41 Year Long-Term Durability of High Volume Blast-Furnace Slag Cement Concrete
In this study, we investigated the durability of high-volume ground granulated blast furnace slag (GGBS) blended cement concrete containing over 70% of GGBS for possible general structural applications. The concrete specimens used were exposed to natural outdoor conditions for 41 years on a building...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 19; no. 3; pp. 248 - 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
24.03.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1346-8014 1347-3913 |
DOI | 10.3151/jact.19.248 |
Cover
Loading…
Abstract | In this study, we investigated the durability of high-volume ground granulated blast furnace slag (GGBS) blended cement concrete containing over 70% of GGBS for possible general structural applications. The concrete specimens used were exposed to natural outdoor conditions for 41 years on a building rooftop. The following is found. The exposed top surface of concrete with 88.5% GGBS 4000 replacement, the exposed top surface and the corners of sulfated slag cement showed peel failure of the paste, but the specimens of concrete with 68.5% GGBS 4000 and GGBS 2000 replacement were in sound condition. The compressive strength of all mix proportions did not decrease significantly over 41 years. The carbonation depth of concrete specimens containing 70% GGBS was about 7 to 9 mm, and about 15 mm for specimens containing 90% GGBS. Despite the high volume of GGBS content (70%) in the concrete specimens, traces of Ca(OH)2, which is involved in the chemical reaction of GGBS, were found in parts that remained uncarbonated. Ca(OH)2 increases the alkalinity of the specimen and is thus considered to have a rebar corrosion-inhibiting effect. This paper is the English translation from the authors’ previous work [Hashimoto, M., et al., (2019). “A study on the long-term durability of high-volume bast-furnace slag cement concrete for 41 years.” Concrete Research and Technology, Vol.30, pp.77-84. (in Japanese)]. |
---|---|
AbstractList | In this study, we investigated the durability of high-volume ground granulated blast furnace slag (GGBS) blended cement concrete containing over 70% of GGBS for possible general structural applications. The concrete specimens used were exposed to natural outdoor conditions for 41 years on a building rooftop. The following is found. The exposed top surface of concrete with 88.5% GGBS 4000 replacement, the exposed top surface and the corners of sulfated slag cement showed peel failure of the paste, but the specimens of concrete with 68.5% GGBS 4000 and GGBS 2000 replacement were in sound condition. The compressive strength of all mix proportions did not decrease significantly over 41 years. The carbonation depth of concrete specimens containing 70% GGBS was about 7 to 9 mm, and about 15 mm for specimens containing 90% GGBS. Despite the high volume of GGBS content (70%) in the concrete specimens, traces of Ca(OH)2, which is involved in the chemical reaction of GGBS, were found in parts that remained uncarbonated. Ca(OH)2 increases the alkalinity of the specimen and is thus considered to have a rebar corrosion-inhibiting effect. This paper is the English translation from the authors’ previous work [Hashimoto, M., et al., (2019). “A study on the long-term durability of high-volume bast-furnace slag cement concrete for 41 years.” Concrete Research and Technology, Vol.30, pp.77-84. (in Japanese)]. |
Author | Hashimoto, Manabu Kurata, Kazuhide Ohtsuka, Yusuke Dan, Yasuhiro |
Author_xml | – sequence: 1 fullname: Dan, Yasuhiro organization: Nippon Steel Blast Furnace Slag Cement Co., Ltd, Fukuoka, Japan – sequence: 1 fullname: Kurata, Kazuhide organization: Kajima Corporation, Tokyo, Japan – sequence: 1 fullname: Ohtsuka, Yusuke organization: Nippon Steel Blast Furnace Slag Cement Co., Ltd, Fukuoka, Japan – sequence: 1 fullname: Hashimoto, Manabu organization: Kajima Corporation, Tokyo, Japan |
