Z. J. Guan, J. J. Yang, Q. Y. Li, Chin. J. Catal. 2020, 41, 200. 10.1016/S1872-2067(19)63422-4 – reference: 89R. M. Khafagy, J. Alloys Compd. 2011, 509, 9849. 10.1016/j.jallcom.2011.07.008 – reference: 116H. Li, C. Zhao, X. Li, H. F. Fu, Z. H. Wang, C. C. Wang, J. Alloys Compd. 2020, 844, 156147. 10.1016/j.jallcom.2020.156147 – reference: 86Y. L. Zhao, C. P. Lin, H. J. Bi, Y. G. Liu, Q. S. Yan, Appl. Surf. Sci. 2017, 392, 701. 10.1016/j.apsusc.2016.09.099 – reference: 120H. F. Fu, L. Wu, J. Hang, P. Wang, C. Zhao, C. C. Wang, J. Alloys Compd. 2020, 837, 155567. 10.1016/j.jallcom.2020.155567 – reference: 28M. A. Aguado, J. Giménez, S. Cervera-March, Chem. Eng. Commun. 1991, 104, 71. 10.1080/00986449108910875 – reference: 117C. C. Wang, X. D. Du, J. Li, X. X. Guo, P. Wang, J. Zhang, Appl. Catal., B 2016, 193, 198. 10.1016/j.apcatb.2016.04.030 – reference: 108Y. Wang, J. X. Zhao, Z. Chen, F. Zhang, W. Guo, H. M. Lin, F. Y. Qu, Appl. Catal., B 2019, 244, 76. 10.1016/j.apcatb.2018.11.033 – reference: 71S. Wojtyla, T. Baran, Mater. Chem. Phys. 2018, 212, 103. 10.1016/j.matchemphys.2018.03.034 – volume: 205 start-page: 347 year: 2017 ident: 2024012104374659600_r139 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.11.046 – volume: 226 start-page: 232 year: 2019 ident: 2024012104374659600_r143 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.06.002 – volume: 16 start-page: 3846 year: 2004 ident: 2024012104374659600_r31 publication-title: Chem. Mater. doi: 10.1021/cm049293b – volume: 207 start-page: 404 year: 2017 ident: 2024012104374659600_r73 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.02.050 – volume: 2 start-page: 8312 year: 2017 ident: 2024012104374659600_r5 publication-title: ChemistrySelect doi: 10.1002/slct.201700967 – volume: 187 start-page: 123 year: 2017 ident: 2024012104374659600_r104 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.10.094 – volume: 63 start-page: 956 year: 2006 ident: 2024012104374659600_r32 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.08.064 – volume: 211 start-page: 249 year: 2019 ident: 2024012104374659600_r132 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.02.003 – volume: 514 start-page: 306 year: 2018 ident: 2024012104374659600_r76 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.12.045 – volume: 11 start-page: 386 year: 2011 ident: 2024012104374659600_r85 publication-title: Nanotechnology – volume: 7 start-page: 24064 year: 2017 ident: 2024012104374659600_r66 publication-title: RSC Adv. doi: 10.1039/C7RA02608K – volume: 167 start-page: 49 year: 2004 ident: 2024012104374659600_r44 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2003.12.001 – volume: 38 start-page: 1936 year: 2017 ident: 2024012104374659600_r107 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62962-0 – volume: 20 start-page: 2165 year: 2010 ident: 2024012104374659600_r98 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902390 – volume: 244 start-page: 76 year: 2019 ident: 2024012104374659600_r108 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.033 – volume: 27 start-page: 431 year: 1997 ident: 2024012104374659600_r3 publication-title: Crit. Rev. Toxicol. doi: 10.3109/10408449709078442 – volume: 221 start-page: 824 year: 2019 ident: 2024012104374659600_r65 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.087 – volume: 33 start-page: e4621 year: 2019 ident: 2024012104374659600_r126 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4621 – volume: 456 start-page: 219 year: 2015 ident: 2024012104374659600_r53 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.06.014 – volume: 401 start-page: 123432 year: 2021 ident: 2024012104374659600_r145 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123432 – volume: 30 start-page: 3099 year: 2019 ident: 2024012104374659600_r13 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.09.016 – volume: 439 start-page: 430 year: 2018 ident: 2024012104374659600_r63 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.249 – volume: 752 start-page: 141901 year: 2021 ident: 2024012104374659600_r121 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141901 – volume: 15 start-page: 625 year: 2015 ident: 2024012104374659600_r56 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.024 – volume: 122 start-page: 110671 year: 2020 ident: 2024012104374659600_r81 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.110671 – volume: 223–224 start-page: 1 year: 2012 ident: 2024012104374659600_r8 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.054 – volume: 166 start-page: 531 year: 2009 ident: 2024012104374659600_r20 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.11.058 – volume: 279 start-page: 123408 year: 2021 ident: 2024012104374659600_r115 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123408 – volume: 41 start-page: 200 year: 2020 ident: 2024012104374659600_r79 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63422-4 – volume: 52 start-page: 9556 year: 2013 ident: 2024012104374659600_r35 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400812m – volume: 784 start-page: 377 year: 2019 ident: 2024012104374659600_r27 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.386 – volume: 137 start-page: 185 year: 2000 ident: 2024012104374659600_r30 publication-title: J. Photochem. Photobiol., A doi: 10.1016/S1010-6030(00)00370-1 – volume: 247 start-page: 141 year: 2017 ident: 2024012104374659600_r133 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.09.107 – volume: 425 start-page: 107 year: 2017 ident: 2024012104374659600_r114 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.050 – volume: 104 start-page: 436 year: 2016 ident: 2024012104374659600_r19 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.04.023 – volume: 29 start-page: 145 year: 2019 ident: 2024012104374659600_r41 publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2019.03.003 – volume: 142–143 start-page: 579 year: 2013 ident: 2024012104374659600_r36 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.05.078 – volume: 47 start-page: 6763 year: 2011 ident: 2024012104374659600_r51 publication-title: Chem. Commun. doi: 10.1039/c1cc10665a – volume: 408 start-page: 46 year: 2018 ident: 2024012104374659600_r137 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.081 – volume: 390 start-page: 124522 year: 2020 ident: 2024012104374659600_r42 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124522 – volume: 375 start-page: 121990 year: 2019 ident: 2024012104374659600_r80 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121990 – volume: 42 start-page: 259 year: 2021 ident: 2024012104374659600_r122 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63629-4 – volume: 375 start-page: 121990 year: 2019 ident: 2024012104374659600_r12 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121990 – volume: 78 start-page: 979 year: 2003 ident: 2024012104374659600_r140 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.895 – volume: 10 start-page: 5950 year: 2018 ident: 2024012104374659600_r40 publication-title: Nanoscale doi: 10.1039/C7NR09049H – volume: 43 start-page: 7388 year: 2018 ident: 2024012104374659600_r60 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.191 – volume: 13 start-page: 5939 year: 2020 ident: 2024012104374659600_r78 publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2020.04.029 – volume: 33 start-page: 189 year: 2015 ident: 2024012104374659600_r50 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2015.01.030 – volume: 405 start-page: 126648 year: 2021 ident: 2024012104374659600_r4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126648 – volume: 9 start-page: 1448 year: 2018 ident: 2024012104374659600_r24 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.137 – volume: 212 start-page: 103 year: 2018 ident: 2024012104374659600_r71 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.03.034 – volume: 2 start-page: 391 year: 2012 ident: 2024012104374659600_r25 publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 85 year: 2011 ident: 2024012104374659600_r99 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.03.019 – volume: 162 start-page: 544 year: 2015 ident: 2024012104374659600_r48 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.07.022 – volume: 509 start-page: 9849 year: 2011 ident: 2024012104374659600_r89 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.07.008 – volume: 256 start-page: 113417 year: 2020 ident: 2024012104374659600_r127 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113417 – volume: 133 start-page: 6490 year: 2011 ident: 2024012104374659600_r26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2002132 – volume: 41 start-page: 1111 year: 2011 ident: 2024012104374659600_r135 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380903392817 – volume: 660 start-page: 176 year: 2016 ident: 2024012104374659600_r87 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.08.020 – volume: 399 start-page: 123085 year: 2020 ident: 2024012104374659600_r124 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123085 – volume: 161 start-page: 8 year: 2016 ident: 2024012104374659600_r47 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.01.030 – volume: 66 start-page: 163 year: 2014 ident: 2024012104374659600_r61 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.11.076 – volume: 1 start-page: 1700080 year: 2017 ident: 2024012104374659600_r106 publication-title: Small Methods doi: 10.1002/smtd.201700080 – volume: 185 start-page: 242 year: 2016 ident: 2024012104374659600_r43 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.12.023 – volume: 4 start-page: 361 year: 2011 ident: 2024012104374659600_r130 publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2010.07.019 – volume: 4 start-page: 57290 year: 2014 ident: 2024012104374659600_r46 publication-title: RSC Adv. doi: 10.1039/C4RA10192H – volume: 9 start-page: 1657 year: 2019 ident: 2024012104374659600_r129 publication-title: Nanomaterials doi: 10.3390/nano9121657 – volume: 9 start-page: 750 year: 2006 ident: 2024012104374659600_r21 publication-title: C. R. Chim. doi: 10.1016/j.crci.2005.02.055 – volume: 518 start-page: 298 year: 2018 ident: 2024012104374659600_r75 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.02.045 – volume: 18 start-page: 165 year: 2018 ident: 2024012104374659600_r11 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.14604 – volume: 176–177 start-page: 740 year: 2015 ident: 2024012104374659600_r23 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.04.047 – volume: 6 start-page: 30543 year: 2016 ident: 2024012104374659600_r96 publication-title: Sci. Rep. doi: 10.1038/srep30543 – volume: 78 start-page: 103 year: 2016 ident: 2024012104374659600_r45 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.02.017 – volume: 122 start-page: 201 year: 2014 ident: 2024012104374659600_r92 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.12.106 – volume: 4 start-page: 4361 year: 2016 ident: 2024012104374659600_r119 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b00922 – volume: 844 start-page: 156147 year: 2020 ident: 2024012104374659600_r116 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156147 – volume: 5 start-page: 127 year: 2016 ident: 2024012104374659600_r101 publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2016.01.007 – volume: 147 start-page: 2006 year: 2017 ident: 2024012104374659600_r55 publication-title: Catal. Lett. doi: 10.1007/s10562-017-2118-1 – volume: 44 start-page: 20426 year: 2015 ident: 2024012104374659600_r88 publication-title: Dalton Trans. doi: 10.1039/C5DT03173G – volume: 748 start-page: 141425 year: 2020 ident: 2024012104374659600_r146 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141425 – volume: 389 start-page: 123428 year: 2020 ident: 2024012104374659600_r144 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123428 – volume: 286 start-page: 187 year: 2015 ident: 2024012104374659600_r123 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.11.039 – volume: 375 start-page: 121944 year: 2019 ident: 2024012104374659600_r128 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121944 – volume: 271 start-page: 83 year: 2018 ident: 2024012104374659600_r95 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.04.036 – volume: 690 start-page: 121469 year: 2019 ident: 2024012104374659600_r68 publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.121469 – volume: 391 start-page: 122205 year: 2020 ident: 2024012104374659600_r77 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122205 – volume: 129 start-page: 482 year: 2013 ident: 2024012104374659600_r70 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2012.09.054 – volume: 58 start-page: 64 year: 2018 ident: 2024012104374659600_r103 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.09.008 – volume: 185 start-page: 1398 year: 2011 ident: 2024012104374659600_r34 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.061 – volume: 20 start-page: 355 year: 2020 ident: 2024012104374659600_r141 publication-title: Chem. Rec. doi: 10.1002/tcr.201900046 – volume: 478 start-page: 744 year: 2019 ident: 2024012104374659600_r110 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.017 – volume: 193 start-page: 198 year: 2016 ident: 2024012104374659600_r117 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.04.030 – volume: 104 start-page: 71 year: 1991 ident: 2024012104374659600_r28 publication-title: Chem. Eng. Commun. doi: 10.1080/00986449108910875 – volume: 317 start-page: 8 year: 2016 ident: 2024012104374659600_r38 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.05.044 – volume: 29 start-page: 71 year: 2015 ident: 2024012104374659600_r131 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2014.06.047 – volume: 130 start-page: 104748 year: 2019 ident: 2024012104374659600_r138 publication-title: Environ. Int. doi: 10.1016/j.envint.2019.04.020 – volume: 183 start-page: 172 year: 2018 ident: 2024012104374659600_r16 publication-title: Talanta doi: 10.1016/j.talanta.2018.02.054 – ident: 2024012104374659600_r22 – volume: 328 start-page: 118 year: 2019 ident: 2024012104374659600_r52 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.01.038 – volume: 232 start-page: 164 year: 2018 ident: 2024012104374659600_r83 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.03.017 – volume: 47 start-page: 3624 year: 2013 ident: 2024012104374659600_r90 publication-title: Water Res. doi: 10.1016/j.watres.2013.04.023 – volume: 660 start-page: 450 year: 2016 ident: 2024012104374659600_r94 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.11.055 – volume: 44 start-page: 2856 year: 2018 ident: 2024012104374659600_r84 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.032 – volume: 61 start-page: 62 year: 2015 ident: 2024012104374659600_r93 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.12.003 – volume: 226 start-page: 295 year: 2015 ident: 2024012104374659600_r37 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-015-2570-8 – volume: 51 start-page: 8209 year: 2016 ident: 2024012104374659600_r67 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0096-0 – volume: 209 start-page: 120521 year: 2020 ident: 2024012104374659600_r14 publication-title: Talanta doi: 10.1016/j.talanta.2019.120521 – volume: 207 start-page: 255 year: 2018 ident: 2024012104374659600_r10 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.050 – volume: 544 start-page: 96 year: 2019 ident: 2024012104374659600_r102 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.02.056 – volume: 158 start-page: 599 year: 2010 ident: 2024012104374659600_r49 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.02.013 – volume: 63 start-page: 191 year: 2008 ident: 2024012104374659600_r136 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2008.05.001 – volume: 16 start-page: 187 year: 1998 ident: 2024012104374659600_r29 publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(97)00073-8 – volume: 315 start-page: 52 year: 2018 ident: 2024012104374659600_r105 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.04.008 – volume: 315 start-page: 46 year: 2018 ident: 2024012104374659600_r1 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.01.021 – volume: 19 start-page: 873 year: 2019 ident: 2024012104374659600_r2 publication-title: Chem. Rec. doi: 10.1002/tcr.201800153 – volume: 392 start-page: 701 year: 2017 ident: 2024012104374659600_r86 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.099 – volume: 837 start-page: 155567 year: 2020 ident: 2024012104374659600_r120 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155567 – volume: 7 start-page: 102909 year: 2019 ident: 2024012104374659600_r125 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.102909 – volume: 45 start-page: 3513 year: 2019 ident: 2024012104374659600_r109 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-019-03805-4 – volume: 90 start-page: 385 year: 2020 ident: 2024012104374659600_r9 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.12.003 – volume: 387 start-page: 31 year: 2015 ident: 2024012104374659600_r15 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2015.06.015 – volume: 3 start-page: 1199 year: 2015 ident: 2024012104374659600_r17 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04526B – volume: 394 start-page: 115 year: 2017 ident: 2024012104374659600_r54 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.066 – volume: 365 start-page: 674 year: 2019 ident: 2024012104374659600_r111 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.11.069 – volume: 328 start-page: 142 year: 2019 ident: 2024012104374659600_r64 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.11.012 – volume: 306 start-page: 22 year: 2016 ident: 2024012104374659600_r142 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.043 – volume: 256 start-page: 1793 year: 2010 ident: 2024012104374659600_r33 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.10.005 – volume: 420 start-page: 839 year: 2017 ident: 2024012104374659600_r59 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.160 – volume: 83 start-page: 46 year: 2012 ident: 2024012104374659600_r69 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.05.121 – volume: 12 start-page: 2003 year: 2015 ident: 2024012104374659600_r18 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0740-7 – volume: 307 start-page: 593 year: 2017 ident: 2024012104374659600_r39 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.120 – volume: 66 start-page: 46 year: 2015 ident: 2024012104374659600_r62 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2015.03.016 – volume: 324 start-page: 140 year: 2017 ident: 2024012104374659600_r74 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.009 – volume: 781 start-page: 1101 year: 2019 ident: 2024012104374659600_r100 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.050 – volume: 224 start-page: 38 year: 2018 ident: 2024012104374659600_r113 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.10.029 – volume: 95 start-page: 259 year: 2014 ident: 2024012104374659600_r91 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2014.06.024 – volume: 653 start-page: 202 year: 2015 ident: 2024012104374659600_r134 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.08.265 – volume: 369 start-page: 1138 year: 2019 ident: 2024012104374659600_r72 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.096 – volume: 93 start-page: 2988 year: 2018 ident: 2024012104374659600_r7 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5657 – volume: 59 start-page: 8255 year: 2020 ident: 2024012104374659600_r82 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000503 – volume: 250–251 start-page: 272 year: 2013 ident: 2024012104374659600_r6 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.01.048 – volume: 676 start-page: 37 year: 2016 ident: 2024012104374659600_r57 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.03.090 – volume: 4 start-page: 935 year: 2017 ident: 2024012104374659600_r97 publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00120G – volume: 4 start-page: 53649 year: 2014 ident: 2024012104374659600_r58 publication-title: RSC Adv. doi: 10.1039/C4RA08044K – volume: 526 start-page: 1 year: 2018 ident: 2024012104374659600_r118 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.04.094 – volume: 356 start-page: 393 year: 2019 ident: 2024012104374659600_r112 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.084 |
SSID | ssj0008549 |
Score | 2.5101395 |
SecondaryResourceType | review_article |
Snippet | More and more wastewater containing hexavalent chromium (Cr(VI)), which causes increasingly threatening environmental events including death of plants or... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1142 |
SubjectTerms | Accounts Chromium Heterostructures Hexavalent chromium Organs Photocatalysis Photocatalysts Reagents Reduction Sludge Solar energy Wastewater |
Title | Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water |
URI | http://dx.doi.org/10.1246/bcsj.20200317 https://www.proquest.com/docview/2535909756 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHIADAgbaYCAfEAKJjM6xE-eIqnXrKINDO8op8q-wTiiBNT2wv55nO04aqZuAHqLKtSz7va_P7718fkboFewgitqSs4ZTFdFUsYgzxqIDYRQlIjZG2nzHp9PkeEZP5mzevdF1p0tqua-uNp4r-R-tQhvo1Z6S_QfNtoNCA3wH_cITNAzPv9JxoM1Zur-Lm23q_8t5VVcuK_O7dix57QvEOuIF6IefjW0qYFFa7hvMDjzOryKQdMPr3aYod2AQtGUFAskT2k9gm22R9W3lE6lHovq1BriJ4wqMXC7le7_xo7k6X1Vd28rhaWHW0xCkS0DcPINgdrOIJP7Okn3jLW1MeQT-EV03xf6-4wZydM2u2hO_Gw0-cZWOpVpeQKxviXb-JGi_sPbp53w0m0zy6eF8ehvdIRBRWBt-NO_YQJyFSMnPtCnHCsO_7w1-H22rZsFLv94Lu9a-V9Pf1J2nMn2IHjQhBv7g8fII3TLlY3R3GG7220bjgBsccIOrEvdxg1vc4KrAw8s3Z-O3eAG9Gsxgh5knaDY6nA6Po-ZKjUgxMqgjQtOBECkrjBAJNRJEoZPYcC0TZb1ZzTMtuN0huYJPHOssNUYkSZGqQoLr9xRtlVVpdhDOpKD6wAxcRUHCpeCUZZrEOi1SA27-Loo3SSpv_j_L3IafIN_cyjcP8t1F74Igc9VUqbeXpfy4rvvrtvtPX57luo57QSvdDAiLWTbIUpY8u_nn5-iexbxPve2hrfpyZV6AM1rLlw5GfwA4v4uj |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+on+Photocatalytic+Reduction+of+Cr%28VI%29+in+Polluted+Water&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Yuan%2C+Gaoqian&rft.au=Li%2C+Faliang&rft.au=Li%2C+Kezhuo&rft.au=Liu%2C+Jie&rft.date=2021&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=94&rft.issue=4&rft.spage=1142&rft_id=info:doi/10.1246%2Fbcsj.20200317&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |