Stress-Induced Changes in Cerebral Metabolites, Hippocampal Volume, and Cell Proliferation are Prevented by Antidepressant Treatment with Tianeptine

Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 98; no. 22; pp. 12796 - 12801
Main Authors Czéh, Boldizsár, Michaelis, Thomas, Watanabe, Takashi, Frahm, Jens, de Biurrun, Gabriel, van Kampen, Marja, Bartolomucci, Alessandro, Fuchs, Eberhard
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.10.2001
National Acad Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.
AbstractList Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy.
Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.
Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews ( Tupaia belangeri ), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N -acetyl-aspartate (−13%), creatine and phosphocreatine (−15%), and choline-containing compounds (−13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (−33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.
Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.
Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy. The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews ( Tupaia belangeri ), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem. Chronic psychosocial stress significantly decreased in vivo concentrations of N -acetyl-aspartate (−13%), creatine and phosphocreatine (−15%), and choline-containing compounds (−13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (−33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values. In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders. neurogenesis‖proton magnetic resonance spectroscopy‖depression‖hippocampus‖tree shrew
Author Czéh, Boldizsár
de Biurrun, Gabriel
Watanabe, Takashi
Frahm, Jens
Fuchs, Eberhard
Bartolomucci, Alessandro
Michaelis, Thomas
van Kampen, Marja
AuthorAffiliation Division of Neurobiology, German Primate Center, 37077 Göttingen, Germany; and † Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany
AuthorAffiliation_xml – name: Division of Neurobiology, German Primate Center, 37077 Göttingen, Germany; and † Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany
Author_xml – sequence: 1
  givenname: Boldizsár
  surname: Czéh
  fullname: Czéh, Boldizsár
– sequence: 2
  givenname: Thomas
  surname: Michaelis
  fullname: Michaelis, Thomas
– sequence: 3
  givenname: Takashi
  surname: Watanabe
  fullname: Watanabe, Takashi
– sequence: 4
  givenname: Jens
  surname: Frahm
  fullname: Frahm, Jens
– sequence: 5
  givenname: Gabriel
  surname: de Biurrun
  fullname: de Biurrun, Gabriel
– sequence: 6
  givenname: Marja
  surname: van Kampen
  fullname: van Kampen, Marja
– sequence: 7
  givenname: Alessandro
  surname: Bartolomucci
  fullname: Bartolomucci, Alessandro
– sequence: 8
  givenname: Eberhard
  surname: Fuchs
  fullname: Fuchs, Eberhard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11675510$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFKycEEQfEoVlsx_GHxKVaAa1UBBILV8txJl2vEie1nUL_Bz8YL7tdoBJwsjTzvJ53Po6yAzc4yLLHGM0x4uWr0ekwJxhTwoUU97IZRhIXjEp0kM0QIrwQlNDD7CiENUJIVgI9yA4xZryqMJpl3z9FDyEU566ZDDT5YqXdJYTcunwBHmqvu_w9RF0PnY0QTvIzO46D0f2YEl-GburhJNcuCaHr8o8-YS14He3gcu0hReAaXEw_1zf5qYu2gXFTULuYLz3o2Kds_tXGVb602sEYrYOH2f1WdwEe7d7j7PPbN8vFWXHx4d354vSiMBVBscDUUN2YhnBkWMVwQ1FTUSGpIKipgZWcUN1qxkAazCUqEW85mLokoilr1pTH2evtv-NU99CYZCX1q0Zve-1v1KCt-jPj7EpdDteKIVyWSf5iJ_fD1QQhqt4Gk-aQ-himoDghhHOC_wtigYXETCTw-R1wPUzepRkokkpKWlGUoKe_u97bvV1qAuZbwPghBA_tLwSpzdWozdWo_dUkAb0jMDb-3GHq2nZ_l73cGdnEb2tIoQhRmHDJVDt1XYRvMaHP_o0m4smWWIc4-D1SoopJUZU_AMRH6rI
CitedBy_id crossref_primary_10_1155_2014_574159
crossref_primary_10_1080_10253890701223130
crossref_primary_10_1002_hipo_20360
crossref_primary_10_1016_j_bbr_2011_01_041
crossref_primary_10_1007_s11033_023_09170_1
crossref_primary_10_1016_S0022_3999_02_00307_0
crossref_primary_10_1586_14737175_8_2_311
crossref_primary_10_1007_s00441_013_1612_z
crossref_primary_10_1111_j_1460_9568_2008_06471_x
crossref_primary_10_1007_s00213_008_1200_1
crossref_primary_10_1016_j_pscychresns_2009_11_009
crossref_primary_10_1038_npp_2015_57
crossref_primary_10_1515_revneuro_2014_0007
crossref_primary_10_1016_j_phymed_2022_153980
crossref_primary_10_1210_en_2012_2233
crossref_primary_10_1371_journal_pone_0004265
crossref_primary_10_1016_j_neubiorev_2004_05_005
crossref_primary_10_1097_FBP_0000000000000248
crossref_primary_10_1038_mp_2011_161
crossref_primary_10_1002_hipo_20599
crossref_primary_10_1038_sj_npp_1300982
crossref_primary_10_3233_JAD_200486
crossref_primary_10_1007_BF03033279
crossref_primary_10_1371_journal_pone_0086237
crossref_primary_10_3389_fnmol_2017_00293
crossref_primary_10_1017_S1461145709990733
crossref_primary_10_1038_nrn3855
crossref_primary_10_1111_j_1600_0404_2004_00328_x
crossref_primary_10_1016_j_jep_2016_07_025
crossref_primary_10_1002_dneu_20736
crossref_primary_10_1371_journal_pone_0028686
crossref_primary_10_1523_ENEURO_0014_14_2015
crossref_primary_10_1007_BF02704114
crossref_primary_10_1007_s00213_010_2077_3
crossref_primary_10_1016_j_biopsych_2004_07_008
crossref_primary_10_1111_j_1365_2826_2006_01489_x
crossref_primary_10_1016_j_psyneuen_2010_08_011
crossref_primary_10_1080_02646830500381757
crossref_primary_10_1177_1073858408317242
crossref_primary_10_1016_j_yhbeh_2013_04_005
crossref_primary_10_1007_BF03033285
crossref_primary_10_1017_S1461145708009516
crossref_primary_10_1523_ENEURO_0213_23_2024
crossref_primary_10_1016_j_neuropharm_2005_10_006
crossref_primary_10_4196_kjpp_2017_21_4_361
crossref_primary_10_1016_j_neuint_2009_05_007
crossref_primary_10_1097_WAD_0000000000000103
crossref_primary_10_1007_s00406_005_0624_4
crossref_primary_10_1016_j_pharmthera_2005_11_006
crossref_primary_10_1038_npp_2014_128
crossref_primary_10_1111_j_1460_9568_2004_03178_x
crossref_primary_10_1016_j_pneurobio_2006_07_004
crossref_primary_10_1016_S1734_1140_13_71013_2
crossref_primary_10_1016_j_biopsych_2008_07_009
crossref_primary_10_1016_j_nbd_2003_08_006
crossref_primary_10_1177_0269881112450781
crossref_primary_10_1016_j_pnpbp_2010_06_020
crossref_primary_10_3390_ijms232012224
crossref_primary_10_3390_molecules26144137
crossref_primary_10_1002_bies_20703
crossref_primary_10_1016_j_heliyon_2023_e14653
crossref_primary_10_1155_2013_805497
crossref_primary_10_3390_molecules21030260
crossref_primary_10_1016_j_pnpbp_2005_11_013
crossref_primary_10_1002_hipo_22670
crossref_primary_10_37212_jcnos_426634
crossref_primary_10_3892_etm_2015_2246
crossref_primary_10_1097_CHI_0b013e318193064c
crossref_primary_10_1016_j_brainres_2020_147020
crossref_primary_10_1016_j_bbr_2016_09_029
crossref_primary_10_1097_NMD_0000000000001435
crossref_primary_10_1111_j_1749_6632_2010_05568_x
crossref_primary_10_1016_j_biopsych_2008_07_014
crossref_primary_10_1016_j_physbeh_2017_06_006
crossref_primary_10_1016_j_brainresrev_2004_02_003
crossref_primary_10_3390_cells10082090
crossref_primary_10_1002_jnr_10682
crossref_primary_10_1016_j_neuroscience_2007_12_026
crossref_primary_10_1002_hipo_10212
crossref_primary_10_1016_j_neuroscience_2009_01_059
crossref_primary_10_1016_j_nurx_2005_12_009
crossref_primary_10_1016_j_nurx_2005_12_005
crossref_primary_10_1111_j_1460_9568_2006_04691_x
crossref_primary_10_1371_journal_pone_0076301
crossref_primary_10_3390_ijms22168525
crossref_primary_10_1177_0269881119826602
crossref_primary_10_1371_journal_pone_0004331
crossref_primary_10_1007_s11356_015_4591_7
crossref_primary_10_1016_j_yfrne_2007_04_001
crossref_primary_10_1016_j_neubiorev_2009_06_008
crossref_primary_10_1523_JNEUROSCI_2192_18_2019
crossref_primary_10_1017_S0033291708003437
crossref_primary_10_1016_j_neubiorev_2004_06_009
crossref_primary_10_3389_fnins_2020_00474
crossref_primary_10_1016_j_rvsc_2018_01_003
crossref_primary_10_1016_j_pscychresns_2012_09_010
crossref_primary_10_1007_s12035_023_03615_1
crossref_primary_10_1038_tp_2012_94
crossref_primary_10_1111_ced_12047
crossref_primary_10_1016_j_brainresbull_2017_12_005
crossref_primary_10_1016_S0924_977X_03_00016_6
crossref_primary_10_1016_j_jpba_2018_03_049
crossref_primary_10_1016_j_biopha_2007_12_005
crossref_primary_10_1186_1472_6882_11_7
crossref_primary_10_1152_physrev_00007_2017
crossref_primary_10_1016_j_neubiorev_2008_04_006
crossref_primary_10_1080_14656566_2023_2194488
crossref_primary_10_1620_tjem_235_81
crossref_primary_10_1016_S0006_3223_03_00527_4
crossref_primary_10_1097_AJP_0b013e3181af129e
crossref_primary_10_1176_appi_ajp_2020_20030280
crossref_primary_10_3390_cells10061382
crossref_primary_10_1016_j_neulet_2007_09_062
crossref_primary_10_1002_hipo_20156
crossref_primary_10_1016_j_pscychresns_2020_111087
crossref_primary_10_1046_j_1460_9568_2002_02093_x
crossref_primary_10_4103_1673_5374_195278
crossref_primary_10_1038_aps_2010_184
crossref_primary_10_1016_j_biopsych_2006_02_026
crossref_primary_10_1093_brain_awaa405
crossref_primary_10_1016_j_bbr_2017_04_046
crossref_primary_10_1016_j_mehy_2011_02_034
crossref_primary_10_1016_S0006_3223_03_00319_6
crossref_primary_10_1016_j_rpsmen_2018_09_001
crossref_primary_10_1196_annals_1364_008
crossref_primary_10_1016_j_biopsych_2003_12_014
crossref_primary_10_1136_pgmj_2004_028977
crossref_primary_10_3389_fnint_2021_747237
crossref_primary_10_1016_j_biopsych_2012_10_023
crossref_primary_10_1016_j_pnpbp_2016_01_015
crossref_primary_10_2217_fnl_12_27
crossref_primary_10_1080_15622970600946446
crossref_primary_10_1016_j_bbr_2016_01_022
crossref_primary_10_1016_j_pscychresns_2017_11_011
crossref_primary_10_1111_j_1600_051X_2006_00935_x
crossref_primary_10_1196_annals_1286_034
crossref_primary_10_1016_j_neubiorev_2009_01_004
crossref_primary_10_1073_pnas_1510291112
crossref_primary_10_1080_1028415X_2022_2145423
crossref_primary_10_2147_nedt_1_2_109_61049
crossref_primary_10_2198_sbk_53_103
crossref_primary_10_1016_S0006_8993_02_03042_1
crossref_primary_10_1038_npp_2008_185
crossref_primary_10_1016_j_euroneuro_2004_09_004
crossref_primary_10_1016_j_psyneuen_2008_02_012
crossref_primary_10_12677_AP_2019_911218
crossref_primary_10_3390_brainsci13081157
crossref_primary_10_1007_s11064_015_1549_6
crossref_primary_10_1016_j_euroneuro_2004_09_008
crossref_primary_10_1093_ijnp_pyv119
crossref_primary_10_1016_j_neuroscience_2012_01_023
crossref_primary_10_1034_j_1399_5618_2002_01203_x
crossref_primary_10_1038_nrn1683
crossref_primary_10_1152_physrev_00041_2006
crossref_primary_10_1016_j_euroneuro_2004_09_001
crossref_primary_10_1038_sj_npp_1300924
crossref_primary_10_1016_j_euroneuro_2004_09_002
crossref_primary_10_1016_j_neuropharm_2009_12_013
crossref_primary_10_1111_bph_12775
crossref_primary_10_1111_j_1751_7893_2007_00021_x
crossref_primary_10_1016_j_brainres_2010_06_041
crossref_primary_10_1111_j_1600_0684_2009_00342_x
crossref_primary_10_1586_14737175_6_2_235
crossref_primary_10_1016_j_neuroscience_2005_10_045
crossref_primary_10_3390_brainsci12121696
crossref_primary_10_1124_jpet_109_163535
crossref_primary_10_1002_hipo_22351
crossref_primary_10_3109_15622975_2011_596220
crossref_primary_10_6116_kjh_2014_29_2_7
crossref_primary_10_1016_S0006_3223_03_00528_6
crossref_primary_10_1097_00001199_200303000_00010
crossref_primary_10_1002_hipo_20050
crossref_primary_10_1016_j_neubiorev_2020_09_001
crossref_primary_10_1016_j_ynstr_2016_10_001
crossref_primary_10_1038_s41598_021_97991_0
crossref_primary_10_1016_j_avb_2006_01_005
crossref_primary_10_1016_j_brainres_2005_12_110
crossref_primary_10_1016_j_neulet_2010_09_080
crossref_primary_10_1016_j_bbr_2014_07_038
crossref_primary_10_1016_j_pneurobio_2007_01_002
crossref_primary_10_2515_therapie_2005066
crossref_primary_10_1002_hipo_22107
crossref_primary_10_9758_cpn_2018_16_2_197
crossref_primary_10_1016_S0006_3223_03_00177_X
crossref_primary_10_1016_j_pnpbp_2009_10_011
crossref_primary_10_4306_pi_2008_5_3_142
crossref_primary_10_1016_j_brainres_2010_08_021
crossref_primary_10_1002_hipo_22382
crossref_primary_10_1159_000366441
crossref_primary_10_1046_j_1460_9568_2003_03100_x
crossref_primary_10_1038_sj_npp_1300234
crossref_primary_10_1016_j_bbr_2011_03_048
crossref_primary_10_1038_sj_npp_1300116
crossref_primary_10_1016_j_ejphar_2008_01_014
crossref_primary_10_1055_a_1291_8079
crossref_primary_10_1523_JNEUROSCI_23_34_10841_2003
crossref_primary_10_1016_j_neubiorev_2015_03_014
crossref_primary_10_1016_S0006_3223_03_00004_0
crossref_primary_10_1155_2022_7630779
crossref_primary_10_1007_s11011_012_9375_x
crossref_primary_10_1155_2014_541870
crossref_primary_10_1186_1471_2164_14_606
crossref_primary_10_1007_s11064_013_1099_8
crossref_primary_10_1016_j_bbr_2012_04_017
crossref_primary_10_1016_j_ejphar_2008_02_050
crossref_primary_10_1016_j_yebeh_2017_04_021
crossref_primary_10_1016_j_eurpsy_2005_03_007
crossref_primary_10_1007_s00429_015_1056_1
crossref_primary_10_1016_j_neuroimage_2009_11_030
crossref_primary_10_1016_j_neuropharm_2005_12_003
crossref_primary_10_1007_s12035_011_8176_2
crossref_primary_10_1038_sj_npp_1300581
crossref_primary_10_1007_s12640_021_00433_y
crossref_primary_10_1038_nrd1753
crossref_primary_10_1177_0269881115573810
crossref_primary_10_1002_da_21933
crossref_primary_10_1177_117739280600100005
crossref_primary_10_1515_revneuro_2014_0083
crossref_primary_10_1002_hipo_22375
crossref_primary_10_1016_j_biopsych_2005_11_025
crossref_primary_10_1523_JNEUROSCI_3849_06_2007
crossref_primary_10_1016_j_brainres_2016_08_040
crossref_primary_10_1016_j_jff_2020_104106
crossref_primary_10_1016_j_neuroscience_2005_08_089
crossref_primary_10_1016_j_pneurobio_2009_04_006
crossref_primary_10_1371_journal_pone_0017600
crossref_primary_10_31887_DCNS_2006_8_4_jbremner
crossref_primary_10_1016_j_brainres_2005_09_043
crossref_primary_10_1016_j_nbd_2005_03_023
crossref_primary_10_1016_j_pnpbp_2020_110049
crossref_primary_10_1523_JNEUROSCI_6414_09_2010
crossref_primary_10_1016_j_pbb_2006_06_016
crossref_primary_10_3390_biom10081151
crossref_primary_10_31887_DCNS_2002_4_1_jquiroz
crossref_primary_10_3389_fnmol_2016_00109
crossref_primary_10_1093_schbul_sbw180
crossref_primary_10_3109_15622975_2011_640942
crossref_primary_10_1038_mp_2008_119
crossref_primary_10_1016_j_cellsig_2015_04_006
crossref_primary_10_3389_fncir_2017_00074
crossref_primary_10_1016_j_neuint_2019_104605
crossref_primary_10_1051_medsci_2005211104
crossref_primary_10_1523_JNEUROSCI_1309_11_2011
crossref_primary_10_1073_pnas_231475998
crossref_primary_10_1016_S0028_3908_03_00066_2
crossref_primary_10_3727_096368914X678463
crossref_primary_10_1016_j_pbb_2006_06_005
crossref_primary_10_1186_cc11209
crossref_primary_10_1364_BOE_7_003882
crossref_primary_10_1007_s00213_022_06180_y
crossref_primary_10_3390_biom13040695
crossref_primary_10_1017_S1092852900010038
crossref_primary_10_3389_fpsyt_2020_00501
crossref_primary_10_1016_j_arr_2005_03_003
crossref_primary_10_1016_j_arr_2005_03_004
crossref_primary_10_1152_ajpregu_00361_2014
crossref_primary_10_1016_j_jneumeth_2013_08_023
crossref_primary_10_1017_S1461145711001994
crossref_primary_10_1152_physrev_00055_2003
crossref_primary_10_1155_2017_1960584
crossref_primary_10_1259_bjr_25165760
crossref_primary_10_1371_journal_pone_0004885
crossref_primary_10_1007_s12035_012_8365_7
crossref_primary_10_1016_j_bbr_2010_04_041
crossref_primary_10_1002_cne_23696
crossref_primary_10_1212_WNL_66_66_suppl_3_S13
crossref_primary_10_1016_j_psyneuen_2008_08_025
crossref_primary_10_1016_j_ynstr_2018_10_003
crossref_primary_10_1038_npp_2012_135
crossref_primary_10_1016_j_neuroscience_2005_07_032
crossref_primary_10_1016_j_neuroscience_2005_07_030
crossref_primary_10_1097_WNR_0b013e328332bb09
crossref_primary_10_1038_sj_npp_1301527
crossref_primary_10_1227_01_NEU_0000343539_15177_D1
crossref_primary_10_1016_j_ddstr_2008_09_002
crossref_primary_10_1073_pnas_0307294101
crossref_primary_10_1016_j_bbi_2011_09_011
crossref_primary_10_1016_j_nbd_2010_01_008
crossref_primary_10_1016_j_ejphar_2014_03_031
crossref_primary_10_1038_sj_mp_4001419
crossref_primary_10_1007_s00213_012_2741_x
crossref_primary_10_1515_REVNEURO_2005_16_1_43
crossref_primary_10_1016_j_amp_2005_03_032
crossref_primary_10_1016_j_brainres_2006_02_110
crossref_primary_10_1016_j_yfrne_2008_10_001
crossref_primary_10_3389_fphar_2018_00786
crossref_primary_10_1517_13543770902721287
crossref_primary_10_1007_s11517_021_02351_9
crossref_primary_10_1016_j_brainres_2009_07_001
crossref_primary_10_1016_j_neuroscience_2014_02_044
crossref_primary_10_1016_j_neubiorev_2015_10_006
crossref_primary_10_3109_15622970903131597
crossref_primary_10_1016_j_pnpbp_2008_05_012
crossref_primary_10_1096_fj_02_1032fje
crossref_primary_10_1007_s12272_013_0238_8
crossref_primary_10_1007_s10916_017_0748_x
crossref_primary_10_3109_15622975_2011_575178
crossref_primary_10_1002_bies_20800
crossref_primary_10_1111_j_1471_4159_2009_06345_x
crossref_primary_10_1016_S0033_8338_06_75139_6
crossref_primary_10_1038_sj_mp_4001648
crossref_primary_10_1016_j_psyneuen_2010_03_004
crossref_primary_10_1016_j_jep_2012_09_002
crossref_primary_10_1016_S0306_4530_03_00142_2
crossref_primary_10_1016_j_neuroscience_2009_10_023
crossref_primary_10_1038_s41598_021_95850_6
crossref_primary_10_1016_j_biopsych_2006_04_009
crossref_primary_10_1016_j_lfs_2006_12_027
crossref_primary_10_1016_j_pscychresns_2005_12_004
crossref_primary_10_4306_pi_2015_12_1_73
crossref_primary_10_1517_14728222_12_6_705
crossref_primary_10_1124_pr_114_009126
crossref_primary_10_1093_abbs_gmv009
crossref_primary_10_1016_j_molbrainres_2004_07_012
crossref_primary_10_1093_toxres_tfae052
crossref_primary_10_1111_febs_14826
crossref_primary_10_1080_00207450802324713
crossref_primary_10_1007_s12010_015_1789_6
crossref_primary_10_1016_j_neuroscience_2015_04_047
crossref_primary_10_1016_j_encep_2008_10_004
crossref_primary_10_1007_s11011_022_00969_8
crossref_primary_10_1016_j_neuroscience_2006_08_069
crossref_primary_10_1016_j_chphi_2024_100539
crossref_primary_10_1073_pnas_0708092105
crossref_primary_10_1016_S0197_4580_03_00048_4
crossref_primary_10_1177_0269881106059694
crossref_primary_10_1111_nure_12088
crossref_primary_10_3390_ijms242417181
crossref_primary_10_1016_j_ejphar_2008_09_006
crossref_primary_10_1016_j_psyneuen_2014_09_021
crossref_primary_10_1016_S0006_8993_02_02973_6
crossref_primary_10_1016_j_pbb_2012_08_020
crossref_primary_10_1101_cshperspect_a019026
crossref_primary_10_1016_j_biopsych_2003_08_013
crossref_primary_10_1515_CCLM_2011_039
crossref_primary_10_1523_JNEUROSCI_0312_14_2014
crossref_primary_10_1016_j_brainresbull_2009_03_009
crossref_primary_10_1038_mp_2009_80
crossref_primary_10_1016_S0165_3806_02_00277_8
crossref_primary_10_1007_s00702_008_0039_2
crossref_primary_10_1016_j_pnpbp_2010_08_026
crossref_primary_10_3109_13880200903280034
crossref_primary_10_1046_j_1468_1331_2003_00746_x
crossref_primary_10_1155_2013_537265
crossref_primary_10_3389_fnins_2018_00952
crossref_primary_10_3390_nu10050584
crossref_primary_10_5665_sleep_1894
crossref_primary_10_1093_ilar_ilu002
crossref_primary_10_1007_s00406_009_0045_x
crossref_primary_10_1016_j_biopsych_2004_02_033
crossref_primary_10_2165_00023210_200216060_00001
crossref_primary_10_1034_j_1600_0404_107_s179_3_x
crossref_primary_10_5194_pb_2_111_2015
crossref_primary_10_1111_j_1474_9726_2008_00369_x
crossref_primary_10_1073_pnas_0400208101
crossref_primary_10_1523_JNEUROSCI_2051_07_2007
crossref_primary_10_1007_s12035_011_8175_3
crossref_primary_10_1016_j_jep_2019_111967
crossref_primary_10_1002_hup_496
crossref_primary_10_1176_appi_ajp_159_12_2072
crossref_primary_10_1016_j_brs_2016_11_013
crossref_primary_10_1016_j_neulet_2009_10_017
crossref_primary_10_1101_cshperspect_a039198
crossref_primary_10_1186_1756_6606_7_11
crossref_primary_10_1016_j_compbiomed_2020_103810
crossref_primary_10_1016_S0006_8993_03_02542_3
crossref_primary_10_1016_j_bbr_2006_05_027
crossref_primary_10_1016_j_brainres_2016_09_027
crossref_primary_10_1088_2040_8986_19_1_013003
crossref_primary_10_1586_14737175_7_11s_S157
crossref_primary_10_1016_j_febslet_2008_06_040
crossref_primary_10_1016_j_mehy_2011_03_017
crossref_primary_10_1196_annals_1314_035
crossref_primary_10_1016_j_neubiorev_2011_12_005
crossref_primary_10_1155_2014_454696
crossref_primary_10_1111_j_1749_6632_2009_05331_x
crossref_primary_10_1111_j_1750_3639_2008_00149_x
crossref_primary_10_3390_biom13101504
crossref_primary_10_1016_j_pscychresns_2013_09_004
crossref_primary_10_1016_S0031_9384_03_00161_6
crossref_primary_10_1016_j_psyneuen_2020_105097
crossref_primary_10_3390_cells11050791
crossref_primary_10_1017_S1092852900015224
crossref_primary_10_1007_s00213_011_2280_x
crossref_primary_10_1016_j_bbr_2020_112711
crossref_primary_10_1007_s10571_006_9090_4
crossref_primary_10_1038_sj_npp_1301041
crossref_primary_10_1016_j_bbr_2007_11_028
crossref_primary_10_1016_j_euroneuro_2009_06_010
crossref_primary_10_3389_fnbeh_2023_1244075
crossref_primary_10_1080_j_1440_1614_2006_01814_x
crossref_primary_10_1016_j_biopsych_2006_07_026
crossref_primary_10_1007_s11064_019_02906_1
crossref_primary_10_1016_j_bbr_2023_114502
crossref_primary_10_1016_S0091_3057_02_00795_5
crossref_primary_10_1016_j_brainres_2004_06_089
crossref_primary_10_1016_j_pbb_2014_05_006
crossref_primary_10_1097_YIC_0b013e3283311acd
crossref_primary_10_1080_07853890701483270
crossref_primary_10_1016_j_bandc_2009_06_003
crossref_primary_10_1016_j_expneurol_2011_09_026
crossref_primary_10_1002_hipo_23185
crossref_primary_10_31887_DCNS_2006_8_4_bmcewen
crossref_primary_10_1007_s12035_023_03328_5
crossref_primary_10_1016_j_bbr_2004_04_003
crossref_primary_10_1016_j_bbr_2015_12_028
crossref_primary_10_1002_jnr_21907
crossref_primary_10_1038_sj_npp_1301275
crossref_primary_10_1016_j_neuroscience_2009_05_053
crossref_primary_10_1007_s00213_017_4588_7
crossref_primary_10_1016_j_nbd_2023_106396
crossref_primary_10_1196_annals_1314_012
crossref_primary_10_1007_s10517_015_2956_z
crossref_primary_10_1016_j_biopsych_2005_05_023
crossref_primary_10_1016_j_metabol_2005_01_005
crossref_primary_10_1002_ddr_20032
crossref_primary_10_1016_j_neuropharm_2013_08_018
crossref_primary_10_1002_ddr_20033
crossref_primary_10_1016_j_metabol_2005_01_008
crossref_primary_10_3389_fpsyg_2018_02065
crossref_primary_10_1111_j_1460_9568_2005_03968_x
crossref_primary_10_1002_hipo_20905
crossref_primary_10_1016_j_pbb_2012_09_018
crossref_primary_10_1016_j_bbr_2019_112254
crossref_primary_10_1097_YCO_0000000000000531
crossref_primary_10_1016_j_lfs_2007_08_033
crossref_primary_10_1016_j_neulet_2010_05_075
crossref_primary_10_1007_s00406_023_01685_9
crossref_primary_10_1016_j_neuron_2008_06_023
crossref_primary_10_1007_s00213_005_2260_0
crossref_primary_10_1016_S0006_3223_03_00698_X
crossref_primary_10_3390_ijms231911739
crossref_primary_10_1038_sj_npp_1301143
crossref_primary_10_1177_0269881106072192
crossref_primary_10_1523_JNEUROSCI_2505_07_2007
crossref_primary_10_1586_14737175_2_3_347
crossref_primary_10_1176_appi_ajp_160_8_1516
crossref_primary_10_1016_j_brainres_2019_146377
crossref_primary_10_1097_YCT_0b013e3181a95da8
crossref_primary_10_1016_S0006_3223_03_00117_3
crossref_primary_10_1007_s11064_007_9330_0
crossref_primary_10_1016_j_ddmec_2004_10_007
crossref_primary_10_1046_j_1460_9568_2003_02510_x
crossref_primary_10_1017_S1092852921000092
crossref_primary_10_1080_10253890500070005
crossref_primary_10_1016_j_biopsycho_2012_01_008
crossref_primary_10_1155_2014_310821
crossref_primary_10_1016_j_physbeh_2010_12_023
crossref_primary_10_1046_j_1471_4159_2003_01895_x
crossref_primary_10_1080_23262133_2017_1281861
crossref_primary_10_1016_j_ynstr_2022_100456
crossref_primary_10_1038_sj_npp_1301497
crossref_primary_10_1016_j_euroneuro_2013_07_010
crossref_primary_10_1038_sj_npp_1301137
crossref_primary_10_1038_npp_2009_47
crossref_primary_10_1002_ana_20405
crossref_primary_10_1016_j_biopsych_2009_04_015
crossref_primary_10_1097_00001756_200312020_00013
crossref_primary_10_1007_s00401_013_1223_5
crossref_primary_10_1016_j_jad_2014_09_048
crossref_primary_10_1111_jnc_13145
crossref_primary_10_1109_ACCESS_2020_3035799
crossref_primary_10_1016_j_neulet_2008_06_081
crossref_primary_10_1177_1535370220915180
crossref_primary_10_1016_j_pnpbp_2004_11_001
crossref_primary_10_1016_j_biopsych_2004_04_012
crossref_primary_10_1038_sj_mp_4001130
crossref_primary_10_2165_11595900_000000000_00000
crossref_primary_10_1038_sj_tpj_6500485
crossref_primary_10_1016_j_pnpbp_2010_11_021
crossref_primary_10_1016_S0006_8993_03_03293_1
crossref_primary_10_1016_j_bbrc_2013_04_011
crossref_primary_10_1016_j_neures_2024_12_006
crossref_primary_10_1002_hipo_20831
crossref_primary_10_1016_S0896_6273_03_00195_8
crossref_primary_10_1155_2021_6533727
crossref_primary_10_1046_j_1460_9568_2003_02513_x
crossref_primary_10_1016_S0278_5846_03_00123_4
crossref_primary_10_1177_2167702620917463
crossref_primary_10_1523_JNEUROSCI_0805_11_2011
crossref_primary_10_1002_hipo_20718
crossref_primary_10_1586_14737175_7_4_393
crossref_primary_10_1080_00207454_2018_1466781
crossref_primary_10_1517_13543784_15_5_479
crossref_primary_10_1016_S0031_9384_03_00209_9
crossref_primary_10_1016_j_brainresbull_2006_01_009
crossref_primary_10_1016_j_jad_2016_04_001
crossref_primary_10_1111_j_1460_9568_2006_05101_x
crossref_primary_10_1089_scd_2006_15_359
crossref_primary_10_1016_j_biopsych_2004_04_002
crossref_primary_10_1016_j_ejphar_2007_02_023
crossref_primary_10_1111_j_1476_5381_2009_00481_x
crossref_primary_10_1038_sj_npp_1301596
crossref_primary_10_1080_17470919_2014_882862
crossref_primary_10_1007_s11064_017_2306_9
crossref_primary_10_3389_fnana_2018_00044
crossref_primary_10_31887_DCNS_2004_6_2_rduman
crossref_primary_10_1007_s11064_012_0830_1
crossref_primary_10_1016_j_neubiorev_2012_12_007
crossref_primary_10_1016_j_yfrne_2016_05_001
crossref_primary_10_1016_j_bbr_2018_11_017
crossref_primary_10_1016_j_biopsych_2008_02_022
crossref_primary_10_1016_j_cellsig_2019_109521
crossref_primary_10_1111_j_1460_9568_2005_04481_x
crossref_primary_10_1111_1749_4877_12335
crossref_primary_10_2174_1871524923666230905142700
crossref_primary_10_1016_j_biopsych_2004_04_011
crossref_primary_10_1126_science_1083328
crossref_primary_10_1073_pnas_0910072107
crossref_primary_10_1038_sj_mp_4001118
crossref_primary_10_1002_nbm_1080
crossref_primary_10_1038_s41598_021_97186_7
crossref_primary_10_3174_ajnr_A3965
crossref_primary_10_1038_sj_tpj_6500265
crossref_primary_10_31887_DCNS_2004_6_2_cstockmeier
crossref_primary_10_1016_j_expneurol_2011_01_008
crossref_primary_10_3390_molecules201119698
crossref_primary_10_1177_0269881118793560
crossref_primary_10_1016_j_ygcen_2012_12_003
crossref_primary_10_1117_1_JBO_23_11_115001
crossref_primary_10_5498_wjp_v2_i3_49
crossref_primary_10_1016_j_celrep_2021_109513
crossref_primary_10_1176_appi_ajp_161_7_1309_a
crossref_primary_10_1196_annals_1296_001
crossref_primary_10_1097_FBP_0b013e32833db7d4
crossref_primary_10_1155_2007_73754
crossref_primary_10_4015_S1016237220500118
crossref_primary_10_1016_S0006_3223_03_00347_0
crossref_primary_10_1556_APhysiol_99_2012_2_7
crossref_primary_10_1002_cne_21775
crossref_primary_10_1016_j_biopsych_2006_07_007
crossref_primary_10_1016_j_jpsychires_2020_10_042
crossref_primary_10_1159_000063531
crossref_primary_10_1007_s11064_008_9739_0
crossref_primary_10_1016_j_euroneuro_2006_08_009
crossref_primary_10_1016_j_rpsm_2018_09_002
crossref_primary_10_1016_j_jep_2010_07_015
crossref_primary_10_1038_sj_mp_4001464
crossref_primary_10_1016_j_biopsych_2005_06_036
crossref_primary_10_1016_S0924_9338_02_00653_3
crossref_primary_10_1111_j_1365_2826_2008_01707_x
crossref_primary_10_1016_j_neures_2014_08_008
crossref_primary_10_1046_j_1460_9568_2002_02043_x
crossref_primary_10_1016_j_nlm_2012_01_003
crossref_primary_10_1016_j_pnpbp_2015_04_004
crossref_primary_10_1016_j_brainres_2007_12_025
crossref_primary_10_1016_j_neuropharm_2008_04_012
crossref_primary_10_1016_j_jad_2015_03_054
crossref_primary_10_1111_j_1365_2826_2007_01555_x
crossref_primary_10_1097_FBP_0b013e32833db7e9
crossref_primary_10_1111_cns_14196
crossref_primary_10_1371_journal_pone_0041821
crossref_primary_10_1016_j_actpsy_2007_08_002
crossref_primary_10_1016_S0013_7006_10_70055_5
crossref_primary_10_1038_mp_2014_136
crossref_primary_10_1016_j_biopha_2018_01_133
crossref_primary_10_1016_j_neubiorev_2020_05_010
crossref_primary_10_1038_sj_mp_4001457
crossref_primary_10_1016_j_neuroscience_2010_08_062
crossref_primary_10_1016_j_neuroscience_2014_01_056
crossref_primary_10_1089_neu_2010_1563
crossref_primary_10_1016_j_neuroscience_2020_05_014
crossref_primary_10_1126_science_1222941
crossref_primary_10_1016_S0306_4530_02_00005_7
crossref_primary_10_1155_2011_875307
crossref_primary_10_1046_j_1460_9568_2002_02136_x
crossref_primary_10_1111_ejn_13172
crossref_primary_10_31083_j_jin2202043
crossref_primary_10_1016_j_brainres_2019_146546
crossref_primary_10_1073_pnas_0705848104
crossref_primary_10_1016_S0006_3223_03_00634_6
crossref_primary_10_1016_j_bbr_2004_06_004
crossref_primary_10_1016_j_brainres_2009_06_089
crossref_primary_10_1016_j_euroneuro_2007_04_004
crossref_primary_10_1016_j_pharmthera_2010_12_002
crossref_primary_10_1080_10253890_2016_1224842
crossref_primary_10_1186_s12974_015_0425_2
crossref_primary_10_1007_s11011_012_9293_y
crossref_primary_10_1016_j_neuropharm_2011_09_003
crossref_primary_10_31887_DCNS_2007_9_2_mpucak
crossref_primary_10_1038_sj_mp_4002097
crossref_primary_10_1016_j_jadr_2021_100230
crossref_primary_10_1016_j_archoralbio_2017_10_012
crossref_primary_10_1016_j_yfrne_2014_06_001
crossref_primary_10_1002_hipo_20873
crossref_primary_10_1073_pnas_0914568107
crossref_primary_10_3389_fnins_2021_621446
crossref_primary_10_1038_npp_2012_70
crossref_primary_10_1080_00207454_2018_1550398
crossref_primary_10_31887_DCNS_2004_6_2_bmcewen
crossref_primary_10_1007_s00213_016_4309_7
crossref_primary_10_1016_j_mehy_2006_07_018
crossref_primary_10_1007_s12272_018_1063_x
crossref_primary_10_1016_j_neures_2008_12_001
crossref_primary_10_1016_j_pscychresns_2018_12_015
crossref_primary_10_1093_ijnp_pyw098
crossref_primary_10_31887_DCNS_2009_11_3_jhunsberger
crossref_primary_10_1016_S0924_977X_06_70008_6
crossref_primary_10_1016_j_cub_2017_06_027
crossref_primary_10_1016_j_pbb_2012_03_005
crossref_primary_10_1016_j_bbr_2013_02_029
crossref_primary_10_1016_j_yhbeh_2016_03_005
crossref_primary_10_1016_j_nutres_2020_06_019
crossref_primary_10_1016_j_pnpbp_2007_08_007
crossref_primary_10_1016_j_pscychresns_2011_02_007
crossref_primary_10_1002_jnr_22010
crossref_primary_10_1016_j_bbr_2009_05_025
crossref_primary_10_1016_S0149_7634_02_00005_2
crossref_primary_10_1007_s10571_014_0074_5
crossref_primary_10_1073_pnas_0337481100
crossref_primary_10_1211_0022357044517
crossref_primary_10_1111_j_1440_1819_2008_01875_x
crossref_primary_10_1016_j_lfs_2012_09_023
crossref_primary_10_1016_j_neuroscience_2024_07_038
crossref_primary_10_3390_brainsci9070158
crossref_primary_10_1016_j_yfrne_2016_03_002
crossref_primary_10_1163_1568539X_bja10132
crossref_primary_10_1016_j_yebeh_2019_04_046
crossref_primary_10_1007_s10867_008_9099_7
crossref_primary_10_1016_j_neuropharm_2019_05_013
crossref_primary_10_3109_10253890_2015_1105958
crossref_primary_10_1016_j_ynstr_2014_10_004
crossref_primary_10_1016_j_pscychresns_2012_04_009
crossref_primary_10_3390_brainsci10080520
crossref_primary_10_1007_s11836_009_0099_x
crossref_primary_10_1017_S1092852900017454
crossref_primary_10_1186_s12974_015_0281_0
crossref_primary_10_1016_j_brainres_2005_05_006
crossref_primary_10_1016_j_neuropharm_2010_01_012
crossref_primary_10_3390_ijms24065520
crossref_primary_10_1111_j_1460_9568_2005_04365_x
crossref_primary_10_1016_j_biopsych_2006_03_082
crossref_primary_10_2165_11530010_000000000_00000
crossref_primary_10_53444_deubefd_1440576
crossref_primary_10_1007_s12035_018_1359_3
crossref_primary_10_1523_JNEUROSCI_3469_11_2012
crossref_primary_10_3109_10253890902951786
crossref_primary_10_1002_syn_22010
crossref_primary_10_3390_ph3103143
crossref_primary_10_1016_j_pharmthera_2011_05_007
crossref_primary_10_1016_j_biopsych_2013_01_005
crossref_primary_10_1007_s11655_011_0666_6
crossref_primary_10_2298_ABS0901001A
crossref_primary_10_1016_j_psc_2011_02_001
crossref_primary_10_1017_S0033291714000518
crossref_primary_10_1016_j_brainres_2016_05_015
crossref_primary_10_1038_s41577_023_00949_8
crossref_primary_10_1248_yakushi_20_00198_2
crossref_primary_10_1016_j_bbr_2017_01_007
crossref_primary_10_1016_j_neubiorev_2004_08_009
crossref_primary_10_1080_10253890600610973
crossref_primary_10_3390_biom9090406
crossref_primary_10_1097_PSY_0000000000001256
crossref_primary_10_1007_s00441_019_03043_5
crossref_primary_10_1016_j_biopsych_2007_02_006
crossref_primary_10_1007_BF03033225
crossref_primary_10_1002_syn_10230
crossref_primary_10_1111_j_1460_9568_2011_07614_x
crossref_primary_10_1002_hipo_22617
crossref_primary_10_1007_s00213_005_2184_8
crossref_primary_10_1016_j_neuropharm_2013_11_019
crossref_primary_10_1016_j_neuron_2011_04_005
crossref_primary_10_3390_genes2010107
crossref_primary_10_1111_j_1440_1681_2007_04608_x
crossref_primary_10_1016_j_jad_2022_12_020
crossref_primary_10_1038_npp_2009_160
crossref_primary_10_1007_s15202_014_0699_8
crossref_primary_10_1016_j_neuropharm_2008_07_014
crossref_primary_10_1007_s00018_012_1020_7
crossref_primary_10_1016_j_jpsychires_2004_06_002
crossref_primary_10_1016_j_brainresbull_2004_08_006
crossref_primary_10_1016_j_pneurobio_2011_01_001
crossref_primary_10_1016_j_neuroscience_2020_09_061
crossref_primary_10_1016_j_nic_2007_07_003
crossref_primary_10_1016_j_tips_2005_10_005
crossref_primary_10_1016_j_bbr_2008_10_039
crossref_primary_10_1017_S1041610207006412
crossref_primary_10_1038_sj_mp_4002055
crossref_primary_10_1111_neup_12596
crossref_primary_10_1177_0269881117691456
crossref_primary_10_1152_physrev_00004_2014
crossref_primary_10_1515_nf_2004_0204
crossref_primary_10_1016_S0891_0618_03_00030_9
crossref_primary_10_1111_pcn_12547
crossref_primary_10_1007_s12031_020_01702_9
crossref_primary_10_1016_j_jpsychires_2009_11_010
crossref_primary_10_1016_j_biopsych_2008_04_010
crossref_primary_10_1111_j_1476_5381_2010_01172_x
crossref_primary_10_1073_pnas_0708228104
crossref_primary_10_1016_j_jad_2023_01_065
crossref_primary_10_1080_10253890801890721
crossref_primary_10_1016_j_neuropharm_2007_11_009
crossref_primary_10_1016_S0018_506X_02_00010_7
crossref_primary_10_1007_s00406_007_0728_0
crossref_primary_10_1016_j_neuint_2009_12_004
crossref_primary_10_1523_JNEUROSCI_0237_07_2007
crossref_primary_10_1523_JNEUROSCI_3741_04_2005
crossref_primary_10_1586_17446651_1_5_623
crossref_primary_10_1007_s11011_006_9018_1
crossref_primary_10_1002_cne_24178
crossref_primary_10_1016_j_bbr_2008_10_006
crossref_primary_10_1016_j_neures_2007_10_010
crossref_primary_10_1111_j_1600_0765_2005_00833_x
crossref_primary_10_3389_fnins_2019_00362
crossref_primary_10_1590_S1516_44462005000300017
crossref_primary_10_1086_697956
crossref_primary_10_3109_10715762_2011_566869
crossref_primary_10_1016_j_neubiorev_2010_09_010
crossref_primary_10_1016_S0001_4079_19_33511_3
crossref_primary_10_1016_j_brainres_2004_03_040
crossref_primary_10_3389_fpsyt_2021_780095
crossref_primary_10_1097_00004714_200304000_00008
crossref_primary_10_1007_s00213_010_1989_2
crossref_primary_10_1016_j_pnpbp_2018_08_029
crossref_primary_10_1038_s41398_020_0839_1
crossref_primary_10_1101_gad_333906_119
crossref_primary_10_3389_fphys_2015_00077
crossref_primary_10_1016_S0006_3223_02_01457_9
crossref_primary_10_1016_S1521_690X_02_00101_X
crossref_primary_10_1016_j_ejphar_2007_11_071
crossref_primary_10_1016_S0013_7006_05_82388_7
crossref_primary_10_1111_j_1476_5381_2009_00585_x
crossref_primary_10_1016_j_bbr_2009_11_003
crossref_primary_10_1016_j_jneumeth_2008_04_028
crossref_primary_10_1016_j_neubiorev_2023_105238
crossref_primary_10_1038_s41598_017_05440_8
crossref_primary_10_1097_01_ccx_0000168529_23078_64
crossref_primary_10_4103_cjp_cjp_39_21
crossref_primary_10_1021_pr900799b
crossref_primary_10_1097_FBP_0b013e3282ee2aa8
crossref_primary_10_1038_sj_npp_1301296
crossref_primary_10_1016_j_neuroimage_2006_10_045
crossref_primary_10_1016_j_pscychresns_2007_04_004
crossref_primary_10_1093_sysbio_syp025
crossref_primary_10_3389_fpsyt_2021_718539
crossref_primary_10_1002_hipo_20576
crossref_primary_10_1176_foc_3_1_146
crossref_primary_10_1016_j_neuroimage_2005_01_001
crossref_primary_10_1016_j_neuropharm_2019_107914
crossref_primary_10_1016_j_bbr_2019_111900
crossref_primary_10_1016_j_neulet_2018_11_013
crossref_primary_10_1016_j_neubiorev_2012_03_005
crossref_primary_10_1111_ejn_15180
crossref_primary_10_2165_00023210_200519040_00001
crossref_primary_10_1371_journal_pone_0073118
crossref_primary_10_1007_s12035_018_1205_7
crossref_primary_10_1016_j_biopsych_2005_08_032
Cites_doi 10.1038/3305
10.1016/S0006-3223(99)00183-3
10.1046/j.0953-816x.2001.01629.x
10.1073/pnas.120552597
10.1159/000111347
10.1523/JNEUROSCI.21-05-01628.2001
10.1016/S0006-3223(99)00203-6
10.1016/S0924-977X(97)00064-3
10.1523/JNEUROSCI.13-03-00981.1993
10.1176/ajp.157.1.115
10.1523/JNEUROSCI.17-07-02492.1997
10.1046/j.1460-9568.2000.00932.x
10.2165/00023210-200115030-00006
10.1016/S0306-4522(98)00693-9
10.1146/annurev.neuro.22.1.105
10.1016/S0149-7634(89)80048-X
10.1016/S0006-3223(00)00964-1
10.1016/S0006-3223(00)00950-1
10.1016/S0014-2999(00)00904-3
10.1016/S0091-3057(99)00190-2
10.1016/S0014-2999(99)00163-6
10.1176/ajp.156.6.837
10.1016/S0006-3223(00)00979-3
10.1007/BF00427414
10.1046/j.0953-816x.2000.01424.x
10.1016/S0304-3940(97)00647-2
10.1016/0014-2999(92)90830-W
10.1016/S0306-4530(99)00062-1
10.1523/JNEUROSCI.16-10-03534.1996
10.1523/JNEUROSCI.20-24-09104.2000
10.1002/(SICI)1099-1492(199908)12:5<309::AID-NBM572>3.0.CO;2-Y
10.1002/mrm.1910300604
10.1016/S0006-3223(00)00942-2
10.1007/BF01194977
10.1046/j.1460-9568.2000.00130.x
10.1016/0006-3223(92)90232-O
10.1001/archpsyc.1997.01830190015002
10.1073/pnas.93.9.3908
10.1523/JNEUROSCI.15-11-07539.1995
10.1002/cne.901240303
10.1523/JNEUROSCI.20-08-02896.2000
10.1016/S0006-3223(99)00177-8
10.1016/0014-2999(94)90406-5
10.1523/JNEUROSCI.12-09-03642.1992
10.1016/S0140-6736(96)07492-2
10.1016/0091-3057(95)02166-3
10.1073/pnas.95.6.3168
10.1038/sj.mp.4000712
10.1016/S0006-3223(00)00252-3
10.1016/S0301-0082(00)00018-6
10.1016/S0301-0082(99)00050-7
10.1038/87865
10.1523/JNEUROSCI.15-06-04687.1995
10.1001/archpsyc.57.10.925
10.1016/S0893-133X(00)00159-7
10.1046/j.1471-4159.2000.0751729.x
10.1016/S0006-3223(96)00256-9
10.1016/S0022-3956(98)00033-8
10.1016/0006-8993(93)90524-Q
10.1016/S0306-4522(00)00050-6
ContentType Journal Article
Copyright Copyright 1993-2001 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 23, 2001
Copyright © 2001, The National Academy of Sciences 2001
Copyright_xml – notice: Copyright 1993-2001 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 23, 2001
– notice: Copyright © 2001, The National Academy of Sciences 2001
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.211427898
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic
Neurosciences Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1091-6490
EndPage 12801
ExternalDocumentID PMC60133
90239142
11675510
10_1073_pnas_211427898
98_22_12796
3056985
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c520t-14c4adcd270c6561d40d54894820dbe63724afa66e9c1790307f7ecb328d3b6d3
ISSN 0027-8424
IngestDate Thu Aug 21 18:09:24 EDT 2025
Fri Jul 11 09:10:46 EDT 2025
Thu Jul 10 19:02:22 EDT 2025
Mon Jun 30 08:37:24 EDT 2025
Wed Feb 19 02:08:31 EST 2025
Tue Jul 01 04:10:36 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Wed Nov 11 00:30:04 EST 2020
Thu May 30 15:49:58 EDT 2019
Thu May 29 08:42:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-14c4adcd270c6561d40d54894820dbe63724afa66e9c1790307f7ecb328d3b6d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed at: Division of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. E-mail: efuchs@gwdg.de.
Communicated by Bruce S. McEwen, The Rockefeller University, New York, NY
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/60133
PMID 11675510
PQID 201394540
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201394540
crossref_primary_10_1073_pnas_211427898
crossref_citationtrail_10_1073_pnas_211427898
proquest_miscellaneous_18189168
pnas_primary_98_22_12796
pubmedcentral_primary_oai_pubmedcentral_nih_gov_60133
proquest_miscellaneous_72227721
pubmed_primary_11675510
pnas_primary_98_22_12796_fulltext
jstor_primary_3056985
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-10-23
PublicationDateYYYYMMDD 2001-10-23
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-23
  day: 23
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2001
Publisher National Academy of Sciences
National Acad Sciences
The National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
– name: The National Academy of Sciences
References e_1_3_3_50_2
Lupien S J (e_1_3_3_60_2) 1998
e_1_3_3_16_2
e_1_3_3_18_2
Martin R D (e_1_3_3_29_2) 1990
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
Cameron H A (e_1_3_3_53_2) 1996
Tigges J (e_1_3_3_36_2) 1969
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
Fuchs E (e_1_3_3_30_2) 1999
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_62_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
11675480 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12320-2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1038/3305
– ident: e_1_3_3_44_2
  doi: 10.1016/S0006-3223(99)00183-3
– ident: e_1_3_3_64_2
  doi: 10.1046/j.0953-816x.2001.01629.x
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.120552597
– ident: e_1_3_3_38_2
  doi: 10.1159/000111347
– ident: e_1_3_3_58_2
  doi: 10.1523/JNEUROSCI.21-05-01628.2001
– ident: e_1_3_3_65_2
  doi: 10.1016/S0006-3223(99)00203-6
– ident: e_1_3_3_27_2
  doi: 10.1016/S0924-977X(97)00064-3
– ident: e_1_3_3_46_2
  doi: 10.1523/JNEUROSCI.13-03-00981.1993
– ident: e_1_3_3_6_2
  doi: 10.1176/ajp.157.1.115
– ident: e_1_3_3_12_2
  doi: 10.1523/JNEUROSCI.17-07-02492.1997
– ident: e_1_3_3_31_2
– volume-title: Nat. Neurosci.
  year: 1998
  ident: e_1_3_3_60_2
– ident: e_1_3_3_54_2
  doi: 10.1046/j.1460-9568.2000.00932.x
– ident: e_1_3_3_28_2
  doi: 10.2165/00023210-200115030-00006
– ident: e_1_3_3_55_2
  doi: 10.1016/S0306-4522(98)00693-9
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.neuro.22.1.105
– ident: e_1_3_3_37_2
  doi: 10.1016/S0149-7634(89)80048-X
– ident: e_1_3_3_4_2
  doi: 10.1016/S0006-3223(00)00964-1
– ident: e_1_3_3_47_2
  doi: 10.1016/S0006-3223(00)00950-1
– ident: e_1_3_3_21_2
  doi: 10.1016/S0014-2999(00)00904-3
– ident: e_1_3_3_26_2
  doi: 10.1016/S0091-3057(99)00190-2
– ident: e_1_3_3_16_2
  doi: 10.1016/S0014-2999(99)00163-6
– ident: e_1_3_3_22_2
  doi: 10.1176/ajp.156.6.837
– volume-title: Primate Origins and Evolution.
  year: 1990
  ident: e_1_3_3_29_2
– ident: e_1_3_3_41_2
  doi: 10.1016/S0006-3223(00)00979-3
– ident: e_1_3_3_24_2
  doi: 10.1007/BF00427414
– ident: e_1_3_3_52_2
  doi: 10.1046/j.0953-816x.2000.01424.x
– ident: e_1_3_3_63_2
  doi: 10.1016/S0304-3940(97)00647-2
– start-page: 235
  volume-title: UFAW Handbook on the Care and Management of Laboratory Animals
  year: 1999
  ident: e_1_3_3_30_2
– ident: e_1_3_3_15_2
  doi: 10.1016/0014-2999(92)90830-W
– ident: e_1_3_3_62_2
  doi: 10.1016/S0306-4530(99)00062-1
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.16-10-03534.1996
– ident: e_1_3_3_17_2
  doi: 10.1523/JNEUROSCI.20-24-09104.2000
– ident: e_1_3_3_33_2
  doi: 10.1002/(SICI)1099-1492(199908)12:5<309::AID-NBM572>3.0.CO;2-Y
– ident: e_1_3_3_32_2
  doi: 10.1002/mrm.1910300604
– ident: e_1_3_3_45_2
  doi: 10.1016/S0006-3223(00)00942-2
– ident: e_1_3_3_34_2
  doi: 10.1007/BF01194977
– ident: e_1_3_3_11_2
  doi: 10.1046/j.1460-9568.2000.00130.x
– ident: e_1_3_3_39_2
  doi: 10.1016/0006-3223(92)90232-O
– ident: e_1_3_3_18_2
  doi: 10.1001/archpsyc.1997.01830190015002
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.93.9.3908
– ident: e_1_3_3_59_2
  doi: 10.1523/JNEUROSCI.15-11-07539.1995
– ident: e_1_3_3_8_2
  doi: 10.1002/cne.901240303
– ident: e_1_3_3_57_2
  doi: 10.1523/JNEUROSCI.20-08-02896.2000
– ident: e_1_3_3_19_2
  doi: 10.1016/S0006-3223(99)00177-8
– ident: e_1_3_3_40_2
  doi: 10.1016/0014-2999(94)90406-5
– ident: e_1_3_3_50_2
  doi: 10.1523/JNEUROSCI.12-09-03642.1992
– ident: e_1_3_3_1_2
  doi: 10.1016/S0140-6736(96)07492-2
– ident: e_1_3_3_25_2
  doi: 10.1016/0091-3057(95)02166-3
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.95.6.3168
– ident: e_1_3_3_20_2
  doi: 10.1038/sj.mp.4000712
– ident: e_1_3_3_48_2
  doi: 10.1016/S0006-3223(00)00252-3
– volume-title: A Stereotaxic Atlas of the Tree Shrew (Tupaia glis)
  year: 1969
  ident: e_1_3_3_36_2
– ident: e_1_3_3_23_2
  doi: 10.1016/S0301-0082(00)00018-6
– ident: e_1_3_3_61_2
  doi: 10.1016/S0301-0082(99)00050-7
– ident: e_1_3_3_2_2
  doi: 10.1038/87865
– ident: e_1_3_3_9_2
  doi: 10.1523/JNEUROSCI.15-06-04687.1995
– ident: e_1_3_3_7_2
  doi: 10.1001/archpsyc.57.10.925
– ident: e_1_3_3_49_2
  doi: 10.1016/S0893-133X(00)00159-7
– start-page: 141
  volume-title: Receptor Dynamics in Neural Development
  year: 1996
  ident: e_1_3_3_53_2
– ident: e_1_3_3_56_2
  doi: 10.1046/j.1471-4159.2000.0751729.x
– ident: e_1_3_3_42_2
  doi: 10.1016/S0006-3223(96)00256-9
– ident: e_1_3_3_43_2
  doi: 10.1016/S0022-3956(98)00033-8
– ident: e_1_3_3_51_2
  doi: 10.1016/0006-8993(93)90524-Q
– ident: e_1_3_3_66_2
  doi: 10.1016/S0306-4522(00)00050-6
– reference: 11675480 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12320-2
SSID ssj0009580
Score 2.3242984
Snippet Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12796
SubjectTerms Animals
Antidepressants
Antidepressive Agents, Tricyclic - therapeutic use
Behavioral neuroscience
Biological Sciences
Biology
Brain
Brain - drug effects
Brain - metabolism
Cell Division - drug effects
Cell growth
Cellular metabolism
Dentate gyrus
Depression - drug therapy
Depression - metabolism
Depression - pathology
Hippocampus
Hippocampus - drug effects
Hippocampus - pathology
Hypothalamo-Hypophyseal System - drug effects
Hypothalamo-Hypophyseal System - physiology
Male
Metabolites
Neurogenesis
Neurology
Neurons
Pituitary-Adrenal System - drug effects
Pituitary-Adrenal System - physiology
Stress
Stress, Psychological - drug therapy
Stress, Psychological - metabolism
Stress, Psychological - pathology
Thiazepines - therapeutic use
tianeptine
Tupaia
Tupaia belangeri
Title Stress-Induced Changes in Cerebral Metabolites, Hippocampal Volume, and Cell Proliferation are Prevented by Antidepressant Treatment with Tianeptine
URI https://www.jstor.org/stable/3056985
http://www.pnas.org/content/98/22/12796.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11675510
https://www.proquest.com/docview/201394540
https://www.proquest.com/docview/18189168
https://www.proquest.com/docview/72227721
https://pubmed.ncbi.nlm.nih.gov/PMC60133
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMRgsbICRkAB1Gc1HbedxmjZVaJRJtKJvkeOkaqWSVWv7sP0O-L_caztOAqv4eImixHLT3JPre-1zrgl5EwtVTCMp_UDx3I_7vZ4vgqmCQC7Jo0zyIOeoHf40ZINx_HHSn3Q6Pxqspc06O1a3d-pK_seqcA3siirZf7Cs6xQuwDnYF45gYTj-lY2_aKGHD2n1BpfxjYhXE1xVcY0rwqgMWYOZUWisDTabL5cweoEPWHSNY6romziDj2ytBXJdDCqQFLY0JZ5MnApWmFvqLJw2SOpmNheQhhyZssUuunQj5KriIwyrCciTWs5ifcyq63cvh_XmyKe3ZiVfT_641SHL9TflERzL-6uEQFdmResiBOazb_XyVzW_oQl2RoLs9AYwjsZGaV357EQ0sGmEzdYDByE3W-T-NjaAM8MNjUu5Og5RQcyF7aVVhHv4OT0fX1yko7PJ6B65H0L2ofmig2YtZ2GUTfbBqlqgPPrQ7r0V6xi6K9bQhTZ35TO_0nIbcc7oEXloExR6YtC2SzpF-ZjsVuah72yd8vdPyPc2_KiFH52XtIIfbcDviDbAR80bPqIAPYrQoy3oUYAeddCj2Q1tQ4866FGEHq2ht0fG52ej04FvN_nwVT_srf0gVrHMVR7ynoLcIsjjXg5ZdBJDaJpnBYt4GMupZKxIFFaTgzFpyguVRaEAZ8Ly6CnZKa_KYp9QJiUrJOTInOVYNUlgtiEikSdMxeCQPOJX5kiVrYCPG7EsUs3E4FGKpkmd-Tzy1rVfmtovW1vuaeu6ZpiYJ6LvkX3dsLqciDQMUw1Rj7zediudWt6XRw4qlKTW7cCPYtKGdTM98srdhTEBbQXv-mqzSiFqF5D2ie0tOErgeRh45JnBXP0HA8Yhi4Le-y00ugZYj759p5zPdF16Bk8WPf_jbx6QB_V3fkh21teb4gVE9uvspf7OfgL5_AEX
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-induced+changes+in+cerebral+metabolites%2C+hippocampal+volume%2C+and+cell+proliferation+are+prevented+by+antidepressant+treatment+with+tianeptine&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cz%C3%A9h%2C+B&rft.au=Michaelis%2C+T&rft.au=Watanabe%2C+T&rft.au=Frahm%2C+J&rft.date=2001-10-23&rft.issn=0027-8424&rft.volume=98&rft.issue=22&rft.spage=12796&rft_id=info:doi/10.1073%2Fpnas.211427898&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F22.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F22.cover.gif