BookMark | eNp1kMFLwzAYxYMouE1P_gMBj9KZNGnTXgStzglDD07BU0izr11L28wkPey_t3NjB8HT9-D7vcfjjdFpZzpA6IqSKaMRva2V9lOaTkOenKARZVwELKXs9FfHQUIoP0dj52pCmGBCjNArp_gLlMUL05XBEmyLH3ur8qqp_BabAs-rco0_TdO3gB8a5Xww622nNOD3RpU4gxY6jzPTaQseLtBZoRoHl4c7QR-zp2U2DxZvzy_Z_SLQUUh8QAlVMU_zhPAozoVepSoBohmIIlKCaTKIIk2FWOUFEzTkICIoUogF1yIscjZB1_vcjTXfPTgva7Or1TgZRiQhhMQRH6ibPaWtcc5CITe2apXdSkrkbjC5G0zSVA6DDTT9Q-vKK1-ZzltVNf947vae2nlVwjFfWV_pBo4sOxiOD71WVkLHfgAXs4Z2 |
CitedBy_id | crossref_primary_10_1016_j_jece_2021_106685 crossref_primary_10_1080_10168664_2024_2391356 crossref_primary_10_1186_s40069_024_00687_8 |
Cites_doi | 10.2208/jscej.2005.802_49 10.1016/j.cemconres.2019.105796 10.1016/j.conbuildmat.2010.01.007 10.1016/j.matdes.2014.05.001 10.2208/jscej.1997.564_121 10.3151/jact.2.121 10.3151/jact.19.118 10.3151/coj.48.9_69 10.1016/S0958-9465(03)00149-5 10.3390/app10072504 10.14250/cement.65.20 10.1680/macr.14.00074 10.1016/j.conbuildmat.2018.05.033 10.14250/cement.68.233 10.12989/acc.2015.3.1.001 10.2355/tetsutohagane1955.65.13_1825 10.3390/ma11081474 10.1007/BF01912193 10.1016/S0008-8846(97)00102-6 10.3151/crt.30.77 10.3151/crt.28.47 10.1680/adcr.13.00029 10.1016/j.cemconres.2018.01.003 10.14250/cement.63.22 10.3151/jact.19.133 10.35940/ijitee.L3186.129219 10.1016/B978-0-08-102156-9.00012-2 10.2320/matertrans.M2010350 10.1016/j.conbuildmat.2016.10.075 10.1680/jmacr.15.00449 10.12989/acc.2016.4.2.107 10.1016/j.cemconcomp.2008.05.005 10.1016/S0958-9465(97)00011-5 10.1016/S0008-8846(00)00208-8 |
ContentType | Journal Article |
Copyright | 2021 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.19.248 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 258 |
ExternalDocumentID | 10_3151_jact_19_248 article_jact_19_3_19_248_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c520t-101a649b80456b7cd9a8e0c3e7f5a73c0e7ff9977dbf37124e75ef9e674c72fb3 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 10:11:05 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Tue Jul 01 01:31:05 EDT 2025 Wed Sep 03 06:30:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-101a649b80456b7cd9a8e0c3e7f5a73c0e7ff9977dbf37124e75ef9e674c72fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/19/3/19_248/_article/-char/en |
PQID | 2508000654 |
PQPubID | 1996343 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2508000654 crossref_primary_10_3151_jact_19_248 crossref_citationtrail_10_3151_jact_19_248 jstage_primary_article_jact_19_3_19_248_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021/03/24 |
PublicationDateYYYYMMDD | 2021-03-24 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021/03/24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2021 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 4) Bahador, S. D., Tze, Y. D. L. and Susanto, T., (2014). “Durability Properties and microstructure of ground granulated blast furnace slag cement concrete.” International Journal of Concrete Structures and Materials, 8, 157-164. 57) Yonezawa, T., Kamano, H., Kinoshita, M., Koibuchi, K. and Sakai, E., (2010). “Energy•CO2 minimum (ECM) cement•concrete system.” Concrete Journal, 48(9), 69-73. (in Japanese 35) Mohd, S., Jagdish, P. and Amjad, M., (2010). “Effect of GGBFS on time dependent compressive strength of concrete.” Construction and Building Materials, 24(8), 1469-1478. 49) Shariq, M., Prasad, J. and Masood, A., (2010). “Effect of GGBFS on time dependent compressive strength of concrete.” Construction and Building Materials, 24(8), 1469-1478. 13) Hashimoto, M., Kurata, K., Otsuka, Y. and Dan, Y., (2019). “A study on the long-term durability of high-volume blast-furnace slag cement concrete for 41years.” Concrete Research and Technology, 30, 77-84. (in Japanese 15) Ikeda, K. and Li, Z., (2015). “Development of paper sludge ash-based geopolymer and application to the solidification of nuclear waste water.” In:/Proc. 14th ICCC, Beijing, Session 6, Alternative binders, 36, 1-14. 50) Suriya, M., Anandkumar, M. and Ravichandran, P., (2020). “Study on behaviour of GGBS as partial replacement of cement in concrete with addition of polycarboxylate ether.” In: AIP Conference Proceedings, 2240, 060002. 52) Uomoto, T., Kobayashi, K. and Hoshino, T., (1980). “Deterioration of slag-gypsum cement concrete.” In: Proceedings of the Japan Concrete Institute, (2), 69-72. (in Japanese 54) Wang, K., Ren, L. and Yang, L., (2018). “Excellent carbonation behavior of rankinite prepared by calcining the C-S-H: Potential recycling of waste concrete powders for prefabricated building products.” Materials, 11(8). 56) Wu, B. and Ye, G., (2016). “Carbonation mechanism of different kind of C-S-H : rate and products.” Concrete with Supplementary Cementitious Materials, 455. 36) Nakahara, Y., Kotani, K., Narahara, K. and Hirata, S., (1976). “Study on slag-cement concrete (Part2).” Anuunal Report Kajima Technical Research Institute, 24, 19-24. (in Japanese 11) Fu, X., Hou, W., Yang, C., Li, D. and Wu, X., (2000). “Studies on Portland cement with large amount of slag.” Cement and Concrete Research, 30, 645-649. 12) Geroge, W., (2016). “The utilization of slag in civil infrastructure construction.” Woodhead Publishing Series in Civil and Structural Engineering, Number 68, Woodhead Publishing. 51) Taylor, H. F. W., (1964). “The Chemistry of Cements.” London, New york: Academic Press, 480. 41) Plusquellec, G., Geiker, M. R., Lindgård, J. and De Weerdt, K., (2018). “Determining the free alkali metal content in concrete – Case study of an ASR-affected dam.” Cement and Concrete Research, 105, 111-125. 26) Lee, B., Kim, G., Nam, J., Cho, B., Hama, Y. and Kim, R., (2016). “Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator.” Construction and Building Materials, 128, 341-348. 34) Miguel, A. S., Esteban, E., Cristina, A. and Daniel, D. B., (2018). “Effect of curing time on granulated blast-furnace slag cement mortars carbonation.” Cement and Concrete Composites, 90, 257-265. 28) Li, Z., Thomas, R. J. and Peethamparan, S., (2019). “Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests.” Cement and Concrete Research, 123, 105796. 5) Cabrera, J. A., Escalante, J. I. and Castro, P., (2016). “Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art.” Revista ALCONPAT, 6(1), 64-83. 20) Kim, H., Park, J., An, Y., Bae, J. and Han, C.,(2011). “Activation of ground granulated blast furnace slag cement by calcined alunite.” Materials Transactions, 52(2), 210-218. 38) Ngala, V. T. and Page, C. L., (1997). “Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes.” Cement and Concrete Research, 27(7), 995-1007. 6) Cao, H. T., Bucea, L., Ray, A. and Yozghatlian, S., (1997). “The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements.” Cement and Concrete Composites, 19(2), 161-171. 37) Nakamoto, J., Togawa, K. and Fujii, M., (1997). “A study on the strength development of high blast-furnace slag content concrete.” Doboku Gakkai Ronbunshu, 564, 121-131. (in Japanese 40) Pawel, L. and Ali, S., (2015). “Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment.” Procedia Engineering, 108, 47-54. 48) Shahrajabian, F. and Behfarnia, K., (2018). “The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete.” Construction and Building Materials, 176, 172-178. 32) Matsushita, F., Aono, Y. and Shibata, S., (2004). “Microstructure changes in autoclaved aerated concrete during carbonation under working and accelerated conditions.” Journal of Advanced Concrete Technology, 2(1), 121-129. 42) Prasanna, P. K., Srinivasu, K. and Murthy, A. R., (2019). “Compressive strength assessment using GGBS and randomly distributed fibers in.” International Journal of Innovative Technology and Exploring Engineering, 9(2), 1078-1086. 18) JSCE, (2017). “Standard specifications for concrete structures -2017: Materials and construction.” Japan Society of Civil Engineers. (in Japanese 23) Kangkang, T., Steve, M. and Greg, B., (2015). “Technical and economical feasibility of using GGBS in long-span concrete structures.” Advances in Concrete Construction, 3(1), 1-14. 17) Jan, P., Patrycja, M. and Beata, L. P., (2016).“Influence of hardening accelerating admixtures on properties of cement with ground granulated blast furnace slag.” Procedia Engineering, 161, 1070-1075. 53) Voinovitch, I. A. and Dron, R., (1976). “Action des differents activants sur l'hydratation du laitier granul.” Silic. Ind., 41(4-5), 209-212. 1) Anzai, T., Nishikawa, M., Ikeo, Y. and Sakai, E., (2009). “Hydration reaction analysis of cement having high blast-furnace slag.” Cement Science and Concrete Technology, 63, 22-27. (in Japanese 7) Chao, Q. L., Ravindra, K. D. and Gurmel, S. G., (2016). “Carbonation resistance of GGBS concrete.” Magazine of Concrete Research, 68(18), 936-969. 43) Richardson, D. N., (2006). “Strength and durability characteristics of a 70% ground granulated blast furnace slag (GGBFS) concrete mix.” Organizational Results Research Report, Missouri Department of Transportation. 44) Sagawa, T., Ueki Y., Matsushita, T., Kanda, T., Yonezawa, T. and Sakai, E.,(2017). “Investigation of the durability of 52 year aged RC structures constructed of portland blast-furnace slag cement type-C.” Concrete Research and Technology, 28. 47-59. (in Japanese 45) Sakai, E., Ansai, T., Atarashi, D. and Ikeo, Y., (2011). “Material design of high volume blast furnace slag cement in consideration of early hydration of cement.” Cement Science and Concrete Technology, 65(1), 20-26. (in Japanese 31) Manns, W. and Wesche, K. (1968). “Variation in strength of mortars made of different cements due to carbonation.” In: Proceedings of 5th International Symposium on Cement Chemistry, Tokyo: The Cement Association of Japan, III, 385-393. 47) Sean, M. and Yixin, S., (2010). “Carbonation curing of slag-cement concrete for binding CO2 and improving performance.” Journal of Materials in Civil Engineering, 22(4). 19) JSCE, (2018). “Recommendations for design and construction of concrete using groun granulated blast-furnace slag (Concrete Library 151).” Japan Society of Civil Engineers, 140-141. (in Japanese 22) Kondo, R., Chong, T., Goto, S. and Daimon, M., (1979). “The latent hydraulic property of granulated blast furnace slag by various activators.” Tetsu-to-Hagane (Iron and Steel), 65(13), 1825-1829. (in Japanese 24) Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T. C., Ravi Kumar, B., Das, S. K. and Mehrotra, S. P., (2008). “Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement.” Cement & Concrete Composites, 30(8), 679-685. 30) Liu, S., Wang, Z. and Li, X., (2014) “Long-term properties of concrete containing ground granulated blast furnace slag and steel slag.” Magazine of Concrete Research, 66(21), 1095-1103. 33) Mahya, A., Zhong, T., Bijan, S., Georgius, A. and Richard, S., (2019). “Mix composition and characterisation of one-part geopolymers with different activators.” Construction and Building Materials, 225, 526-537. 25) Kwak, D., Kokubu, K. and Uji, K., (2005). “A study on carbonation rate of mortar using ground granulated blast-furnace slag.” Doboku Gakkai Ronbunshu, 802, 49-59. (in Japanese 8) Chuanlin, H., Zongjin, L., Yueyi, G., Yunge, H. and Yamei, Z., (2014). “Investigation on microstructures of cementitious composites incorporating slag.” Advances in Cement Research, 26(4), 222-232. 9) Davidovits, J., (1991). “Geopolymers.” Journal of thermal analysis, 37, 1633-1656. 39) Nito, N., Hanehara, S. and Koibuchi, K., (2008). “Influence of hydration heat of blast-furnace slag cement by surface area of blast-furnace slag and anhydride content.” Cement Science and Concrete Technology, 62, 101-107. (in Japanese 2) Ashish, D. K., Singh, B. and Verma, S. K., (2016). “The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete.” Advances in concrete construction, 4(2), 107-121. 27) Li, D., Wu, X., Shen, J. and Wang, Y., (2000). “The influence of compound admixtures on the properties of high-content slag cement.” Cement and Concrete Research, 30, 45-50. 3) Ayano, T. and Fujii, T., (2021). “Improvement of concrete properties using granulated blast furnace slag sand.” Journal of Advanced Concrete Technology, 19(2), 118-132. 46) Sanjay, S., Chetankumar, M. and Uppara, B., (2021). “An experimental study on various industrial wastes in concrete for sustainable construction.” Journal of Advanced Concrete 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 24) Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T. C., Ravi Kumar, B., Das, S. K. and Mehrotra, S. P., (2008). “Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement.” Cement & Concrete Composites, 30(8), 679-685. – reference: 15) Ikeda, K. and Li, Z., (2015). “Development of paper sludge ash-based geopolymer and application to the solidification of nuclear waste water.” In:/Proc. 14th ICCC, Beijing, Session 6, Alternative binders, 36, 1-14. – reference: 7) Chao, Q. L., Ravindra, K. D. and Gurmel, S. G., (2016). “Carbonation resistance of GGBS concrete.” Magazine of Concrete Research, 68(18), 936-969. – reference: 17) Jan, P., Patrycja, M. and Beata, L. P., (2016).“Influence of hardening accelerating admixtures on properties of cement with ground granulated blast furnace slag.” Procedia Engineering, 161, 1070-1075. – reference: 37) Nakamoto, J., Togawa, K. and Fujii, M., (1997). “A study on the strength development of high blast-furnace slag content concrete.” Doboku Gakkai Ronbunshu, 564, 121-131. (in Japanese) – reference: 34) Miguel, A. S., Esteban, E., Cristina, A. and Daniel, D. B., (2018). “Effect of curing time on granulated blast-furnace slag cement mortars carbonation.” Cement and Concrete Composites, 90, 257-265. – reference: 38) Ngala, V. T. and Page, C. L., (1997). “Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes.” Cement and Concrete Research, 27(7), 995-1007. – reference: 45) Sakai, E., Ansai, T., Atarashi, D. and Ikeo, Y., (2011). “Material design of high volume blast furnace slag cement in consideration of early hydration of cement.” Cement Science and Concrete Technology, 65(1), 20-26. (in Japanese) – reference: 25) Kwak, D., Kokubu, K. and Uji, K., (2005). “A study on carbonation rate of mortar using ground granulated blast-furnace slag.” Doboku Gakkai Ronbunshu, 802, 49-59. (in Japanese) – reference: 30) Liu, S., Wang, Z. and Li, X., (2014) “Long-term properties of concrete containing ground granulated blast furnace slag and steel slag.” Magazine of Concrete Research, 66(21), 1095-1103. – reference: 53) Voinovitch, I. A. and Dron, R., (1976). “Action des differents activants sur l'hydratation du laitier granul.” Silic. Ind., 41(4-5), 209-212. – reference: 47) Sean, M. and Yixin, S., (2010). “Carbonation curing of slag-cement concrete for binding CO2 and improving performance.” Journal of Materials in Civil Engineering, 22(4). – reference: 43) Richardson, D. N., (2006). “Strength and durability characteristics of a 70% ground granulated blast furnace slag (GGBFS) concrete mix.” Organizational Results Research Report, Missouri Department of Transportation. – reference: 3) Ayano, T. and Fujii, T., (2021). “Improvement of concrete properties using granulated blast furnace slag sand.” Journal of Advanced Concrete Technology, 19(2), 118-132. – reference: 28) Li, Z., Thomas, R. J. and Peethamparan, S., (2019). “Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests.” Cement and Concrete Research, 123, 105796. – reference: 5) Cabrera, J. A., Escalante, J. I. and Castro, P., (2016). “Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art.” Revista ALCONPAT, 6(1), 64-83. – reference: 42) Prasanna, P. K., Srinivasu, K. and Murthy, A. R., (2019). “Compressive strength assessment using GGBS and randomly distributed fibers in.” International Journal of Innovative Technology and Exploring Engineering, 9(2), 1078-1086. – reference: 10) Deb, P. S., Nath, P. and Sarker, P. K., (2014). “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature.” Materials & Design, 62, 32-39. – reference: 32) Matsushita, F., Aono, Y. and Shibata, S., (2004). “Microstructure changes in autoclaved aerated concrete during carbonation under working and accelerated conditions.” Journal of Advanced Concrete Technology, 2(1), 121-129. – reference: 26) Lee, B., Kim, G., Nam, J., Cho, B., Hama, Y. and Kim, R., (2016). “Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator.” Construction and Building Materials, 128, 341-348. – reference: 56) Wu, B. and Ye, G., (2016). “Carbonation mechanism of different kind of C-S-H : rate and products.” Concrete with Supplementary Cementitious Materials, 455. – reference: 54) Wang, K., Ren, L. and Yang, L., (2018). “Excellent carbonation behavior of rankinite prepared by calcining the C-S-H: Potential recycling of waste concrete powders for prefabricated building products.” Materials, 11(8). – reference: 41) Plusquellec, G., Geiker, M. R., Lindgård, J. and De Weerdt, K., (2018). “Determining the free alkali metal content in concrete – Case study of an ASR-affected dam.” Cement and Concrete Research, 105, 111-125. – reference: 39) Nito, N., Hanehara, S. and Koibuchi, K., (2008). “Influence of hydration heat of blast-furnace slag cement by surface area of blast-furnace slag and anhydride content.” Cement Science and Concrete Technology, 62, 101-107. (in Japanese) – reference: 48) Shahrajabian, F. and Behfarnia, K., (2018). “The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete.” Construction and Building Materials, 176, 172-178. – reference: 6) Cao, H. T., Bucea, L., Ray, A. and Yozghatlian, S., (1997). “The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements.” Cement and Concrete Composites, 19(2), 161-171. – reference: 18) JSCE, (2017). “Standard specifications for concrete structures -2017: Materials and construction.” Japan Society of Civil Engineers. (in Japanese) – reference: 31) Manns, W. and Wesche, K. (1968). “Variation in strength of mortars made of different cements due to carbonation.” In: Proceedings of 5th International Symposium on Cement Chemistry, Tokyo: The Cement Association of Japan, III, 385-393. – reference: 21) Koga, H., Shinmi, T., Nakamura, A. and Kato, H., (2014). “Influence of specific surface area and calcium sulfate of blast-furnace slag on addition effect of calcium hydroxide powder to the cement containing blast furnace slag.” Cement Science and Concrete Technology, 68(1), 233-238. (in Japanese) – reference: 33) Mahya, A., Zhong, T., Bijan, S., Georgius, A. and Richard, S., (2019). “Mix composition and characterisation of one-part geopolymers with different activators.” Construction and Building Materials, 225, 526-537. – reference: 16) Jaehyun, L. and Taegyu, L., (2020). “Durability and engineering performance evaluation of CaO content and ratio of binary blended concrete containing ground granulated blast-furnace slag.” Applied Sciences, 10(7), 2504. – reference: 55) Wu, B., Ye, G. and Zhang, Y., (2015).“Development of porosity of cement paste blended with supplementary cementitious materials after carbonation.” In: Proc. of the 14th International Congress of the Chemistry of Cement (ICCC 2015), Beijin 13 Oct. 2015. 1-18. – reference: 22) Kondo, R., Chong, T., Goto, S. and Daimon, M., (1979). “The latent hydraulic property of granulated blast furnace slag by various activators.” Tetsu-to-Hagane (Iron and Steel), 65(13), 1825-1829. (in Japanese) – reference: 4) Bahador, S. D., Tze, Y. D. L. and Susanto, T., (2014). “Durability Properties and microstructure of ground granulated blast furnace slag cement concrete.” International Journal of Concrete Structures and Materials, 8, 157-164. – reference: 19) JSCE, (2018). “Recommendations for design and construction of concrete using groun granulated blast-furnace slag (Concrete Library 151).” Japan Society of Civil Engineers, 140-141. (in Japanese) – reference: 44) Sagawa, T., Ueki Y., Matsushita, T., Kanda, T., Yonezawa, T. and Sakai, E.,(2017). “Investigation of the durability of 52 year aged RC structures constructed of portland blast-furnace slag cement type-C.” Concrete Research and Technology, 28. 47-59. (in Japanese) – reference: 8) Chuanlin, H., Zongjin, L., Yueyi, G., Yunge, H. and Yamei, Z., (2014). “Investigation on microstructures of cementitious composites incorporating slag.” Advances in Cement Research, 26(4), 222-232. – reference: 14) Higgins, D. D. and Crammond, N. J., (2003). “Resistance of concrete containing ggbs to the thaumasite form of sulfate attack.” Cement and Concrete Composites, 25(8), 921-929. – reference: 51) Taylor, H. F. W., (1964). “The Chemistry of Cements.” London, New york: Academic Press, 480. – reference: 11) Fu, X., Hou, W., Yang, C., Li, D. and Wu, X., (2000). “Studies on Portland cement with large amount of slag.” Cement and Concrete Research, 30, 645-649. – reference: 20) Kim, H., Park, J., An, Y., Bae, J. and Han, C.,(2011). “Activation of ground granulated blast furnace slag cement by calcined alunite.” Materials Transactions, 52(2), 210-218. – reference: 2) Ashish, D. K., Singh, B. and Verma, S. K., (2016). “The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete.” Advances in concrete construction, 4(2), 107-121. – reference: 57) Yonezawa, T., Kamano, H., Kinoshita, M., Koibuchi, K. and Sakai, E., (2010). “Energy•CO2 minimum (ECM) cement•concrete system.” Concrete Journal, 48(9), 69-73. (in Japanese) – reference: 1) Anzai, T., Nishikawa, M., Ikeo, Y. and Sakai, E., (2009). “Hydration reaction analysis of cement having high blast-furnace slag.” Cement Science and Concrete Technology, 63, 22-27. (in Japanese) – reference: 40) Pawel, L. and Ali, S., (2015). “Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment.” Procedia Engineering, 108, 47-54. – reference: 13) Hashimoto, M., Kurata, K., Otsuka, Y. and Dan, Y., (2019). “A study on the long-term durability of high-volume blast-furnace slag cement concrete for 41years.” Concrete Research and Technology, 30, 77-84. (in Japanese) – reference: 36) Nakahara, Y., Kotani, K., Narahara, K. and Hirata, S., (1976). “Study on slag-cement concrete (Part2).” Anuunal Report Kajima Technical Research Institute, 24, 19-24. (in Japanese) – reference: 35) Mohd, S., Jagdish, P. and Amjad, M., (2010). “Effect of GGBFS on time dependent compressive strength of concrete.” Construction and Building Materials, 24(8), 1469-1478. – reference: 52) Uomoto, T., Kobayashi, K. and Hoshino, T., (1980). “Deterioration of slag-gypsum cement concrete.” In: Proceedings of the Japan Concrete Institute, (2), 69-72. (in Japanese) – reference: 29) Litvan, G. G. and Meyer, A., (1986). “Carbonation of granulated blast furnace slag cement concrete during twenty years of field exposure.”, In: Proceeding of the 2nd International Conference of Fly, Ash, Silica Fune, Slag, and Natural Pozzolans in Concrete, Madrid Spain 1986. ACI SP 91-71, 91(2), 1445-1462. – reference: 58) Yuksel, I., (2018). “12 - Blast-furnace slag.” Waste and Supplementary Cementitious Materials in Concrete, 361-415. – reference: 12) Geroge, W., (2016). “The utilization of slag in civil infrastructure construction.” Woodhead Publishing Series in Civil and Structural Engineering, Number 68, Woodhead Publishing. – reference: 23) Kangkang, T., Steve, M. and Greg, B., (2015). “Technical and economical feasibility of using GGBS in long-span concrete structures.” Advances in Concrete Construction, 3(1), 1-14. – reference: 46) Sanjay, S., Chetankumar, M. and Uppara, B., (2021). “An experimental study on various industrial wastes in concrete for sustainable construction.” Journal of Advanced Concrete Technology, 19(2), 133-148. – reference: 50) Suriya, M., Anandkumar, M. and Ravichandran, P., (2020). “Study on behaviour of GGBS as partial replacement of cement in concrete with addition of polycarboxylate ether.” In: AIP Conference Proceedings, 2240, 060002. – reference: 9) Davidovits, J., (1991). “Geopolymers.” Journal of thermal analysis, 37, 1633-1656. – reference: 27) Li, D., Wu, X., Shen, J. and Wang, Y., (2000). “The influence of compound admixtures on the properties of high-content slag cement.” Cement and Concrete Research, 30, 45-50. – reference: 49) Shariq, M., Prasad, J. and Masood, A., (2010). “Effect of GGBFS on time dependent compressive strength of concrete.” Construction and Building Materials, 24(8), 1469-1478. – ident: 25 doi: 10.2208/jscej.2005.802_49 – ident: 39 – ident: 12 – ident: 51 – ident: 31 – ident: 28 doi: 10.1016/j.cemconres.2019.105796 – ident: 55 – ident: 49 doi: 10.1016/j.conbuildmat.2010.01.007 – ident: 10 doi: 10.1016/j.matdes.2014.05.001 – ident: 37 doi: 10.2208/jscej.1997.564_121 – ident: 17 – ident: 32 doi: 10.3151/jact.2.121 – ident: 3 doi: 10.3151/jact.19.118 – ident: 5 – ident: 57 doi: 10.3151/coj.48.9_69 – ident: 14 doi: 10.1016/S0958-9465(03)00149-5 – ident: 34 – ident: 50 – ident: 16 doi: 10.3390/app10072504 – ident: 45 doi: 10.14250/cement.65.20 – ident: 30 doi: 10.1680/macr.14.00074 – ident: 48 doi: 10.1016/j.conbuildmat.2018.05.033 – ident: 21 doi: 10.14250/cement.68.233 – ident: 23 doi: 10.12989/acc.2015.3.1.001 – ident: 27 – ident: 40 – ident: 18 – ident: 43 – ident: 4 – ident: 22 doi: 10.2355/tetsutohagane1955.65.13_1825 – ident: 35 doi: 10.1016/j.conbuildmat.2010.01.007 – ident: 54 doi: 10.3390/ma11081474 – ident: 9 doi: 10.1007/BF01912193 – ident: 33 – ident: 38 doi: 10.1016/S0008-8846(97)00102-6 – ident: 13 doi: 10.3151/crt.30.77 – ident: 53 – ident: 44 doi: 10.3151/crt.28.47 – ident: 8 doi: 10.1680/adcr.13.00029 – ident: 41 doi: 10.1016/j.cemconres.2018.01.003 – ident: 1 doi: 10.14250/cement.63.22 – ident: 46 doi: 10.3151/jact.19.133 – ident: 47 – ident: 42 doi: 10.35940/ijitee.L3186.129219 – ident: 58 doi: 10.1016/B978-0-08-102156-9.00012-2 – ident: 20 doi: 10.2320/matertrans.M2010350 – ident: 36 – ident: 26 doi: 10.1016/j.conbuildmat.2016.10.075 – ident: 7 doi: 10.1680/jmacr.15.00449 – ident: 19 – ident: 52 – ident: 2 doi: 10.12989/acc.2016.4.2.107 – ident: 15 – ident: 29 – ident: 56 – ident: 24 doi: 10.1016/j.cemconcomp.2008.05.005 – ident: 6 doi: 10.1016/S0958-9465(97)00011-5 – ident: 11 doi: 10.1016/S0008-8846(00)00208-8 |
SSID | ssj0037377 |
Score | 2.2374878 |
Snippet | In this study, we investigated the durability of high-volume ground granulated blast furnace slag (GGBS) blended cement concrete containing over 70% of GGBS... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 248 |
SubjectTerms | Alkalinity Blast furnace chemistry Blast furnace components Blast furnace practice Carbonation Cement Chemical reactions Compressive strength Concrete Corrosion effects Durability GGBS Granulation Rebar Reinforcing steels Roofs Slag cements Slaked lime |
Title | 41 Year Long-Term Durability of High Volume Blast-Furnace Slag Cement Concrete |
URI | https://www.jstage.jst.go.jp/article/jact/19/3/19_248/_article/-char/en https://www.proquest.com/docview/2508000654 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2021/03/24, Vol.19(3), pp.248-258 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4ACHiU-tbCAfdiJKaWKnjo-wMU0DhpA6tJ6i2HE6YEpQm1z2f_D_8l6cOCn0MHaxLNu1K79f3nu23wchh5nRUSC08rVSuc9FzHxl0NA1h8YYRHps8L7j8_ns9IKfXUaXo9HvgdVSXamJvtnqV3IXqkIb0BW9ZP-Dsm5SaIA60BdKoDCUt6IxD7wFBuL5VBZLfw481juuVzbwdvNwjkYc3reG_3jvQU2u_BOcFYNvXqdL76i5GkSnP1Adq02boIGe2lkJdOO2XMcf22vURbqur76vysH7UFq1Pmc30JM5FH25qtb1z6ZrUUOthxcmdwL4lNaRqEhVPbyYCBvLrLC_mDwDYV_0f83ZPljBY7kt48DhpHVGdexYDmDHhrzVhuRsxXRoI77_LQEYaDBN5gFdTQI5cb_ZCKndEizBUUkgE4YFDE26DvR4A4DdI_dDOH1gRpCPX93jFBNMCOvqiau9Hay1odw8-AH6_fJfId9oLvPHZLclJX1nV31CRqZ4Sh4NAlE-I-c8oIgk6pBEeyTRMqeIJGqRRDeQRBFJ1CKJdmR4Ti5OPsyPTv0204avo3BagSwO0hmXKkYFXwmdyTQ2U82MyKNUMD2FSi7hqJCpnAlQCY2ITC7NTHAtwlyxF2SnKAuzR6gU-ZQH6RRz7XATyziTmQKQ8jQLcqayMXnTbVGi2zD0mA3lOoHjKO6nowrs55gcusG_bPSV7cOE3Ws36LYUHpODjjhJ-2GvEzgVxI1uzl_eeeJ98rD_Jg7ITrWqzStQXyv1ugHTHziXpys |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=41+Year+Long-Term+Durability+of+High+Volume+Blast-Furnace+Slag+Cement+Concrete&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Dan%2C+Yasuhiro&rft.au=Kurata%2C+Kazuhide&rft.au=Ohtsuka%2C+Yusuke&rft.au=Hashimoto%2C+Manabu&rft.date=2021-03-24&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=19&rft.issue=3&rft.spage=248&rft.epage=258&rft_id=info:doi/10.3151%2Fjact.19.248&rft.externalDocID=article_jact_19_3_19_248_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |