Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)
Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e...
Saved in:
Published in | Chemical science (Cambridge) Vol. 11; no. 32; pp. 8373 - 8387 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (
e.g.
their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (
i.e.
functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. |
---|---|
AbstractList | Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. |
Author | Wood, Peter A Li, Aurelia Fairen-Jimenez, David Wiggin, Seth B Moghadam, Peyman Z Liu, Xiao-Wei Bueno-Perez, Rocio Wang, Shu-Dong |
AuthorAffiliation | Adsorption & Advanced Materials Laboratory (AAML) Chinese Academy of Sciences The Cambridge Crystallographic Data Centre University of Cambridge Department of Chemical Engineering & Biotechnology Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Dalian National Laboratory for Clean Energy – name: Dalian Institute of Chemical Physics – name: Chinese Academy of Sciences – name: Department of Chemical Engineering & Biotechnology – name: Adsorption & Advanced Materials Laboratory (AAML) – name: The Cambridge Crystallographic Data Centre – name: University of Chinese Academy of Sciences – name: University of Cambridge – name: a Adsorption & Advanced Materials Laboratory (AAML) , Department of Chemical Engineering & Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge CB3 0AS , UK . Email: df334@cam.ac.uk – name: d University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , P. R. China – name: b Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P. R. China – name: c The Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge , UK |
Author_xml | – sequence: 1 givenname: Peyman Z surname: Moghadam fullname: Moghadam, Peyman Z – sequence: 2 givenname: Aurelia surname: Li fullname: Li, Aurelia – sequence: 3 givenname: Xiao-Wei surname: Liu fullname: Liu, Xiao-Wei – sequence: 4 givenname: Rocio surname: Bueno-Perez fullname: Bueno-Perez, Rocio – sequence: 5 givenname: Shu-Dong surname: Wang fullname: Wang, Shu-Dong – sequence: 6 givenname: Seth B surname: Wiggin fullname: Wiggin, Seth B – sequence: 7 givenname: Peter A surname: Wood fullname: Wood, Peter A – sequence: 8 givenname: David surname: Fairen-Jimenez fullname: Fairen-Jimenez, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33384860$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFSEUxYmpsR92416DcVNNRpmBB8PGpJlqa9LERetWwsCdV-oMvAJj438v7atPbZqygeT-7sk597KLtnzwgNCLmryvCZUfLEmG1I0U-gnaaQirK76gcmvzbsg22k_pkpRDab1oxDO0TSltWcvJDvp-ruMSMlhsRp2SG5zR2QWPw4AnyHqsQlxq7wweop7gOsQfCTuP8wXgTk99dHYJOOU4mzxHPWKrs-51AnzQnR29fY6eDnpMsH9376Fvnz-ddyfV6dfjL93haWWKwVzViwXnlnDC29YaIzi11gw9yOKyl1pYKRmRjLUwSAlMS0sLZKixbSNKKrqHPq51V3M_gTXgczGjVtFNOv5SQTv1f8W7C7UMP5XgktBaFIGDO4EYrmZIWU0uGRhH7SHMSTVMMCZlGWpB39xDL8McfYlXKFryCC5uqFf_OtpY-TP6ArxbAyaGlCIMG6Qm6ma16oicdberPSwwuQcbl28XVdK48eGW1-uWmMxG-u9vUSs7FOblYwz9DaL9uoY |
CitedBy_id | crossref_primary_10_1002_adma_202412757 crossref_primary_10_1021_acs_chemmater_4c00762 crossref_primary_10_1016_j_molstruc_2022_132538 crossref_primary_10_1039_D3ME00016H crossref_primary_10_1002_anie_202105272 crossref_primary_10_1002_celc_202101476 crossref_primary_10_1021_acsami_2c13391 crossref_primary_10_1002_adfm_202307226 crossref_primary_10_1039_D4TA06740A crossref_primary_10_1080_08927022_2021_1916014 crossref_primary_10_1038_s41467_024_48703_5 crossref_primary_10_1039_D4SC01433B crossref_primary_10_1021_acs_chemmater_1c04168 crossref_primary_10_1016_j_micromeso_2023_112699 crossref_primary_10_1016_j_mtener_2023_101426 crossref_primary_10_1039_D1CC07229C crossref_primary_10_1039_D2TA08934C crossref_primary_10_1002_ejic_202400809 crossref_primary_10_1021_acsami_4c03777 crossref_primary_10_1002_cjoc_202100831 crossref_primary_10_1016_j_micromeso_2024_113423 crossref_primary_10_1016_j_trechm_2021_09_002 crossref_primary_10_1002_zaac_202000432 crossref_primary_10_1039_D4NR02663B crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1039_D3TA01574B crossref_primary_10_1002_chem_202005151 crossref_primary_10_1038_s42004_024_01166_7 crossref_primary_10_1039_D1DT01773J crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1016_j_ccr_2024_216067 crossref_primary_10_1039_D1DT02862F crossref_primary_10_1002_chem_202400445 crossref_primary_10_1016_j_trechm_2023_02_009 crossref_primary_10_3390_molecules26216430 crossref_primary_10_1002_adfm_202410751 crossref_primary_10_1016_j_pmatsci_2025_101432 crossref_primary_10_1021_acsami_4c06412 crossref_primary_10_1039_D4CC01454E crossref_primary_10_1016_j_envres_2022_114424 crossref_primary_10_1021_acs_chemrev_1c00347 crossref_primary_10_1039_D3DT01350B crossref_primary_10_1002_smll_202207547 crossref_primary_10_1016_j_ensm_2023_102785 crossref_primary_10_1039_D0SC04798H crossref_primary_10_1007_s11783_023_1748_3 crossref_primary_10_1039_D2CE01529C crossref_primary_10_1021_acsmaterialslett_3c00565 crossref_primary_10_1021_acsnano_3c04022 crossref_primary_10_1016_j_nanoen_2021_105946 crossref_primary_10_1107_S1600576724005934 crossref_primary_10_1039_D4CS00432A crossref_primary_10_3897_j_moem_10_2_126396 crossref_primary_10_1002_anie_202303753 crossref_primary_10_1021_acsami_2c15237 crossref_primary_10_1002_asia_202100638 crossref_primary_10_1016_j_jechem_2023_07_044 crossref_primary_10_1016_j_ccr_2022_214781 crossref_primary_10_1002_ejic_202000656 crossref_primary_10_1021_acs_chemmater_4c02796 crossref_primary_10_1039_D1FD00037C crossref_primary_10_1039_D2CE00139J crossref_primary_10_1021_acs_langmuir_0c02859 crossref_primary_10_1021_acsmaterialslett_1c00250 crossref_primary_10_1039_D1SC01588E crossref_primary_10_1039_D3DD00099K crossref_primary_10_1016_j_est_2024_114889 crossref_primary_10_1002_adfm_202103723 crossref_primary_10_1021_jacs_4c03555 crossref_primary_10_1039_D1MA00785H crossref_primary_10_1016_j_matt_2021_03_006 crossref_primary_10_1021_acs_chemmater_0c03575 crossref_primary_10_3390_molecules25184230 crossref_primary_10_1016_j_jece_2023_109954 crossref_primary_10_1039_D3TA04647H crossref_primary_10_1039_D1ME00138H crossref_primary_10_1021_acs_chemmater_3c00788 crossref_primary_10_1016_j_ica_2022_120923 crossref_primary_10_3390_molecules26185713 crossref_primary_10_1002_ange_202303753 crossref_primary_10_1016_j_desal_2024_118127 crossref_primary_10_1039_D0TA11229A crossref_primary_10_1016_j_jddst_2024_106532 crossref_primary_10_1039_D4NJ01420K crossref_primary_10_1039_D3TA03300G crossref_primary_10_1070_RCR5032 crossref_primary_10_3390_molecules26185620 crossref_primary_10_1002_aenm_202100387 crossref_primary_10_1021_acs_chemmater_3c01845 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1016_j_micromeso_2023_112932 crossref_primary_10_1021_acsami_1c00061 crossref_primary_10_1016_j_mtchem_2022_100887 crossref_primary_10_1039_D2GC02722D crossref_primary_10_1016_j_cej_2023_144400 crossref_primary_10_1002_smll_202006351 crossref_primary_10_1039_D3DD00106G crossref_primary_10_1016_j_jgsce_2025_205604 crossref_primary_10_1039_D2CC02665A crossref_primary_10_1016_j_ccr_2021_213852 crossref_primary_10_1016_j_matchemphys_2024_129804 crossref_primary_10_1016_j_ensm_2022_11_042 crossref_primary_10_1016_j_ccst_2021_100026 crossref_primary_10_1002_adfm_202405890 crossref_primary_10_3390_nano10122420 crossref_primary_10_1002_adfm_202403017 crossref_primary_10_1016_j_ccr_2024_216339 crossref_primary_10_1016_j_xcrp_2021_100396 crossref_primary_10_1038_s41596_022_00759_7 crossref_primary_10_1515_znb_2021_0142 crossref_primary_10_1039_D3CE00001J crossref_primary_10_1039_D2CC02777A crossref_primary_10_1016_j_cej_2023_142731 crossref_primary_10_1021_acs_chemrev_2c00270 crossref_primary_10_1039_D0DT04329J crossref_primary_10_1016_j_ccr_2022_214876 crossref_primary_10_1021_acs_iecr_4c03698 crossref_primary_10_1016_j_trac_2024_117707 crossref_primary_10_1016_j_ccr_2024_216059 crossref_primary_10_1021_jacs_4c13797 crossref_primary_10_1002_anie_202405307 crossref_primary_10_1002_ange_202406502 crossref_primary_10_1039_D2SC03171J crossref_primary_10_1021_acs_cgd_4c00694 crossref_primary_10_1039_D2CC05131A crossref_primary_10_1016_j_mtsust_2023_100392 crossref_primary_10_1016_j_jphotochem_2023_115244 crossref_primary_10_1134_S0965544122050127 crossref_primary_10_1016_j_chemosphere_2024_142349 crossref_primary_10_1039_D1FD00017A crossref_primary_10_1021_acs_cgd_0c01697 crossref_primary_10_1021_acs_iecr_4c03500 crossref_primary_10_1021_acsomega_2c06329 crossref_primary_10_1002_adma_202209104 crossref_primary_10_1002_ange_202105272 crossref_primary_10_1016_j_xcrp_2021_100544 crossref_primary_10_1002_anie_202406502 crossref_primary_10_1002_ange_202405307 crossref_primary_10_1021_jacs_0c10400 crossref_primary_10_1002_adfm_202307518 crossref_primary_10_1107_S2052252524000770 crossref_primary_10_1021_acs_jcim_3c01190 |
Cites_doi | 10.1039/b807080f 10.1002/anie.199717251 10.1039/C7SC00278E 10.1021/acsenergylett.8b00154 10.1039/C4CS00010B 10.1021/jp4122326 10.1126/science.aam7851 10.1039/C4CS00006D 10.1039/D0CE00299B 10.1039/C7CS90049J 10.1126/science.1230444 10.1021/acs.chemmater.7b00441 10.1016/j.matt.2019.03.002 10.1063/1.466854 10.1039/C5TA06472D 10.1351/PAC-REC-12-11-20 10.1021/ja01862a007 10.1039/C4CS00032C 10.1021/jacs.7b06382 10.1038/ncomms5406 10.1021/la301915s 10.1016/j.chempr.2017.02.005 10.1038/nature15732 10.1016/j.chempr.2016.05.001 10.1126/science.aaa8075 10.1039/c0cp02766a 10.1039/C7CS00108H 10.1039/C4CS00067F 10.1039/b802256a 10.1038/nmat5050 10.1038/46248 10.1126/science.1234071 10.1021/ja00051a041 10.1021/j100389a010 10.1021/jacs.0c00270 10.1038/s41467-019-09365-w 10.1107/S0108768102003324 10.1021/ct100433z 10.1038/nchem.738 10.1039/c2ce06488j 10.1021/ar200028a 10.1039/C7CS00033B 10.1021/jacs.7b01451 10.1246/bcsj.32.1221 10.1021/ja3082523 10.1021/cm502594j 10.1021/ja981669x 10.1098/rsfs.2016.0027 10.1021/cr200101d 10.1021/ja511878b 10.1021/acs.cgd.9b01050 10.1039/C4CS00103F 10.1021/acs.chemrev.7b00091 10.1107/S0108270183004011 10.1038/nmat2608 10.1038/nchem.1192 10.1002/anie.200300610 10.1107/S2052520616003954 10.1038/s41467-018-03892-8 10.1021/cr200179u 10.1016/j.ccr.2015.08.001 10.1021/cr200324t 10.1107/S2053229614024929 10.1021/cr200217c 10.1021/ja00197a079 10.1021/cm401978e 10.1016/j.micromeso.2011.08.020 10.1039/C4CC09596K 10.1021/jacs.7b00280 10.1021/cr2003272 10.1021/acscentsci.7b00500 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U 10.1080/08927022.2011.592832 10.1039/C6CS00533K 10.1080/08927022.2015.1010082 10.1039/b802352m 10.1021/ja00160a038 10.1002/anie.201402894 10.1021/cr200190s |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2020. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 2020 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2020. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 2020 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc01297a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 8387 |
ExternalDocumentID | PMC7690317 33384860 10_1039_D0SC01297A d0sc01297a |
Genre | Journal Article |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS -JG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c520t-15566d060688dcc763ddcfbe9848b9a7d99409448ef99e4a9d3c76c3cd8273313 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:14:15 EDT 2025 Mon Jul 21 09:31:23 EDT 2025 Fri Jul 25 06:59:20 EDT 2025 Thu Jan 02 22:58:05 EST 2025 Tue Jul 01 03:46:39 EDT 2025 Thu Apr 24 22:49:11 EDT 2025 Sat Jan 08 03:52:56 EST 2022 Wed Nov 11 00:25:30 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2020. This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-15566d060688dcc763ddcfbe9848b9a7d99409448ef99e4a9d3c76c3cd8273313 |
Notes | 10.1039/d0sc01297a Electronic supplementary information (ESI) available: Details of protocols used to identify CSD MOF families (PDF), the corresponding Conquest queries to look for different MOF families and functional groups, details of MOFs geometrical properties calculations and crystal quality assessment (PDF), the bash script used for the quick identification of structures with missing hydrogens and occupancy issues, linked CSD refcodes for MOF families and dimensionalities (XLSX), animated GIFs for geometric properties of MOFs, Python script to determine framework dimensionality, GCMC simulation files and updates on the CSD MOF subset (PDF). See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. Current address: Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK. E-mail: Email: p.moghadam@sheffield.ac.uk |
ORCID | 0000-0001-7983-1859 0000-0001-8298-3992 0000-0002-1592-0139 0000-0002-5013-1194 0000-0002-5239-2160 0000-0002-1472-6852 |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc01297a |
PMID | 33384860 |
PQID | 2435207674 |
PQPubID | 2047492 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1039_D0SC01297A rsc_primary_d0sc01297a crossref_citationtrail_10_1039_D0SC01297A proquest_journals_2435207674 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7690317 proquest_miscellaneous_2474499204 pubmed_primary_33384860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-21 |
PublicationDateYYYYMMDD | 2020-08-21 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Willems (D0SC01297A-(cit39)/*[position()=1]) 2012; 149 Batten (D0SC01297A-(cit30)/*[position()=1]) 2012; 14 Peng (D0SC01297A-(cit50)/*[position()=1]) 2014; 5 Zachariasen (D0SC01297A-(cit65)/*[position()=1]) 1940; 62 Kinoshita (D0SC01297A-(cit66)/*[position()=1]) 1959; 32 Getman (D0SC01297A-(cit9)/*[position()=1]) 2011; 112 Kondo (D0SC01297A-(cit62)/*[position()=1]) 1997; 36 Della Rocca (D0SC01297A-(cit25)/*[position()=1]) 2011; 44 Batten Stuart (D0SC01297A-(cit63)/*[position()=1]) 2013; 85 Van de Voorde (D0SC01297A-(cit14)/*[position()=1]) 2014; 43 Moghadam (D0SC01297A-(cit16)/*[position()=1]) 2017; 8 Chung (D0SC01297A-(cit33)/*[position()=1]) 2014; 26 Cheetham (D0SC01297A-(cit5)/*[position()=1]) 1999; 38 Øien-Ødegaard (D0SC01297A-(cit60)/*[position()=1]) 2017; 46 Groom (D0SC01297A-(cit35)/*[position()=1]) 2016; 72 Li (D0SC01297A-(cit61)/*[position()=1]) 1998; 120 Haldoupis (D0SC01297A-(cit57)/*[position()=1]) 2011; 13 Li (D0SC01297A-(cit40)/*[position()=1]) 2017; 356 Holcroft (D0SC01297A-(cit55)/*[position()=1]) 2015; 137 Kitagawa (D0SC01297A-(cit4)/*[position()=1]) 2004; 43 Hu (D0SC01297A-(cit23)/*[position()=1]) 2014; 43 Buch (D0SC01297A-(cit82)/*[position()=1]) 1994; 100 Kreno (D0SC01297A-(cit22)/*[position()=1]) 2012; 112 Maurin (D0SC01297A-(cit7)/*[position()=1]) 2017; 46 Moghadam (D0SC01297A-(cit1)/*[position()=1]) 2017; 29 Haranczyk (D0SC01297A-(cit56)/*[position()=1]) 2010; 6 Mayo (D0SC01297A-(cit80)/*[position()=1]) 1990; 94 O. o. E. E. R. Energy (D0SC01297A-(cit70)/*[position()=1]) 2015 Ahmed (D0SC01297A-(cit72)/*[position()=1]) 2019; 10 Herm (D0SC01297A-(cit53)/*[position()=1]) 2013; 340 Watanabe (D0SC01297A-(cit31)/*[position()=1]) 2012; 28 Bernales (D0SC01297A-(cit46)/*[position()=1]) 2018; 4 Bucior (D0SC01297A-(cit38)/*[position()=1]) 2019; 19 Navarro-Sánchez (D0SC01297A-(cit51)/*[position()=1]) 2017; 139 Li (D0SC01297A-(cit3)/*[position()=1]) 1999; 402 Flaig (D0SC01297A-(cit42)/*[position()=1]) 2017; 139 Bobbitt (D0SC01297A-(cit17)/*[position()=1]) 2017; 46 Miller (D0SC01297A-(cit26)/*[position()=1]) 2016; 6 Dubbeldam (D0SC01297A-(cit79)/*[position()=1]) 2016; 42 Reid (D0SC01297A-(cit83)/*[position()=1]) 1987 García-Holley (D0SC01297A-(cit75)/*[position()=1]) 2018; 3 D0SC01297A-(cit37)/*[position()=1] Li (D0SC01297A-(cit78)/*[position()=1]) 2020 He (D0SC01297A-(cit10)/*[position()=1]) 2014; 43 Furukawa (D0SC01297A-(cit15)/*[position()=1]) 2013; 341 Cohen (D0SC01297A-(cit43)/*[position()=1]) 2012; 112 Sarkisov (D0SC01297A-(cit59)/*[position()=1]) 2011; 37 Slater (D0SC01297A-(cit6)/*[position()=1]) 2015; 348 Torres-Knoop (D0SC01297A-(cit54)/*[position()=1]) 2014; 53 Bruno (D0SC01297A-(cit36)/*[position()=1]) 2002; 58 Tian (D0SC01297A-(cit12)/*[position()=1]) 2017; 17 Murray (D0SC01297A-(cit8)/*[position()=1]) 2009; 38 Coudert (D0SC01297A-(cit58)/*[position()=1]) 2016; 307 Zhang (D0SC01297A-(cit19)/*[position()=1]) 2014; 43 Moghadam (D0SC01297A-(cit45)/*[position()=1]) 2016; 4 Batten (D0SC01297A-(cit64)/*[position()=1]) 2012; 14 Spek (D0SC01297A-(cit68)/*[position()=1]) 2015; 71 Connolly (D0SC01297A-(cit71)/*[position()=1]) 2020; 142 Wilmer (D0SC01297A-(cit34)/*[position()=1]) 2012; 4 Strutt (D0SC01297A-(cit67)/*[position()=1]) 2012; 134 Horcajada (D0SC01297A-(cit24)/*[position()=1]) 2010; 9 Hoskins (D0SC01297A-(cit77)/*[position()=1]) 1989; 111 Allendorf (D0SC01297A-(cit21)/*[position()=1]) 2009; 38 Li (D0SC01297A-(cit13)/*[position()=1]) 2012; 112 Hoskins (D0SC01297A-(cit2)/*[position()=1]) 1990; 112 Li (D0SC01297A-(cit27)/*[position()=1]) 2016; 1 Teplensky (D0SC01297A-(cit29)/*[position()=1]) 2017; 139 Moghadam (D0SC01297A-(cit73)/*[position()=1]) 2018; 9 Bulc (D0SC01297A-(cit76)/*[position()=1]) 1983; 39 Deria (D0SC01297A-(cit44)/*[position()=1]) 2014; 43 Rappe (D0SC01297A-(cit81)/*[position()=1]) 1992; 114 Sumida (D0SC01297A-(cit41)/*[position()=1]) 2012; 112 Colón (D0SC01297A-(cit69)/*[position()=1]) 2014; 118 Rogge (D0SC01297A-(cit20)/*[position()=1]) 2017; 46 Cui (D0SC01297A-(cit49)/*[position()=1]) 2012; 112 Ma (D0SC01297A-(cit52)/*[position()=1]) 2010; 2 Lee (D0SC01297A-(cit18)/*[position()=1]) 2009; 38 Goldsmith (D0SC01297A-(cit32)/*[position()=1]) 2013; 25 Mason (D0SC01297A-(cit11)/*[position()=1]) 2015; 527 Abánades Lázaro (D0SC01297A-(cit28)/*[position()=1]) 2017; 2 Zhu (D0SC01297A-(cit47)/*[position()=1]) 2017; 117 So (D0SC01297A-(cit48)/*[position()=1]) 2015; 51 Moghadam (D0SC01297A-(cit74)/*[position()=1]) 2019; 1 |
References_xml | – issn: 2015 publication-title: Materials-Based Hydrogen Storage doi: O. o. E. E. R. Energy – issn: 1987 publication-title: The Properties of Gases and Liquids doi: Reid Prausnitz Poling – volume: 38 start-page: 1450 year: 2009 ident: D0SC01297A-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 36 start-page: 1725 year: 1997 ident: D0SC01297A-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199717251 – volume: 8 start-page: 3989 year: 2017 ident: D0SC01297A-(cit16)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC00278E – volume: 3 start-page: 748 year: 2018 ident: D0SC01297A-(cit75)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00154 – volume: 43 start-page: 5815 year: 2014 ident: D0SC01297A-(cit23)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 118 start-page: 5383 year: 2014 ident: D0SC01297A-(cit69)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4122326 – volume: 356 start-page: 624 year: 2017 ident: D0SC01297A-(cit40)/*[position()=1] publication-title: Science doi: 10.1126/science.aam7851 – volume: 43 start-page: 5766 year: 2014 ident: D0SC01297A-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00006D – year: 2020 ident: D0SC01297A-(cit78)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/D0CE00299B – volume: 46 start-page: 3104 year: 2017 ident: D0SC01297A-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS90049J – volume: 341 start-page: 1230444-0 year: 2013 ident: D0SC01297A-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 29 start-page: 2618 year: 2017 ident: D0SC01297A-(cit1)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00441 – volume: 1 start-page: 219 year: 2019 ident: D0SC01297A-(cit74)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2019.03.002 – volume: 100 start-page: 7610 year: 1994 ident: D0SC01297A-(cit82)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.466854 – volume: 4 start-page: 529 year: 2016 ident: D0SC01297A-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06472D – volume: 85 start-page: 1715 year: 2013 ident: D0SC01297A-(cit63)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/PAC-REC-12-11-20 – volume: 62 start-page: 1011 year: 1940 ident: D0SC01297A-(cit65)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01862a007 – volume: 43 start-page: 5657 year: 2014 ident: D0SC01297A-(cit10)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00032C – volume: 139 start-page: 12125 year: 2017 ident: D0SC01297A-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06382 – volume: 5 start-page: 4406 year: 2014 ident: D0SC01297A-(cit50)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5406 – volume-title: The Properties of Gases and Liquids year: 1987 ident: D0SC01297A-(cit83)/*[position()=1] – volume: 28 start-page: 14114 year: 2012 ident: D0SC01297A-(cit31)/*[position()=1] publication-title: Langmuir doi: 10.1021/la301915s – volume: 2 start-page: 561 year: 2017 ident: D0SC01297A-(cit28)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.02.005 – volume: 527 start-page: 357 year: 2015 ident: D0SC01297A-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/nature15732 – volume: 1 start-page: 154 year: 2016 ident: D0SC01297A-(cit27)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2016.05.001 – volume: 348 start-page: aaa8075-0 year: 2015 ident: D0SC01297A-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa8075 – volume: 13 start-page: 5053 year: 2011 ident: D0SC01297A-(cit57)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02766a – volume: 46 start-page: 3357 year: 2017 ident: D0SC01297A-(cit17)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00108H – volume: 43 start-page: 5896 year: 2014 ident: D0SC01297A-(cit44)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00067F – volume: 38 start-page: 1294 year: 2009 ident: D0SC01297A-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802256a – volume: 17 start-page: 174 year: 2017 ident: D0SC01297A-(cit12)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat5050 – volume: 402 start-page: 276 year: 1999 ident: D0SC01297A-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/46248 – volume: 340 start-page: 960 year: 2013 ident: D0SC01297A-(cit53)/*[position()=1] publication-title: Science doi: 10.1126/science.1234071 – volume: 114 start-page: 10035 year: 1992 ident: D0SC01297A-(cit81)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a041 – volume: 94 start-page: 8897 year: 1990 ident: D0SC01297A-(cit80)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 – volume: 142 start-page: 8541 issue: 19 year: 2020 ident: D0SC01297A-(cit71)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00270 – volume: 10 start-page: 1568 year: 2019 ident: D0SC01297A-(cit72)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09365-w – volume: 58 start-page: 389 year: 2002 ident: D0SC01297A-(cit36)/*[position()=1] publication-title: Acta Crystallogr. B doi: 10.1107/S0108768102003324 – volume: 6 start-page: 3472 year: 2010 ident: D0SC01297A-(cit56)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100433z – volume-title: Materials-Based Hydrogen Storage year: 2015 ident: D0SC01297A-(cit70)/*[position()=1] – volume: 2 start-page: 838 year: 2010 ident: D0SC01297A-(cit52)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.738 – volume: 14 start-page: 3001 year: 2012 ident: D0SC01297A-(cit64)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce06488j – volume: 44 start-page: 957 year: 2011 ident: D0SC01297A-(cit25)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200028a – volume: 46 start-page: 3134 year: 2017 ident: D0SC01297A-(cit20)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 139 start-page: 7522 year: 2017 ident: D0SC01297A-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01451 – volume: 32 start-page: 1221 year: 1959 ident: D0SC01297A-(cit66)/*[position()=1] publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.32.1221 – volume: 14 start-page: 3001 year: 2012 ident: D0SC01297A-(cit30)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce06488j – volume: 134 start-page: 17436 year: 2012 ident: D0SC01297A-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3082523 – volume: 26 start-page: 6185 year: 2014 ident: D0SC01297A-(cit33)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm502594j – volume: 120 start-page: 8571 year: 1998 ident: D0SC01297A-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981669x – volume: 6 start-page: 20160027 year: 2016 ident: D0SC01297A-(cit26)/*[position()=1] publication-title: Interface Focus doi: 10.1098/rsfs.2016.0027 – volume: 112 start-page: 1126 year: 2012 ident: D0SC01297A-(cit49)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200101d – volume: 137 start-page: 5706 year: 2015 ident: D0SC01297A-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511878b – volume: 19 start-page: 6682 year: 2019 ident: D0SC01297A-(cit38)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01050 – volume: 43 start-page: 5982 year: 2014 ident: D0SC01297A-(cit19)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00103F – volume: 117 start-page: 8129 year: 2017 ident: D0SC01297A-(cit47)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00091 – volume: 39 start-page: 176 year: 1983 ident: D0SC01297A-(cit76)/*[position()=1] publication-title: Acta Crystallogr. C doi: 10.1107/S0108270183004011 – volume: 9 start-page: 172 year: 2010 ident: D0SC01297A-(cit24)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2608 – volume: 4 start-page: 83 year: 2012 ident: D0SC01297A-(cit34)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1192 – volume: 43 start-page: 2334 year: 2004 ident: D0SC01297A-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300610 – volume: 72 start-page: 171 year: 2016 ident: D0SC01297A-(cit35)/*[position()=1] publication-title: Acta Crystallogr. B doi: 10.1107/S2052520616003954 – ident: D0SC01297A-(cit37)/*[position()=1] – volume: 9 start-page: 1378 year: 2018 ident: D0SC01297A-(cit73)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03892-8 – volume: 112 start-page: 970 year: 2012 ident: D0SC01297A-(cit43)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200179u – volume: 307 start-page: 211 year: 2016 ident: D0SC01297A-(cit58)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.001 – volume: 112 start-page: 1105 year: 2012 ident: D0SC01297A-(cit22)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 71 start-page: 9 year: 2015 ident: D0SC01297A-(cit68)/*[position()=1] publication-title: Acta Crystallogr. C doi: 10.1107/S2053229614024929 – volume: 112 start-page: 703 year: 2011 ident: D0SC01297A-(cit9)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200217c – volume: 111 start-page: 5962 year: 1989 ident: D0SC01297A-(cit77)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00197a079 – volume: 25 start-page: 3373 year: 2013 ident: D0SC01297A-(cit32)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm401978e – volume: 149 start-page: 134 year: 2012 ident: D0SC01297A-(cit39)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.08.020 – volume: 51 start-page: 3501 year: 2015 ident: D0SC01297A-(cit48)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC09596K – volume: 139 start-page: 4294 year: 2017 ident: D0SC01297A-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00280 – volume: 112 start-page: 724 year: 2012 ident: D0SC01297A-(cit41)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 4 start-page: 5 year: 2018 ident: D0SC01297A-(cit46)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00500 – volume: 38 start-page: 3268 year: 1999 ident: D0SC01297A-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U – volume: 37 start-page: 1248 year: 2011 ident: D0SC01297A-(cit59)/*[position()=1] publication-title: Mol. Simul. doi: 10.1080/08927022.2011.592832 – volume: 46 start-page: 4867 year: 2017 ident: D0SC01297A-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00533K – volume: 42 start-page: 81 year: 2016 ident: D0SC01297A-(cit79)/*[position()=1] publication-title: Mol. Simul. doi: 10.1080/08927022.2015.1010082 – volume: 38 start-page: 1330 year: 2009 ident: D0SC01297A-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802352m – volume: 112 start-page: 1546 year: 1990 ident: D0SC01297A-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00160a038 – volume: 53 start-page: 7774 year: 2014 ident: D0SC01297A-(cit54)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402894 – volume: 112 start-page: 869 year: 2012 ident: D0SC01297A-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200190s |
SSID | ssj0000331527 |
Score | 2.626215 |
Snippet | Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not... Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8373 |
SubjectTerms | Algorithms Chemistry Chirality Clusters Computer simulation Crystallography Data centers Exploration Functional groups Hydrogen storage Metal-organic frameworks Occupancy Programming languages Properties (attributes) Protocol (computers) Quality assessment Queries Room temperature Set theory Software Subgroups Surface chemistry |
Title | Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33384860 https://www.proquest.com/docview/2435207674 https://www.proquest.com/docview/2474499204 https://pubmed.ncbi.nlm.nih.gov/PMC7690317 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QFeEP8GGWMyggcmFEji1Ikfq_3RhLoxbS2Upyy1HVZpS6a1fYAnvgMfgW_GJ-Fsx06qVgh4iarklCa-X3zn8-_uEHoVyDwJZEj9rqSFH9Nw7Och5fBdJWBsaJrkTOUOH5_Qo2H8ftQddTo_W6yl-Wz8ln9bmVfyP1qFc6BXlSX7D5p1N4UT8Bv0C0fQMBz_Tseaxg0uI1c-sCL9OAfwWoJXbZkMxPRu4m8KS8WaWn5jk7NlKsnqKhyKNqrMm97iPd-30QJb0MDWGLApQUrK3qYVWTiuvlzmwgDuVH5VmwVuG6SvSQQ9Vc154gzDaJJX_idp8rUncxcpmMuy8k_lrQl2n6kUm3awItJUuagJVpiQiOWjar5J3dWumfaiIA592o3Mbo1snzNlj9y8HbbwWQdJzSwMi27StujE2PQlaxEQVWxVBFOuwnFJyyZaHsDJh-xw2O9ng4PRYA1tRLAWgcl04-zjcPTZhfICQurmwO7ZbSFcwt41t190fZbWM8u03LVb24VGezuD--hevUzBPYO5B6gjy4fojhvHR-jCYg8vYg9XBdbY-_X9R4063KAOT0oMqMMOLrhBHbaow68Bc7uP0fDwYLB35NfdOnwOLzzzwTGlVARUdTESnIPdEoIXY8nSOB2zPBGMqVhCnMqCMRnnTBAQ4oSLNFKNQ8kmWi-rUj5FmERFlMK6OhQhifMCpgsuaRQnXZ4LcEdTD-3agcx4XcpedVS5yjSlgrBsPzjf04Pe89BLJ3tjCrislNq2-sjqD3yaRbCUiAJV7cpDL9xlGGe1p5aXspormSSOGQPFe-iJUZ_7G0JIqnq8eShZUKwTUKXdF6-Uk0td4j2hDKxt4qFNgICTb6Dkoa3VF7IbUWz9-WWeobvNp7mN1kHP8jl41rPxjo5I7dT4_g17QdFT |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+classification+of+metal%E2%80%93organic+frameworks+in+the+Cambridge+structural+database+%28CSD%29&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Moghadam%2C+Peyman+Z&rft.au=Li%2C+Aurelia&rft.au=Xiao-Wei%2C+Liu&rft.au=Bueno-Perez%2C+Rocio&rft.date=2020-08-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=32&rft.spage=8373&rft.epage=8387&rft_id=info:doi/10.1039%2Fd0sc01297a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |