Detecting cognitive impairment by eye movement analysis using automatic classification algorithms
► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as feat...
Saved in:
Published in | Journal of neuroscience methods Vol. 201; no. 1; pp. 196 - 203 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
30.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as features for automatic classification algorithms. ► Our techniques allow to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 96% sensitivity and 77% specificity, compared to the best classification performance of 67% accuracy, 60% sensitivity, and 73% with previous techniques over VPC data.
The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders. |
---|---|
AbstractList | The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders. The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer’s Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders. ► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as features for automatic classification algorithms. ► Our techniques allow to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 96% sensitivity and 77% specificity, compared to the best classification performance of 67% accuracy, 60% sensitivity, and 73% with previous techniques over VPC data. The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders. The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders. |
Author | Zola, Stuart M. Lagun, Dmitry Agichtein, Eugene Manzanares, Cecelia Buffalo, Elizabeth A. |
AuthorAffiliation | c Department of Neurology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA b Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA a Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA d Alzheimer’s Disease Research Center, Atlanta, GA 30322, USA e Research Service, Department of Veterans Affairs Medical Center, Atlanta, GA, USA |
AuthorAffiliation_xml | – name: a Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA – name: b Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA – name: c Department of Neurology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA – name: d Alzheimer’s Disease Research Center, Atlanta, GA 30322, USA – name: e Research Service, Department of Veterans Affairs Medical Center, Atlanta, GA, USA |
Author_xml | – sequence: 1 givenname: Dmitry surname: Lagun fullname: Lagun, Dmitry organization: Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA – sequence: 2 givenname: Cecelia surname: Manzanares fullname: Manzanares, Cecelia organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA – sequence: 3 givenname: Stuart M. surname: Zola fullname: Zola, Stuart M. organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA – sequence: 4 givenname: Elizabeth A. surname: Buffalo fullname: Buffalo, Elizabeth A. organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA – sequence: 5 givenname: Eugene surname: Agichtein fullname: Agichtein, Eugene email: eugene@mathcs.emory.edu organization: Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21801750$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUtGKEzEUDbLidld_YZk3nzreZKaZDIgoq67Cgi8KvoU0c6e9ZSapSabQv990u5XVl0JIuLnnnJzk5IpdOO-QsRsOJQcu323KjcNpxLQuBXBegixBNC_YjKtGzGWjfl-wWQYu5nkbLtlVjBsAqFuQr9il4Ap4s4AZM58xoU3kVoX1K0eJdljQuDUURnSpWO4L3GMx-h0-1saZYR8pFlM8cMyU_GgS2cIOJkbqyebKu8IMKx8orcf4mr3szRDxzdN6zX59_fLz9tv8_sfd99tP93O7EJDmQsjaKtu1PbSLNo9O9apfCtG3XCkJXS-5FLaqm9yqhOJoZGVqrKt8qTxV1-zDUXc7LUfsbHYbzKC3gUYT9tob0v92HK31yu90VUOlKpEF3j4JBP9nwpj0SNHiMBiHfoq6hYY3ddvws0ilmrZSrTwgb56b-uvmFEAGvD8CbPAxBuy1pfT4hNkjDZqDPuStN_qUtz7krUHqHGymy__opxPOEj8eiZgj2REGHS2hs9hRyP9Bd57OSTwAkJ_LlQ |
CitedBy_id | crossref_primary_10_3389_fnhum_2022_972773 crossref_primary_10_3390_s23042145 crossref_primary_10_1002_hipo_23673 crossref_primary_10_3233_JAD_190628 crossref_primary_10_3233_JAD_220711 crossref_primary_10_3758_s13428_017_0876_8 crossref_primary_10_1016_j_heliyon_2022_e09207 crossref_primary_10_1371_journal_pone_0254059 crossref_primary_10_3758_s13428_015_0683_z crossref_primary_10_3233_JAD_160641 crossref_primary_10_3390_geriatrics5020036 crossref_primary_10_1007_s40520_019_01121_w crossref_primary_10_1167_19_14_10 crossref_primary_10_3389_fnhum_2025_1526554 crossref_primary_10_1016_j_cmpb_2022_106929 crossref_primary_10_1109_ACCESS_2022_3164075 crossref_primary_10_3389_fnagi_2020_00221 crossref_primary_10_1111_nyas_13305 crossref_primary_10_3233_JAD_190690 crossref_primary_10_1016_j_neuroscience_2016_10_012 crossref_primary_10_1038_s41598_022_21445_4 crossref_primary_10_1007_s11065_021_09495_3 crossref_primary_10_1016_j_compbiomed_2015_03_002 crossref_primary_10_1016_j_compmedimag_2017_04_006 crossref_primary_10_1177_09544119241228912 crossref_primary_10_1073_pnas_1912954116 crossref_primary_10_1109_TLT_2023_3261314 crossref_primary_10_2174_0115672050322607240529075641 crossref_primary_10_3390_brainsci11111503 crossref_primary_10_1055_s_0041_1741495 crossref_primary_10_1109_ACCESS_2023_3309000 crossref_primary_10_3390_jcm8010059 crossref_primary_10_1080_10400435_2016_1251994 crossref_primary_10_1080_13825585_2021_2007841 crossref_primary_10_1177_11206721211016311 crossref_primary_10_1111_bph_14964 crossref_primary_10_3389_fnins_2017_00370 crossref_primary_10_15446_rcp_v33n2_109519 crossref_primary_10_4467_20843879PR_21_010_15133 crossref_primary_10_1371_journal_pone_0293634 crossref_primary_10_3389_fneur_2021_627981 crossref_primary_10_1016_j_jneumeth_2014_01_032 crossref_primary_10_3390_jcm13237068 crossref_primary_10_3389_fnagi_2025_1528527 crossref_primary_10_1016_j_ajodo_2016_03_028 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1159_000442383 crossref_primary_10_1007_s41666_017_0011_8 crossref_primary_10_3233_JAD_240028 crossref_primary_10_1016_j_compbiomed_2022_106418 crossref_primary_10_1038_s41746_024_01206_5 crossref_primary_10_1007_s11357_019_00092_0 crossref_primary_10_1152_jn_01096_2012 crossref_primary_10_3389_fnint_2019_00032 crossref_primary_10_3390_brainsci12091149 crossref_primary_10_1007_s11065_017_9362_4 crossref_primary_10_1016_j_imu_2022_101120 crossref_primary_10_1109_JIOT_2023_3245067 crossref_primary_10_1108_SASBE_07_2022_0129 crossref_primary_10_1016_j_neuropsychologia_2019_107191 crossref_primary_10_1109_TAFFC_2016_2582490 crossref_primary_10_31083_j_jin2102067 crossref_primary_10_3389_fpsyg_2023_1197567 crossref_primary_10_1089_tmj_2019_0039 crossref_primary_10_1007_s11065_015_9283_z crossref_primary_10_1061_JCCEE5_CPENG_5169 crossref_primary_10_1111_nyas_14256 crossref_primary_10_2139_ssrn_3977501 crossref_primary_10_1007_s40520_024_02882_9 crossref_primary_10_1371_journal_pone_0196348 crossref_primary_10_3389_fnins_2021_654003 crossref_primary_10_1016_j_ijmedinf_2017_07_002 crossref_primary_10_1007_s11357_020_00254_5 crossref_primary_10_3390_s23156848 crossref_primary_10_3389_fnagi_2023_1206481 crossref_primary_10_1177_0165551521998051 |
Cites_doi | 10.1002/dev.10161 10.1016/j.neuroimage.2007.10.031 10.1002/ana.410200405 10.1002/ana.410390314 10.3174/ajnr.A0620 10.1007/BF00994018 10.1523/JNEUROSCI.20-23-08853.2000 10.1016/S0028-3932(98)00004-9 10.1016/j.jbi.2009.10.004 10.1037/0033-2909.124.3.372 10.1093/brain/awh484 10.1016/j.neuroimage.2008.03.050 10.1007/s10803-009-0803-7 10.1093/brain/awm319 10.3233/JAD-2008-15308 10.1136/jnnp.53.4.284 10.1177/1533317509332093 10.1037/0894-4105.14.3.398 10.1207/s15327752jpa6702_19 10.1016/j.biopsych.2005.01.017 10.1001/archneur.1994.00540190062016 10.1109/TMI.2007.908685 10.1073/pnas.220398097 10.1016/j.neulet.2009.05.056 10.1523/JNEUROSCI.20-01-00451.2000 10.1016/j.clinthera.2006.07.006 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. 2011 Elsevier B.V. All rights reserved. 2011 |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. – notice: 2011 Elsevier B.V. All rights reserved. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1016/j.jneumeth.2011.06.027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 203 |
ExternalDocumentID | PMC3403832 21801750 10_1016_j_jneumeth_2011_06_027 S0165027011003621 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB014266 – fundername: NIMH NIH HHS grantid: R01 MH080007 – fundername: NIA NIH HHS grantid: P50 AG025688 – fundername: NCRR NIH HHS grantid: RR000165 – fundername: NCRR NIH HHS grantid: P51 RR000165 – fundername: NIA NIH HHS grantid: AG 025688 – fundername: NIMH NIH HHS grantid: MH080007 – fundername: National Institute on Aging : NIA grantid: P50 AG025688-05 || AG |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF R2- SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM EFKBS |
ID | FETCH-LOGICAL-c520t-2264c8cd9f0959959d8f8fb22f918860df6162c34759d3281ea63a4e430494303 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 14:22:30 EDT 2025 Fri Jul 11 09:47:49 EDT 2025 Fri Jul 11 03:19:36 EDT 2025 Sat May 31 02:06:21 EDT 2025 Tue Jul 01 00:48:03 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Fri Feb 23 02:33:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Recognition memory Behavioral test Eye movement Alzheimer's disease |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-2264c8cd9f0959959d8f8fb22f918860df6162c34759d3281ea63a4e430494303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21801750 |
PQID | 887938961 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403832 proquest_miscellaneous_907174971 proquest_miscellaneous_887938961 pubmed_primary_21801750 crossref_citationtrail_10_1016_j_jneumeth_2011_06_027 crossref_primary_10_1016_j_jneumeth_2011_06_027 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2011_06_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-30 |
PublicationDateYYYYMMDD | 2011-09-30 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ogrocki, Hills, Strauss (bib0115) 2000; 13 Salvucci, Anderson (bib0145) 2000 Crutcher, Calhoun-Haney, Manzanares, Lah, Levey, Zola (bib0035) 2009; 24 Zola, Squire, Teng, Stefanacci, Buffalo, Clark (bib0170) 2000; 20 Efron, Tibshirani (bib0050) 1993 Fan, Batmanghelich, Clark, Davatzikos (bib0060) 2008; 39 Davatzikos, Resnick, Wu, Parmpi, Clark (bib0040) 2008; 41 Rottach, Riley, DiScenna, Zivotofsky, Leigh (bib0135) 1996; 39 Manns, Stark, Squire (bib0105) 2000; 97 John, Langley (bib0075) 1995 Kloppel, Stonnington, Chu, Draganski, Scahill, Rohrer (bib0080) 2008; 131 Tripoliti, Fotiadis, Argyropoulou, Manis (bib0160) 2010; 43 Richmond, Sowerby, Colombo, Hayne (bib0125) 2004; 44 Duchesne, Caroli, Geroldi, Barillot, Frisoni, Collins (bib0045) 2008; 27 Scinto, Daffner, Castro, Weintraub, Vavrik, Mesulam (bib0150) 1994; 51 Fletcher, Sharpe (bib0065) 1986; 20 Hochberg, Tamhane (bib0070) 1987 Cortes, Vapnik (bib0025) 1995; 20 Lueck, Tanyeri, Crawford, Henderson, Kennard (bib0100) 1990; 53 Buhmann (bib0175) 2003 Mosimann, Muri, Burn, Felblinger, O’Brien, McKeith (bib0110) 2005; 128 Salas-Gonzalez, Gorriz, Ramirez, Lopez, Illan, Segovia (bib0140) 2009; 461 Crawford, Higham, Renvoize, Patel, Dale, Suriya (bib0030) 2005; 57 Walker, Husain, Hodgson, Harrison, Kennard (bib0165) 1998; 36 Fagan (bib0055) 1990; 608 Levey, Lah, Goldstein, Steenland, Bliwise (bib0090) 2006; 28 Clark, Zola, Squire (bib0010) 2000; 20 Steenland, Auman, Patel, Bartell, Goldstein, Levey, Lah (bib0180) 2008; 15 Le Cessie, Van Houwelingen (bib0085) 1992; 41 Li, Shi, Pu, Li, Jiang, Xie (bib0095) 2007; 28 Cohen (bib0015) 1988 Chawarska, Shic (bib0005) 2009 Coleman, Li (bib0020) 1992 Rayner (bib0120) 1998; 124 Rosler, Mapstone, Hays, Mesulam, Rademaker, Gitelman (bib0130) 2000; 14 Silverstein (bib0155) 1996; 67 Steenland (10.1016/j.jneumeth.2011.06.027_bib0180) 2008; 15 Duchesne (10.1016/j.jneumeth.2011.06.027_bib0045) 2008; 27 Richmond (10.1016/j.jneumeth.2011.06.027_bib0125) 2004; 44 Tripoliti (10.1016/j.jneumeth.2011.06.027_bib0160) 2010; 43 Zola (10.1016/j.jneumeth.2011.06.027_bib0170) 2000; 20 Cohen (10.1016/j.jneumeth.2011.06.027_bib0015) 1988 Coleman (10.1016/j.jneumeth.2011.06.027_bib0020) 1992 Cortes (10.1016/j.jneumeth.2011.06.027_bib0025) 1995; 20 Rayner (10.1016/j.jneumeth.2011.06.027_bib0120) 1998; 124 Salas-Gonzalez (10.1016/j.jneumeth.2011.06.027_bib0140) 2009; 461 John (10.1016/j.jneumeth.2011.06.027_bib0075) 1995 Ogrocki (10.1016/j.jneumeth.2011.06.027_bib0115) 2000; 13 Rottach (10.1016/j.jneumeth.2011.06.027_bib0135) 1996; 39 Clark (10.1016/j.jneumeth.2011.06.027_bib0010) 2000; 20 Manns (10.1016/j.jneumeth.2011.06.027_bib0105) 2000; 97 Le Cessie (10.1016/j.jneumeth.2011.06.027_bib0085) 1992; 41 Chawarska (10.1016/j.jneumeth.2011.06.027_bib0005) 2009 Kloppel (10.1016/j.jneumeth.2011.06.027_bib0080) 2008; 131 Scinto (10.1016/j.jneumeth.2011.06.027_bib0150) 1994; 51 Rosler (10.1016/j.jneumeth.2011.06.027_bib0130) 2000; 14 Efron (10.1016/j.jneumeth.2011.06.027_bib0050) 1993 Li (10.1016/j.jneumeth.2011.06.027_bib0095) 2007; 28 Fletcher (10.1016/j.jneumeth.2011.06.027_bib0065) 1986; 20 Mosimann (10.1016/j.jneumeth.2011.06.027_bib0110) 2005; 128 Silverstein (10.1016/j.jneumeth.2011.06.027_bib0155) 1996; 67 Salvucci (10.1016/j.jneumeth.2011.06.027_bib0145) 2000 Hochberg (10.1016/j.jneumeth.2011.06.027_bib0070) 1987 Lueck (10.1016/j.jneumeth.2011.06.027_bib0100) 1990; 53 Levey (10.1016/j.jneumeth.2011.06.027_bib0090) 2006; 28 Fagan (10.1016/j.jneumeth.2011.06.027_bib0055) 1990; 608 Crawford (10.1016/j.jneumeth.2011.06.027_bib0030) 2005; 57 Davatzikos (10.1016/j.jneumeth.2011.06.027_bib0040) 2008; 41 Crutcher (10.1016/j.jneumeth.2011.06.027_bib0035) 2009; 24 Walker (10.1016/j.jneumeth.2011.06.027_bib0165) 1998; 36 Fan (10.1016/j.jneumeth.2011.06.027_bib0060) 2008; 39 Buhmann (10.1016/j.jneumeth.2011.06.027_bib0175) 2003 |
References_xml | – volume: 608 start-page: 337 year: 1990 end-page: 364 ident: bib0055 article-title: The paired-comparison paradigm and infant intelligence publication-title: Development and Neural Bases of Higher Cognitive Functions – volume: 53 start-page: 284 year: 1990 end-page: 288 ident: bib0100 article-title: Antisaccades and remembered saccades in Parkinson's disease publication-title: Journal of Neurology, Neurosurgery, and Psychiatry – volume: 124 start-page: 372 year: 1998 end-page: 422 ident: bib0120 article-title: Eye movements in reading and information processing: 20 years of research publication-title: Psychological Bulletin – volume: 41 start-page: 1220 year: 2008 end-page: 1227 ident: bib0040 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0025 article-title: Support-vector networks publication-title: Machine Learning – volume: 36 start-page: 1141 year: 1998 end-page: 1159 ident: bib0165 article-title: Saccadic eye movement and working memory deficits following damage to human prefrontal cortex publication-title: Neuropsychologia – year: 1995 ident: bib0075 article-title: Estimating continuous distributions in Bayesian classifiers – volume: 20 start-page: 451 year: 2000 end-page: 463 ident: bib0170 article-title: Impaired recognition memory in monkeys after damage limited to the hippocampal region publication-title: Journal of Neuroscience – volume: 39 start-page: 1731 year: 2008 end-page: 1743 ident: bib0060 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage – volume: 20 start-page: 464 year: 1986 end-page: 471 ident: bib0065 article-title: Saccadic eye movement dysfunction in Alzheimer's disease publication-title: Annals of Neurology – volume: 24 start-page: 258 year: 2009 end-page: 266 ident: bib0035 article-title: Eye tracking during a visual paired comparison task as a predictor of early dementia publication-title: American Journal of Alzheimers Disease and Other Dementias – volume: 67 start-page: 439 year: 1996 end-page: 443 ident: bib0155 article-title: Clock drawing: an neuropsychological analysis – Freedman, M, Leach, L, Kaplan, E, Winocur, G, Shulman, KI, Delis, DC publication-title: Journal of Personality Assessment – volume: 20 start-page: 8853 year: 2000 end-page: 8860 ident: bib0010 article-title: Impaired recognition memory in rats after damage to the hippocampus publication-title: Journal of Neuroscience – volume: 39 start-page: 368 year: 1996 end-page: 377 ident: bib0135 article-title: Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes publication-title: Annals of Neurology – volume: 14 start-page: 398 year: 2000 end-page: 408 ident: bib0130 article-title: Alterations of visual search strategy in Alzheimer's disease and aging publication-title: Neuropsychology – volume: 461 start-page: 60 year: 2009 end-page: 64 ident: bib0140 article-title: Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines publication-title: Neuroscience Letters – volume: 51 start-page: 682 year: 1994 end-page: 688 ident: bib0150 article-title: Impairment of spatially directed attention in patients with probable Alzheimer's disease as measured by eye movements publication-title: Archives of Neurology – volume: 15 start-page: 419 year: 2008 end-page: 447 ident: bib0180 article-title: Development of a rapid screening instrument for mild cognitive impairment and undiagnosed dementia publication-title: Journal of Alzheimer's Disease – year: 2003 ident: bib0175 article-title: Radial basis functions: theory and implementations – volume: 57 start-page: 1052 year: 2005 end-page: 1060 ident: bib0030 article-title: Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease publication-title: Biological Psychiatry – volume: 27 start-page: 509 year: 2008 end-page: 520 ident: bib0045 article-title: MRI-based automated computer classification of probable AD versus normal controls publication-title: IEEE Transactions on Medical Imaging – volume: 43 start-page: 307 year: 2010 end-page: 320 ident: bib0160 article-title: A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data publication-title: Journal of Biomedical Informatics – year: 1992 ident: bib0020 article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables – volume: 128 start-page: 1267 year: 2005 end-page: 1276 ident: bib0110 article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies publication-title: Brain – volume: 44 start-page: 146 year: 2004 end-page: 155 ident: bib0125 article-title: The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task publication-title: Developmental Psychobiology – volume: 13 start-page: 271 year: 2000 end-page: 278 ident: bib0115 article-title: Visual exploration of facial emotion by healthy older adults and patients with Alzheimer disease publication-title: Neuropsychiatry, Neuropsychology, and Behavioral Neurology – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bib0080 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – year: 1988 ident: bib0015 article-title: Statistical power analysis for the behavioral sciences – year: 1987 ident: bib0070 article-title: Multiple comparison procedures – volume: 97 start-page: 12375 year: 2000 end-page: 12379 ident: bib0105 article-title: The visual paired-comparison task as a measure of declarative memory publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 28 start-page: 991 year: 2006 end-page: 1001 ident: bib0090 article-title: Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease publication-title: Clinical Therapeutics – year: 2009 ident: bib0005 article-title: Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder publication-title: Journal of Autism and Developmental Disorders – year: 1993 ident: bib0050 article-title: An introduction to the bootstrap – volume: 28 start-page: 1339 year: 2007 end-page: 1345 ident: bib0095 article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods publication-title: AJNR – American Journal of Neuroradiology – volume: 41 start-page: 191 year: 1992 end-page: 201 ident: bib0085 article-title: Ridge estimators in logistic regression publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – start-page: 1050 year: 2000 end-page: 1075 ident: bib0145 article-title: Interpreting eye-movement protocols publication-title: Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society – volume: 44 start-page: 146 issue: 2 year: 2004 ident: 10.1016/j.jneumeth.2011.06.027_bib0125 article-title: The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task publication-title: Developmental Psychobiology doi: 10.1002/dev.10161 – volume: 39 start-page: 1731 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2011.06.027_bib0060 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.031 – year: 1987 ident: 10.1016/j.jneumeth.2011.06.027_bib0070 – volume: 13 start-page: 271 issue: 4 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0115 article-title: Visual exploration of facial emotion by healthy older adults and patients with Alzheimer disease publication-title: Neuropsychiatry, Neuropsychology, and Behavioral Neurology – volume: 20 start-page: 464 issue: 4 year: 1986 ident: 10.1016/j.jneumeth.2011.06.027_bib0065 article-title: Saccadic eye movement dysfunction in Alzheimer's disease publication-title: Annals of Neurology doi: 10.1002/ana.410200405 – year: 1995 ident: 10.1016/j.jneumeth.2011.06.027_bib0075 – volume: 39 start-page: 368 issue: 3 year: 1996 ident: 10.1016/j.jneumeth.2011.06.027_bib0135 article-title: Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes publication-title: Annals of Neurology doi: 10.1002/ana.410390314 – volume: 28 start-page: 1339 issue: 7 year: 2007 ident: 10.1016/j.jneumeth.2011.06.027_bib0095 article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods publication-title: AJNR – American Journal of Neuroradiology doi: 10.3174/ajnr.A0620 – start-page: 1050 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0145 article-title: Interpreting eye-movement protocols publication-title: Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jneumeth.2011.06.027_bib0025 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 41 start-page: 191 issue: 1 year: 1992 ident: 10.1016/j.jneumeth.2011.06.027_bib0085 article-title: Ridge estimators in logistic regression publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – volume: 20 start-page: 8853 issue: 23 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0010 article-title: Impaired recognition memory in rats after damage to the hippocampus publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.20-23-08853.2000 – volume: 36 start-page: 1141 issue: 11 year: 1998 ident: 10.1016/j.jneumeth.2011.06.027_bib0165 article-title: Saccadic eye movement and working memory deficits following damage to human prefrontal cortex publication-title: Neuropsychologia doi: 10.1016/S0028-3932(98)00004-9 – volume: 43 start-page: 307 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2011.06.027_bib0160 article-title: A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2009.10.004 – volume: 124 start-page: 372 issue: 3 year: 1998 ident: 10.1016/j.jneumeth.2011.06.027_bib0120 article-title: Eye movements in reading and information processing: 20 years of research publication-title: Psychological Bulletin doi: 10.1037/0033-2909.124.3.372 – volume: 128 start-page: 1267 issue: 6 year: 2005 ident: 10.1016/j.jneumeth.2011.06.027_bib0110 article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies publication-title: Brain doi: 10.1093/brain/awh484 – volume: 41 start-page: 1220 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2011.06.027_bib0040 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.050 – year: 1993 ident: 10.1016/j.jneumeth.2011.06.027_bib0050 – year: 2009 ident: 10.1016/j.jneumeth.2011.06.027_bib0005 article-title: Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder publication-title: Journal of Autism and Developmental Disorders doi: 10.1007/s10803-009-0803-7 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.jneumeth.2011.06.027_bib0080 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 15 start-page: 419 issue: 3 year: 2008 ident: 10.1016/j.jneumeth.2011.06.027_bib0180 article-title: Development of a rapid screening instrument for mild cognitive impairment and undiagnosed dementia publication-title: Journal of Alzheimer's Disease doi: 10.3233/JAD-2008-15308 – year: 1992 ident: 10.1016/j.jneumeth.2011.06.027_bib0020 – volume: 608 start-page: 337 year: 1990 ident: 10.1016/j.jneumeth.2011.06.027_bib0055 article-title: The paired-comparison paradigm and infant intelligence publication-title: Development and Neural Bases of Higher Cognitive Functions – volume: 53 start-page: 284 issue: 4 year: 1990 ident: 10.1016/j.jneumeth.2011.06.027_bib0100 article-title: Antisaccades and remembered saccades in Parkinson's disease publication-title: Journal of Neurology, Neurosurgery, and Psychiatry doi: 10.1136/jnnp.53.4.284 – year: 2003 ident: 10.1016/j.jneumeth.2011.06.027_bib0175 – volume: 24 start-page: 258 issue: 3 year: 2009 ident: 10.1016/j.jneumeth.2011.06.027_bib0035 article-title: Eye tracking during a visual paired comparison task as a predictor of early dementia publication-title: American Journal of Alzheimers Disease and Other Dementias doi: 10.1177/1533317509332093 – volume: 14 start-page: 398 issue: 3 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0130 article-title: Alterations of visual search strategy in Alzheimer's disease and aging publication-title: Neuropsychology doi: 10.1037/0894-4105.14.3.398 – volume: 67 start-page: 439 issue: 2 year: 1996 ident: 10.1016/j.jneumeth.2011.06.027_bib0155 article-title: Clock drawing: an neuropsychological analysis – Freedman, M, Leach, L, Kaplan, E, Winocur, G, Shulman, KI, Delis, DC publication-title: Journal of Personality Assessment doi: 10.1207/s15327752jpa6702_19 – volume: 57 start-page: 1052 issue: 9 year: 2005 ident: 10.1016/j.jneumeth.2011.06.027_bib0030 article-title: Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2005.01.017 – volume: 51 start-page: 682 issue: 7 year: 1994 ident: 10.1016/j.jneumeth.2011.06.027_bib0150 article-title: Impairment of spatially directed attention in patients with probable Alzheimer's disease as measured by eye movements publication-title: Archives of Neurology doi: 10.1001/archneur.1994.00540190062016 – year: 1988 ident: 10.1016/j.jneumeth.2011.06.027_bib0015 – volume: 27 start-page: 509 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2011.06.027_bib0045 article-title: MRI-based automated computer classification of probable AD versus normal controls publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.908685 – volume: 97 start-page: 12375 issue: 22 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0105 article-title: The visual paired-comparison task as a measure of declarative memory publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.220398097 – volume: 461 start-page: 60 issue: 1 year: 2009 ident: 10.1016/j.jneumeth.2011.06.027_bib0140 article-title: Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2009.05.056 – volume: 20 start-page: 451 issue: 1 year: 2000 ident: 10.1016/j.jneumeth.2011.06.027_bib0170 article-title: Impaired recognition memory in monkeys after damage limited to the hippocampal region publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.20-01-00451.2000 – volume: 28 start-page: 991 issue: 7 year: 2006 ident: 10.1016/j.jneumeth.2011.06.027_bib0090 article-title: Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease publication-title: Clinical Therapeutics doi: 10.1016/j.clinthera.2006.07.006 |
SSID | ssj0004906 |
Score | 2.370888 |
Snippet | ► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the... The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - physiopathology Alzheimer's disease Behavioral test Cognition Disorders - diagnosis Cognition Disorders - physiopathology Cognitive Dysfunction - diagnosis Cognitive Dysfunction - physiopathology Eye movement Eye Movements - physiology Female Humans Male Photic Stimulation - methods Psychomotor Performance - physiology Recognition memory |
Title | Detecting cognitive impairment by eye movement analysis using automatic classification algorithms |
URI | https://dx.doi.org/10.1016/j.jneumeth.2011.06.027 https://www.ncbi.nlm.nih.gov/pubmed/21801750 https://www.proquest.com/docview/887938961 https://www.proquest.com/docview/907174971 https://pubmed.ncbi.nlm.nih.gov/PMC3403832 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCFCiyFM2jaZ7gUHSTTYuULI6GW8NJkSxtgGwESVGJjFgOHHnw0t-eO4py4yRFhgCCBokUJB51vON99x0h30yROCNyE8XS8UjYgkcyczIC6zV3oBaN9fkVF5fp-EqcXyfXG2TY5sIgrDLo_kane20drnTDaHbvy7L7GxNxwKnypGeghn0Gu-jjLO_8_QfzENLX18TGGK9kT7KEJ51J5RZYqTlQeaYdhtVlXl-gXhqgz3GUTxam0WfyKViUdNC89DbZcNUO2R1U4E1Pl_Q79RhPv3m-Qz5ehFD6LtE_HMYPYOWiKwgRxZzJco4bhtQsqVs6Op15QvGa6sBeQhEpf0P1Ah6PbK_Uov2NgCMvY6rvbmbzsr6dPuyRq9HPP8NxFOotRDaJWR1hTq3NbC4L3ByEI8-KrDBxXMhelqUsL9JeGluOFIE5j7Oe0ynXwgkM1cGJfyGb1axyXwlljuXM6txw9Hgc-NnI9MWMTniCDO8HJGkHWdlARo41Me5UizqbqFY4CoWjEH4X9w9Id9XvvqHjeLOHbGWo1iaWgjXjzb60FbqCvw5DKbpys8WDAtUswdRLe_9vItFTFrIPTfababJ6YzCrQBEmMAr9tQm0aoCc3-t3qvLWc39zwTgo4cN3fNUR2Wo2xhH0ckw26_nCnYBlVZtT_-uckg-Ds1_jy0cTyyZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQSLQXVKAtUCg-VL1t4qy9m_UR0aLwCJeCxM2yvV7YiGxQ2Bxy4bcz4_WmpA9xQFrlsLEjx2OPZzzffEPIN1MkzojcRLF0PBK24JHMnIzAes0dqEVjfX7F8DIdXIuzm-RmhRy3uTAIqwy6v9HpXluHN90wm92Hsuz-wkQccKo86RmoYXCB1gRsXyxj0Hn6jfMQ0hfYxNYYsGQv0oRHnVHlZliqOXB5ph2G5WX-fUL9bYH-CaR8cTKdfCAbwaSkR82oN8mKq7bI9lEF7vR4Tr9TD_L0t-dbZH0YYunbRP9wGECAo4suMEQUkybLKd4YUjOnbu7oeOIZxWuqA30JRaj8LdUz-Hmke6UWDXBEHHkhU31_O5mW9d348SO5Pvl5dTyIQsGFyCYxqyNMqrWZzWWBt4Pw5FmRFSaOC9nLspTlRdpLY8uRIzDncdZzOuVaOIGxOvjgn8hqNancDqHMsZxZnRuOLo8DRxupvpjRCU-Q4n2XJO0kKxvYyLEoxr1qYWcj1QpHoXAU4u_i_i7pLvo9NHwcr_aQrQzV0spScGi82pe2Qlew7TCWois3mT0q0M0SbL209_8mEl1lIfvQ5HOzTBYjBrsKNGECs9BfWkCLBkj6vfxNVd558m8uGActvPeGf3VI3g2uhhfq4vTy_At539ySIwJmn6zW05k7ADOrNl_9NnoGi7cnzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+cognitive+impairment+by+eye+movement+analysis+using+automatic+classification+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lagun%2C+Dmitry&rft.au=Manzanares%2C+Cecelia&rft.au=Zola%2C+Stuart+M.&rft.au=Buffalo%2C+Elizabeth+A.&rft.date=2011-09-30&rft.issn=0165-0270&rft.volume=201&rft.issue=1&rft.spage=196&rft.epage=203&rft_id=info:doi/10.1016%2Fj.jneumeth.2011.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2011_06_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |