Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)

Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 11; no. 32; pp. 8373 - 8387
Main Authors Moghadam, Peyman Z, Li, Aurelia, Liu, Xiao-Wei, Bueno-Perez, Rocio, Wang, Shu-Dong, Wiggin, Seth B, Wood, Peter A, Fairen-Jimenez, David
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far.
AbstractList Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications. Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far.
Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users – and encourage them – to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules ( their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry ( functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users - and encourage them - to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications.
Author Wood, Peter A
Li, Aurelia
Fairen-Jimenez, David
Wiggin, Seth B
Moghadam, Peyman Z
Liu, Xiao-Wei
Bueno-Perez, Rocio
Wang, Shu-Dong
AuthorAffiliation Adsorption & Advanced Materials Laboratory (AAML)
Chinese Academy of Sciences
The Cambridge Crystallographic Data Centre
University of Cambridge
Department of Chemical Engineering & Biotechnology
Dalian National Laboratory for Clean Energy
Dalian Institute of Chemical Physics
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Dalian National Laboratory for Clean Energy
– name: Dalian Institute of Chemical Physics
– name: Chinese Academy of Sciences
– name: Department of Chemical Engineering & Biotechnology
– name: Adsorption & Advanced Materials Laboratory (AAML)
– name: The Cambridge Crystallographic Data Centre
– name: University of Chinese Academy of Sciences
– name: University of Cambridge
– name: a Adsorption & Advanced Materials Laboratory (AAML) , Department of Chemical Engineering & Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge CB3 0AS , UK . Email: df334@cam.ac.uk
– name: d University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , P. R. China
– name: b Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P. R. China
– name: c The Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge , UK
Author_xml – sequence: 1
  givenname: Peyman Z
  surname: Moghadam
  fullname: Moghadam, Peyman Z
– sequence: 2
  givenname: Aurelia
  surname: Li
  fullname: Li, Aurelia
– sequence: 3
  givenname: Xiao-Wei
  surname: Liu
  fullname: Liu, Xiao-Wei
– sequence: 4
  givenname: Rocio
  surname: Bueno-Perez
  fullname: Bueno-Perez, Rocio
– sequence: 5
  givenname: Shu-Dong
  surname: Wang
  fullname: Wang, Shu-Dong
– sequence: 6
  givenname: Seth B
  surname: Wiggin
  fullname: Wiggin, Seth B
– sequence: 7
  givenname: Peter A
  surname: Wood
  fullname: Wood, Peter A
– sequence: 8
  givenname: David
  surname: Fairen-Jimenez
  fullname: Fairen-Jimenez, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33384860$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFSEUxYmpsR92416DcVNNRpmBB8PGpJlqa9LERetWwsCdV-oMvAJj438v7atPbZqygeT-7sk597KLtnzwgNCLmryvCZUfLEmG1I0U-gnaaQirK76gcmvzbsg22k_pkpRDab1oxDO0TSltWcvJDvp-ruMSMlhsRp2SG5zR2QWPw4AnyHqsQlxq7wweop7gOsQfCTuP8wXgTk99dHYJOOU4mzxHPWKrs-51AnzQnR29fY6eDnpMsH9376Fvnz-ddyfV6dfjL93haWWKwVzViwXnlnDC29YaIzi11gw9yOKyl1pYKRmRjLUwSAlMS0sLZKixbSNKKrqHPq51V3M_gTXgczGjVtFNOv5SQTv1f8W7C7UMP5XgktBaFIGDO4EYrmZIWU0uGRhH7SHMSTVMMCZlGWpB39xDL8McfYlXKFryCC5uqFf_OtpY-TP6ArxbAyaGlCIMG6Qm6ma16oicdberPSwwuQcbl28XVdK48eGW1-uWmMxG-u9vUSs7FOblYwz9DaL9uoY
CitedBy_id crossref_primary_10_1002_adma_202412757
crossref_primary_10_1021_acs_chemmater_4c00762
crossref_primary_10_1016_j_molstruc_2022_132538
crossref_primary_10_1039_D3ME00016H
crossref_primary_10_1002_anie_202105272
crossref_primary_10_1002_celc_202101476
crossref_primary_10_1021_acsami_2c13391
crossref_primary_10_1002_adfm_202307226
crossref_primary_10_1039_D4TA06740A
crossref_primary_10_1080_08927022_2021_1916014
crossref_primary_10_1038_s41467_024_48703_5
crossref_primary_10_1039_D4SC01433B
crossref_primary_10_1021_acs_chemmater_1c04168
crossref_primary_10_1016_j_micromeso_2023_112699
crossref_primary_10_1016_j_mtener_2023_101426
crossref_primary_10_1039_D1CC07229C
crossref_primary_10_1039_D2TA08934C
crossref_primary_10_1002_ejic_202400809
crossref_primary_10_1021_acsami_4c03777
crossref_primary_10_1002_cjoc_202100831
crossref_primary_10_1016_j_micromeso_2024_113423
crossref_primary_10_1016_j_trechm_2021_09_002
crossref_primary_10_1002_zaac_202000432
crossref_primary_10_1039_D4NR02663B
crossref_primary_10_1016_j_ccr_2023_215558
crossref_primary_10_1039_D3TA01574B
crossref_primary_10_1002_chem_202005151
crossref_primary_10_1038_s42004_024_01166_7
crossref_primary_10_1039_D1DT01773J
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1016_j_ccr_2024_216067
crossref_primary_10_1039_D1DT02862F
crossref_primary_10_1002_chem_202400445
crossref_primary_10_1016_j_trechm_2023_02_009
crossref_primary_10_3390_molecules26216430
crossref_primary_10_1002_adfm_202410751
crossref_primary_10_1016_j_pmatsci_2025_101432
crossref_primary_10_1021_acsami_4c06412
crossref_primary_10_1039_D4CC01454E
crossref_primary_10_1016_j_envres_2022_114424
crossref_primary_10_1021_acs_chemrev_1c00347
crossref_primary_10_1039_D3DT01350B
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1016_j_ensm_2023_102785
crossref_primary_10_1039_D0SC04798H
crossref_primary_10_1007_s11783_023_1748_3
crossref_primary_10_1039_D2CE01529C
crossref_primary_10_1021_acsmaterialslett_3c00565
crossref_primary_10_1021_acsnano_3c04022
crossref_primary_10_1016_j_nanoen_2021_105946
crossref_primary_10_1107_S1600576724005934
crossref_primary_10_1039_D4CS00432A
crossref_primary_10_3897_j_moem_10_2_126396
crossref_primary_10_1002_anie_202303753
crossref_primary_10_1021_acsami_2c15237
crossref_primary_10_1002_asia_202100638
crossref_primary_10_1016_j_jechem_2023_07_044
crossref_primary_10_1016_j_ccr_2022_214781
crossref_primary_10_1002_ejic_202000656
crossref_primary_10_1021_acs_chemmater_4c02796
crossref_primary_10_1039_D1FD00037C
crossref_primary_10_1039_D2CE00139J
crossref_primary_10_1021_acs_langmuir_0c02859
crossref_primary_10_1021_acsmaterialslett_1c00250
crossref_primary_10_1039_D1SC01588E
crossref_primary_10_1039_D3DD00099K
crossref_primary_10_1016_j_est_2024_114889
crossref_primary_10_1002_adfm_202103723
crossref_primary_10_1021_jacs_4c03555
crossref_primary_10_1039_D1MA00785H
crossref_primary_10_1016_j_matt_2021_03_006
crossref_primary_10_1021_acs_chemmater_0c03575
crossref_primary_10_3390_molecules25184230
crossref_primary_10_1016_j_jece_2023_109954
crossref_primary_10_1039_D3TA04647H
crossref_primary_10_1039_D1ME00138H
crossref_primary_10_1021_acs_chemmater_3c00788
crossref_primary_10_1016_j_ica_2022_120923
crossref_primary_10_3390_molecules26185713
crossref_primary_10_1002_ange_202303753
crossref_primary_10_1016_j_desal_2024_118127
crossref_primary_10_1039_D0TA11229A
crossref_primary_10_1016_j_jddst_2024_106532
crossref_primary_10_1039_D4NJ01420K
crossref_primary_10_1039_D3TA03300G
crossref_primary_10_1070_RCR5032
crossref_primary_10_3390_molecules26185620
crossref_primary_10_1002_aenm_202100387
crossref_primary_10_1021_acs_chemmater_3c01845
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1016_j_micromeso_2023_112932
crossref_primary_10_1021_acsami_1c00061
crossref_primary_10_1016_j_mtchem_2022_100887
crossref_primary_10_1039_D2GC02722D
crossref_primary_10_1016_j_cej_2023_144400
crossref_primary_10_1002_smll_202006351
crossref_primary_10_1039_D3DD00106G
crossref_primary_10_1016_j_jgsce_2025_205604
crossref_primary_10_1039_D2CC02665A
crossref_primary_10_1016_j_ccr_2021_213852
crossref_primary_10_1016_j_matchemphys_2024_129804
crossref_primary_10_1016_j_ensm_2022_11_042
crossref_primary_10_1016_j_ccst_2021_100026
crossref_primary_10_1002_adfm_202405890
crossref_primary_10_3390_nano10122420
crossref_primary_10_1002_adfm_202403017
crossref_primary_10_1016_j_ccr_2024_216339
crossref_primary_10_1016_j_xcrp_2021_100396
crossref_primary_10_1038_s41596_022_00759_7
crossref_primary_10_1515_znb_2021_0142
crossref_primary_10_1039_D3CE00001J
crossref_primary_10_1039_D2CC02777A
crossref_primary_10_1016_j_cej_2023_142731
crossref_primary_10_1021_acs_chemrev_2c00270
crossref_primary_10_1039_D0DT04329J
crossref_primary_10_1016_j_ccr_2022_214876
crossref_primary_10_1021_acs_iecr_4c03698
crossref_primary_10_1016_j_trac_2024_117707
crossref_primary_10_1016_j_ccr_2024_216059
crossref_primary_10_1021_jacs_4c13797
crossref_primary_10_1002_anie_202405307
crossref_primary_10_1002_ange_202406502
crossref_primary_10_1039_D2SC03171J
crossref_primary_10_1021_acs_cgd_4c00694
crossref_primary_10_1039_D2CC05131A
crossref_primary_10_1016_j_mtsust_2023_100392
crossref_primary_10_1016_j_jphotochem_2023_115244
crossref_primary_10_1134_S0965544122050127
crossref_primary_10_1016_j_chemosphere_2024_142349
crossref_primary_10_1039_D1FD00017A
crossref_primary_10_1021_acs_cgd_0c01697
crossref_primary_10_1021_acs_iecr_4c03500
crossref_primary_10_1021_acsomega_2c06329
crossref_primary_10_1002_adma_202209104
crossref_primary_10_1002_ange_202105272
crossref_primary_10_1016_j_xcrp_2021_100544
crossref_primary_10_1002_anie_202406502
crossref_primary_10_1002_ange_202405307
crossref_primary_10_1021_jacs_0c10400
crossref_primary_10_1002_adfm_202307518
crossref_primary_10_1107_S2052252524000770
crossref_primary_10_1021_acs_jcim_3c01190
Cites_doi 10.1039/b807080f
10.1002/anie.199717251
10.1039/C7SC00278E
10.1021/acsenergylett.8b00154
10.1039/C4CS00010B
10.1021/jp4122326
10.1126/science.aam7851
10.1039/C4CS00006D
10.1039/D0CE00299B
10.1039/C7CS90049J
10.1126/science.1230444
10.1021/acs.chemmater.7b00441
10.1016/j.matt.2019.03.002
10.1063/1.466854
10.1039/C5TA06472D
10.1351/PAC-REC-12-11-20
10.1021/ja01862a007
10.1039/C4CS00032C
10.1021/jacs.7b06382
10.1038/ncomms5406
10.1021/la301915s
10.1016/j.chempr.2017.02.005
10.1038/nature15732
10.1016/j.chempr.2016.05.001
10.1126/science.aaa8075
10.1039/c0cp02766a
10.1039/C7CS00108H
10.1039/C4CS00067F
10.1039/b802256a
10.1038/nmat5050
10.1038/46248
10.1126/science.1234071
10.1021/ja00051a041
10.1021/j100389a010
10.1021/jacs.0c00270
10.1038/s41467-019-09365-w
10.1107/S0108768102003324
10.1021/ct100433z
10.1038/nchem.738
10.1039/c2ce06488j
10.1021/ar200028a
10.1039/C7CS00033B
10.1021/jacs.7b01451
10.1246/bcsj.32.1221
10.1021/ja3082523
10.1021/cm502594j
10.1021/ja981669x
10.1098/rsfs.2016.0027
10.1021/cr200101d
10.1021/ja511878b
10.1021/acs.cgd.9b01050
10.1039/C4CS00103F
10.1021/acs.chemrev.7b00091
10.1107/S0108270183004011
10.1038/nmat2608
10.1038/nchem.1192
10.1002/anie.200300610
10.1107/S2052520616003954
10.1038/s41467-018-03892-8
10.1021/cr200179u
10.1016/j.ccr.2015.08.001
10.1021/cr200324t
10.1107/S2053229614024929
10.1021/cr200217c
10.1021/ja00197a079
10.1021/cm401978e
10.1016/j.micromeso.2011.08.020
10.1039/C4CC09596K
10.1021/jacs.7b00280
10.1021/cr2003272
10.1021/acscentsci.7b00500
10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
10.1080/08927022.2011.592832
10.1039/C6CS00533K
10.1080/08927022.2015.1010082
10.1039/b802352m
10.1021/ja00160a038
10.1002/anie.201402894
10.1021/cr200190s
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2020.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 2020
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2020.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 2020
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc01297a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 8387
ExternalDocumentID PMC7690317
33384860
10_1039_D0SC01297A
d0sc01297a
Genre Journal Article
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
-JG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c520t-15566d060688dcc763ddcfbe9848b9a7d99409448ef99e4a9d3c76c3cd8273313
ISSN 2041-6520
IngestDate Thu Aug 21 14:14:15 EDT 2025
Mon Jul 21 09:31:23 EDT 2025
Fri Jul 25 06:59:20 EDT 2025
Thu Jan 02 22:58:05 EST 2025
Tue Jul 01 03:46:39 EDT 2025
Thu Apr 24 22:49:11 EDT 2025
Sat Jan 08 03:52:56 EST 2022
Wed Nov 11 00:25:30 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License This journal is © The Royal Society of Chemistry 2020.
This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-15566d060688dcc763ddcfbe9848b9a7d99409448ef99e4a9d3c76c3cd8273313
Notes 10.1039/d0sc01297a
Electronic supplementary information (ESI) available: Details of protocols used to identify CSD MOF families (PDF), the corresponding Conquest queries to look for different MOF families and functional groups, details of MOFs geometrical properties calculations and crystal quality assessment (PDF), the bash script used for the quick identification of structures with missing hydrogens and occupancy issues, linked CSD refcodes for MOF families and dimensionalities (XLSX), animated GIFs for geometric properties of MOFs, Python script to determine framework dimensionality, GCMC simulation files and updates on the CSD MOF subset (PDF). See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
Current address: Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK. E-mail: Email: p.moghadam@sheffield.ac.uk
ORCID 0000-0001-7983-1859
0000-0001-8298-3992
0000-0002-1592-0139
0000-0002-5013-1194
0000-0002-5239-2160
0000-0002-1472-6852
OpenAccessLink http://dx.doi.org/10.1039/d0sc01297a
PMID 33384860
PQID 2435207674
PQPubID 2047492
PageCount 15
ParticipantIDs crossref_primary_10_1039_D0SC01297A
rsc_primary_d0sc01297a
crossref_citationtrail_10_1039_D0SC01297A
proquest_journals_2435207674
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7690317
proquest_miscellaneous_2474499204
pubmed_primary_33384860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-21
PublicationDateYYYYMMDD 2020-08-21
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Willems (D0SC01297A-(cit39)/*[position()=1]) 2012; 149
Batten (D0SC01297A-(cit30)/*[position()=1]) 2012; 14
Peng (D0SC01297A-(cit50)/*[position()=1]) 2014; 5
Zachariasen (D0SC01297A-(cit65)/*[position()=1]) 1940; 62
Kinoshita (D0SC01297A-(cit66)/*[position()=1]) 1959; 32
Getman (D0SC01297A-(cit9)/*[position()=1]) 2011; 112
Kondo (D0SC01297A-(cit62)/*[position()=1]) 1997; 36
Della Rocca (D0SC01297A-(cit25)/*[position()=1]) 2011; 44
Batten Stuart (D0SC01297A-(cit63)/*[position()=1]) 2013; 85
Van de Voorde (D0SC01297A-(cit14)/*[position()=1]) 2014; 43
Moghadam (D0SC01297A-(cit16)/*[position()=1]) 2017; 8
Chung (D0SC01297A-(cit33)/*[position()=1]) 2014; 26
Cheetham (D0SC01297A-(cit5)/*[position()=1]) 1999; 38
Øien-Ødegaard (D0SC01297A-(cit60)/*[position()=1]) 2017; 46
Groom (D0SC01297A-(cit35)/*[position()=1]) 2016; 72
Li (D0SC01297A-(cit61)/*[position()=1]) 1998; 120
Haldoupis (D0SC01297A-(cit57)/*[position()=1]) 2011; 13
Li (D0SC01297A-(cit40)/*[position()=1]) 2017; 356
Holcroft (D0SC01297A-(cit55)/*[position()=1]) 2015; 137
Kitagawa (D0SC01297A-(cit4)/*[position()=1]) 2004; 43
Hu (D0SC01297A-(cit23)/*[position()=1]) 2014; 43
Buch (D0SC01297A-(cit82)/*[position()=1]) 1994; 100
Kreno (D0SC01297A-(cit22)/*[position()=1]) 2012; 112
Maurin (D0SC01297A-(cit7)/*[position()=1]) 2017; 46
Moghadam (D0SC01297A-(cit1)/*[position()=1]) 2017; 29
Haranczyk (D0SC01297A-(cit56)/*[position()=1]) 2010; 6
Mayo (D0SC01297A-(cit80)/*[position()=1]) 1990; 94
O. o. E. E. R. Energy (D0SC01297A-(cit70)/*[position()=1]) 2015
Ahmed (D0SC01297A-(cit72)/*[position()=1]) 2019; 10
Herm (D0SC01297A-(cit53)/*[position()=1]) 2013; 340
Watanabe (D0SC01297A-(cit31)/*[position()=1]) 2012; 28
Bernales (D0SC01297A-(cit46)/*[position()=1]) 2018; 4
Bucior (D0SC01297A-(cit38)/*[position()=1]) 2019; 19
Navarro-Sánchez (D0SC01297A-(cit51)/*[position()=1]) 2017; 139
Li (D0SC01297A-(cit3)/*[position()=1]) 1999; 402
Flaig (D0SC01297A-(cit42)/*[position()=1]) 2017; 139
Bobbitt (D0SC01297A-(cit17)/*[position()=1]) 2017; 46
Miller (D0SC01297A-(cit26)/*[position()=1]) 2016; 6
Dubbeldam (D0SC01297A-(cit79)/*[position()=1]) 2016; 42
Reid (D0SC01297A-(cit83)/*[position()=1]) 1987
García-Holley (D0SC01297A-(cit75)/*[position()=1]) 2018; 3
D0SC01297A-(cit37)/*[position()=1]
Li (D0SC01297A-(cit78)/*[position()=1]) 2020
He (D0SC01297A-(cit10)/*[position()=1]) 2014; 43
Furukawa (D0SC01297A-(cit15)/*[position()=1]) 2013; 341
Cohen (D0SC01297A-(cit43)/*[position()=1]) 2012; 112
Sarkisov (D0SC01297A-(cit59)/*[position()=1]) 2011; 37
Slater (D0SC01297A-(cit6)/*[position()=1]) 2015; 348
Torres-Knoop (D0SC01297A-(cit54)/*[position()=1]) 2014; 53
Bruno (D0SC01297A-(cit36)/*[position()=1]) 2002; 58
Tian (D0SC01297A-(cit12)/*[position()=1]) 2017; 17
Murray (D0SC01297A-(cit8)/*[position()=1]) 2009; 38
Coudert (D0SC01297A-(cit58)/*[position()=1]) 2016; 307
Zhang (D0SC01297A-(cit19)/*[position()=1]) 2014; 43
Moghadam (D0SC01297A-(cit45)/*[position()=1]) 2016; 4
Batten (D0SC01297A-(cit64)/*[position()=1]) 2012; 14
Spek (D0SC01297A-(cit68)/*[position()=1]) 2015; 71
Connolly (D0SC01297A-(cit71)/*[position()=1]) 2020; 142
Wilmer (D0SC01297A-(cit34)/*[position()=1]) 2012; 4
Strutt (D0SC01297A-(cit67)/*[position()=1]) 2012; 134
Horcajada (D0SC01297A-(cit24)/*[position()=1]) 2010; 9
Hoskins (D0SC01297A-(cit77)/*[position()=1]) 1989; 111
Allendorf (D0SC01297A-(cit21)/*[position()=1]) 2009; 38
Li (D0SC01297A-(cit13)/*[position()=1]) 2012; 112
Hoskins (D0SC01297A-(cit2)/*[position()=1]) 1990; 112
Li (D0SC01297A-(cit27)/*[position()=1]) 2016; 1
Teplensky (D0SC01297A-(cit29)/*[position()=1]) 2017; 139
Moghadam (D0SC01297A-(cit73)/*[position()=1]) 2018; 9
Bulc (D0SC01297A-(cit76)/*[position()=1]) 1983; 39
Deria (D0SC01297A-(cit44)/*[position()=1]) 2014; 43
Rappe (D0SC01297A-(cit81)/*[position()=1]) 1992; 114
Sumida (D0SC01297A-(cit41)/*[position()=1]) 2012; 112
Colón (D0SC01297A-(cit69)/*[position()=1]) 2014; 118
Rogge (D0SC01297A-(cit20)/*[position()=1]) 2017; 46
Cui (D0SC01297A-(cit49)/*[position()=1]) 2012; 112
Ma (D0SC01297A-(cit52)/*[position()=1]) 2010; 2
Lee (D0SC01297A-(cit18)/*[position()=1]) 2009; 38
Goldsmith (D0SC01297A-(cit32)/*[position()=1]) 2013; 25
Mason (D0SC01297A-(cit11)/*[position()=1]) 2015; 527
Abánades Lázaro (D0SC01297A-(cit28)/*[position()=1]) 2017; 2
Zhu (D0SC01297A-(cit47)/*[position()=1]) 2017; 117
So (D0SC01297A-(cit48)/*[position()=1]) 2015; 51
Moghadam (D0SC01297A-(cit74)/*[position()=1]) 2019; 1
References_xml – issn: 2015
  publication-title: Materials-Based Hydrogen Storage
  doi: O. o. E. E. R. Energy
– issn: 1987
  publication-title: The Properties of Gases and Liquids
  doi: Reid Prausnitz Poling
– volume: 38
  start-page: 1450
  year: 2009
  ident: D0SC01297A-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 36
  start-page: 1725
  year: 1997
  ident: D0SC01297A-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199717251
– volume: 8
  start-page: 3989
  year: 2017
  ident: D0SC01297A-(cit16)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00278E
– volume: 3
  start-page: 748
  year: 2018
  ident: D0SC01297A-(cit75)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00154
– volume: 43
  start-page: 5815
  year: 2014
  ident: D0SC01297A-(cit23)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
– volume: 118
  start-page: 5383
  year: 2014
  ident: D0SC01297A-(cit69)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4122326
– volume: 356
  start-page: 624
  year: 2017
  ident: D0SC01297A-(cit40)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aam7851
– volume: 43
  start-page: 5766
  year: 2014
  ident: D0SC01297A-(cit14)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00006D
– year: 2020
  ident: D0SC01297A-(cit78)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00299B
– volume: 46
  start-page: 3104
  year: 2017
  ident: D0SC01297A-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS90049J
– volume: 341
  start-page: 1230444-0
  year: 2013
  ident: D0SC01297A-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 29
  start-page: 2618
  year: 2017
  ident: D0SC01297A-(cit1)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00441
– volume: 1
  start-page: 219
  year: 2019
  ident: D0SC01297A-(cit74)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.03.002
– volume: 100
  start-page: 7610
  year: 1994
  ident: D0SC01297A-(cit82)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466854
– volume: 4
  start-page: 529
  year: 2016
  ident: D0SC01297A-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06472D
– volume: 85
  start-page: 1715
  year: 2013
  ident: D0SC01297A-(cit63)/*[position()=1]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-REC-12-11-20
– volume: 62
  start-page: 1011
  year: 1940
  ident: D0SC01297A-(cit65)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01862a007
– volume: 43
  start-page: 5657
  year: 2014
  ident: D0SC01297A-(cit10)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00032C
– volume: 139
  start-page: 12125
  year: 2017
  ident: D0SC01297A-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06382
– volume: 5
  start-page: 4406
  year: 2014
  ident: D0SC01297A-(cit50)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5406
– volume-title: The Properties of Gases and Liquids
  year: 1987
  ident: D0SC01297A-(cit83)/*[position()=1]
– volume: 28
  start-page: 14114
  year: 2012
  ident: D0SC01297A-(cit31)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la301915s
– volume: 2
  start-page: 561
  year: 2017
  ident: D0SC01297A-(cit28)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.02.005
– volume: 527
  start-page: 357
  year: 2015
  ident: D0SC01297A-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature15732
– volume: 1
  start-page: 154
  year: 2016
  ident: D0SC01297A-(cit27)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.05.001
– volume: 348
  start-page: aaa8075-0
  year: 2015
  ident: D0SC01297A-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa8075
– volume: 13
  start-page: 5053
  year: 2011
  ident: D0SC01297A-(cit57)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02766a
– volume: 46
  start-page: 3357
  year: 2017
  ident: D0SC01297A-(cit17)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00108H
– volume: 43
  start-page: 5896
  year: 2014
  ident: D0SC01297A-(cit44)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00067F
– volume: 38
  start-page: 1294
  year: 2009
  ident: D0SC01297A-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802256a
– volume: 17
  start-page: 174
  year: 2017
  ident: D0SC01297A-(cit12)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5050
– volume: 402
  start-page: 276
  year: 1999
  ident: D0SC01297A-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/46248
– volume: 340
  start-page: 960
  year: 2013
  ident: D0SC01297A-(cit53)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1234071
– volume: 114
  start-page: 10035
  year: 1992
  ident: D0SC01297A-(cit81)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a041
– volume: 94
  start-page: 8897
  year: 1990
  ident: D0SC01297A-(cit80)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100389a010
– volume: 142
  start-page: 8541
  issue: 19
  year: 2020
  ident: D0SC01297A-(cit71)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00270
– volume: 10
  start-page: 1568
  year: 2019
  ident: D0SC01297A-(cit72)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09365-w
– volume: 58
  start-page: 389
  year: 2002
  ident: D0SC01297A-(cit36)/*[position()=1]
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S0108768102003324
– volume: 6
  start-page: 3472
  year: 2010
  ident: D0SC01297A-(cit56)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100433z
– volume-title: Materials-Based Hydrogen Storage
  year: 2015
  ident: D0SC01297A-(cit70)/*[position()=1]
– volume: 2
  start-page: 838
  year: 2010
  ident: D0SC01297A-(cit52)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.738
– volume: 14
  start-page: 3001
  year: 2012
  ident: D0SC01297A-(cit64)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce06488j
– volume: 44
  start-page: 957
  year: 2011
  ident: D0SC01297A-(cit25)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200028a
– volume: 46
  start-page: 3134
  year: 2017
  ident: D0SC01297A-(cit20)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 139
  start-page: 7522
  year: 2017
  ident: D0SC01297A-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01451
– volume: 32
  start-page: 1221
  year: 1959
  ident: D0SC01297A-(cit66)/*[position()=1]
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.32.1221
– volume: 14
  start-page: 3001
  year: 2012
  ident: D0SC01297A-(cit30)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce06488j
– volume: 134
  start-page: 17436
  year: 2012
  ident: D0SC01297A-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3082523
– volume: 26
  start-page: 6185
  year: 2014
  ident: D0SC01297A-(cit33)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm502594j
– volume: 120
  start-page: 8571
  year: 1998
  ident: D0SC01297A-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981669x
– volume: 6
  start-page: 20160027
  year: 2016
  ident: D0SC01297A-(cit26)/*[position()=1]
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2016.0027
– volume: 112
  start-page: 1126
  year: 2012
  ident: D0SC01297A-(cit49)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 137
  start-page: 5706
  year: 2015
  ident: D0SC01297A-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511878b
– volume: 19
  start-page: 6682
  year: 2019
  ident: D0SC01297A-(cit38)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01050
– volume: 43
  start-page: 5982
  year: 2014
  ident: D0SC01297A-(cit19)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00103F
– volume: 117
  start-page: 8129
  year: 2017
  ident: D0SC01297A-(cit47)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00091
– volume: 39
  start-page: 176
  year: 1983
  ident: D0SC01297A-(cit76)/*[position()=1]
  publication-title: Acta Crystallogr. C
  doi: 10.1107/S0108270183004011
– volume: 9
  start-page: 172
  year: 2010
  ident: D0SC01297A-(cit24)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2608
– volume: 4
  start-page: 83
  year: 2012
  ident: D0SC01297A-(cit34)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1192
– volume: 43
  start-page: 2334
  year: 2004
  ident: D0SC01297A-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300610
– volume: 72
  start-page: 171
  year: 2016
  ident: D0SC01297A-(cit35)/*[position()=1]
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S2052520616003954
– ident: D0SC01297A-(cit37)/*[position()=1]
– volume: 9
  start-page: 1378
  year: 2018
  ident: D0SC01297A-(cit73)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03892-8
– volume: 112
  start-page: 970
  year: 2012
  ident: D0SC01297A-(cit43)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200179u
– volume: 307
  start-page: 211
  year: 2016
  ident: D0SC01297A-(cit58)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.08.001
– volume: 112
  start-page: 1105
  year: 2012
  ident: D0SC01297A-(cit22)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 71
  start-page: 9
  year: 2015
  ident: D0SC01297A-(cit68)/*[position()=1]
  publication-title: Acta Crystallogr. C
  doi: 10.1107/S2053229614024929
– volume: 112
  start-page: 703
  year: 2011
  ident: D0SC01297A-(cit9)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200217c
– volume: 111
  start-page: 5962
  year: 1989
  ident: D0SC01297A-(cit77)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00197a079
– volume: 25
  start-page: 3373
  year: 2013
  ident: D0SC01297A-(cit32)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm401978e
– volume: 149
  start-page: 134
  year: 2012
  ident: D0SC01297A-(cit39)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 51
  start-page: 3501
  year: 2015
  ident: D0SC01297A-(cit48)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09596K
– volume: 139
  start-page: 4294
  year: 2017
  ident: D0SC01297A-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00280
– volume: 112
  start-page: 724
  year: 2012
  ident: D0SC01297A-(cit41)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 4
  start-page: 5
  year: 2018
  ident: D0SC01297A-(cit46)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00500
– volume: 38
  start-page: 3268
  year: 1999
  ident: D0SC01297A-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
– volume: 37
  start-page: 1248
  year: 2011
  ident: D0SC01297A-(cit59)/*[position()=1]
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2011.592832
– volume: 46
  start-page: 4867
  year: 2017
  ident: D0SC01297A-(cit60)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00533K
– volume: 42
  start-page: 81
  year: 2016
  ident: D0SC01297A-(cit79)/*[position()=1]
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2015.1010082
– volume: 38
  start-page: 1330
  year: 2009
  ident: D0SC01297A-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802352m
– volume: 112
  start-page: 1546
  year: 1990
  ident: D0SC01297A-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00160a038
– volume: 53
  start-page: 7774
  year: 2014
  ident: D0SC01297A-(cit54)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402894
– volume: 112
  start-page: 869
  year: 2012
  ident: D0SC01297A-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
SSID ssj0000331527
Score 2.626215
Snippet Large-scale targeted exploration of metal-organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not...
Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8373
SubjectTerms Algorithms
Chemistry
Chirality
Clusters
Computer simulation
Crystallography
Data centers
Exploration
Functional groups
Hydrogen storage
Metal-organic frameworks
Occupancy
Programming languages
Properties (attributes)
Protocol (computers)
Quality assessment
Queries
Room temperature
Set theory
Software
Subgroups
Surface chemistry
Title Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)
URI https://www.ncbi.nlm.nih.gov/pubmed/33384860
https://www.proquest.com/docview/2435207674
https://www.proquest.com/docview/2474499204
https://pubmed.ncbi.nlm.nih.gov/PMC7690317
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QFeEP8GGWMyggcmFEji1Ikfq_3RhLoxbS2Upyy1HVZpS6a1fYAnvgMfgW_GJ-Fsx06qVgh4iarklCa-X3zn8-_uEHoVyDwJZEj9rqSFH9Nw7Och5fBdJWBsaJrkTOUOH5_Qo2H8ftQddTo_W6yl-Wz8ln9bmVfyP1qFc6BXlSX7D5p1N4UT8Bv0C0fQMBz_Tseaxg0uI1c-sCL9OAfwWoJXbZkMxPRu4m8KS8WaWn5jk7NlKsnqKhyKNqrMm97iPd-30QJb0MDWGLApQUrK3qYVWTiuvlzmwgDuVH5VmwVuG6SvSQQ9Vc154gzDaJJX_idp8rUncxcpmMuy8k_lrQl2n6kUm3awItJUuagJVpiQiOWjar5J3dWumfaiIA592o3Mbo1snzNlj9y8HbbwWQdJzSwMi27StujE2PQlaxEQVWxVBFOuwnFJyyZaHsDJh-xw2O9ng4PRYA1tRLAWgcl04-zjcPTZhfICQurmwO7ZbSFcwt41t190fZbWM8u03LVb24VGezuD--hevUzBPYO5B6gjy4fojhvHR-jCYg8vYg9XBdbY-_X9R4063KAOT0oMqMMOLrhBHbaow68Bc7uP0fDwYLB35NfdOnwOLzzzwTGlVARUdTESnIPdEoIXY8nSOB2zPBGMqVhCnMqCMRnnTBAQ4oSLNFKNQ8kmWi-rUj5FmERFlMK6OhQhifMCpgsuaRQnXZ4LcEdTD-3agcx4XcpedVS5yjSlgrBsPzjf04Pe89BLJ3tjCrislNq2-sjqD3yaRbCUiAJV7cpDL9xlGGe1p5aXspormSSOGQPFe-iJUZ_7G0JIqnq8eShZUKwTUKXdF6-Uk0td4j2hDKxt4qFNgICTb6Dkoa3VF7IbUWz9-WWeobvNp7mN1kHP8jl41rPxjo5I7dT4_g17QdFT
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+classification+of+metal%E2%80%93organic+frameworks+in+the+Cambridge+structural+database+%28CSD%29&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Moghadam%2C+Peyman+Z&rft.au=Li%2C+Aurelia&rft.au=Xiao-Wei%2C+Liu&rft.au=Bueno-Perez%2C+Rocio&rft.date=2020-08-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=32&rft.spage=8373&rft.epage=8387&rft_id=info:doi/10.1039%2Fd0sc01297a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon