Stress-Induced Changes in Cerebral Metabolites, Hippocampal Volume, and Cell Proliferation are Prevented by Antidepressant Treatment with Tianeptine
Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 98; no. 22; pp. 12796 - 12801 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.10.2001
National Acad Sciences The National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. |
---|---|
AbstractList | Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews ( Tupaia belangeri ), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N -acetyl-aspartate (−13%), creatine and phosphocreatine (−15%), and choline-containing compounds (−13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (−33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews ( Tupaia belangeri ), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N -acetyl-aspartate (−13%), creatine and phosphocreatine (−15%), and choline-containing compounds (−13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (−33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. neurogenesis‖proton magnetic resonance spectroscopy‖depression‖hippocampus‖tree shrew |
Author | Czéh, Boldizsár de Biurrun, Gabriel Watanabe, Takashi Frahm, Jens Fuchs, Eberhard Bartolomucci, Alessandro Michaelis, Thomas van Kampen, Marja |
AuthorAffiliation | Division of Neurobiology, German Primate Center, 37077 Göttingen, Germany; and † Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany |
AuthorAffiliation_xml | – name: Division of Neurobiology, German Primate Center, 37077 Göttingen, Germany; and † Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany |
Author_xml | – sequence: 1 givenname: Boldizsár surname: Czéh fullname: Czéh, Boldizsár – sequence: 2 givenname: Thomas surname: Michaelis fullname: Michaelis, Thomas – sequence: 3 givenname: Takashi surname: Watanabe fullname: Watanabe, Takashi – sequence: 4 givenname: Jens surname: Frahm fullname: Frahm, Jens – sequence: 5 givenname: Gabriel surname: de Biurrun fullname: de Biurrun, Gabriel – sequence: 6 givenname: Marja surname: van Kampen fullname: van Kampen, Marja – sequence: 7 givenname: Alessandro surname: Bartolomucci fullname: Bartolomucci, Alessandro – sequence: 8 givenname: Eberhard surname: Fuchs fullname: Fuchs, Eberhard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11675510$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURLeFKycEEQfEoVlsx_GHxKVaAa1UBBILV8txJl2vEie1nUL_Bz8YL7tdoBJwsjTzvJ53Po6yAzc4yLLHGM0x4uWr0ekwJxhTwoUU97IZRhIXjEp0kM0QIrwQlNDD7CiENUJIVgI9yA4xZryqMJpl3z9FDyEU566ZDDT5YqXdJYTcunwBHmqvu_w9RF0PnY0QTvIzO46D0f2YEl-GburhJNcuCaHr8o8-YS14He3gcu0hReAaXEw_1zf5qYu2gXFTULuYLz3o2Kds_tXGVb602sEYrYOH2f1WdwEe7d7j7PPbN8vFWXHx4d354vSiMBVBscDUUN2YhnBkWMVwQ1FTUSGpIKipgZWcUN1qxkAazCUqEW85mLokoilr1pTH2evtv-NU99CYZCX1q0Zve-1v1KCt-jPj7EpdDteKIVyWSf5iJ_fD1QQhqt4Gk-aQ-himoDghhHOC_wtigYXETCTw-R1wPUzepRkokkpKWlGUoKe_u97bvV1qAuZbwPghBA_tLwSpzdWozdWo_dUkAb0jMDb-3GHq2nZ_l73cGdnEb2tIoQhRmHDJVDt1XYRvMaHP_o0m4smWWIc4-D1SoopJUZU_AMRH6rI |
CitedBy_id | crossref_primary_10_1155_2014_574159 crossref_primary_10_1080_10253890701223130 crossref_primary_10_1002_hipo_20360 crossref_primary_10_1016_j_bbr_2011_01_041 crossref_primary_10_1007_s11033_023_09170_1 crossref_primary_10_1016_S0022_3999_02_00307_0 crossref_primary_10_1586_14737175_8_2_311 crossref_primary_10_1007_s00441_013_1612_z crossref_primary_10_1111_j_1460_9568_2008_06471_x crossref_primary_10_1007_s00213_008_1200_1 crossref_primary_10_1016_j_pscychresns_2009_11_009 crossref_primary_10_1038_npp_2015_57 crossref_primary_10_1515_revneuro_2014_0007 crossref_primary_10_1016_j_phymed_2022_153980 crossref_primary_10_1210_en_2012_2233 crossref_primary_10_1371_journal_pone_0004265 crossref_primary_10_1016_j_neubiorev_2004_05_005 crossref_primary_10_1097_FBP_0000000000000248 crossref_primary_10_1038_mp_2011_161 crossref_primary_10_1002_hipo_20599 crossref_primary_10_1038_sj_npp_1300982 crossref_primary_10_3233_JAD_200486 crossref_primary_10_1007_BF03033279 crossref_primary_10_1371_journal_pone_0086237 crossref_primary_10_3389_fnmol_2017_00293 crossref_primary_10_1017_S1461145709990733 crossref_primary_10_1038_nrn3855 crossref_primary_10_1111_j_1600_0404_2004_00328_x crossref_primary_10_1016_j_jep_2016_07_025 crossref_primary_10_1002_dneu_20736 crossref_primary_10_1371_journal_pone_0028686 crossref_primary_10_1523_ENEURO_0014_14_2015 crossref_primary_10_1007_BF02704114 crossref_primary_10_1007_s00213_010_2077_3 crossref_primary_10_1016_j_biopsych_2004_07_008 crossref_primary_10_1111_j_1365_2826_2006_01489_x crossref_primary_10_1016_j_psyneuen_2010_08_011 crossref_primary_10_1080_02646830500381757 crossref_primary_10_1177_1073858408317242 crossref_primary_10_1016_j_yhbeh_2013_04_005 crossref_primary_10_1007_BF03033285 crossref_primary_10_1017_S1461145708009516 crossref_primary_10_1523_ENEURO_0213_23_2024 crossref_primary_10_1016_j_neuropharm_2005_10_006 crossref_primary_10_4196_kjpp_2017_21_4_361 crossref_primary_10_1016_j_neuint_2009_05_007 crossref_primary_10_1097_WAD_0000000000000103 crossref_primary_10_1007_s00406_005_0624_4 crossref_primary_10_1016_j_pharmthera_2005_11_006 crossref_primary_10_1038_npp_2014_128 crossref_primary_10_1111_j_1460_9568_2004_03178_x crossref_primary_10_1016_j_pneurobio_2006_07_004 crossref_primary_10_1016_S1734_1140_13_71013_2 crossref_primary_10_1016_j_biopsych_2008_07_009 crossref_primary_10_1016_j_nbd_2003_08_006 crossref_primary_10_1177_0269881112450781 crossref_primary_10_1016_j_pnpbp_2010_06_020 crossref_primary_10_3390_ijms232012224 crossref_primary_10_3390_molecules26144137 crossref_primary_10_1002_bies_20703 crossref_primary_10_1016_j_heliyon_2023_e14653 crossref_primary_10_1155_2013_805497 crossref_primary_10_3390_molecules21030260 crossref_primary_10_1016_j_pnpbp_2005_11_013 crossref_primary_10_1002_hipo_22670 crossref_primary_10_37212_jcnos_426634 crossref_primary_10_3892_etm_2015_2246 crossref_primary_10_1097_CHI_0b013e318193064c crossref_primary_10_1016_j_brainres_2020_147020 crossref_primary_10_1016_j_bbr_2016_09_029 crossref_primary_10_1097_NMD_0000000000001435 crossref_primary_10_1111_j_1749_6632_2010_05568_x crossref_primary_10_1016_j_biopsych_2008_07_014 crossref_primary_10_1016_j_physbeh_2017_06_006 crossref_primary_10_1016_j_brainresrev_2004_02_003 crossref_primary_10_3390_cells10082090 crossref_primary_10_1002_jnr_10682 crossref_primary_10_1016_j_neuroscience_2007_12_026 crossref_primary_10_1002_hipo_10212 crossref_primary_10_1016_j_neuroscience_2009_01_059 crossref_primary_10_1016_j_nurx_2005_12_009 crossref_primary_10_1016_j_nurx_2005_12_005 crossref_primary_10_1111_j_1460_9568_2006_04691_x crossref_primary_10_1371_journal_pone_0076301 crossref_primary_10_3390_ijms22168525 crossref_primary_10_1177_0269881119826602 crossref_primary_10_1371_journal_pone_0004331 crossref_primary_10_1007_s11356_015_4591_7 crossref_primary_10_1016_j_yfrne_2007_04_001 crossref_primary_10_1016_j_neubiorev_2009_06_008 crossref_primary_10_1523_JNEUROSCI_2192_18_2019 crossref_primary_10_1017_S0033291708003437 crossref_primary_10_1016_j_neubiorev_2004_06_009 crossref_primary_10_3389_fnins_2020_00474 crossref_primary_10_1016_j_rvsc_2018_01_003 crossref_primary_10_1016_j_pscychresns_2012_09_010 crossref_primary_10_1007_s12035_023_03615_1 crossref_primary_10_1038_tp_2012_94 crossref_primary_10_1111_ced_12047 crossref_primary_10_1016_j_brainresbull_2017_12_005 crossref_primary_10_1016_S0924_977X_03_00016_6 crossref_primary_10_1016_j_jpba_2018_03_049 crossref_primary_10_1016_j_biopha_2007_12_005 crossref_primary_10_1186_1472_6882_11_7 crossref_primary_10_1152_physrev_00007_2017 crossref_primary_10_1016_j_neubiorev_2008_04_006 crossref_primary_10_1080_14656566_2023_2194488 crossref_primary_10_1620_tjem_235_81 crossref_primary_10_1016_S0006_3223_03_00527_4 crossref_primary_10_1097_AJP_0b013e3181af129e crossref_primary_10_1176_appi_ajp_2020_20030280 crossref_primary_10_3390_cells10061382 crossref_primary_10_1016_j_neulet_2007_09_062 crossref_primary_10_1002_hipo_20156 crossref_primary_10_1016_j_pscychresns_2020_111087 crossref_primary_10_1046_j_1460_9568_2002_02093_x crossref_primary_10_4103_1673_5374_195278 crossref_primary_10_1038_aps_2010_184 crossref_primary_10_1016_j_biopsych_2006_02_026 crossref_primary_10_1093_brain_awaa405 crossref_primary_10_1016_j_bbr_2017_04_046 crossref_primary_10_1016_j_mehy_2011_02_034 crossref_primary_10_1016_S0006_3223_03_00319_6 crossref_primary_10_1016_j_rpsmen_2018_09_001 crossref_primary_10_1196_annals_1364_008 crossref_primary_10_1016_j_biopsych_2003_12_014 crossref_primary_10_1136_pgmj_2004_028977 crossref_primary_10_3389_fnint_2021_747237 crossref_primary_10_1016_j_biopsych_2012_10_023 crossref_primary_10_1016_j_pnpbp_2016_01_015 crossref_primary_10_2217_fnl_12_27 crossref_primary_10_1080_15622970600946446 crossref_primary_10_1016_j_bbr_2016_01_022 crossref_primary_10_1016_j_pscychresns_2017_11_011 crossref_primary_10_1111_j_1600_051X_2006_00935_x crossref_primary_10_1196_annals_1286_034 crossref_primary_10_1016_j_neubiorev_2009_01_004 crossref_primary_10_1073_pnas_1510291112 crossref_primary_10_1080_1028415X_2022_2145423 crossref_primary_10_2147_nedt_1_2_109_61049 crossref_primary_10_2198_sbk_53_103 crossref_primary_10_1016_S0006_8993_02_03042_1 crossref_primary_10_1038_npp_2008_185 crossref_primary_10_1016_j_euroneuro_2004_09_004 crossref_primary_10_1016_j_psyneuen_2008_02_012 crossref_primary_10_12677_AP_2019_911218 crossref_primary_10_3390_brainsci13081157 crossref_primary_10_1007_s11064_015_1549_6 crossref_primary_10_1016_j_euroneuro_2004_09_008 crossref_primary_10_1093_ijnp_pyv119 crossref_primary_10_1016_j_neuroscience_2012_01_023 crossref_primary_10_1034_j_1399_5618_2002_01203_x crossref_primary_10_1038_nrn1683 crossref_primary_10_1152_physrev_00041_2006 crossref_primary_10_1016_j_euroneuro_2004_09_001 crossref_primary_10_1038_sj_npp_1300924 crossref_primary_10_1016_j_euroneuro_2004_09_002 crossref_primary_10_1016_j_neuropharm_2009_12_013 crossref_primary_10_1111_bph_12775 crossref_primary_10_1111_j_1751_7893_2007_00021_x crossref_primary_10_1016_j_brainres_2010_06_041 crossref_primary_10_1111_j_1600_0684_2009_00342_x crossref_primary_10_1586_14737175_6_2_235 crossref_primary_10_1016_j_neuroscience_2005_10_045 crossref_primary_10_3390_brainsci12121696 crossref_primary_10_1124_jpet_109_163535 crossref_primary_10_1002_hipo_22351 crossref_primary_10_3109_15622975_2011_596220 crossref_primary_10_6116_kjh_2014_29_2_7 crossref_primary_10_1016_S0006_3223_03_00528_6 crossref_primary_10_1097_00001199_200303000_00010 crossref_primary_10_1002_hipo_20050 crossref_primary_10_1016_j_neubiorev_2020_09_001 crossref_primary_10_1016_j_ynstr_2016_10_001 crossref_primary_10_1038_s41598_021_97991_0 crossref_primary_10_1016_j_avb_2006_01_005 crossref_primary_10_1016_j_brainres_2005_12_110 crossref_primary_10_1016_j_neulet_2010_09_080 crossref_primary_10_1016_j_bbr_2014_07_038 crossref_primary_10_1016_j_pneurobio_2007_01_002 crossref_primary_10_2515_therapie_2005066 crossref_primary_10_1002_hipo_22107 crossref_primary_10_9758_cpn_2018_16_2_197 crossref_primary_10_1016_S0006_3223_03_00177_X crossref_primary_10_1016_j_pnpbp_2009_10_011 crossref_primary_10_4306_pi_2008_5_3_142 crossref_primary_10_1016_j_brainres_2010_08_021 crossref_primary_10_1002_hipo_22382 crossref_primary_10_1159_000366441 crossref_primary_10_1046_j_1460_9568_2003_03100_x crossref_primary_10_1038_sj_npp_1300234 crossref_primary_10_1016_j_bbr_2011_03_048 crossref_primary_10_1038_sj_npp_1300116 crossref_primary_10_1016_j_ejphar_2008_01_014 crossref_primary_10_1055_a_1291_8079 crossref_primary_10_1523_JNEUROSCI_23_34_10841_2003 crossref_primary_10_1016_j_neubiorev_2015_03_014 crossref_primary_10_1016_S0006_3223_03_00004_0 crossref_primary_10_1155_2022_7630779 crossref_primary_10_1007_s11011_012_9375_x crossref_primary_10_1155_2014_541870 crossref_primary_10_1186_1471_2164_14_606 crossref_primary_10_1007_s11064_013_1099_8 crossref_primary_10_1016_j_bbr_2012_04_017 crossref_primary_10_1016_j_ejphar_2008_02_050 crossref_primary_10_1016_j_yebeh_2017_04_021 crossref_primary_10_1016_j_eurpsy_2005_03_007 crossref_primary_10_1007_s00429_015_1056_1 crossref_primary_10_1016_j_neuroimage_2009_11_030 crossref_primary_10_1016_j_neuropharm_2005_12_003 crossref_primary_10_1007_s12035_011_8176_2 crossref_primary_10_1038_sj_npp_1300581 crossref_primary_10_1007_s12640_021_00433_y crossref_primary_10_1038_nrd1753 crossref_primary_10_1177_0269881115573810 crossref_primary_10_1002_da_21933 crossref_primary_10_1177_117739280600100005 crossref_primary_10_1515_revneuro_2014_0083 crossref_primary_10_1002_hipo_22375 crossref_primary_10_1016_j_biopsych_2005_11_025 crossref_primary_10_1523_JNEUROSCI_3849_06_2007 crossref_primary_10_1016_j_brainres_2016_08_040 crossref_primary_10_1016_j_jff_2020_104106 crossref_primary_10_1016_j_neuroscience_2005_08_089 crossref_primary_10_1016_j_pneurobio_2009_04_006 crossref_primary_10_1371_journal_pone_0017600 crossref_primary_10_31887_DCNS_2006_8_4_jbremner crossref_primary_10_1016_j_brainres_2005_09_043 crossref_primary_10_1016_j_nbd_2005_03_023 crossref_primary_10_1016_j_pnpbp_2020_110049 crossref_primary_10_1523_JNEUROSCI_6414_09_2010 crossref_primary_10_1016_j_pbb_2006_06_016 crossref_primary_10_3390_biom10081151 crossref_primary_10_31887_DCNS_2002_4_1_jquiroz crossref_primary_10_3389_fnmol_2016_00109 crossref_primary_10_1093_schbul_sbw180 crossref_primary_10_3109_15622975_2011_640942 crossref_primary_10_1038_mp_2008_119 crossref_primary_10_1016_j_cellsig_2015_04_006 crossref_primary_10_3389_fncir_2017_00074 crossref_primary_10_1016_j_neuint_2019_104605 crossref_primary_10_1051_medsci_2005211104 crossref_primary_10_1523_JNEUROSCI_1309_11_2011 crossref_primary_10_1073_pnas_231475998 crossref_primary_10_1016_S0028_3908_03_00066_2 crossref_primary_10_3727_096368914X678463 crossref_primary_10_1016_j_pbb_2006_06_005 crossref_primary_10_1186_cc11209 crossref_primary_10_1364_BOE_7_003882 crossref_primary_10_1007_s00213_022_06180_y crossref_primary_10_3390_biom13040695 crossref_primary_10_1017_S1092852900010038 crossref_primary_10_3389_fpsyt_2020_00501 crossref_primary_10_1016_j_arr_2005_03_003 crossref_primary_10_1016_j_arr_2005_03_004 crossref_primary_10_1152_ajpregu_00361_2014 crossref_primary_10_1016_j_jneumeth_2013_08_023 crossref_primary_10_1017_S1461145711001994 crossref_primary_10_1152_physrev_00055_2003 crossref_primary_10_1155_2017_1960584 crossref_primary_10_1259_bjr_25165760 crossref_primary_10_1371_journal_pone_0004885 crossref_primary_10_1007_s12035_012_8365_7 crossref_primary_10_1016_j_bbr_2010_04_041 crossref_primary_10_1002_cne_23696 crossref_primary_10_1212_WNL_66_66_suppl_3_S13 crossref_primary_10_1016_j_psyneuen_2008_08_025 crossref_primary_10_1016_j_ynstr_2018_10_003 crossref_primary_10_1038_npp_2012_135 crossref_primary_10_1016_j_neuroscience_2005_07_032 crossref_primary_10_1016_j_neuroscience_2005_07_030 crossref_primary_10_1097_WNR_0b013e328332bb09 crossref_primary_10_1038_sj_npp_1301527 crossref_primary_10_1227_01_NEU_0000343539_15177_D1 crossref_primary_10_1016_j_ddstr_2008_09_002 crossref_primary_10_1073_pnas_0307294101 crossref_primary_10_1016_j_bbi_2011_09_011 crossref_primary_10_1016_j_nbd_2010_01_008 crossref_primary_10_1016_j_ejphar_2014_03_031 crossref_primary_10_1038_sj_mp_4001419 crossref_primary_10_1007_s00213_012_2741_x crossref_primary_10_1515_REVNEURO_2005_16_1_43 crossref_primary_10_1016_j_amp_2005_03_032 crossref_primary_10_1016_j_brainres_2006_02_110 crossref_primary_10_1016_j_yfrne_2008_10_001 crossref_primary_10_3389_fphar_2018_00786 crossref_primary_10_1517_13543770902721287 crossref_primary_10_1007_s11517_021_02351_9 crossref_primary_10_1016_j_brainres_2009_07_001 crossref_primary_10_1016_j_neuroscience_2014_02_044 crossref_primary_10_1016_j_neubiorev_2015_10_006 crossref_primary_10_3109_15622970903131597 crossref_primary_10_1016_j_pnpbp_2008_05_012 crossref_primary_10_1096_fj_02_1032fje crossref_primary_10_1007_s12272_013_0238_8 crossref_primary_10_1007_s10916_017_0748_x crossref_primary_10_3109_15622975_2011_575178 crossref_primary_10_1002_bies_20800 crossref_primary_10_1111_j_1471_4159_2009_06345_x crossref_primary_10_1016_S0033_8338_06_75139_6 crossref_primary_10_1038_sj_mp_4001648 crossref_primary_10_1016_j_psyneuen_2010_03_004 crossref_primary_10_1016_j_jep_2012_09_002 crossref_primary_10_1016_S0306_4530_03_00142_2 crossref_primary_10_1016_j_neuroscience_2009_10_023 crossref_primary_10_1038_s41598_021_95850_6 crossref_primary_10_1016_j_biopsych_2006_04_009 crossref_primary_10_1016_j_lfs_2006_12_027 crossref_primary_10_1016_j_pscychresns_2005_12_004 crossref_primary_10_4306_pi_2015_12_1_73 crossref_primary_10_1517_14728222_12_6_705 crossref_primary_10_1124_pr_114_009126 crossref_primary_10_1093_abbs_gmv009 crossref_primary_10_1016_j_molbrainres_2004_07_012 crossref_primary_10_1093_toxres_tfae052 crossref_primary_10_1111_febs_14826 crossref_primary_10_1080_00207450802324713 crossref_primary_10_1007_s12010_015_1789_6 crossref_primary_10_1016_j_neuroscience_2015_04_047 crossref_primary_10_1016_j_encep_2008_10_004 crossref_primary_10_1007_s11011_022_00969_8 crossref_primary_10_1016_j_neuroscience_2006_08_069 crossref_primary_10_1016_j_chphi_2024_100539 crossref_primary_10_1073_pnas_0708092105 crossref_primary_10_1016_S0197_4580_03_00048_4 crossref_primary_10_1177_0269881106059694 crossref_primary_10_1111_nure_12088 crossref_primary_10_3390_ijms242417181 crossref_primary_10_1016_j_ejphar_2008_09_006 crossref_primary_10_1016_j_psyneuen_2014_09_021 crossref_primary_10_1016_S0006_8993_02_02973_6 crossref_primary_10_1016_j_pbb_2012_08_020 crossref_primary_10_1101_cshperspect_a019026 crossref_primary_10_1016_j_biopsych_2003_08_013 crossref_primary_10_1515_CCLM_2011_039 crossref_primary_10_1523_JNEUROSCI_0312_14_2014 crossref_primary_10_1016_j_brainresbull_2009_03_009 crossref_primary_10_1038_mp_2009_80 crossref_primary_10_1016_S0165_3806_02_00277_8 crossref_primary_10_1007_s00702_008_0039_2 crossref_primary_10_1016_j_pnpbp_2010_08_026 crossref_primary_10_3109_13880200903280034 crossref_primary_10_1046_j_1468_1331_2003_00746_x crossref_primary_10_1155_2013_537265 crossref_primary_10_3389_fnins_2018_00952 crossref_primary_10_3390_nu10050584 crossref_primary_10_5665_sleep_1894 crossref_primary_10_1093_ilar_ilu002 crossref_primary_10_1007_s00406_009_0045_x crossref_primary_10_1016_j_biopsych_2004_02_033 crossref_primary_10_2165_00023210_200216060_00001 crossref_primary_10_1034_j_1600_0404_107_s179_3_x crossref_primary_10_5194_pb_2_111_2015 crossref_primary_10_1111_j_1474_9726_2008_00369_x crossref_primary_10_1073_pnas_0400208101 crossref_primary_10_1523_JNEUROSCI_2051_07_2007 crossref_primary_10_1007_s12035_011_8175_3 crossref_primary_10_1016_j_jep_2019_111967 crossref_primary_10_1002_hup_496 crossref_primary_10_1176_appi_ajp_159_12_2072 crossref_primary_10_1016_j_brs_2016_11_013 crossref_primary_10_1016_j_neulet_2009_10_017 crossref_primary_10_1101_cshperspect_a039198 crossref_primary_10_1186_1756_6606_7_11 crossref_primary_10_1016_j_compbiomed_2020_103810 crossref_primary_10_1016_S0006_8993_03_02542_3 crossref_primary_10_1016_j_bbr_2006_05_027 crossref_primary_10_1016_j_brainres_2016_09_027 crossref_primary_10_1088_2040_8986_19_1_013003 crossref_primary_10_1586_14737175_7_11s_S157 crossref_primary_10_1016_j_febslet_2008_06_040 crossref_primary_10_1016_j_mehy_2011_03_017 crossref_primary_10_1196_annals_1314_035 crossref_primary_10_1016_j_neubiorev_2011_12_005 crossref_primary_10_1155_2014_454696 crossref_primary_10_1111_j_1749_6632_2009_05331_x crossref_primary_10_1111_j_1750_3639_2008_00149_x crossref_primary_10_3390_biom13101504 crossref_primary_10_1016_j_pscychresns_2013_09_004 crossref_primary_10_1016_S0031_9384_03_00161_6 crossref_primary_10_1016_j_psyneuen_2020_105097 crossref_primary_10_3390_cells11050791 crossref_primary_10_1017_S1092852900015224 crossref_primary_10_1007_s00213_011_2280_x crossref_primary_10_1016_j_bbr_2020_112711 crossref_primary_10_1007_s10571_006_9090_4 crossref_primary_10_1038_sj_npp_1301041 crossref_primary_10_1016_j_bbr_2007_11_028 crossref_primary_10_1016_j_euroneuro_2009_06_010 crossref_primary_10_3389_fnbeh_2023_1244075 crossref_primary_10_1080_j_1440_1614_2006_01814_x crossref_primary_10_1016_j_biopsych_2006_07_026 crossref_primary_10_1007_s11064_019_02906_1 crossref_primary_10_1016_j_bbr_2023_114502 crossref_primary_10_1016_S0091_3057_02_00795_5 crossref_primary_10_1016_j_brainres_2004_06_089 crossref_primary_10_1016_j_pbb_2014_05_006 crossref_primary_10_1097_YIC_0b013e3283311acd crossref_primary_10_1080_07853890701483270 crossref_primary_10_1016_j_bandc_2009_06_003 crossref_primary_10_1016_j_expneurol_2011_09_026 crossref_primary_10_1002_hipo_23185 crossref_primary_10_31887_DCNS_2006_8_4_bmcewen crossref_primary_10_1007_s12035_023_03328_5 crossref_primary_10_1016_j_bbr_2004_04_003 crossref_primary_10_1016_j_bbr_2015_12_028 crossref_primary_10_1002_jnr_21907 crossref_primary_10_1038_sj_npp_1301275 crossref_primary_10_1016_j_neuroscience_2009_05_053 crossref_primary_10_1007_s00213_017_4588_7 crossref_primary_10_1016_j_nbd_2023_106396 crossref_primary_10_1196_annals_1314_012 crossref_primary_10_1007_s10517_015_2956_z crossref_primary_10_1016_j_biopsych_2005_05_023 crossref_primary_10_1016_j_metabol_2005_01_005 crossref_primary_10_1002_ddr_20032 crossref_primary_10_1016_j_neuropharm_2013_08_018 crossref_primary_10_1002_ddr_20033 crossref_primary_10_1016_j_metabol_2005_01_008 crossref_primary_10_3389_fpsyg_2018_02065 crossref_primary_10_1111_j_1460_9568_2005_03968_x crossref_primary_10_1002_hipo_20905 crossref_primary_10_1016_j_pbb_2012_09_018 crossref_primary_10_1016_j_bbr_2019_112254 crossref_primary_10_1097_YCO_0000000000000531 crossref_primary_10_1016_j_lfs_2007_08_033 crossref_primary_10_1016_j_neulet_2010_05_075 crossref_primary_10_1007_s00406_023_01685_9 crossref_primary_10_1016_j_neuron_2008_06_023 crossref_primary_10_1007_s00213_005_2260_0 crossref_primary_10_1016_S0006_3223_03_00698_X crossref_primary_10_3390_ijms231911739 crossref_primary_10_1038_sj_npp_1301143 crossref_primary_10_1177_0269881106072192 crossref_primary_10_1523_JNEUROSCI_2505_07_2007 crossref_primary_10_1586_14737175_2_3_347 crossref_primary_10_1176_appi_ajp_160_8_1516 crossref_primary_10_1016_j_brainres_2019_146377 crossref_primary_10_1097_YCT_0b013e3181a95da8 crossref_primary_10_1016_S0006_3223_03_00117_3 crossref_primary_10_1007_s11064_007_9330_0 crossref_primary_10_1016_j_ddmec_2004_10_007 crossref_primary_10_1046_j_1460_9568_2003_02510_x crossref_primary_10_1017_S1092852921000092 crossref_primary_10_1080_10253890500070005 crossref_primary_10_1016_j_biopsycho_2012_01_008 crossref_primary_10_1155_2014_310821 crossref_primary_10_1016_j_physbeh_2010_12_023 crossref_primary_10_1046_j_1471_4159_2003_01895_x crossref_primary_10_1080_23262133_2017_1281861 crossref_primary_10_1016_j_ynstr_2022_100456 crossref_primary_10_1038_sj_npp_1301497 crossref_primary_10_1016_j_euroneuro_2013_07_010 crossref_primary_10_1038_sj_npp_1301137 crossref_primary_10_1038_npp_2009_47 crossref_primary_10_1002_ana_20405 crossref_primary_10_1016_j_biopsych_2009_04_015 crossref_primary_10_1097_00001756_200312020_00013 crossref_primary_10_1007_s00401_013_1223_5 crossref_primary_10_1016_j_jad_2014_09_048 crossref_primary_10_1111_jnc_13145 crossref_primary_10_1109_ACCESS_2020_3035799 crossref_primary_10_1016_j_neulet_2008_06_081 crossref_primary_10_1177_1535370220915180 crossref_primary_10_1016_j_pnpbp_2004_11_001 crossref_primary_10_1016_j_biopsych_2004_04_012 crossref_primary_10_1038_sj_mp_4001130 crossref_primary_10_2165_11595900_000000000_00000 crossref_primary_10_1038_sj_tpj_6500485 crossref_primary_10_1016_j_pnpbp_2010_11_021 crossref_primary_10_1016_S0006_8993_03_03293_1 crossref_primary_10_1016_j_bbrc_2013_04_011 crossref_primary_10_1016_j_neures_2024_12_006 crossref_primary_10_1002_hipo_20831 crossref_primary_10_1016_S0896_6273_03_00195_8 crossref_primary_10_1155_2021_6533727 crossref_primary_10_1046_j_1460_9568_2003_02513_x crossref_primary_10_1016_S0278_5846_03_00123_4 crossref_primary_10_1177_2167702620917463 crossref_primary_10_1523_JNEUROSCI_0805_11_2011 crossref_primary_10_1002_hipo_20718 crossref_primary_10_1586_14737175_7_4_393 crossref_primary_10_1080_00207454_2018_1466781 crossref_primary_10_1517_13543784_15_5_479 crossref_primary_10_1016_S0031_9384_03_00209_9 crossref_primary_10_1016_j_brainresbull_2006_01_009 crossref_primary_10_1016_j_jad_2016_04_001 crossref_primary_10_1111_j_1460_9568_2006_05101_x crossref_primary_10_1089_scd_2006_15_359 crossref_primary_10_1016_j_biopsych_2004_04_002 crossref_primary_10_1016_j_ejphar_2007_02_023 crossref_primary_10_1111_j_1476_5381_2009_00481_x crossref_primary_10_1038_sj_npp_1301596 crossref_primary_10_1080_17470919_2014_882862 crossref_primary_10_1007_s11064_017_2306_9 crossref_primary_10_3389_fnana_2018_00044 crossref_primary_10_31887_DCNS_2004_6_2_rduman crossref_primary_10_1007_s11064_012_0830_1 crossref_primary_10_1016_j_neubiorev_2012_12_007 crossref_primary_10_1016_j_yfrne_2016_05_001 crossref_primary_10_1016_j_bbr_2018_11_017 crossref_primary_10_1016_j_biopsych_2008_02_022 crossref_primary_10_1016_j_cellsig_2019_109521 crossref_primary_10_1111_j_1460_9568_2005_04481_x crossref_primary_10_1111_1749_4877_12335 crossref_primary_10_2174_1871524923666230905142700 crossref_primary_10_1016_j_biopsych_2004_04_011 crossref_primary_10_1126_science_1083328 crossref_primary_10_1073_pnas_0910072107 crossref_primary_10_1038_sj_mp_4001118 crossref_primary_10_1002_nbm_1080 crossref_primary_10_1038_s41598_021_97186_7 crossref_primary_10_3174_ajnr_A3965 crossref_primary_10_1038_sj_tpj_6500265 crossref_primary_10_31887_DCNS_2004_6_2_cstockmeier crossref_primary_10_1016_j_expneurol_2011_01_008 crossref_primary_10_3390_molecules201119698 crossref_primary_10_1177_0269881118793560 crossref_primary_10_1016_j_ygcen_2012_12_003 crossref_primary_10_1117_1_JBO_23_11_115001 crossref_primary_10_5498_wjp_v2_i3_49 crossref_primary_10_1016_j_celrep_2021_109513 crossref_primary_10_1176_appi_ajp_161_7_1309_a crossref_primary_10_1196_annals_1296_001 crossref_primary_10_1097_FBP_0b013e32833db7d4 crossref_primary_10_1155_2007_73754 crossref_primary_10_4015_S1016237220500118 crossref_primary_10_1016_S0006_3223_03_00347_0 crossref_primary_10_1556_APhysiol_99_2012_2_7 crossref_primary_10_1002_cne_21775 crossref_primary_10_1016_j_biopsych_2006_07_007 crossref_primary_10_1016_j_jpsychires_2020_10_042 crossref_primary_10_1159_000063531 crossref_primary_10_1007_s11064_008_9739_0 crossref_primary_10_1016_j_euroneuro_2006_08_009 crossref_primary_10_1016_j_rpsm_2018_09_002 crossref_primary_10_1016_j_jep_2010_07_015 crossref_primary_10_1038_sj_mp_4001464 crossref_primary_10_1016_j_biopsych_2005_06_036 crossref_primary_10_1016_S0924_9338_02_00653_3 crossref_primary_10_1111_j_1365_2826_2008_01707_x crossref_primary_10_1016_j_neures_2014_08_008 crossref_primary_10_1046_j_1460_9568_2002_02043_x crossref_primary_10_1016_j_nlm_2012_01_003 crossref_primary_10_1016_j_pnpbp_2015_04_004 crossref_primary_10_1016_j_brainres_2007_12_025 crossref_primary_10_1016_j_neuropharm_2008_04_012 crossref_primary_10_1016_j_jad_2015_03_054 crossref_primary_10_1111_j_1365_2826_2007_01555_x crossref_primary_10_1097_FBP_0b013e32833db7e9 crossref_primary_10_1111_cns_14196 crossref_primary_10_1371_journal_pone_0041821 crossref_primary_10_1016_j_actpsy_2007_08_002 crossref_primary_10_1016_S0013_7006_10_70055_5 crossref_primary_10_1038_mp_2014_136 crossref_primary_10_1016_j_biopha_2018_01_133 crossref_primary_10_1016_j_neubiorev_2020_05_010 crossref_primary_10_1038_sj_mp_4001457 crossref_primary_10_1016_j_neuroscience_2010_08_062 crossref_primary_10_1016_j_neuroscience_2014_01_056 crossref_primary_10_1089_neu_2010_1563 crossref_primary_10_1016_j_neuroscience_2020_05_014 crossref_primary_10_1126_science_1222941 crossref_primary_10_1016_S0306_4530_02_00005_7 crossref_primary_10_1155_2011_875307 crossref_primary_10_1046_j_1460_9568_2002_02136_x crossref_primary_10_1111_ejn_13172 crossref_primary_10_31083_j_jin2202043 crossref_primary_10_1016_j_brainres_2019_146546 crossref_primary_10_1073_pnas_0705848104 crossref_primary_10_1016_S0006_3223_03_00634_6 crossref_primary_10_1016_j_bbr_2004_06_004 crossref_primary_10_1016_j_brainres_2009_06_089 crossref_primary_10_1016_j_euroneuro_2007_04_004 crossref_primary_10_1016_j_pharmthera_2010_12_002 crossref_primary_10_1080_10253890_2016_1224842 crossref_primary_10_1186_s12974_015_0425_2 crossref_primary_10_1007_s11011_012_9293_y crossref_primary_10_1016_j_neuropharm_2011_09_003 crossref_primary_10_31887_DCNS_2007_9_2_mpucak crossref_primary_10_1038_sj_mp_4002097 crossref_primary_10_1016_j_jadr_2021_100230 crossref_primary_10_1016_j_archoralbio_2017_10_012 crossref_primary_10_1016_j_yfrne_2014_06_001 crossref_primary_10_1002_hipo_20873 crossref_primary_10_1073_pnas_0914568107 crossref_primary_10_3389_fnins_2021_621446 crossref_primary_10_1038_npp_2012_70 crossref_primary_10_1080_00207454_2018_1550398 crossref_primary_10_31887_DCNS_2004_6_2_bmcewen crossref_primary_10_1007_s00213_016_4309_7 crossref_primary_10_1016_j_mehy_2006_07_018 crossref_primary_10_1007_s12272_018_1063_x crossref_primary_10_1016_j_neures_2008_12_001 crossref_primary_10_1016_j_pscychresns_2018_12_015 crossref_primary_10_1093_ijnp_pyw098 crossref_primary_10_31887_DCNS_2009_11_3_jhunsberger crossref_primary_10_1016_S0924_977X_06_70008_6 crossref_primary_10_1016_j_cub_2017_06_027 crossref_primary_10_1016_j_pbb_2012_03_005 crossref_primary_10_1016_j_bbr_2013_02_029 crossref_primary_10_1016_j_yhbeh_2016_03_005 crossref_primary_10_1016_j_nutres_2020_06_019 crossref_primary_10_1016_j_pnpbp_2007_08_007 crossref_primary_10_1016_j_pscychresns_2011_02_007 crossref_primary_10_1002_jnr_22010 crossref_primary_10_1016_j_bbr_2009_05_025 crossref_primary_10_1016_S0149_7634_02_00005_2 crossref_primary_10_1007_s10571_014_0074_5 crossref_primary_10_1073_pnas_0337481100 crossref_primary_10_1211_0022357044517 crossref_primary_10_1111_j_1440_1819_2008_01875_x crossref_primary_10_1016_j_lfs_2012_09_023 crossref_primary_10_1016_j_neuroscience_2024_07_038 crossref_primary_10_3390_brainsci9070158 crossref_primary_10_1016_j_yfrne_2016_03_002 crossref_primary_10_1163_1568539X_bja10132 crossref_primary_10_1016_j_yebeh_2019_04_046 crossref_primary_10_1007_s10867_008_9099_7 crossref_primary_10_1016_j_neuropharm_2019_05_013 crossref_primary_10_3109_10253890_2015_1105958 crossref_primary_10_1016_j_ynstr_2014_10_004 crossref_primary_10_1016_j_pscychresns_2012_04_009 crossref_primary_10_3390_brainsci10080520 crossref_primary_10_1007_s11836_009_0099_x crossref_primary_10_1017_S1092852900017454 crossref_primary_10_1186_s12974_015_0281_0 crossref_primary_10_1016_j_brainres_2005_05_006 crossref_primary_10_1016_j_neuropharm_2010_01_012 crossref_primary_10_3390_ijms24065520 crossref_primary_10_1111_j_1460_9568_2005_04365_x crossref_primary_10_1016_j_biopsych_2006_03_082 crossref_primary_10_2165_11530010_000000000_00000 crossref_primary_10_53444_deubefd_1440576 crossref_primary_10_1007_s12035_018_1359_3 crossref_primary_10_1523_JNEUROSCI_3469_11_2012 crossref_primary_10_3109_10253890902951786 crossref_primary_10_1002_syn_22010 crossref_primary_10_3390_ph3103143 crossref_primary_10_1016_j_pharmthera_2011_05_007 crossref_primary_10_1016_j_biopsych_2013_01_005 crossref_primary_10_1007_s11655_011_0666_6 crossref_primary_10_2298_ABS0901001A crossref_primary_10_1016_j_psc_2011_02_001 crossref_primary_10_1017_S0033291714000518 crossref_primary_10_1016_j_brainres_2016_05_015 crossref_primary_10_1038_s41577_023_00949_8 crossref_primary_10_1248_yakushi_20_00198_2 crossref_primary_10_1016_j_bbr_2017_01_007 crossref_primary_10_1016_j_neubiorev_2004_08_009 crossref_primary_10_1080_10253890600610973 crossref_primary_10_3390_biom9090406 crossref_primary_10_1097_PSY_0000000000001256 crossref_primary_10_1007_s00441_019_03043_5 crossref_primary_10_1016_j_biopsych_2007_02_006 crossref_primary_10_1007_BF03033225 crossref_primary_10_1002_syn_10230 crossref_primary_10_1111_j_1460_9568_2011_07614_x crossref_primary_10_1002_hipo_22617 crossref_primary_10_1007_s00213_005_2184_8 crossref_primary_10_1016_j_neuropharm_2013_11_019 crossref_primary_10_1016_j_neuron_2011_04_005 crossref_primary_10_3390_genes2010107 crossref_primary_10_1111_j_1440_1681_2007_04608_x crossref_primary_10_1016_j_jad_2022_12_020 crossref_primary_10_1038_npp_2009_160 crossref_primary_10_1007_s15202_014_0699_8 crossref_primary_10_1016_j_neuropharm_2008_07_014 crossref_primary_10_1007_s00018_012_1020_7 crossref_primary_10_1016_j_jpsychires_2004_06_002 crossref_primary_10_1016_j_brainresbull_2004_08_006 crossref_primary_10_1016_j_pneurobio_2011_01_001 crossref_primary_10_1016_j_neuroscience_2020_09_061 crossref_primary_10_1016_j_nic_2007_07_003 crossref_primary_10_1016_j_tips_2005_10_005 crossref_primary_10_1016_j_bbr_2008_10_039 crossref_primary_10_1017_S1041610207006412 crossref_primary_10_1038_sj_mp_4002055 crossref_primary_10_1111_neup_12596 crossref_primary_10_1177_0269881117691456 crossref_primary_10_1152_physrev_00004_2014 crossref_primary_10_1515_nf_2004_0204 crossref_primary_10_1016_S0891_0618_03_00030_9 crossref_primary_10_1111_pcn_12547 crossref_primary_10_1007_s12031_020_01702_9 crossref_primary_10_1016_j_jpsychires_2009_11_010 crossref_primary_10_1016_j_biopsych_2008_04_010 crossref_primary_10_1111_j_1476_5381_2010_01172_x crossref_primary_10_1073_pnas_0708228104 crossref_primary_10_1016_j_jad_2023_01_065 crossref_primary_10_1080_10253890801890721 crossref_primary_10_1016_j_neuropharm_2007_11_009 crossref_primary_10_1016_S0018_506X_02_00010_7 crossref_primary_10_1007_s00406_007_0728_0 crossref_primary_10_1016_j_neuint_2009_12_004 crossref_primary_10_1523_JNEUROSCI_0237_07_2007 crossref_primary_10_1523_JNEUROSCI_3741_04_2005 crossref_primary_10_1586_17446651_1_5_623 crossref_primary_10_1007_s11011_006_9018_1 crossref_primary_10_1002_cne_24178 crossref_primary_10_1016_j_bbr_2008_10_006 crossref_primary_10_1016_j_neures_2007_10_010 crossref_primary_10_1111_j_1600_0765_2005_00833_x crossref_primary_10_3389_fnins_2019_00362 crossref_primary_10_1590_S1516_44462005000300017 crossref_primary_10_1086_697956 crossref_primary_10_3109_10715762_2011_566869 crossref_primary_10_1016_j_neubiorev_2010_09_010 crossref_primary_10_1016_S0001_4079_19_33511_3 crossref_primary_10_1016_j_brainres_2004_03_040 crossref_primary_10_3389_fpsyt_2021_780095 crossref_primary_10_1097_00004714_200304000_00008 crossref_primary_10_1007_s00213_010_1989_2 crossref_primary_10_1016_j_pnpbp_2018_08_029 crossref_primary_10_1038_s41398_020_0839_1 crossref_primary_10_1101_gad_333906_119 crossref_primary_10_3389_fphys_2015_00077 crossref_primary_10_1016_S0006_3223_02_01457_9 crossref_primary_10_1016_S1521_690X_02_00101_X crossref_primary_10_1016_j_ejphar_2007_11_071 crossref_primary_10_1016_S0013_7006_05_82388_7 crossref_primary_10_1111_j_1476_5381_2009_00585_x crossref_primary_10_1016_j_bbr_2009_11_003 crossref_primary_10_1016_j_jneumeth_2008_04_028 crossref_primary_10_1016_j_neubiorev_2023_105238 crossref_primary_10_1038_s41598_017_05440_8 crossref_primary_10_1097_01_ccx_0000168529_23078_64 crossref_primary_10_4103_cjp_cjp_39_21 crossref_primary_10_1021_pr900799b crossref_primary_10_1097_FBP_0b013e3282ee2aa8 crossref_primary_10_1038_sj_npp_1301296 crossref_primary_10_1016_j_neuroimage_2006_10_045 crossref_primary_10_1016_j_pscychresns_2007_04_004 crossref_primary_10_1093_sysbio_syp025 crossref_primary_10_3389_fpsyt_2021_718539 crossref_primary_10_1002_hipo_20576 crossref_primary_10_1176_foc_3_1_146 crossref_primary_10_1016_j_neuroimage_2005_01_001 crossref_primary_10_1016_j_neuropharm_2019_107914 crossref_primary_10_1016_j_bbr_2019_111900 crossref_primary_10_1016_j_neulet_2018_11_013 crossref_primary_10_1016_j_neubiorev_2012_03_005 crossref_primary_10_1111_ejn_15180 crossref_primary_10_2165_00023210_200519040_00001 crossref_primary_10_1371_journal_pone_0073118 crossref_primary_10_1007_s12035_018_1205_7 crossref_primary_10_1016_j_biopsych_2005_08_032 |
Cites_doi | 10.1038/3305 10.1016/S0006-3223(99)00183-3 10.1046/j.0953-816x.2001.01629.x 10.1073/pnas.120552597 10.1159/000111347 10.1523/JNEUROSCI.21-05-01628.2001 10.1016/S0006-3223(99)00203-6 10.1016/S0924-977X(97)00064-3 10.1523/JNEUROSCI.13-03-00981.1993 10.1176/ajp.157.1.115 10.1523/JNEUROSCI.17-07-02492.1997 10.1046/j.1460-9568.2000.00932.x 10.2165/00023210-200115030-00006 10.1016/S0306-4522(98)00693-9 10.1146/annurev.neuro.22.1.105 10.1016/S0149-7634(89)80048-X 10.1016/S0006-3223(00)00964-1 10.1016/S0006-3223(00)00950-1 10.1016/S0014-2999(00)00904-3 10.1016/S0091-3057(99)00190-2 10.1016/S0014-2999(99)00163-6 10.1176/ajp.156.6.837 10.1016/S0006-3223(00)00979-3 10.1007/BF00427414 10.1046/j.0953-816x.2000.01424.x 10.1016/S0304-3940(97)00647-2 10.1016/0014-2999(92)90830-W 10.1016/S0306-4530(99)00062-1 10.1523/JNEUROSCI.16-10-03534.1996 10.1523/JNEUROSCI.20-24-09104.2000 10.1002/(SICI)1099-1492(199908)12:5<309::AID-NBM572>3.0.CO;2-Y 10.1002/mrm.1910300604 10.1016/S0006-3223(00)00942-2 10.1007/BF01194977 10.1046/j.1460-9568.2000.00130.x 10.1016/0006-3223(92)90232-O 10.1001/archpsyc.1997.01830190015002 10.1073/pnas.93.9.3908 10.1523/JNEUROSCI.15-11-07539.1995 10.1002/cne.901240303 10.1523/JNEUROSCI.20-08-02896.2000 10.1016/S0006-3223(99)00177-8 10.1016/0014-2999(94)90406-5 10.1523/JNEUROSCI.12-09-03642.1992 10.1016/S0140-6736(96)07492-2 10.1016/0091-3057(95)02166-3 10.1073/pnas.95.6.3168 10.1038/sj.mp.4000712 10.1016/S0006-3223(00)00252-3 10.1016/S0301-0082(00)00018-6 10.1016/S0301-0082(99)00050-7 10.1038/87865 10.1523/JNEUROSCI.15-06-04687.1995 10.1001/archpsyc.57.10.925 10.1016/S0893-133X(00)00159-7 10.1046/j.1471-4159.2000.0751729.x 10.1016/S0006-3223(96)00256-9 10.1016/S0022-3956(98)00033-8 10.1016/0006-8993(93)90524-Q 10.1016/S0306-4522(00)00050-6 |
ContentType | Journal Article |
Copyright | Copyright 1993-2001 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 23, 2001 Copyright © 2001, The National Academy of Sciences 2001 |
Copyright_xml | – notice: Copyright 1993-2001 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 23, 2001 – notice: Copyright © 2001, The National Academy of Sciences 2001 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.211427898 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1091-6490 |
EndPage | 12801 |
ExternalDocumentID | PMC60133 90239142 11675510 10_1073_pnas_211427898 98_22_12796 3056985 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c520t-14c4adcd270c6561d40d54894820dbe63724afa66e9c1790307f7ecb328d3b6d3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:09:24 EDT 2025 Fri Jul 11 09:10:46 EDT 2025 Thu Jul 10 19:02:22 EDT 2025 Mon Jun 30 08:37:24 EDT 2025 Wed Feb 19 02:08:31 EST 2025 Tue Jul 01 04:10:36 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Nov 11 00:30:04 EST 2020 Thu May 30 15:49:58 EDT 2019 Thu May 29 08:42:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-14c4adcd270c6561d40d54894820dbe63724afa66e9c1790307f7ecb328d3b6d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 To whom reprint requests should be addressed at: Division of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. E-mail: efuchs@gwdg.de. Communicated by Bruce S. McEwen, The Rockefeller University, New York, NY |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/60133 |
PMID | 11675510 |
PQID | 201394540 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201394540 crossref_primary_10_1073_pnas_211427898 crossref_citationtrail_10_1073_pnas_211427898 proquest_miscellaneous_18189168 pnas_primary_98_22_12796 pubmedcentral_primary_oai_pubmedcentral_nih_gov_60133 proquest_miscellaneous_72227721 pubmed_primary_11675510 pnas_primary_98_22_12796_fulltext jstor_primary_3056985 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-10-23 |
PublicationDateYYYYMMDD | 2001-10-23 |
PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-23 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2001 |
Publisher | National Academy of Sciences National Acad Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences – name: The National Academy of Sciences |
References | e_1_3_3_50_2 Lupien S J (e_1_3_3_60_2) 1998 e_1_3_3_16_2 e_1_3_3_18_2 Martin R D (e_1_3_3_29_2) 1990 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 Cameron H A (e_1_3_3_53_2) 1996 Tigges J (e_1_3_3_36_2) 1969 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 Fuchs E (e_1_3_3_30_2) 1999 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_62_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 11675480 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12320-2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1038/3305 – ident: e_1_3_3_44_2 doi: 10.1016/S0006-3223(99)00183-3 – ident: e_1_3_3_64_2 doi: 10.1046/j.0953-816x.2001.01629.x – ident: e_1_3_3_35_2 doi: 10.1073/pnas.120552597 – ident: e_1_3_3_38_2 doi: 10.1159/000111347 – ident: e_1_3_3_58_2 doi: 10.1523/JNEUROSCI.21-05-01628.2001 – ident: e_1_3_3_65_2 doi: 10.1016/S0006-3223(99)00203-6 – ident: e_1_3_3_27_2 doi: 10.1016/S0924-977X(97)00064-3 – ident: e_1_3_3_46_2 doi: 10.1523/JNEUROSCI.13-03-00981.1993 – ident: e_1_3_3_6_2 doi: 10.1176/ajp.157.1.115 – ident: e_1_3_3_12_2 doi: 10.1523/JNEUROSCI.17-07-02492.1997 – ident: e_1_3_3_31_2 – volume-title: Nat. Neurosci. year: 1998 ident: e_1_3_3_60_2 – ident: e_1_3_3_54_2 doi: 10.1046/j.1460-9568.2000.00932.x – ident: e_1_3_3_28_2 doi: 10.2165/00023210-200115030-00006 – ident: e_1_3_3_55_2 doi: 10.1016/S0306-4522(98)00693-9 – ident: e_1_3_3_3_2 doi: 10.1146/annurev.neuro.22.1.105 – ident: e_1_3_3_37_2 doi: 10.1016/S0149-7634(89)80048-X – ident: e_1_3_3_4_2 doi: 10.1016/S0006-3223(00)00964-1 – ident: e_1_3_3_47_2 doi: 10.1016/S0006-3223(00)00950-1 – ident: e_1_3_3_21_2 doi: 10.1016/S0014-2999(00)00904-3 – ident: e_1_3_3_26_2 doi: 10.1016/S0091-3057(99)00190-2 – ident: e_1_3_3_16_2 doi: 10.1016/S0014-2999(99)00163-6 – ident: e_1_3_3_22_2 doi: 10.1176/ajp.156.6.837 – volume-title: Primate Origins and Evolution. year: 1990 ident: e_1_3_3_29_2 – ident: e_1_3_3_41_2 doi: 10.1016/S0006-3223(00)00979-3 – ident: e_1_3_3_24_2 doi: 10.1007/BF00427414 – ident: e_1_3_3_52_2 doi: 10.1046/j.0953-816x.2000.01424.x – ident: e_1_3_3_63_2 doi: 10.1016/S0304-3940(97)00647-2 – start-page: 235 volume-title: UFAW Handbook on the Care and Management of Laboratory Animals year: 1999 ident: e_1_3_3_30_2 – ident: e_1_3_3_15_2 doi: 10.1016/0014-2999(92)90830-W – ident: e_1_3_3_62_2 doi: 10.1016/S0306-4530(99)00062-1 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.16-10-03534.1996 – ident: e_1_3_3_17_2 doi: 10.1523/JNEUROSCI.20-24-09104.2000 – ident: e_1_3_3_33_2 doi: 10.1002/(SICI)1099-1492(199908)12:5<309::AID-NBM572>3.0.CO;2-Y – ident: e_1_3_3_32_2 doi: 10.1002/mrm.1910300604 – ident: e_1_3_3_45_2 doi: 10.1016/S0006-3223(00)00942-2 – ident: e_1_3_3_34_2 doi: 10.1007/BF01194977 – ident: e_1_3_3_11_2 doi: 10.1046/j.1460-9568.2000.00130.x – ident: e_1_3_3_39_2 doi: 10.1016/0006-3223(92)90232-O – ident: e_1_3_3_18_2 doi: 10.1001/archpsyc.1997.01830190015002 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.93.9.3908 – ident: e_1_3_3_59_2 doi: 10.1523/JNEUROSCI.15-11-07539.1995 – ident: e_1_3_3_8_2 doi: 10.1002/cne.901240303 – ident: e_1_3_3_57_2 doi: 10.1523/JNEUROSCI.20-08-02896.2000 – ident: e_1_3_3_19_2 doi: 10.1016/S0006-3223(99)00177-8 – ident: e_1_3_3_40_2 doi: 10.1016/0014-2999(94)90406-5 – ident: e_1_3_3_50_2 doi: 10.1523/JNEUROSCI.12-09-03642.1992 – ident: e_1_3_3_1_2 doi: 10.1016/S0140-6736(96)07492-2 – ident: e_1_3_3_25_2 doi: 10.1016/0091-3057(95)02166-3 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.95.6.3168 – ident: e_1_3_3_20_2 doi: 10.1038/sj.mp.4000712 – ident: e_1_3_3_48_2 doi: 10.1016/S0006-3223(00)00252-3 – volume-title: A Stereotaxic Atlas of the Tree Shrew (Tupaia glis) year: 1969 ident: e_1_3_3_36_2 – ident: e_1_3_3_23_2 doi: 10.1016/S0301-0082(00)00018-6 – ident: e_1_3_3_61_2 doi: 10.1016/S0301-0082(99)00050-7 – ident: e_1_3_3_2_2 doi: 10.1038/87865 – ident: e_1_3_3_9_2 doi: 10.1523/JNEUROSCI.15-06-04687.1995 – ident: e_1_3_3_7_2 doi: 10.1001/archpsyc.57.10.925 – ident: e_1_3_3_49_2 doi: 10.1016/S0893-133X(00)00159-7 – start-page: 141 volume-title: Receptor Dynamics in Neural Development year: 1996 ident: e_1_3_3_53_2 – ident: e_1_3_3_56_2 doi: 10.1046/j.1471-4159.2000.0751729.x – ident: e_1_3_3_42_2 doi: 10.1016/S0006-3223(96)00256-9 – ident: e_1_3_3_43_2 doi: 10.1016/S0022-3956(98)00033-8 – ident: e_1_3_3_51_2 doi: 10.1016/0006-8993(93)90524-Q – ident: e_1_3_3_66_2 doi: 10.1016/S0306-4522(00)00050-6 – reference: 11675480 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12320-2 |
SSID | ssj0009580 |
Score | 2.3242984 |
Snippet | Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12796 |
SubjectTerms | Animals Antidepressants Antidepressive Agents, Tricyclic - therapeutic use Behavioral neuroscience Biological Sciences Biology Brain Brain - drug effects Brain - metabolism Cell Division - drug effects Cell growth Cellular metabolism Dentate gyrus Depression - drug therapy Depression - metabolism Depression - pathology Hippocampus Hippocampus - drug effects Hippocampus - pathology Hypothalamo-Hypophyseal System - drug effects Hypothalamo-Hypophyseal System - physiology Male Metabolites Neurogenesis Neurology Neurons Pituitary-Adrenal System - drug effects Pituitary-Adrenal System - physiology Stress Stress, Psychological - drug therapy Stress, Psychological - metabolism Stress, Psychological - pathology Thiazepines - therapeutic use tianeptine Tupaia Tupaia belangeri |
Title | Stress-Induced Changes in Cerebral Metabolites, Hippocampal Volume, and Cell Proliferation are Prevented by Antidepressant Treatment with Tianeptine |
URI | https://www.jstor.org/stable/3056985 http://www.pnas.org/content/98/22/12796.abstract https://www.ncbi.nlm.nih.gov/pubmed/11675510 https://www.proquest.com/docview/201394540 https://www.proquest.com/docview/18189168 https://www.proquest.com/docview/72227721 https://pubmed.ncbi.nlm.nih.gov/PMC60133 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMRgsbICRkAB1Gc1HbedxmjZVaJRJtKJvkeOkaqWSVWv7sP0O-L_caztOAqv4eImixHLT3JPre-1zrgl5EwtVTCMp_UDx3I_7vZ4vgqmCQC7Jo0zyIOeoHf40ZINx_HHSn3Q6Pxqspc06O1a3d-pK_seqcA3siirZf7Cs6xQuwDnYF45gYTj-lY2_aKGHD2n1BpfxjYhXE1xVcY0rwqgMWYOZUWisDTabL5cweoEPWHSNY6romziDj2ytBXJdDCqQFLY0JZ5MnApWmFvqLJw2SOpmNheQhhyZssUuunQj5KriIwyrCciTWs5ifcyq63cvh_XmyKe3ZiVfT_641SHL9TflERzL-6uEQFdmResiBOazb_XyVzW_oQl2RoLs9AYwjsZGaV357EQ0sGmEzdYDByE3W-T-NjaAM8MNjUu5Og5RQcyF7aVVhHv4OT0fX1yko7PJ6B65H0L2ofmig2YtZ2GUTfbBqlqgPPrQ7r0V6xi6K9bQhTZ35TO_0nIbcc7oEXloExR6YtC2SzpF-ZjsVuah72yd8vdPyPc2_KiFH52XtIIfbcDviDbAR80bPqIAPYrQoy3oUYAeddCj2Q1tQ4866FGEHq2ht0fG52ej04FvN_nwVT_srf0gVrHMVR7ynoLcIsjjXg5ZdBJDaJpnBYt4GMupZKxIFFaTgzFpyguVRaEAZ8Ly6CnZKa_KYp9QJiUrJOTInOVYNUlgtiEikSdMxeCQPOJX5kiVrYCPG7EsUs3E4FGKpkmd-Tzy1rVfmtovW1vuaeu6ZpiYJ6LvkX3dsLqciDQMUw1Rj7zediudWt6XRw4qlKTW7cCPYtKGdTM98srdhTEBbQXv-mqzSiFqF5D2ie0tOErgeRh45JnBXP0HA8Yhi4Le-y00ugZYj759p5zPdF16Bk8WPf_jbx6QB_V3fkh21teb4gVE9uvspf7OfgL5_AEX |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-induced+changes+in+cerebral+metabolites%2C+hippocampal+volume%2C+and+cell+proliferation+are+prevented+by+antidepressant+treatment+with+tianeptine&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cz%C3%A9h%2C+B&rft.au=Michaelis%2C+T&rft.au=Watanabe%2C+T&rft.au=Frahm%2C+J&rft.date=2001-10-23&rft.issn=0027-8424&rft.volume=98&rft.issue=22&rft.spage=12796&rft_id=info:doi/10.1073%2Fpnas.211427898&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F22.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F22.cover.gif |