Detecting cognitive impairment by eye movement analysis using automatic classification algorithms

► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as feat...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 201; no. 1; pp. 196 - 203
Main Authors Lagun, Dmitry, Manzanares, Cecelia, Zola, Stuart M., Buffalo, Elizabeth A., Agichtein, Eugene
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as features for automatic classification algorithms. ► Our techniques allow to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 96% sensitivity and 77% specificity, compared to the best classification performance of 67% accuracy, 60% sensitivity, and 73% with previous techniques over VPC data. The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.
AbstractList The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.
The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer’s Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.
► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the Visual Paired Comparison task. ► An effective representation of eye movement characteristics such as fixations, saccades, and re-fixations as features for automatic classification algorithms. ► Our techniques allow to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 96% sensitivity and 77% specificity, compared to the best classification performance of 67% accuracy, 60% sensitivity, and 73% with previous techniques over VPC data. The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.
The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli. Healthy control subjects demonstrate memory for the repeated stimuli by spending more time looking at the novel images, i.e., novelty preference. Here, we report an application of machine learning methods from computer science to improve the accuracy of detecting MCI by modeling eye movement characteristics such as fixations, saccades, and re-fixations during the VPC task. These characteristics are represented as features provided to automatic classification algorithms such as Support Vector Machines (SVMs). Using the SVM classification algorithm, in tandem with modeling the patterns of fixations, saccade orientation, and regression patterns, our algorithm was able to automatically distinguish age-matched normal control subjects from MCI subjects with 87% accuracy, 97% sensitivity and 77% specificity, compared to the best available classification performance of 67% accuracy, 60% sensitivity, and 73% specificity when using only the novelty preference information. These results demonstrate the effectiveness of applying machine-learning techniques to the detection of MCI, and suggest a promising approach for detection of cognitive impairments associated with other disorders.
Author Zola, Stuart M.
Lagun, Dmitry
Agichtein, Eugene
Manzanares, Cecelia
Buffalo, Elizabeth A.
AuthorAffiliation c Department of Neurology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
b Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
a Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA
d Alzheimer’s Disease Research Center, Atlanta, GA 30322, USA
e Research Service, Department of Veterans Affairs Medical Center, Atlanta, GA, USA
AuthorAffiliation_xml – name: a Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA
– name: b Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
– name: c Department of Neurology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
– name: d Alzheimer’s Disease Research Center, Atlanta, GA 30322, USA
– name: e Research Service, Department of Veterans Affairs Medical Center, Atlanta, GA, USA
Author_xml – sequence: 1
  givenname: Dmitry
  surname: Lagun
  fullname: Lagun, Dmitry
  organization: Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA
– sequence: 2
  givenname: Cecelia
  surname: Manzanares
  fullname: Manzanares, Cecelia
  organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
– sequence: 3
  givenname: Stuart M.
  surname: Zola
  fullname: Zola, Stuart M.
  organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
– sequence: 4
  givenname: Elizabeth A.
  surname: Buffalo
  fullname: Buffalo, Elizabeth A.
  organization: Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
– sequence: 5
  givenname: Eugene
  surname: Agichtein
  fullname: Agichtein, Eugene
  email: eugene@mathcs.emory.edu
  organization: Emory University, Mathematics & Computer Science Department, 400 Dowman Dr, Suite W401, Atlanta, GA 30322, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21801750$$D View this record in MEDLINE/PubMed
BookMark eNqFUtGKEzEUDbLidld_YZk3nzreZKaZDIgoq67Cgi8KvoU0c6e9ZSapSabQv990u5XVl0JIuLnnnJzk5IpdOO-QsRsOJQcu323KjcNpxLQuBXBegixBNC_YjKtGzGWjfl-wWQYu5nkbLtlVjBsAqFuQr9il4Ap4s4AZM58xoU3kVoX1K0eJdljQuDUURnSpWO4L3GMx-h0-1saZYR8pFlM8cMyU_GgS2cIOJkbqyebKu8IMKx8orcf4mr3szRDxzdN6zX59_fLz9tv8_sfd99tP93O7EJDmQsjaKtu1PbSLNo9O9apfCtG3XCkJXS-5FLaqm9yqhOJoZGVqrKt8qTxV1-zDUXc7LUfsbHYbzKC3gUYT9tob0v92HK31yu90VUOlKpEF3j4JBP9nwpj0SNHiMBiHfoq6hYY3ddvws0ilmrZSrTwgb56b-uvmFEAGvD8CbPAxBuy1pfT4hNkjDZqDPuStN_qUtz7krUHqHGymy__opxPOEj8eiZgj2REGHS2hs9hRyP9Bd57OSTwAkJ_LlQ
CitedBy_id crossref_primary_10_3389_fnhum_2022_972773
crossref_primary_10_3390_s23042145
crossref_primary_10_1002_hipo_23673
crossref_primary_10_3233_JAD_190628
crossref_primary_10_3233_JAD_220711
crossref_primary_10_3758_s13428_017_0876_8
crossref_primary_10_1016_j_heliyon_2022_e09207
crossref_primary_10_1371_journal_pone_0254059
crossref_primary_10_3758_s13428_015_0683_z
crossref_primary_10_3233_JAD_160641
crossref_primary_10_3390_geriatrics5020036
crossref_primary_10_1007_s40520_019_01121_w
crossref_primary_10_1167_19_14_10
crossref_primary_10_3389_fnhum_2025_1526554
crossref_primary_10_1016_j_cmpb_2022_106929
crossref_primary_10_1109_ACCESS_2022_3164075
crossref_primary_10_3389_fnagi_2020_00221
crossref_primary_10_1111_nyas_13305
crossref_primary_10_3233_JAD_190690
crossref_primary_10_1016_j_neuroscience_2016_10_012
crossref_primary_10_1038_s41598_022_21445_4
crossref_primary_10_1007_s11065_021_09495_3
crossref_primary_10_1016_j_compbiomed_2015_03_002
crossref_primary_10_1016_j_compmedimag_2017_04_006
crossref_primary_10_1177_09544119241228912
crossref_primary_10_1073_pnas_1912954116
crossref_primary_10_1109_TLT_2023_3261314
crossref_primary_10_2174_0115672050322607240529075641
crossref_primary_10_3390_brainsci11111503
crossref_primary_10_1055_s_0041_1741495
crossref_primary_10_1109_ACCESS_2023_3309000
crossref_primary_10_3390_jcm8010059
crossref_primary_10_1080_10400435_2016_1251994
crossref_primary_10_1080_13825585_2021_2007841
crossref_primary_10_1177_11206721211016311
crossref_primary_10_1111_bph_14964
crossref_primary_10_3389_fnins_2017_00370
crossref_primary_10_15446_rcp_v33n2_109519
crossref_primary_10_4467_20843879PR_21_010_15133
crossref_primary_10_1371_journal_pone_0293634
crossref_primary_10_3389_fneur_2021_627981
crossref_primary_10_1016_j_jneumeth_2014_01_032
crossref_primary_10_3390_jcm13237068
crossref_primary_10_3389_fnagi_2025_1528527
crossref_primary_10_1016_j_ajodo_2016_03_028
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1159_000442383
crossref_primary_10_1007_s41666_017_0011_8
crossref_primary_10_3233_JAD_240028
crossref_primary_10_1016_j_compbiomed_2022_106418
crossref_primary_10_1038_s41746_024_01206_5
crossref_primary_10_1007_s11357_019_00092_0
crossref_primary_10_1152_jn_01096_2012
crossref_primary_10_3389_fnint_2019_00032
crossref_primary_10_3390_brainsci12091149
crossref_primary_10_1007_s11065_017_9362_4
crossref_primary_10_1016_j_imu_2022_101120
crossref_primary_10_1109_JIOT_2023_3245067
crossref_primary_10_1108_SASBE_07_2022_0129
crossref_primary_10_1016_j_neuropsychologia_2019_107191
crossref_primary_10_1109_TAFFC_2016_2582490
crossref_primary_10_31083_j_jin2102067
crossref_primary_10_3389_fpsyg_2023_1197567
crossref_primary_10_1089_tmj_2019_0039
crossref_primary_10_1007_s11065_015_9283_z
crossref_primary_10_1061_JCCEE5_CPENG_5169
crossref_primary_10_1111_nyas_14256
crossref_primary_10_2139_ssrn_3977501
crossref_primary_10_1007_s40520_024_02882_9
crossref_primary_10_1371_journal_pone_0196348
crossref_primary_10_3389_fnins_2021_654003
crossref_primary_10_1016_j_ijmedinf_2017_07_002
crossref_primary_10_1007_s11357_020_00254_5
crossref_primary_10_3390_s23156848
crossref_primary_10_3389_fnagi_2023_1206481
crossref_primary_10_1177_0165551521998051
Cites_doi 10.1002/dev.10161
10.1016/j.neuroimage.2007.10.031
10.1002/ana.410200405
10.1002/ana.410390314
10.3174/ajnr.A0620
10.1007/BF00994018
10.1523/JNEUROSCI.20-23-08853.2000
10.1016/S0028-3932(98)00004-9
10.1016/j.jbi.2009.10.004
10.1037/0033-2909.124.3.372
10.1093/brain/awh484
10.1016/j.neuroimage.2008.03.050
10.1007/s10803-009-0803-7
10.1093/brain/awm319
10.3233/JAD-2008-15308
10.1136/jnnp.53.4.284
10.1177/1533317509332093
10.1037/0894-4105.14.3.398
10.1207/s15327752jpa6702_19
10.1016/j.biopsych.2005.01.017
10.1001/archneur.1994.00540190062016
10.1109/TMI.2007.908685
10.1073/pnas.220398097
10.1016/j.neulet.2009.05.056
10.1523/JNEUROSCI.20-01-00451.2000
10.1016/j.clinthera.2006.07.006
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
2011 Elsevier B.V. All rights reserved. 2011
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
– notice: 2011 Elsevier B.V. All rights reserved. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.jneumeth.2011.06.027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 203
ExternalDocumentID PMC3403832
21801750
10_1016_j_jneumeth_2011_06_027
S0165027011003621
Genre Research Support, U.S. Gov't, Non-P.H.S
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB014266
– fundername: NIMH NIH HHS
  grantid: R01 MH080007
– fundername: NIA NIH HHS
  grantid: P50 AG025688
– fundername: NCRR NIH HHS
  grantid: RR000165
– fundername: NCRR NIH HHS
  grantid: P51 RR000165
– fundername: NIA NIH HHS
  grantid: AG 025688
– fundername: NIMH NIH HHS
  grantid: MH080007
– fundername: National Institute on Aging : NIA
  grantid: P50 AG025688-05 || AG
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
R2-
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
EFKBS
ID FETCH-LOGICAL-c520t-2264c8cd9f0959959d8f8fb22f918860df6162c34759d3281ea63a4e430494303
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 14:22:30 EDT 2025
Fri Jul 11 09:47:49 EDT 2025
Fri Jul 11 03:19:36 EDT 2025
Sat May 31 02:06:21 EDT 2025
Tue Jul 01 00:48:03 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Fri Feb 23 02:33:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Recognition memory
Behavioral test
Eye movement
Alzheimer's disease
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-2264c8cd9f0959959d8f8fb22f918860df6162c34759d3281ea63a4e430494303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
ObjectType-Feature-1
PMID 21801750
PQID 887938961
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403832
proquest_miscellaneous_907174971
proquest_miscellaneous_887938961
pubmed_primary_21801750
crossref_citationtrail_10_1016_j_jneumeth_2011_06_027
crossref_primary_10_1016_j_jneumeth_2011_06_027
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2011_06_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-30
PublicationDateYYYYMMDD 2011-09-30
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ogrocki, Hills, Strauss (bib0115) 2000; 13
Salvucci, Anderson (bib0145) 2000
Crutcher, Calhoun-Haney, Manzanares, Lah, Levey, Zola (bib0035) 2009; 24
Zola, Squire, Teng, Stefanacci, Buffalo, Clark (bib0170) 2000; 20
Efron, Tibshirani (bib0050) 1993
Fan, Batmanghelich, Clark, Davatzikos (bib0060) 2008; 39
Davatzikos, Resnick, Wu, Parmpi, Clark (bib0040) 2008; 41
Rottach, Riley, DiScenna, Zivotofsky, Leigh (bib0135) 1996; 39
Manns, Stark, Squire (bib0105) 2000; 97
John, Langley (bib0075) 1995
Kloppel, Stonnington, Chu, Draganski, Scahill, Rohrer (bib0080) 2008; 131
Tripoliti, Fotiadis, Argyropoulou, Manis (bib0160) 2010; 43
Richmond, Sowerby, Colombo, Hayne (bib0125) 2004; 44
Duchesne, Caroli, Geroldi, Barillot, Frisoni, Collins (bib0045) 2008; 27
Scinto, Daffner, Castro, Weintraub, Vavrik, Mesulam (bib0150) 1994; 51
Fletcher, Sharpe (bib0065) 1986; 20
Hochberg, Tamhane (bib0070) 1987
Cortes, Vapnik (bib0025) 1995; 20
Lueck, Tanyeri, Crawford, Henderson, Kennard (bib0100) 1990; 53
Buhmann (bib0175) 2003
Mosimann, Muri, Burn, Felblinger, O’Brien, McKeith (bib0110) 2005; 128
Salas-Gonzalez, Gorriz, Ramirez, Lopez, Illan, Segovia (bib0140) 2009; 461
Crawford, Higham, Renvoize, Patel, Dale, Suriya (bib0030) 2005; 57
Walker, Husain, Hodgson, Harrison, Kennard (bib0165) 1998; 36
Fagan (bib0055) 1990; 608
Levey, Lah, Goldstein, Steenland, Bliwise (bib0090) 2006; 28
Clark, Zola, Squire (bib0010) 2000; 20
Steenland, Auman, Patel, Bartell, Goldstein, Levey, Lah (bib0180) 2008; 15
Le Cessie, Van Houwelingen (bib0085) 1992; 41
Li, Shi, Pu, Li, Jiang, Xie (bib0095) 2007; 28
Cohen (bib0015) 1988
Chawarska, Shic (bib0005) 2009
Coleman, Li (bib0020) 1992
Rayner (bib0120) 1998; 124
Rosler, Mapstone, Hays, Mesulam, Rademaker, Gitelman (bib0130) 2000; 14
Silverstein (bib0155) 1996; 67
Steenland (10.1016/j.jneumeth.2011.06.027_bib0180) 2008; 15
Duchesne (10.1016/j.jneumeth.2011.06.027_bib0045) 2008; 27
Richmond (10.1016/j.jneumeth.2011.06.027_bib0125) 2004; 44
Tripoliti (10.1016/j.jneumeth.2011.06.027_bib0160) 2010; 43
Zola (10.1016/j.jneumeth.2011.06.027_bib0170) 2000; 20
Cohen (10.1016/j.jneumeth.2011.06.027_bib0015) 1988
Coleman (10.1016/j.jneumeth.2011.06.027_bib0020) 1992
Cortes (10.1016/j.jneumeth.2011.06.027_bib0025) 1995; 20
Rayner (10.1016/j.jneumeth.2011.06.027_bib0120) 1998; 124
Salas-Gonzalez (10.1016/j.jneumeth.2011.06.027_bib0140) 2009; 461
John (10.1016/j.jneumeth.2011.06.027_bib0075) 1995
Ogrocki (10.1016/j.jneumeth.2011.06.027_bib0115) 2000; 13
Rottach (10.1016/j.jneumeth.2011.06.027_bib0135) 1996; 39
Clark (10.1016/j.jneumeth.2011.06.027_bib0010) 2000; 20
Manns (10.1016/j.jneumeth.2011.06.027_bib0105) 2000; 97
Le Cessie (10.1016/j.jneumeth.2011.06.027_bib0085) 1992; 41
Chawarska (10.1016/j.jneumeth.2011.06.027_bib0005) 2009
Kloppel (10.1016/j.jneumeth.2011.06.027_bib0080) 2008; 131
Scinto (10.1016/j.jneumeth.2011.06.027_bib0150) 1994; 51
Rosler (10.1016/j.jneumeth.2011.06.027_bib0130) 2000; 14
Efron (10.1016/j.jneumeth.2011.06.027_bib0050) 1993
Li (10.1016/j.jneumeth.2011.06.027_bib0095) 2007; 28
Fletcher (10.1016/j.jneumeth.2011.06.027_bib0065) 1986; 20
Mosimann (10.1016/j.jneumeth.2011.06.027_bib0110) 2005; 128
Silverstein (10.1016/j.jneumeth.2011.06.027_bib0155) 1996; 67
Salvucci (10.1016/j.jneumeth.2011.06.027_bib0145) 2000
Hochberg (10.1016/j.jneumeth.2011.06.027_bib0070) 1987
Lueck (10.1016/j.jneumeth.2011.06.027_bib0100) 1990; 53
Levey (10.1016/j.jneumeth.2011.06.027_bib0090) 2006; 28
Fagan (10.1016/j.jneumeth.2011.06.027_bib0055) 1990; 608
Crawford (10.1016/j.jneumeth.2011.06.027_bib0030) 2005; 57
Davatzikos (10.1016/j.jneumeth.2011.06.027_bib0040) 2008; 41
Crutcher (10.1016/j.jneumeth.2011.06.027_bib0035) 2009; 24
Walker (10.1016/j.jneumeth.2011.06.027_bib0165) 1998; 36
Fan (10.1016/j.jneumeth.2011.06.027_bib0060) 2008; 39
Buhmann (10.1016/j.jneumeth.2011.06.027_bib0175) 2003
References_xml – volume: 608
  start-page: 337
  year: 1990
  end-page: 364
  ident: bib0055
  article-title: The paired-comparison paradigm and infant intelligence
  publication-title: Development and Neural Bases of Higher Cognitive Functions
– volume: 53
  start-page: 284
  year: 1990
  end-page: 288
  ident: bib0100
  article-title: Antisaccades and remembered saccades in Parkinson's disease
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 124
  start-page: 372
  year: 1998
  end-page: 422
  ident: bib0120
  article-title: Eye movements in reading and information processing: 20 years of research
  publication-title: Psychological Bulletin
– volume: 41
  start-page: 1220
  year: 2008
  end-page: 1227
  ident: bib0040
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0025
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 36
  start-page: 1141
  year: 1998
  end-page: 1159
  ident: bib0165
  article-title: Saccadic eye movement and working memory deficits following damage to human prefrontal cortex
  publication-title: Neuropsychologia
– year: 1995
  ident: bib0075
  article-title: Estimating continuous distributions in Bayesian classifiers
– volume: 20
  start-page: 451
  year: 2000
  end-page: 463
  ident: bib0170
  article-title: Impaired recognition memory in monkeys after damage limited to the hippocampal region
  publication-title: Journal of Neuroscience
– volume: 39
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: bib0060
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
– volume: 20
  start-page: 464
  year: 1986
  end-page: 471
  ident: bib0065
  article-title: Saccadic eye movement dysfunction in Alzheimer's disease
  publication-title: Annals of Neurology
– volume: 24
  start-page: 258
  year: 2009
  end-page: 266
  ident: bib0035
  article-title: Eye tracking during a visual paired comparison task as a predictor of early dementia
  publication-title: American Journal of Alzheimers Disease and Other Dementias
– volume: 67
  start-page: 439
  year: 1996
  end-page: 443
  ident: bib0155
  article-title: Clock drawing: an neuropsychological analysis – Freedman, M, Leach, L, Kaplan, E, Winocur, G, Shulman, KI, Delis, DC
  publication-title: Journal of Personality Assessment
– volume: 20
  start-page: 8853
  year: 2000
  end-page: 8860
  ident: bib0010
  article-title: Impaired recognition memory in rats after damage to the hippocampus
  publication-title: Journal of Neuroscience
– volume: 39
  start-page: 368
  year: 1996
  end-page: 377
  ident: bib0135
  article-title: Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes
  publication-title: Annals of Neurology
– volume: 14
  start-page: 398
  year: 2000
  end-page: 408
  ident: bib0130
  article-title: Alterations of visual search strategy in Alzheimer's disease and aging
  publication-title: Neuropsychology
– volume: 461
  start-page: 60
  year: 2009
  end-page: 64
  ident: bib0140
  article-title: Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines
  publication-title: Neuroscience Letters
– volume: 51
  start-page: 682
  year: 1994
  end-page: 688
  ident: bib0150
  article-title: Impairment of spatially directed attention in patients with probable Alzheimer's disease as measured by eye movements
  publication-title: Archives of Neurology
– volume: 15
  start-page: 419
  year: 2008
  end-page: 447
  ident: bib0180
  article-title: Development of a rapid screening instrument for mild cognitive impairment and undiagnosed dementia
  publication-title: Journal of Alzheimer's Disease
– year: 2003
  ident: bib0175
  article-title: Radial basis functions: theory and implementations
– volume: 57
  start-page: 1052
  year: 2005
  end-page: 1060
  ident: bib0030
  article-title: Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease
  publication-title: Biological Psychiatry
– volume: 27
  start-page: 509
  year: 2008
  end-page: 520
  ident: bib0045
  article-title: MRI-based automated computer classification of probable AD versus normal controls
  publication-title: IEEE Transactions on Medical Imaging
– volume: 43
  start-page: 307
  year: 2010
  end-page: 320
  ident: bib0160
  article-title: A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data
  publication-title: Journal of Biomedical Informatics
– year: 1992
  ident: bib0020
  article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables
– volume: 128
  start-page: 1267
  year: 2005
  end-page: 1276
  ident: bib0110
  article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies
  publication-title: Brain
– volume: 44
  start-page: 146
  year: 2004
  end-page: 155
  ident: bib0125
  article-title: The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task
  publication-title: Developmental Psychobiology
– volume: 13
  start-page: 271
  year: 2000
  end-page: 278
  ident: bib0115
  article-title: Visual exploration of facial emotion by healthy older adults and patients with Alzheimer disease
  publication-title: Neuropsychiatry, Neuropsychology, and Behavioral Neurology
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bib0080
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– year: 1988
  ident: bib0015
  article-title: Statistical power analysis for the behavioral sciences
– year: 1987
  ident: bib0070
  article-title: Multiple comparison procedures
– volume: 97
  start-page: 12375
  year: 2000
  end-page: 12379
  ident: bib0105
  article-title: The visual paired-comparison task as a measure of declarative memory
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 28
  start-page: 991
  year: 2006
  end-page: 1001
  ident: bib0090
  article-title: Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease
  publication-title: Clinical Therapeutics
– year: 2009
  ident: bib0005
  article-title: Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder
  publication-title: Journal of Autism and Developmental Disorders
– year: 1993
  ident: bib0050
  article-title: An introduction to the bootstrap
– volume: 28
  start-page: 1339
  year: 2007
  end-page: 1345
  ident: bib0095
  article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods
  publication-title: AJNR – American Journal of Neuroradiology
– volume: 41
  start-page: 191
  year: 1992
  end-page: 201
  ident: bib0085
  article-title: Ridge estimators in logistic regression
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– start-page: 1050
  year: 2000
  end-page: 1075
  ident: bib0145
  article-title: Interpreting eye-movement protocols
  publication-title: Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society
– volume: 44
  start-page: 146
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2011.06.027_bib0125
  article-title: The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task
  publication-title: Developmental Psychobiology
  doi: 10.1002/dev.10161
– volume: 39
  start-page: 1731
  issue: 4
  year: 2008
  ident: 10.1016/j.jneumeth.2011.06.027_bib0060
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.031
– year: 1987
  ident: 10.1016/j.jneumeth.2011.06.027_bib0070
– volume: 13
  start-page: 271
  issue: 4
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0115
  article-title: Visual exploration of facial emotion by healthy older adults and patients with Alzheimer disease
  publication-title: Neuropsychiatry, Neuropsychology, and Behavioral Neurology
– volume: 20
  start-page: 464
  issue: 4
  year: 1986
  ident: 10.1016/j.jneumeth.2011.06.027_bib0065
  article-title: Saccadic eye movement dysfunction in Alzheimer's disease
  publication-title: Annals of Neurology
  doi: 10.1002/ana.410200405
– year: 1995
  ident: 10.1016/j.jneumeth.2011.06.027_bib0075
– volume: 39
  start-page: 368
  issue: 3
  year: 1996
  ident: 10.1016/j.jneumeth.2011.06.027_bib0135
  article-title: Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes
  publication-title: Annals of Neurology
  doi: 10.1002/ana.410390314
– volume: 28
  start-page: 1339
  issue: 7
  year: 2007
  ident: 10.1016/j.jneumeth.2011.06.027_bib0095
  article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods
  publication-title: AJNR – American Journal of Neuroradiology
  doi: 10.3174/ajnr.A0620
– start-page: 1050
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0145
  article-title: Interpreting eye-movement protocols
  publication-title: Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jneumeth.2011.06.027_bib0025
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 41
  start-page: 191
  issue: 1
  year: 1992
  ident: 10.1016/j.jneumeth.2011.06.027_bib0085
  article-title: Ridge estimators in logistic regression
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– volume: 20
  start-page: 8853
  issue: 23
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0010
  article-title: Impaired recognition memory in rats after damage to the hippocampus
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.20-23-08853.2000
– volume: 36
  start-page: 1141
  issue: 11
  year: 1998
  ident: 10.1016/j.jneumeth.2011.06.027_bib0165
  article-title: Saccadic eye movement and working memory deficits following damage to human prefrontal cortex
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(98)00004-9
– volume: 43
  start-page: 307
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2011.06.027_bib0160
  article-title: A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2009.10.004
– volume: 124
  start-page: 372
  issue: 3
  year: 1998
  ident: 10.1016/j.jneumeth.2011.06.027_bib0120
  article-title: Eye movements in reading and information processing: 20 years of research
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.124.3.372
– volume: 128
  start-page: 1267
  issue: 6
  year: 2005
  ident: 10.1016/j.jneumeth.2011.06.027_bib0110
  article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies
  publication-title: Brain
  doi: 10.1093/brain/awh484
– volume: 41
  start-page: 1220
  issue: 4
  year: 2008
  ident: 10.1016/j.jneumeth.2011.06.027_bib0040
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.050
– year: 1993
  ident: 10.1016/j.jneumeth.2011.06.027_bib0050
– year: 2009
  ident: 10.1016/j.jneumeth.2011.06.027_bib0005
  article-title: Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder
  publication-title: Journal of Autism and Developmental Disorders
  doi: 10.1007/s10803-009-0803-7
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.jneumeth.2011.06.027_bib0080
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 15
  start-page: 419
  issue: 3
  year: 2008
  ident: 10.1016/j.jneumeth.2011.06.027_bib0180
  article-title: Development of a rapid screening instrument for mild cognitive impairment and undiagnosed dementia
  publication-title: Journal of Alzheimer's Disease
  doi: 10.3233/JAD-2008-15308
– year: 1992
  ident: 10.1016/j.jneumeth.2011.06.027_bib0020
– volume: 608
  start-page: 337
  year: 1990
  ident: 10.1016/j.jneumeth.2011.06.027_bib0055
  article-title: The paired-comparison paradigm and infant intelligence
  publication-title: Development and Neural Bases of Higher Cognitive Functions
– volume: 53
  start-page: 284
  issue: 4
  year: 1990
  ident: 10.1016/j.jneumeth.2011.06.027_bib0100
  article-title: Antisaccades and remembered saccades in Parkinson's disease
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
  doi: 10.1136/jnnp.53.4.284
– year: 2003
  ident: 10.1016/j.jneumeth.2011.06.027_bib0175
– volume: 24
  start-page: 258
  issue: 3
  year: 2009
  ident: 10.1016/j.jneumeth.2011.06.027_bib0035
  article-title: Eye tracking during a visual paired comparison task as a predictor of early dementia
  publication-title: American Journal of Alzheimers Disease and Other Dementias
  doi: 10.1177/1533317509332093
– volume: 14
  start-page: 398
  issue: 3
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0130
  article-title: Alterations of visual search strategy in Alzheimer's disease and aging
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.14.3.398
– volume: 67
  start-page: 439
  issue: 2
  year: 1996
  ident: 10.1016/j.jneumeth.2011.06.027_bib0155
  article-title: Clock drawing: an neuropsychological analysis – Freedman, M, Leach, L, Kaplan, E, Winocur, G, Shulman, KI, Delis, DC
  publication-title: Journal of Personality Assessment
  doi: 10.1207/s15327752jpa6702_19
– volume: 57
  start-page: 1052
  issue: 9
  year: 2005
  ident: 10.1016/j.jneumeth.2011.06.027_bib0030
  article-title: Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2005.01.017
– volume: 51
  start-page: 682
  issue: 7
  year: 1994
  ident: 10.1016/j.jneumeth.2011.06.027_bib0150
  article-title: Impairment of spatially directed attention in patients with probable Alzheimer's disease as measured by eye movements
  publication-title: Archives of Neurology
  doi: 10.1001/archneur.1994.00540190062016
– year: 1988
  ident: 10.1016/j.jneumeth.2011.06.027_bib0015
– volume: 27
  start-page: 509
  issue: 4
  year: 2008
  ident: 10.1016/j.jneumeth.2011.06.027_bib0045
  article-title: MRI-based automated computer classification of probable AD versus normal controls
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2007.908685
– volume: 97
  start-page: 12375
  issue: 22
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0105
  article-title: The visual paired-comparison task as a measure of declarative memory
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.220398097
– volume: 461
  start-page: 60
  issue: 1
  year: 2009
  ident: 10.1016/j.jneumeth.2011.06.027_bib0140
  article-title: Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2009.05.056
– volume: 20
  start-page: 451
  issue: 1
  year: 2000
  ident: 10.1016/j.jneumeth.2011.06.027_bib0170
  article-title: Impaired recognition memory in monkeys after damage limited to the hippocampal region
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.20-01-00451.2000
– volume: 28
  start-page: 991
  issue: 7
  year: 2006
  ident: 10.1016/j.jneumeth.2011.06.027_bib0090
  article-title: Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease
  publication-title: Clinical Therapeutics
  doi: 10.1016/j.clinthera.2006.07.006
SSID ssj0004906
Score 2.370888
Snippet ► A novel application of automatic classification methods from computer science to improve the accuracy of detecting Mild Cognitive Impairment during the...
The Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - physiopathology
Alzheimer's disease
Behavioral test
Cognition Disorders - diagnosis
Cognition Disorders - physiopathology
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - physiopathology
Eye movement
Eye Movements - physiology
Female
Humans
Male
Photic Stimulation - methods
Psychomotor Performance - physiology
Recognition memory
Title Detecting cognitive impairment by eye movement analysis using automatic classification algorithms
URI https://dx.doi.org/10.1016/j.jneumeth.2011.06.027
https://www.ncbi.nlm.nih.gov/pubmed/21801750
https://www.proquest.com/docview/887938961
https://www.proquest.com/docview/907174971
https://pubmed.ncbi.nlm.nih.gov/PMC3403832
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCFCiyFM2jaZ7gUHSTTYuULI6GW8NJkSxtgGwESVGJjFgOHHnw0t-eO4py4yRFhgCCBokUJB51vON99x0h30yROCNyE8XS8UjYgkcyczIC6zV3oBaN9fkVF5fp-EqcXyfXG2TY5sIgrDLo_kane20drnTDaHbvy7L7GxNxwKnypGeghn0Gu-jjLO_8_QfzENLX18TGGK9kT7KEJ51J5RZYqTlQeaYdhtVlXl-gXhqgz3GUTxam0WfyKViUdNC89DbZcNUO2R1U4E1Pl_Q79RhPv3m-Qz5ehFD6LtE_HMYPYOWiKwgRxZzJco4bhtQsqVs6Op15QvGa6sBeQhEpf0P1Ah6PbK_Uov2NgCMvY6rvbmbzsr6dPuyRq9HPP8NxFOotRDaJWR1hTq3NbC4L3ByEI8-KrDBxXMhelqUsL9JeGluOFIE5j7Oe0ynXwgkM1cGJfyGb1axyXwlljuXM6txw9Hgc-NnI9MWMTniCDO8HJGkHWdlARo41Me5UizqbqFY4CoWjEH4X9w9Id9XvvqHjeLOHbGWo1iaWgjXjzb60FbqCvw5DKbpys8WDAtUswdRLe_9vItFTFrIPTfababJ6YzCrQBEmMAr9tQm0aoCc3-t3qvLWc39zwTgo4cN3fNUR2Wo2xhH0ckw26_nCnYBlVZtT_-uckg-Ds1_jy0cTyyZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQSLQXVKAtUCg-VL1t4qy9m_UR0aLwCJeCxM2yvV7YiGxQ2Bxy4bcz4_WmpA9xQFrlsLEjx2OPZzzffEPIN1MkzojcRLF0PBK24JHMnIzAes0dqEVjfX7F8DIdXIuzm-RmhRy3uTAIqwy6v9HpXluHN90wm92Hsuz-wkQccKo86RmoYXCB1gRsXyxj0Hn6jfMQ0hfYxNYYsGQv0oRHnVHlZliqOXB5ph2G5WX-fUL9bYH-CaR8cTKdfCAbwaSkR82oN8mKq7bI9lEF7vR4Tr9TD_L0t-dbZH0YYunbRP9wGECAo4suMEQUkybLKd4YUjOnbu7oeOIZxWuqA30JRaj8LdUz-Hmke6UWDXBEHHkhU31_O5mW9d348SO5Pvl5dTyIQsGFyCYxqyNMqrWZzWWBt4Pw5FmRFSaOC9nLspTlRdpLY8uRIzDncdZzOuVaOIGxOvjgn8hqNancDqHMsZxZnRuOLo8DRxupvpjRCU-Q4n2XJO0kKxvYyLEoxr1qYWcj1QpHoXAU4u_i_i7pLvo9NHwcr_aQrQzV0spScGi82pe2Qlew7TCWois3mT0q0M0SbL209_8mEl1lIfvQ5HOzTBYjBrsKNGECs9BfWkCLBkj6vfxNVd558m8uGActvPeGf3VI3g2uhhfq4vTy_At539ySIwJmn6zW05k7ADOrNl_9NnoGi7cnzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+cognitive+impairment+by+eye+movement+analysis+using+automatic+classification+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lagun%2C+Dmitry&rft.au=Manzanares%2C+Cecelia&rft.au=Zola%2C+Stuart+M.&rft.au=Buffalo%2C+Elizabeth+A.&rft.date=2011-09-30&rft.issn=0165-0270&rft.volume=201&rft.issue=1&rft.spage=196&rft.epage=203&rft_id=info:doi/10.1016%2Fj.jneumeth.2011.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2011_06_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon