metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data
The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorit...
Saved in:
Published in | Genome research Vol. 26; no. 2; pp. 256 - 262 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1088-9051 1549-5469 1549-5469 |
DOI | 10.1101/gr.196394.115 |
Cover
Loading…
Abstract | The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorithm combined with a two-dimensional statistical test allows the detection of DMRs in large methylation experiments with multiple groups of samples in minutes rather than days using off-the-shelf hardware. metilene outperforms other state-of-the-art tools for low coverage data and can estimate missing data. Hence, metilene is a versatile tool to study the effect of epigenetic modifications in differentiation/development, tumorigenesis, and systems biology on a global, genome-wide level. Whether in the framework of international consortia with dozens of samples per group, or even without biological replicates, it produces highly significant and reliable results. |
---|---|
AbstractList | The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorithm combined with a two-dimensional statistical test allows the detection of DMRs in large methylation experiments with multiple groups of samples in minutes rather than days using off-the-shelf hardware. metilene outperforms other state-of-the-art tools for low coverage data and can estimate missing data. Hence, metilene is a versatile tool to study the effect of epigenetic modifications in differentiation/development, tumorigenesis, and systems biology on a global, genome-wide level. Whether in the framework of international consortia with dozens of samples per group, or even without biological replicates, it produces highly significant and reliable results.The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorithm combined with a two-dimensional statistical test allows the detection of DMRs in large methylation experiments with multiple groups of samples in minutes rather than days using off-the-shelf hardware. metilene outperforms other state-of-the-art tools for low coverage data and can estimate missing data. Hence, metilene is a versatile tool to study the effect of epigenetic modifications in differentiation/development, tumorigenesis, and systems biology on a global, genome-wide level. Whether in the framework of international consortia with dozens of samples per group, or even without biological replicates, it produces highly significant and reliable results. The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorithm combined with a two-dimensional statistical test allows the detection of DMRs in large methylation experiments with multiple groups of samples in minutes rather than days using off-the-shelf hardware. metilene outperforms other state-of-the-art tools for low coverage data and can estimate missing data. Hence, metilene is a versatile tool to study the effect of epigenetic modifications in differentiation/development, tumorigenesis, and systems biology on a global, genome-wide level. Whether in the framework of international consortia with dozens of samples per group, or even without biological replicates, it produces highly significant and reliable results. |
Author | Jühling, Frank Kretzmer, Helene Stadler, Peter F. Hoffmann, Steve Bernhart, Stephan H. Otto, Christian |
AuthorAffiliation | 1 Transcriptome Bioinformatics Group, LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, 04107 Leipzig, Germany 2 Interdisciplinary Center for Bioinformatics and Bioinformatics Group, Faculty of Computer Science, University of Leipzig, 04107 Leipzig, Germany 5 Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria 4 Santa Fe Institute, Santa Fe, New Mexico 87501, USA 6 Max Planck Institute for Mathematics in Sciences, 04103 Leipzig, Germany 3 RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology - IZI, 04103 Leipzig, Germany |
AuthorAffiliation_xml | – name: 1 Transcriptome Bioinformatics Group, LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, 04107 Leipzig, Germany – name: 2 Interdisciplinary Center for Bioinformatics and Bioinformatics Group, Faculty of Computer Science, University of Leipzig, 04107 Leipzig, Germany – name: 3 RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology - IZI, 04103 Leipzig, Germany – name: 5 Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria – name: 6 Max Planck Institute for Mathematics in Sciences, 04103 Leipzig, Germany – name: 4 Santa Fe Institute, Santa Fe, New Mexico 87501, USA |
Author_xml | – sequence: 1 givenname: Frank surname: Jühling fullname: Jühling, Frank – sequence: 2 givenname: Helene surname: Kretzmer fullname: Kretzmer, Helene – sequence: 3 givenname: Stephan H. surname: Bernhart fullname: Bernhart, Stephan H. – sequence: 4 givenname: Christian surname: Otto fullname: Otto, Christian – sequence: 5 givenname: Peter F. surname: Stadler fullname: Stadler, Peter F. – sequence: 6 givenname: Steve surname: Hoffmann fullname: Hoffmann, Steve |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26631489$$D View this record in MEDLINE/PubMed https://hal.science/hal-02517265$$DView record in HAL |
BookMark | eNqNkk1v1DAQhi1URD_gyBX5CIcUf4yTmANSVUGLtBIXOFtOMs4aeZ1ie1faf1-vtlS0EhIne8bP-3rG43NyEpeIhLzl7JJzxj_O6ZLrVmqooXpBzrgC3Sho9Unds75vNFP8lJzn_IsxJqHvX5FT0baSQ6_PyHqDxQeM-Ik6mwu1caIZY_bF75CONgQfZ7o4OnnnMGEsvub2tMrW-2ALTjTh7JeYqUvLhg4-b4PzBavL7y3G8SCfbLGvyUtnQ8Y3D-sF-fn1y4_r22b1_ebb9dWqGZVgpeFiEID9ALIFsBLBaQUDAA7AOyctTAOrIAirtWNigoE7LnjreKsm0KO8IJ-PvnfbYYPTWCtONpi75Dc27c1ivXl6Ev3azMvOQCd62XXV4MPRYP1Mdnu1MoccE4p3olU7Xtn3D5elpXabi9n4PGIINuKyzYZ3fa1WgJb_gbZCguylqui7v1t4LOLP1CrQHIExLTkndI8IZ-bwK8yczPFX1PBgKJ_xoy-21KnVF_DhH6p7Gaa7eA |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2020_06_021 crossref_primary_10_1126_sciadv_adk8598 crossref_primary_10_1016_j_celrep_2019_07_057 crossref_primary_10_3390_ani11051315 crossref_primary_10_1016_j_taap_2023_116545 crossref_primary_10_1111_tpj_15318 crossref_primary_10_1093_bib_bbab250 crossref_primary_10_1016_j_ccell_2022_12_004 crossref_primary_10_1016_j_celrep_2018_08_018 crossref_primary_10_1016_j_neo_2024_100965 crossref_primary_10_1371_journal_pgen_1011532 crossref_primary_10_1080_15592294_2024_2417151 crossref_primary_10_1016_j_ygeno_2023_110577 crossref_primary_10_1038_s41598_020_74520_z crossref_primary_10_1186_s12864_018_4874_8 crossref_primary_10_1093_jxb_erac167 crossref_primary_10_1093_nargab_lqab106 crossref_primary_10_1038_s41467_024_47196_6 crossref_primary_10_3389_fimmu_2025_1487135 crossref_primary_10_2147_JIR_S440263 crossref_primary_10_1186_s12864_021_07845_2 crossref_primary_10_1093_biostatistics_kxy007 crossref_primary_10_1038_s41598_024_70438_y crossref_primary_10_1109_TCBB_2022_3230473 crossref_primary_10_1155_2020_3158108 crossref_primary_10_1016_j_jbc_2021_100285 crossref_primary_10_1021_acsnano_4c09709 crossref_primary_10_1093_g3journal_jkae191 crossref_primary_10_1186_s13148_025_01817_z crossref_primary_10_1111_nph_14985 crossref_primary_10_1186_s13059_024_03220_y crossref_primary_10_1038_s41586_020_3027_9 crossref_primary_10_1111_tpj_15098 crossref_primary_10_3389_fcell_2021_632183 crossref_primary_10_1093_bioinformatics_btaa539 crossref_primary_10_1038_s41467_024_55499_x crossref_primary_10_1016_j_cell_2023_10_005 crossref_primary_10_1038_s10038_019_0611_7 crossref_primary_10_1007_s11825_019_0245_3 crossref_primary_10_1038_s41438_021_00588_x crossref_primary_10_1186_s12864_020_07151_3 crossref_primary_10_1186_s12967_024_05146_2 crossref_primary_10_1016_j_compbiomed_2022_105283 crossref_primary_10_1093_bib_bbw133 crossref_primary_10_1093_nar_gkad342 crossref_primary_10_3389_fpls_2024_1389357 crossref_primary_10_1515_sjpain_2020_0124 crossref_primary_10_1038_s41467_017_02762_z crossref_primary_10_1002_advs_202309184 crossref_primary_10_1186_s13148_021_01137_y crossref_primary_10_1038_s41467_022_29450_x crossref_primary_10_1139_gen_2024_0019 crossref_primary_10_1093_toxsci_kfac044 crossref_primary_10_3390_genes11010096 crossref_primary_10_1093_bioinformatics_btae593 crossref_primary_10_1038_s41591_018_0028_4 crossref_primary_10_1158_1078_0432_CCR_18_2423 crossref_primary_10_1159_000503266 crossref_primary_10_3389_fgene_2021_592135 crossref_primary_10_1126_sciadv_abd7924 crossref_primary_10_1016_j_gene_2023_147595 crossref_primary_10_1111_imm_13101 crossref_primary_10_1002_smtd_202101251 crossref_primary_10_1016_j_cell_2024_05_003 crossref_primary_10_1172_jci_insight_140628 crossref_primary_10_1038_s41467_021_24800_7 crossref_primary_10_3390_ijms22041555 crossref_primary_10_1073_pnas_2113476118 crossref_primary_10_3390_epigenomes5020012 crossref_primary_10_1111_all_15658 crossref_primary_10_1038_s41598_017_12401_8 crossref_primary_10_1111_tpj_15637 crossref_primary_10_1101_gr_240036_118 crossref_primary_10_1111_mec_17291 crossref_primary_10_2217_epi_2023_0034 crossref_primary_10_2217_epi_2023_0391 crossref_primary_10_1002_jmv_28789 crossref_primary_10_3389_fneur_2023_1326738 crossref_primary_10_1172_JCI93041 crossref_primary_10_1007_s12264_024_01302_2 crossref_primary_10_1093_dnares_dsy030 crossref_primary_10_1038_s41698_024_00590_1 crossref_primary_10_3389_fnmol_2024_1484964 crossref_primary_10_1093_jas_skad367 crossref_primary_10_1111_jcmm_70284 crossref_primary_10_3389_fcell_2022_834625 crossref_primary_10_1113_JP280518 crossref_primary_10_1016_j_stem_2019_05_013 crossref_primary_10_1515_jib_2024_0031 crossref_primary_10_1016_j_jep_2023_117188 crossref_primary_10_1186_s13148_024_01645_7 crossref_primary_10_1186_s13059_021_02329_8 crossref_primary_10_1016_j_fsi_2023_109144 crossref_primary_10_1016_j_jmoldx_2018_10_007 crossref_primary_10_1186_s12863_020_00918_3 crossref_primary_10_1016_j_aaf_2024_12_002 crossref_primary_10_1186_s13046_022_02440_z crossref_primary_10_1038_s41598_020_69073_0 crossref_primary_10_1111_pce_15297 crossref_primary_10_1186_s12859_018_2037_1 crossref_primary_10_1289_EHP14074 crossref_primary_10_1186_s12864_024_10491_z crossref_primary_10_1016_j_ebiom_2022_104357 crossref_primary_10_1093_nar_gkab516 crossref_primary_10_1016_j_cbd_2025_101485 crossref_primary_10_1016_j_molcel_2019_10_011 crossref_primary_10_1093_bioinformatics_btz635 crossref_primary_10_1093_bib_bbab475 crossref_primary_10_3389_fgene_2021_697279 crossref_primary_10_1007_s43032_020_00175_w crossref_primary_10_1093_biomethods_bpad012 crossref_primary_10_1016_j_stemcr_2019_08_014 crossref_primary_10_1038_s41598_022_22177_1 crossref_primary_10_3390_jcm10214992 crossref_primary_10_1038_s41380_022_01921_z crossref_primary_10_1158_1078_0432_CCR_24_1658 crossref_primary_10_1016_j_ygeno_2020_07_032 crossref_primary_10_1038_s41467_020_20492_7 crossref_primary_10_1186_s12859_018_2086_5 crossref_primary_10_1186_s12859_019_2845_y crossref_primary_10_1002_jgh3_12833 crossref_primary_10_7717_peerj_7847 crossref_primary_10_1093_nar_gkae358 crossref_primary_10_1016_j_cca_2023_117568 crossref_primary_10_1016_j_medj_2021_01_001 crossref_primary_10_1111_ctr_14295 crossref_primary_10_3389_fgene_2019_01268 crossref_primary_10_1016_j_crmeth_2024_100772 crossref_primary_10_1093_hmg_ddad123 crossref_primary_10_1016_j_isci_2025_112144 crossref_primary_10_1038_s41467_021_25521_7 crossref_primary_10_1038_s42003_023_05692_3 crossref_primary_10_3390_ijms24119150 crossref_primary_10_1371_journal_pgen_1010452 crossref_primary_10_15430_JCP_2022_27_2_129 crossref_primary_10_1038_s41598_020_70093_z crossref_primary_10_1038_s41467_024_47316_2 crossref_primary_10_1093_bib_bbz039 crossref_primary_10_1111_ele_12858 crossref_primary_10_1371_journal_pone_0278270 crossref_primary_10_1186_s13148_020_00854_0 crossref_primary_10_1016_j_ygcen_2023_114336 crossref_primary_10_1093_bib_bbx097 crossref_primary_10_1186_s12859_024_05722_9 crossref_primary_10_1038_s41467_018_08067_z crossref_primary_10_1161_HYPERTENSIONAHA_121_18584 crossref_primary_10_1101_gr_278146_123 crossref_primary_10_1096_fj_202101948R crossref_primary_10_1186_s12859_022_04563_8 crossref_primary_10_1016_j_isci_2022_104004 crossref_primary_10_1080_15592294_2024_2408843 crossref_primary_10_1210_clinem_dgae141 crossref_primary_10_1016_j_psyneuen_2024_107122 crossref_primary_10_1186_s12859_023_05174_7 crossref_primary_10_1038_s41467_021_24528_4 crossref_primary_10_1152_physiolgenomics_00147_2021 crossref_primary_10_1080_15592294_2022_2051862 crossref_primary_10_1016_j_ygeno_2021_08_024 crossref_primary_10_1111_nph_18941 crossref_primary_10_1093_bib_bbae236 crossref_primary_10_1111_cpr_13733 crossref_primary_10_1371_journal_pone_0291202 crossref_primary_10_1038_s41588_018_0055_6 crossref_primary_10_1080_15592294_2024_2426952 crossref_primary_10_1158_0008_5472_CAN_21_1273 crossref_primary_10_1007_s00018_019_03008_5 crossref_primary_10_1038_s41467_023_38044_0 crossref_primary_10_1186_s13059_018_1516_z crossref_primary_10_1038_s41467_022_31133_6 crossref_primary_10_3389_fcell_2024_1306530 crossref_primary_10_3390_plants13010103 crossref_primary_10_7554_eLife_93975_4 crossref_primary_10_1152_ajpregu_00226_2023 crossref_primary_10_3802_jgo_2023_34_e71 crossref_primary_10_1093_plphys_kiad668 crossref_primary_10_1158_1078_0432_CCR_23_1197 crossref_primary_10_1186_s12920_023_01689_3 crossref_primary_10_3390_jpm14040361 crossref_primary_10_1186_s12916_024_03368_1 crossref_primary_10_1007_s10620_021_07314_6 crossref_primary_10_1534_genetics_116_195008 crossref_primary_10_1111_nph_19464 crossref_primary_10_1161_HYPERTENSIONAHA_118_11650 crossref_primary_10_1073_pnas_1906320116 crossref_primary_10_1186_s12870_024_05093_6 crossref_primary_10_7717_peerj_17916 crossref_primary_10_1016_j_immuni_2016_10_022 crossref_primary_10_1016_j_fct_2019_111047 crossref_primary_10_4137_BBI_S38427 crossref_primary_10_3390_ijerph18157975 crossref_primary_10_1038_s41467_019_12355_7 crossref_primary_10_1016_j_envint_2022_107544 crossref_primary_10_18632_oncotarget_20176 crossref_primary_10_3390_epigenomes8030032 crossref_primary_10_1038_s41598_024_54862_8 crossref_primary_10_1038_s42003_024_05786_6 crossref_primary_10_1038_s41467_021_23706_8 crossref_primary_10_1080_15592294_2024_2408146 crossref_primary_10_3390_ijms21051848 crossref_primary_10_1111_andr_12832 crossref_primary_10_1016_j_cell_2022_09_006 crossref_primary_10_1038_s41467_024_55691_z crossref_primary_10_1016_j_molcel_2020_09_022 crossref_primary_10_1038_s41556_023_01114_y crossref_primary_10_1093_nar_gkae276 crossref_primary_10_1016_j_compbiomed_2024_108174 crossref_primary_10_1371_journal_pbio_3000739 crossref_primary_10_1038_s41467_020_19333_4 crossref_primary_10_2174_0115748936245495230925112419 crossref_primary_10_3390_genes12040541 crossref_primary_10_1016_j_celrep_2024_113908 crossref_primary_10_1021_acs_est_0c01696 crossref_primary_10_1093_bioinformatics_btad772 crossref_primary_10_1186_s12868_025_00930_2 crossref_primary_10_1016_j_isci_2021_103645 crossref_primary_10_3390_biology12070997 crossref_primary_10_1152_physiolgenomics_00063_2023 crossref_primary_10_1016_j_heliyon_2024_e35126 crossref_primary_10_1111_tpj_14058 crossref_primary_10_1158_2643_3230_BCD_19_0058 crossref_primary_10_1186_s40364_023_00488_3 crossref_primary_10_1186_s13148_021_01083_9 crossref_primary_10_1016_j_cbd_2020_100744 crossref_primary_10_12688_f1000research_12302_1 crossref_primary_10_1089_cmb_2019_0326 crossref_primary_10_1016_j_jbiotec_2017_06_1203 crossref_primary_10_1016_j_envres_2023_116413 crossref_primary_10_18632_oncotarget_27825 crossref_primary_10_3390_epigenomes2040021 crossref_primary_10_1007_s11427_022_2299_5 crossref_primary_10_1016_j_biocon_2019_06_021 crossref_primary_10_1038_s42003_023_04756_8 crossref_primary_10_1016_j_ygeno_2022_110379 crossref_primary_10_1093_bfgp_elw013 crossref_primary_10_1038_s41419_023_06412_9 crossref_primary_10_1186_s12864_020_06886_3 crossref_primary_10_1017_S2040174421000222 crossref_primary_10_1038_s41467_023_43987_5 crossref_primary_10_1093_hr_uhae138 crossref_primary_10_1038_s41588_022_01063_6 crossref_primary_10_1002_advs_202308884 crossref_primary_10_1093_bfgp_elw016 crossref_primary_10_1016_j_ajhg_2024_04_017 crossref_primary_10_1038_s12276_021_00695_8 crossref_primary_10_3389_fimmu_2021_672498 crossref_primary_10_1097_HJH_0000000000003796 crossref_primary_10_1161_HYPERTENSIONAHA_120_17351 crossref_primary_10_1161_HYPERTENSIONAHA_119_13716 crossref_primary_10_3389_fgene_2022_920641 crossref_primary_10_1084_jem_20210663 crossref_primary_10_1038_s41598_023_49546_8 crossref_primary_10_3390_ijms25169105 crossref_primary_10_3390_ijms21113828 crossref_primary_10_1038_s41598_020_73116_x crossref_primary_10_1017_qpb_2022_14 crossref_primary_10_1002_ctm2_498 crossref_primary_10_1186_s12859_020_3470_5 crossref_primary_10_1038_s41467_024_49608_z crossref_primary_10_1093_nar_gkab397 crossref_primary_10_1073_pnas_1918611117 crossref_primary_10_1038_s41598_018_28356_3 crossref_primary_10_1038_s42003_021_02761_3 crossref_primary_10_1186_s13073_020_00794_7 crossref_primary_10_1038_s41556_024_01431_w crossref_primary_10_1093_plphys_kiaf077 crossref_primary_10_1002_ctm2_70174 crossref_primary_10_1186_s12891_022_05730_x crossref_primary_10_1002_jez_b_23174 crossref_primary_10_1186_s12864_023_09416_z crossref_primary_10_7554_eLife_93975 crossref_primary_10_1093_nar_gkae1039 crossref_primary_10_1534_g3_120_401425 crossref_primary_10_1038_s41590_020_0700_y crossref_primary_10_1016_j_cell_2017_01_021 crossref_primary_10_1038_s41559_017_0229_0 crossref_primary_10_1186_s40104_023_00894_5 crossref_primary_10_1038_s41556_022_01069_6 crossref_primary_10_1016_j_ebiom_2020_103191 crossref_primary_10_1007_s12015_020_10041_6 crossref_primary_10_1038_s41467_020_18289_9 crossref_primary_10_3389_fgene_2023_1175784 crossref_primary_10_1093_bib_bbad241 crossref_primary_10_1038_s41586_024_07103_x crossref_primary_10_1038_s41477_020_0707_2 crossref_primary_10_1093_nar_gkz520 crossref_primary_10_1093_bioinformatics_btaa191 crossref_primary_10_1186_s40104_023_00970_w crossref_primary_10_1016_j_stem_2024_12_010 crossref_primary_10_1038_s41598_022_20682_x crossref_primary_10_3389_fgene_2021_632859 crossref_primary_10_1186_s40104_023_00931_3 crossref_primary_10_2139_ssrn_3947354 crossref_primary_10_1093_bib_bbx013 crossref_primary_10_1016_j_heliyon_2024_e34756 crossref_primary_10_1093_nar_gkae880 |
Cites_doi | 10.1093/biostatistics/kxh008 10.1186/gb-2014-15-2-r38 10.1001/jamaoncol.2015.1053 10.1101/gr.103606.109 10.1371/journal.pone.0026002 10.1038/nmeth.3152 10.1186/gb-2013-14-9-r102 10.1038/nbt.1662 10.1093/mnras/225.1.155 10.1093/bioinformatics/btq033 10.1038/nn.3786 10.1214/aos/1176349928 10.2337/db13-1459 10.1093/bioinformatics/btt263 10.1038/nature09906 10.1093/bioinformatics/btu339 10.1038/ncomms3978 10.1038/ng.3413 10.1186/gb-2012-13-10-r87 10.1093/bioinformatics/btu126 10.1186/gb-2012-13-10-r83 10.1038/nature13268 10.1093/nar/gkq1017 10.1101/gad.230318.113 |
ContentType | Journal Article |
Copyright | 2016 Jühling et al.; Published by Cold Spring Harbor Laboratory Press. Distributed under a Creative Commons Attribution 4.0 International License 2016 |
Copyright_xml | – notice: 2016 Jühling et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 1XC VOOES 5PM |
DOI | 10.1101/gr.196394.115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Ju¨hling et al |
EISSN | 1549-5469 |
EndPage | 262 |
ExternalDocumentID | PMC4728377 oai_HAL_hal_02517265v1 26631489 10_1101_gr_196394_115 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Bundesministerium für Bildung und Forschung – fundername: BLUEPRINT grantid: HEALTH-F5-2011-282510 – fundername: European Social Fund (ESF) – fundername: LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig – fundername: BMBF grantid: 031 6065A; MMML-Seq 01KU1002J – fundername: European Regional Development Fund (ERDF) |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c520t-12b24e8b43644a3e4f954b44eb417f3a4db052042a99f02d4b1f1216f165d49c3 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 14:25:03 EDT 2025 Wed Aug 13 07:45:29 EDT 2025 Fri Sep 05 06:26:54 EDT 2025 Fri Sep 05 04:26:40 EDT 2025 Mon Jul 21 06:01:11 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 02:20:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2016 Jühling et al.; Published by Cold Spring Harbor Laboratory Press. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-12b24e8b43644a3e4f954b44eb417f3a4db052042a99f02d4b1f1216f165d49c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4728377 These authors contributed equally to this work. |
OpenAccessLink | https://hal.science/hal-02517265 |
PMID | 26631489 |
PQID | 1762343835 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4728377 hal_primary_oai_HAL_hal_02517265v1 proquest_miscellaneous_1780522493 proquest_miscellaneous_1762343835 pubmed_primary_26631489 crossref_primary_10_1101_gr_196394_115 crossref_citationtrail_10_1101_gr_196394_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811142121000_26.2.256.11 2021111811142121000_26.2.256.10 2021111811142121000_26.2.256.13 2021111811142121000_26.2.256.12 (2021111811142121000_26.2.256.2) 2014; 5 2021111811142121000_26.2.256.19 2021111811142121000_26.2.256.18 2021111811142121000_26.2.256.15 2021111811142121000_26.2.256.14 2021111811142121000_26.2.256.17 2021111811142121000_26.2.256.16 2021111811142121000_26.2.256.22 2021111811142121000_26.2.256.21 2021111811142121000_26.2.256.24 2021111811142121000_26.2.256.23 2021111811142121000_26.2.256.20 (2021111811142121000_26.2.256.26) 2015; 12 2021111811142121000_26.2.256.9 2021111811142121000_26.2.256.8 (2021111811142121000_26.2.256.25) 2012; 22 2021111811142121000_26.2.256.7 2021111811142121000_26.2.256.6 2021111811142121000_26.2.256.5 2021111811142121000_26.2.256.4 2021111811142121000_26.2.256.3 2021111811142121000_26.2.256.1 21037257 - Nucleic Acids Res. 2011 Jan;39(Database issue):D871-5 23658421 - Bioinformatics. 2013 Jul 1;29(13):1647-53 24847876 - Nature. 2014 Jun 26;510(7506):537-41 21441907 - Nature. 2011 May 5;473(7345):43-9 24565500 - Genome Biol. 2014;15(2):R38 24836530 - Bioinformatics. 2014 Sep 1;30(17):2414-22 24608764 - Bioinformatics. 2014 Jul 1;30(13):1814-22 26437030 - Nat Genet. 2015 Nov;47(11):1316-25 22028803 - PLoS One. 2011;6(10):e26002 24034465 - Genome Biol. 2013;14(9):R102 20657582 - Nat Biotechnol. 2010 Aug;28(8):817-25 25362363 - Nat Methods. 2015 Mar;12(3):230-2, 1 p following 232 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 20219944 - Genome Res. 2010 Apr;20(4):440-6 25129075 - Nat Neurosci. 2014 Sep;17(9):1156-63 24637118 - Genes Dev. 2014 Mar 15;28(6):652-64 15475419 - Biostatistics. 2004 Oct;5(4):557-72 24496475 - Nat Commun. 2014;5:2978 26181258 - JAMA Oncol. 2015 Jul;1(4):476-85 23034086 - Genome Biol. 2012;13(10):R87 24812430 - Diabetes. 2014 Sep;63(9):2962-76 23034175 - Genome Biol. 2012;13(10):R83 |
References_xml | – ident: 2021111811142121000_26.2.256.14 doi: 10.1093/biostatistics/kxh008 – ident: 2021111811142121000_26.2.256.22 doi: 10.1186/gb-2014-15-2-r38 – ident: 2021111811142121000_26.2.256.24 doi: 10.1001/jamaoncol.2015.1053 – ident: 2021111811142121000_26.2.256.23 doi: 10.1101/gr.103606.109 – ident: 2021111811142121000_26.2.256.3 doi: 10.1371/journal.pone.0026002 – volume: 12 start-page: 230 year: 2015 ident: 2021111811142121000_26.2.256.26 article-title: Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing publication-title: Nat Methods doi: 10.1038/nmeth.3152 – ident: 2021111811142121000_26.2.256.4 doi: 10.1186/gb-2013-14-9-r102 – ident: 2021111811142121000_26.2.256.6 doi: 10.1038/nbt.1662 – ident: 2021111811142121000_26.2.256.8 doi: 10.1093/mnras/225.1.155 – volume: 22 start-page: 2507 year: 2012 ident: 2021111811142121000_26.2.256.25 article-title: Model selection for high-dimensional multi-sequence change-point problems publication-title: Stat Sin – ident: 2021111811142121000_26.2.256.16 doi: 10.1093/bioinformatics/btq033 – ident: 2021111811142121000_26.2.256.5 doi: 10.1038/nn.3786 – ident: 2021111811142121000_26.2.256.20 doi: 10.1214/aos/1176349928 – ident: 2021111811142121000_26.2.256.13 doi: 10.2337/db13-1459 – ident: 2021111811142121000_26.2.256.10 doi: 10.1093/bioinformatics/btt263 – ident: 2021111811142121000_26.2.256.7 doi: 10.1038/nature09906 – ident: 2021111811142121000_26.2.256.15 doi: 10.1093/bioinformatics/btu339 – volume: 5 start-page: 2978 year: 2014 ident: 2021111811142121000_26.2.256.2 article-title: Differential methylation of the TRPA1 promoter in pain sensitivity publication-title: Nat Commun doi: 10.1038/ncomms3978 – ident: 2021111811142121000_26.2.256.12 doi: 10.1038/ng.3413 – ident: 2021111811142121000_26.2.256.1 doi: 10.1186/gb-2012-13-10-r87 – ident: 2021111811142121000_26.2.256.21 doi: 10.1093/bioinformatics/btu126 – ident: 2021111811142121000_26.2.256.9 doi: 10.1186/gb-2012-13-10-r83 – ident: 2021111811142121000_26.2.256.11 doi: 10.1038/nature13268 – ident: 2021111811142121000_26.2.256.17 – ident: 2021111811142121000_26.2.256.18 doi: 10.1093/nar/gkq1017 – ident: 2021111811142121000_26.2.256.19 doi: 10.1101/gad.230318.113 – reference: 21037257 - Nucleic Acids Res. 2011 Jan;39(Database issue):D871-5 – reference: 26181258 - JAMA Oncol. 2015 Jul;1(4):476-85 – reference: 24812430 - Diabetes. 2014 Sep;63(9):2962-76 – reference: 24836530 - Bioinformatics. 2014 Sep 1;30(17):2414-22 – reference: 24847876 - Nature. 2014 Jun 26;510(7506):537-41 – reference: 24637118 - Genes Dev. 2014 Mar 15;28(6):652-64 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 24496475 - Nat Commun. 2014;5:2978 – reference: 26437030 - Nat Genet. 2015 Nov;47(11):1316-25 – reference: 20657582 - Nat Biotechnol. 2010 Aug;28(8):817-25 – reference: 22028803 - PLoS One. 2011;6(10):e26002 – reference: 24608764 - Bioinformatics. 2014 Jul 1;30(13):1814-22 – reference: 23034175 - Genome Biol. 2012;13(10):R83 – reference: 24034465 - Genome Biol. 2013;14(9):R102 – reference: 23034086 - Genome Biol. 2012;13(10):R87 – reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 24565500 - Genome Biol. 2014;15(2):R38 – reference: 20219944 - Genome Res. 2010 Apr;20(4):440-6 – reference: 23658421 - Bioinformatics. 2013 Jul 1;29(13):1647-53 – reference: 25362363 - Nat Methods. 2015 Mar;12(3):230-2, 1 p following 232 – reference: 25129075 - Nat Neurosci. 2014 Sep;17(9):1156-63 |
SSID | ssj0003488 |
Score | 2.6151264 |
Snippet | The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 256 |
SubjectTerms | Algorithms Biochemistry, Molecular Biology Case-Control Studies Cerebellar Neoplasms - genetics CpG Islands DNA Methylation Genomics Humans Life Sciences Medulloblastoma - genetics Method Quantitative Methods Sequence Analysis, DNA Software |
Title | metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26631489 https://www.proquest.com/docview/1762343835 https://www.proquest.com/docview/1780522493 https://hal.science/hal-02517265 https://pubmed.ncbi.nlm.nih.gov/PMC4728377 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYEIIXBBuXcpNBaC-QUTvOxbx1FTBxFdIm7S2yU3udlCZTmyJ1v55zHCdpGUPAS5Q6TlL5fDk5jr9zPkJecjmxJmV5kA9TEwiZy0AxMwzSXMSaob57jLnDX77Gh8fi40l00i8XuOySWu_nF7_NK_kfq0Ib2BWzZP_Bst1FoQH2wb6wBQvD9q9sPDM1PNSlSy-3atGQxRdISXeEIBj-wpOaWx0UeJ6LYuV0o1eFwmgTlRmQLuPyTPTZYllYiEJfeYo1nu7T17oY9oMpqxmqrax9CEMODq65H4ynhVdJcXLwnT-fm_rCC7W4N12_mG_m5VQ1iUOOcgYOp1u--lbXVV8CoUWy_0jBOl4zvmO8YxUyiEQjy9J63iZX3iOMr7vRptj4ZffuZAVO5_voN6SAhmi9H4z2-czZGsKOECZ6sn_LddzD9tAWuc6TxC3tf_reV5gPwaN1tVjZm417YeVof_ZGGLM1RRLt5RnKr0Tbtcjl6A657accdNTg5y65ZsodsjsqVV3NVnSPOhKwW13ZITcO2r2b41YKcJdMW6C9pQgzCjCjHcyohxmtLN2EGe1hRj3MKMKMdjCjPcwowuweOX7_7mh8GHiJjiCP-LAOGNdcmFSLEOJqFRphZSS0EEYLlthQiYlGopXgSko75BOhmWWcxZbF0QQ8Q3ifbJdVaR4SqmRolQ2t4TaFSxoZR5GViVFap8yoeEBetyOe5b5-PcqoFJmbxw5ZdjrPGlvBz2hA9rru503hlqs6vgDzdX2w3Prh6HOGba6eH4-jH2xAnrfWzWDscVFNlaZaLjIG0USI9X6jP_VB4RAuZDggDxpEdPdrATUgyQZWNv7Q5pHybOrqwIsES1clj6685mNyq38Yn5Dter40TyGGrvUzB_qffArKrQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=metilene%3A+fast+and+sensitive+calling+of+differentially+methylated+regions+from+bisulfite+sequencing+data&rft.jtitle=Genome+research&rft.au=J%C3%BChling%2C+Frank&rft.au=Kretzmer%2C+Helene&rft.au=Bernhart%2C+Stephan+H&rft.au=Otto%2C+Christian&rft.date=2016-02-01&rft.eissn=1549-5469&rft.volume=26&rft.issue=2&rft.spage=256&rft_id=info:doi/10.1101%2Fgr.196394.115&rft_id=info%3Apmid%2F26631489&rft.externalDocID=26631489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |