Towards an Online Seizure Advisory System—An Adaptive Seizure Prediction Framework Using Active Learning Heuristics

In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the br...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 6; p. 1698
Main Authors Karuppiah Ramachandran, Vignesh Raja, Alblas, Huibert J., Le, Duc V., Meratnia, Nirvana
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.05.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
AbstractList In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only20%of the labelled data and also improve the prediction accuracy even under the noisy condition.
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
Author Meratnia, Nirvana
Karuppiah Ramachandran, Vignesh Raja
Le, Duc V.
Alblas, Huibert J.
AuthorAffiliation Pervasive Systems Research Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; h.j.alblas@student.utwente.nl (H.J.A.); v.d.le@utwente.nl (D.V.L.); n.meratnia@utwente.nl (N.M.)
AuthorAffiliation_xml – name: Pervasive Systems Research Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; h.j.alblas@student.utwente.nl (H.J.A.); v.d.le@utwente.nl (D.V.L.); n.meratnia@utwente.nl (N.M.)
Author_xml – sequence: 1
  givenname: Vignesh Raja
  surname: Karuppiah Ramachandran
  fullname: Karuppiah Ramachandran, Vignesh Raja
– sequence: 2
  givenname: Huibert J.
  surname: Alblas
  fullname: Alblas, Huibert J.
– sequence: 3
  givenname: Duc V.
  orcidid: 0000-0001-7851-0869
  surname: Le
  fullname: Le, Duc V.
– sequence: 4
  givenname: Nirvana
  surname: Meratnia
  fullname: Meratnia, Nirvana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29795031$$D View this record in MEDLINE/PubMed
BookMark eNplkstu1DAUhiNURC-w4AVQJDbtYqjviTdIo4rSSiMVqe3a8uVk8JDYg51MNaz6EDwhT0Km05a2rGwff_70y-fsFzshBiiK9xh9olSi44xrJLCQ9atiDzPCJjUhaOfJfrfYz3mBEKGU1m-KXSIryRHFe8VwFW90crnUobwIrQ9QXoL_NSQop27lc0zr8nKde-j-3P6ehrGol71f_aO-JXDe9j6G8jTpDm5i-lFeZx_m5dTekTPQKWzOZzAkn3tv89vidaPbDO_u14Pi-vTL1cnZZHbx9fxkOptYTlA9McY41wBwK7HAlDfcCNbwCiynlOhKMyCcEmqQkZVpaiOQ44YjR5F00hF6UJxvvS7qhVom3-m0VlF7dVeIaa50GgO1oCSrXCMx15wL5qyRwghHOCesBkGZG12ft67lYDpwFkKfdPtM-vwm-O9qHldKIEIIpqPg8F6Q4s8Bcq86ny20rQ4Qh6wIYpxUEpN6RD--QBdxSGH8KkUwqitcM8lG6sPTRI9RHro7AsdbwKaYc4JGWd_rTa_GgL5VGKnN_KjH-RlfHL148SD9n_0L4pHGdQ
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108966
crossref_primary_10_1002_mds3_10087
crossref_primary_10_1016_j_expneurol_2022_113993
crossref_primary_10_1098_rsos_220374
crossref_primary_10_1093_pnasnexus_pgae488
crossref_primary_10_3389_fneur_2021_675728
crossref_primary_10_3390_math8040481
crossref_primary_10_2174_1874120702115010001
crossref_primary_10_2174_18741207_v16_e2208300
Cites_doi 10.1016/j.yebeh.2011.09.001
10.1109/TNSRE.2013.2282153
10.1142/S0129065716500374
10.3115/1613715.1613855
10.1097/00007611-195407000-00024
10.1088/1741-2560/8/3/036015
10.1016/j.clinph.2017.04.026
10.3115/1613984.1614012
10.1016/j.yebeh.2014.06.023
10.1136/jnnp.1.4.359
10.1109/TBME.2016.2586475
10.1007/s13534-017-0008-5
10.1016/S1525-5050(03)00105-7
10.1007/s10994-015-5519-7
10.1007/978-3-319-39546-3_8
10.1016/j.clinph.2014.05.022
10.1016/S1474-4422(13)70075-9
10.1109/EMBC.2015.7320031
10.3389/frym.2014.00012
10.1016/j.yebeh.2015.03.010
10.1093/brain/aww045
10.1016/j.tcs.2010.12.054
10.1097/WCO.0000000000000429
10.1097/00019052-200204000-00008
10.1016/j.clinph.2013.04.006
10.1016/j.eplepsyres.2010.07.014
10.1111/epi.13860
10.1111/epi.13670
10.1016/j.yebeh.2012.07.007
10.1016/j.clinph.2012.01.014
10.1109/TNSRE.2015.2458982
10.1007/BF00335153
10.1016/j.yebeh.2004.05.005
10.1016/j.clinph.2009.05.019
10.1016/j.jneumeth.2015.06.010
10.1111/j.0013-9580.2005.66104.x
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18061698
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_947df915a5564dcb96b6d255248e634d
PMC6022213
29795031
10_3390_s18061698
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5208-bbbddfee5c916135f5b64f57ec5332a7a4e25323b0b97bf8b60d5b50d309d9d23
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:06:09 EDT 2025
Thu Aug 21 13:30:02 EDT 2025
Fri Jul 11 06:58:39 EDT 2025
Fri Jul 25 20:42:31 EDT 2025
Wed Feb 19 02:42:53 EST 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 01:36:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords epilepsy
health-care
seizure prediction
signal processing
EEG
implantable body sensor networks
machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5208-bbbddfee5c916135f5b64f57ec5332a7a4e25323b0b97bf8b60d5b50d309d9d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7851-0869
OpenAccessLink https://www.proquest.com/docview/2108718494?pq-origsite=%requestingapplication%
PMID 29795031
PQID 2108718494
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_947df915a5564dcb96b6d255248e634d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022213
proquest_miscellaneous_2045279128
proquest_journals_2108718494
pubmed_primary_29795031
crossref_citationtrail_10_3390_s18061698
crossref_primary_10_3390_s18061698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180524
PublicationDateYYYYMMDD 2018-05-24
PublicationDate_xml – month: 5
  year: 2018
  text: 20180524
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Freestone (ref_18) 2017; 30
Cook (ref_19) 2013; 12
ref_10
ref_51
Bandarabadi (ref_53) 2015; 126
Fisher (ref_2) 2005; 46
Shoeb (ref_15) 2004; 5
ref_24
ref_21
ref_20
Parvez (ref_27) 2016; 24
Kuhlmann (ref_57) 2010; 91
ref_29
ref_26
Gadhoumi (ref_40) 2013; 124
Ramgopal (ref_14) 2014; 37
ref_35
ref_34
Williamson (ref_55) 2012; 25
Walter (ref_9) 1938; 1
ref_33
ref_32
Litt (ref_22) 2002; 15
ref_31
ref_30
Carney (ref_44) 2011; 22
Villar (ref_16) 2016; 26
Shiao (ref_25) 2017; 64
Aarabi (ref_56) 2012; 123
Yoo (ref_11) 2017; 7
ref_38
Li (ref_54) 2013; 21
Smith (ref_42) 2016; 102
Winterhalder (ref_52) 2003; 4
Brinkmann (ref_37) 2016; 139
Moridani (ref_36) 2017; 3
Dasgupta (ref_45) 2011; 412
Viglione (ref_12) 1975; 39
Bandarabadi (ref_23) 2015; 46
Aarabi (ref_28) 2017; 128
ref_47
ref_46
Fisher (ref_3) 2017; 58
Rogowski (ref_13) 1981; 42
ref_41
ref_1
Cukiert (ref_7) 2017; 58
ref_49
ref_48
Andrzejak (ref_17) 2009; 120
Gadhoumi (ref_39) 2016; 260
ref_8
ref_5
Wulsin (ref_43) 2011; 8
ref_4
ref_6
References_xml – volume: 22
  start-page: S94
  year: 2011
  ident: ref_44
  article-title: Seizure prediction: Methods
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2011.09.001
– volume: 21
  start-page: 880
  year: 2013
  ident: ref_54
  article-title: Seizure prediction using spike rate of intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng.
  doi: 10.1109/TNSRE.2013.2282153
– volume: 26
  start-page: 1650037
  year: 2016
  ident: ref_16
  article-title: Generalized models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500374
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_46
  doi: 10.3115/1613715.1613855
– ident: ref_26
– ident: ref_51
– ident: ref_10
  doi: 10.1097/00007611-195407000-00024
– volume: 8
  start-page: 036015
  year: 2011
  ident: ref_43
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 128
  start-page: 1299
  year: 2017
  ident: ref_28
  article-title: Seizure prediction in patients with focal hippocampal epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.04.026
– ident: ref_1
– ident: ref_35
– ident: ref_4
– ident: ref_31
– ident: ref_48
  doi: 10.3115/1613984.1614012
– volume: 37
  start-page: 291
  year: 2014
  ident: ref_14
  article-title: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2014.06.023
– volume: 1
  start-page: 359
  year: 1938
  ident: ref_9
  article-title: Critical review: The technique and application of electro-encephalography
  publication-title: J. Neurol. Psychiatry
  doi: 10.1136/jnnp.1.4.359
– volume: 64
  start-page: 1011
  year: 2017
  ident: ref_25
  article-title: SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2586475
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_11
  article-title: On predicting epileptic seizures from intracranial electroencephalography
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-017-0008-5
– ident: ref_41
– volume: 39
  start-page: 435
  year: 1975
  ident: ref_12
  article-title: Proceedings: Epileptic seizure prediction
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 4
  start-page: 318
  year: 2003
  ident: ref_52
  article-title: The seizure prediction characteristic: A general framework to assess and compare seizure prediction methods
  publication-title: Epilepsy Behav.
  doi: 10.1016/S1525-5050(03)00105-7
– volume: 102
  start-page: 309
  year: 2016
  ident: ref_42
  article-title: Multi-task seizure detection: Addressing intra-patient variation in seizure morphologies
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5519-7
– ident: ref_38
– ident: ref_8
  doi: 10.1007/978-3-319-39546-3_8
– volume: 126
  start-page: 237
  year: 2015
  ident: ref_53
  article-title: Epileptic seizure prediction using relative spectral power features
  publication-title: Clin. Neurophys.
  doi: 10.1016/j.clinph.2014.05.022
– volume: 12
  start-page: 563
  year: 2013
  ident: ref_19
  article-title: Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70075-9
– ident: ref_30
– ident: ref_50
  doi: 10.1109/EMBC.2015.7320031
– ident: ref_20
  doi: 10.3389/frym.2014.00012
– volume: 46
  start-page: 158
  year: 2015
  ident: ref_23
  article-title: On the proper selection of preictal period for seizure prediction
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2015.03.010
– volume: 139
  start-page: 1713
  year: 2016
  ident: ref_37
  article-title: Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
  publication-title: Brain
  doi: 10.1093/brain/aww045
– ident: ref_24
– ident: ref_34
– ident: ref_47
– volume: 412
  start-page: 1767
  year: 2011
  ident: ref_45
  article-title: Two faces of active learning
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.12.054
– volume: 30
  start-page: 167
  year: 2017
  ident: ref_18
  article-title: A forward-looking review of seizure prediction
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000429
– volume: 15
  start-page: 173
  year: 2002
  ident: ref_22
  article-title: Seizure prediction and the preseizure period
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/00019052-200204000-00008
– ident: ref_21
– volume: 124
  start-page: 1745
  year: 2013
  ident: ref_40
  article-title: Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.04.006
– volume: 91
  start-page: 214
  year: 2010
  ident: ref_57
  article-title: Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2010.07.014
– volume: 58
  start-page: 1728
  year: 2017
  ident: ref_7
  article-title: Seizure outcome after hippocampal deep brain stimulation in patients with refractory temporal lobe epilepsy: A prospective, controlled, randomized, double-blind study
  publication-title: Epilepsia
  doi: 10.1111/epi.13860
– ident: ref_6
– volume: 58
  start-page: 522
  year: 2017
  ident: ref_3
  article-title: Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology
  publication-title: Epilepsia
  doi: 10.1111/epi.13670
– volume: 25
  start-page: 230
  year: 2012
  ident: ref_55
  article-title: Seizure prediction using EEG spatiotemporal correlation structure
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2012.07.007
– ident: ref_29
– ident: ref_33
– volume: 123
  start-page: 1111
  year: 2012
  ident: ref_56
  article-title: A rule-based seizure prediction method for focal neocortical epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.01.014
– volume: 24
  start-page: 158
  year: 2016
  ident: ref_27
  article-title: Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation
  publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng.
  doi: 10.1109/TNSRE.2015.2458982
– volume: 42
  start-page: 9
  year: 1981
  ident: ref_13
  article-title: On the prediction of epileptic seizures
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00335153
– volume: 5
  start-page: 483
  year: 2004
  ident: ref_15
  article-title: Patient-specific seizure onset detection
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2004.05.005
– volume: 120
  start-page: 1465
  year: 2009
  ident: ref_17
  article-title: Seizure prediction: Any better than chance?
  publication-title: Clin. Neurophys.
  doi: 10.1016/j.clinph.2009.05.019
– volume: 260
  start-page: 270
  year: 2016
  ident: ref_39
  article-title: Seizure prediction for therapeutic devices: A review
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.06.010
– volume: 3
  start-page: 8
  year: 2017
  ident: ref_36
  article-title: Heart rate variability as a biomarker for epilepsy seizure prediction
  publication-title: Clin. Study
– volume: 46
  start-page: 470
  year: 2005
  ident: ref_2
  article-title: Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
SSID ssj0023338
Score 2.2993941
Snippet In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1698
SubjectTerms Accuracy
Active learning
Ambiguity
Convulsions & seizures
EEG
epilepsy
health-care
Heuristic
implantable body sensor networks
machine learning
seizure prediction
signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTuVQAaUlfMlFPfQSkfgzPi4Vq1WlVkiAxC2yY7sgVQHtEiQ48SP4hfwSxkk22q2QeuFqz8HxjGfekyfPAN8s00EaylOsrj7lnobUMO1SF4VLlNResPi_86_fcnLBf16Ky4WnvmJPWCcP3G3ckebKBZ0LI4TkrrJaWukQB1NeeMm4i9kXa96cTPVUiyHz6nSEGJL6o1leYN2SuliqPq1I_1vI8t8GyYWKM16Hjz1UJKNuiRuw4utNWFsQEPwEzXnb9TojpiadaCg589ePzdSTkbuPwpoPpNMkf3l6HtU4aG5jfhusTqfxoiY6h4znbVqkbSMgozYTkl6A9Q-Z-KZXdd6Ci_HJ-Y9J2j-kkFaCZkVqrXUueC8qBIM5E0FYyYNQvkKwR40y6CPBKLOZ1cqGwsrMCSsyxzLttKPsM6zWN7XfBiLx0LOKGpsbx7NgED5m3KiqCMFrqXQC3-cbXFa9ynh87OJviWwj-qIcfJHA4WB620lrvGV0HL00GEQ17HYAY6TsY6T8X4wksDf3cdkf0VmJXBfJYsE1T-DrMI2HK96YmNrfNGgTBeeVxhqewJcuJIaVUK20wJSYgFoKlqWlLs_U11etgLeMLDtnO-_xbbvwATFcERsaKN-D1btp4_cRJ93Zg_ZIvAJ0iROP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SalIIM4cIma-Bmf0IJYrZBASLTS3iI7tkulKrvsNpXKiR_RX9hfwkziTbuo4mrPwcq8vrEn3xDyznETlWUih-wachFYzC03PvdIXKKVCZLj_85fv6nZkfgyl_N04bZObZWbmNgHar9o8I78AEoTwPaVMOLD8leOU6PwdTWN0LhL7iF1GbZ06fl1wcWh_hrYhDiU9gfrsoLspUy1lYN6qv7b8OW_bZI38s70IdlNgJFOBg0_IndC-5g8uEEj-IR0h33v65ralg7UofRHOPndrQKd-HOk17ygAzP51Z_LSQuLdolRbpT6vsLnGlQRnW6atWjfTEAnfTykiYb1mM5Cl7idn5Kj6efDT7M8jVPIG8mKKnfOeR9DkA1AwpLLKJ0SUerQAORjVlvQlOSMu8IZ7WLlVOGlk4XnhfHGM_6M7LSLNrwgVIHr84ZZV1ovimgBRBbC6qaKMRilTUbebz5w3SSucRx5cVpDzYG6qEddZOTtKLocCDZuE_qIWhoFkBO7X1isjuvkYrUR2kdTSiulEr5xRjnloWJiogqKC5-R_Y2O6-So6_rarDLyZtwGF8N3E9uGRQcySDuvDWTyjDwfTGI8CTPaSAiMGdFbxrJ11O2d9uRnT-OtsNYu-d7_j_WS3AeMVmHDAhP7ZOds1YVXgIPO3Ove2P8C9aYLlg
  priority: 102
  providerName: ProQuest
Title Towards an Online Seizure Advisory System—An Adaptive Seizure Prediction Framework Using Active Learning Heuristics
URI https://www.ncbi.nlm.nih.gov/pubmed/29795031
https://www.proquest.com/docview/2108718494
https://www.proquest.com/docview/2045279128
https://pubmed.ncbi.nlm.nih.gov/PMC6022213
https://doaj.org/article/947df915a5564dcb96b6d255248e634d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k1KWRnEgUsg8TM-ILRFXVZIrSroSnuL7NgplapsyXYryokfwS_klzDOS120By45OBPJ8ngeXzz-BuC1ZbqUhvIYo6uPuadlbJh2sQvEJUpqL1i473x0LKcz_nku5lvQ99jsFnC5EdqFflKz-uLtj-83H9Dg3wfEiZD93TLNMCpJnW3DLgYkFezziA-HCZSxpqF1uNMVYzxMWoKh9U_XwlLD3r8p5fy3cvJWKJrch3tdDknGrdIfwJavHsLdW8yCj2B12pTDLompSMsmSr7685-r2pOxuw6MmzekJSv_8-v3uMJBcxkc3yB1UocTnKA1Munrt0hTX0DGjYskHTPrGZn6VUf3_Bhmk8PTj9O467AQF4ImWWytda70XhSYJaZMlMJKXgrlC8wCqVEGlScYZTaxWtkyszJxworEsUQ77Sh7AjvVovLPgEj0BqygxqbG8aQ0mFcm3KgiK0uvpdIRvOkXOC86-vHQBeMiRxgSdJEPuojg1SB62XJubBI6CFoaBAJNdjOwqM_yzupyzZUrdSqMEJK7wmpppUMQRXnmJeMugv1ex3m_9XIEwYgiM655BC-H12h14SjFVH6xQpnARK80BvcInrZbYpgJ1UoL9JURqLXNsjbV9TfV-beG2VsG-J2yvf9ZgOdwB5O3LFQyUL4PO1f1yr_ABOnKjmBbzRU-s8mnEeweHB6ffBk1PxtGjWH8BQKnFK8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC1F4QAcEDsdAhgEEpdWur22DwgNy2hCFiExkebW2G13iIR6JjMZUDjxEXwHH8WXUO4tGRRxy7VdB8u1vWqXXwE8t0yX0lAeY3b1Mfe0jA3TLnaBuERJ7QUL75339uXogH-YiMka_O7ewoS2yi4m1oHaTYvwj3wLSxPE9hnX_PXsOA5To8LtajdCozGLHX_6HUu2xavtd6jfF5QO34_fjuJ2qkBcCJpksbXWudJ7USAySpkohZW8FMoXiHyoUQY3LBhlNrFa2TKzMnHCisSxRDvtAtEBhvwrmHiT4FFqclbgMaz3GvYixnSytUgzzJZSZys5rx4NcBGe_bct81yeG96EGy1AJYPGom7Bmq9uw_VztIV3YDmue20XxFSkoSoln_zRj-Xck4H7Fug8T0nDhP7n569BhR_NLETVXurjPFwPBZMgw645jNTNC2RQx1_S0r4ekpFftlzSd-HgUg76HqxX08o_ACIx1LCCGpsax5PSIGhNuFFFVpZeS6UjeNkdcF603OZhxMbXHGucoIu810UEz3rRWUPocZHQm6ClXiBwcNcfpvPDvHXpXHPlSp0KI4TkrrBaWumwQqM885JxF8Fmp-O8DQyL_MyMI3jaL6NLh3saU_npEmUCzb3SiBwiuN-YRL8TqpUWGIgjUCvGsrLV1ZXq6EtNGy5DbZ-yjf9v6wlcHY33dvPd7f2dh3AN8WEWmiUo34T1k_nSP0IMdmIf14ZP4PNle9pfE7dIww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4VLxJKWAQSFyiTfyMDwgtlNWWQlWJVtpbsGO7VKqy292Gqj3xI_g1_Bx-CeO82kUVt17jOYw8D38Tj79B6JWhygtNWAynq4uZIz7WVNnYBuISKZTjNLx3_rIjxvvs04RPVtDv7i1MaKvscmKdqO20CP_IB1CaALbPmGID37ZF7G6O3s2O4zBBKty0duM0GhfZdmenUL4t3m5tgq1fEzL6uPdhHLcTBuKCkySLjTHWeud4ASgppdxzI5jn0hWAgoiWGpTnlFCTGCWNz4xILDc8sTRRVtlAegDp_4akPA0xJicXxR6F2q9hMqJUJYNFmsHJKVS2dP7VYwKuwrb_tmheOvNGd9BaC1bxsPGuu2jFlffQ7UsUhvdRtVf33S6wLnFDW4q_usPzau7w0P4I1J5nuGFF__Pz17CEj3oWMmwvtTsPV0XBPfCoaxTDdSMDHta5GLcUsAd47KqWV_oB2r-WjX6IVstp6R4jLCDt0IJok2rLEq8BwCZMyyLz3ikhVYTedBucFy3PeRi3cZRDvRNskfe2iNDLXnTWkHtcJfQ-WKkXCHzc9Yfp_CBvwztXTFqvUq45F8wWRgkjLFRrhGVOUGYjtNHZOG-TxCK_cOkIveiXIbzDnY0u3bQCmUB5LxWgiAg9alyi14QoqTgk5QjJJWdZUnV5pTz8XlOIi1Dnp3T9_2o9RzchxvLPWzvbT9AtgIpZ6JsgbAOtnswr9xTg2Il5Vvs9Rt-uO9D-AhPLTPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+Online+Seizure+Advisory+System%E2%80%94An+Adaptive+Seizure+Prediction+Framework+Using+Active+Learning+Heuristics&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Karuppiah+Ramachandran%2C+Vignesh+Raja&rft.au=Alblas%2C+Huibert+J.&rft.au=Le%2C+Duc+V.&rft.au=Meratnia%2C+Nirvana&rft.date=2018-05-24&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=6&rft.spage=1698&rft_id=info:doi/10.3390%2Fs18061698&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18061698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon