Evolution of protein phosphorylation across 18 fungal species
Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 354; no. 6309; pp. 229 - 232 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
14.10.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a small fraction of phosphosites conserved over hundreds of millions of years. Relative to recently acquired phosphosites, ancient sites are enriched at protein interfaces and are more likely to be functionally important, as we show for sites on H2A1 and elF4E. We also observe a change in phosphorylation motif frequencies and kinase activities that coincides with the wholegenome duplication event. Our results provide an evolutionary history for phosphosites and suggest that rapid evolution of phosphorylation can contribute strongly to phenotypic diversity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aaf2144 |