STING directly recruits WIPI2 for autophagosome formation during STING‐induced autophagy

The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 42; no. 8; pp. e112387 - n/a
Main Authors Wan, Wei, Qian, Chuying, Wang, Qian, Li, Jin, Zhang, Hongtao, Wang, Lei, Pu, Maomao, Huang, Yewei, He, Zhengfu, Zhou, Tianhua, Shen, Han‐Ming, Liu, Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2023
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. Synopsis STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Graphical Abstract STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
AbstractList The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.
The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. image STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.
The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. Synopsis STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Graphical Abstract STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. Synopsis STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
Author Wan, Wei
Qian, Chuying
Zhang, Hongtao
Shen, Han‐Ming
Liu, Wei
Wang, Qian
Wang, Lei
Zhou, Tianhua
Li, Jin
Pu, Maomao
Huang, Yewei
He, Zhengfu
AuthorAffiliation 4 Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto Hangzhou China
2 Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China
3 Faculty of Health Sciences University of Macau Macau China
1 Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
AuthorAffiliation_xml – name: 1 Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
– name: 4 Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto Hangzhou China
– name: 3 Faculty of Health Sciences University of Macau Macau China
– name: 2 Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-6939-3402
  surname: Wan
  fullname: Wan, Wei
  email: wanwei@zju.edu.cn
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 2
  givenname: Chuying
  surname: Qian
  fullname: Qian, Chuying
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 3
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 4
  givenname: Jin
  orcidid: 0000-0002-5379-150X
  surname: Li
  fullname: Li, Jin
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 5
  givenname: Hongtao
  surname: Zhang
  fullname: Zhang, Hongtao
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 6
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 7
  givenname: Maomao
  surname: Pu
  fullname: Pu, Maomao
  organization: Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 8
  givenname: Yewei
  surname: Huang
  fullname: Huang, Yewei
  organization: Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 9
  givenname: Zhengfu
  surname: He
  fullname: He, Zhengfu
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 10
  givenname: Tianhua
  orcidid: 0000-0002-1791-2124
  surname: Zhou
  fullname: Zhou, Tianhua
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
– sequence: 11
  givenname: Han‐Ming
  orcidid: 0000-0001-7369-5227
  surname: Shen
  fullname: Shen, Han‐Ming
  organization: Faculty of Health Sciences, University of Macau
– sequence: 12
  givenname: Wei
  orcidid: 0000-0002-8033-4718
  surname: Liu
  fullname: Liu, Wei
  email: liuwei666@zju.edu.cn
  organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36872914$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFPSsUiU03Kb5OYt9ISIhWpUxVfiRGQmJjObEz9SixBzsBzY5H4Bl5EjIz7ZRWAlZXsr9z7s85IHvOO0PIU6DHULCCvTBdtThmlDEAlqF4QCaQc5oyKoo9MqGMQ5oDlvvkIMYFpbRAAY_IfsZRsBLyCfnyaTZ9f55oG0zdt6tkLGGwfUw-Tz9OWdL4kKih98srNffRd2b90qneepfoIVg3TzYGv378tE4PtdE7fPWYPGxUG82T63pIZm_OZqdv08sP59PT15dpXYxzpjrXiBwrgDpXoFAXiHmOChoFSLHKm0I0GmssFc9YLphBoauM8aZodKOyQ_Jqa7scqs7o2rg-qFYug-1UWEmvrLz74-yVnPtvEihQXiKODkfXDsF_HUzsZWdjbdpWOeOHKJnATJTAqRjR5_fQhR-CG9eTDCkgz8oN9ezPkXaz3Jx9BOgWqIOPMZhmhwCVm2TlOll5m-wo4fckte03QYxL2fZfwpdb4XfbmtV_G8mzdycXd-SwlcflOm4Tbjf-a8vf9aHKcg
CitedBy_id crossref_primary_10_1016_j_prp_2024_155654
crossref_primary_10_1111_tra_12918
crossref_primary_10_3390_ijms25031828
crossref_primary_10_1038_s44319_024_00215_5
crossref_primary_10_2174_0113895575271977231115062803
crossref_primary_10_3389_fnagi_2024_1429005
crossref_primary_10_1080_15548627_2023_2202108
crossref_primary_10_3390_cells12192345
crossref_primary_10_1242_jcs_261028
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1016_j_bbcan_2024_189249
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1016_j_cytogfr_2024_07_003
crossref_primary_10_1016_j_tcb_2024_09_002
crossref_primary_10_15252_embr_202357265
crossref_primary_10_1016_j_bcp_2023_115938
crossref_primary_10_3389_fcvm_2024_1357343
crossref_primary_10_1080_15548627_2023_2287932
crossref_primary_10_1016_j_isci_2024_111594
crossref_primary_10_1016_j_neulet_2024_137700
crossref_primary_10_1111_liv_70063
crossref_primary_10_1016_j_tcb_2024_05_004
crossref_primary_10_1021_acsptsci_4c00310
crossref_primary_10_1016_j_immuni_2024_11_017
crossref_primary_10_1016_j_arr_2024_102602
crossref_primary_10_3390_cells13100825
crossref_primary_10_3390_molecules28073127
crossref_primary_10_3389_fphar_2024_1431894
crossref_primary_10_1038_s41419_024_07208_1
crossref_primary_10_1002_jmv_29403
crossref_primary_10_1016_j_celrep_2024_113886
crossref_primary_10_1016_j_cell_2024_05_031
Cites_doi 10.15252/embj.201694491
10.1080/15548627.2020.1761653
10.1126/science.1244040
10.1038/ni.3510
10.7554/eLife.04135
10.1080/15548627.2019.1596484
10.15252/embj.201489363
10.1038/s41586-018-0705-y
10.1016/j.chom.2014.01.009
10.1083/jcb.201912098
10.1016/j.devcel.2011.06.024
10.15252/embj.2018100554
10.1016/j.molcel.2017.07.024
10.1042/BJ20140889
10.1080/15548627.2020.1752471
10.4161/auto.6.4.11863
10.1038/s41590-020-0730-5
10.1038/s41467-018-04759-8
10.1158/0008-5472.CAN-16-1404
10.1083/jcb.201811139
10.1038/nri3787
10.1016/j.molcel.2014.05.021
10.15252/embj.201797840
10.1016/bs.mie.2019.07.042
10.1126/science.aat1022
10.1016/j.celrep.2018.11.048
10.1038/ni.3558
10.1080/15548627.2016.1175693
10.15252/embj.2020104948
10.1038/s41418-018-0251-z
10.1016/j.molcel.2014.12.013
10.1016/j.molcel.2016.08.025
10.1126/scisignal.aah5054
10.1083/jcb.201901115
10.1038/cmi.2017.15
10.1016/j.celrep.2015.12.029
10.1016/j.molcel.2018.09.017
10.1016/j.cell.2012.06.040
10.1016/j.chom.2015.05.004
10.15252/embj.201797858
10.1038/s41586-021-03762-2
10.1038/s41586-019-1006-9
10.7554/eLife.00947
10.1016/j.molcel.2017.08.005
10.1016/j.cell.2012.11.001
10.1096/fj.202001607R
10.7554/eLife.21167
10.1083/jcb.202009128
10.1038/nature08476
10.1016/j.molcel.2017.09.020
10.1038/s41576-019-0151-1
10.1016/S0065-230X(08)60703-4
10.15252/embr.202050051
ContentType Journal Article
Copyright The Author(s) 2023
2023 The Authors
2023 The Authors.
2023 EMBO
Copyright_xml – notice: The Author(s) 2023
– notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2022112387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Virology and AIDS Abstracts



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Wei Wan et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC10106988
36872914
10_15252_embj_2022112387
EMBJ2022112387
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by CAST
  grantid: 2019QNRC001
– fundername: Chao Kuang Piu High‐tech Development Fund
  grantid: 2020QN024
– fundername: MOE | Fundamental Research Funds for the Central Universities (Fundamental Research Fund for the Central Universities)
  grantid: 2020XZZX002‐16
  funderid: 10.13039/501100012226
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2021YFA1300303
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31970694; 31790402; 92057203; 91754000; 32230023
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 31970694; 31790402; 92057203; 91754000; 32230023
– fundername: Young Elite Scientists Sponsorship Program by CAST
  funderid: 2019QNRC001
– fundername: MOE | Fundamental Research Funds for the Central Universities (Fundamental Research Fund for the Central Universities)
  funderid: 2020XZZX002‐16
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  funderid: 2021YFA1300303
– fundername: Chao Kuang Piu High‐tech Development Fund
  funderid: 2020QN024
– fundername: ;
  grantid: 31970694; 31790402; 92057203; 91754000; 32230023
– fundername: ;
  grantid: 2020XZZX002‐16
– fundername: ;
  grantid: 2021YFA1300303
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5207-d4d8868b11c4a1a8d588448a1fa1808b4f57fd8c89a632472e87db326f5fdfa3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:35:36 EDT 2025
Fri Jul 11 02:14:59 EDT 2025
Fri Jul 25 10:50:53 EDT 2025
Wed Feb 19 02:04:00 EST 2025
Thu Apr 24 22:52:38 EDT 2025
Tue Jul 01 01:47:24 EDT 2025
Wed Jan 22 16:24:10 EST 2025
Fri Feb 21 02:36:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cGAS
STING
autophagy
WIPI2
cytoplasmic DNA
Language English
License 2023 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5207-d4d8868b11c4a1a8d588448a1fa1808b4f57fd8c89a632472e87db326f5fdfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6939-3402
0000-0002-1791-2124
0000-0002-5379-150X
0000-0002-8033-4718
0000-0001-7369-5227
OpenAccessLink https://www.embopress.org/action/downloadSupplement?doi=10.15252/embj.2022112387&file=embj2022112387.reviewer_comments.pdf
PMID 36872914
PQID 2801863907
PQPubID 35985
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10106988
proquest_miscellaneous_2783791607
proquest_journals_2801863907
pubmed_primary_36872914
crossref_primary_10_15252_embj_2022112387
crossref_citationtrail_10_15252_embj_2022112387
wiley_primary_10_15252_embj_2022112387_EMBJ2022112387
springer_journals_10_15252_embj_2022112387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 17 April 2023
PublicationDateYYYYMMDD 2023-04-17
PublicationDate_xml – month: 04
  year: 2023
  text: 17 April 2023
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Xia, Konno, Barber (CR49) 2016; 76
Fletcher, Ulferts, Jacquin, Veith, Gammoh, Arasteh, Mayer, Carding, Wileman, Beale (CR10) 2018; 37
Spada, Yamazaki, Vanpouille‐Box (CR37) 2019; 629
Chu, Tu, Yang, Wu, Repa, Yan (CR4) 2021; 596
Dudley, Cabodevilla, Makar, Sztacho, Michelberger, Marsh, Houston, Martens, Jiang, Gammoh (CR8) 2019; 38
Ge, Melville, Zhang, Schekman (CR12) 2013; 2
Gui, Yang, Li, Tan, Shi, Li, Du, Chen (CR15) 2019; 567
Valverde, Yu, Boggavarapu, Kumar, Lees, Walz, Reinisch, Melia (CR42) 2019; 218
Yang, Wang, Ketkar, Ma, Yang, Cui, Geng, Mordue, Fujimoto, Cheng (CR51) 2018; 9
Ramanjulu, Pesiridis, Yang, Concha, Singhaus, Zhang, Tran, Moore, Lehmann, Eberl (CR35) 2018; 564
Xia, Konno, Ahn, Barber (CR48) 2016; 14
Ishikawa, Ma, Barber (CR17) 2009; 461
Zhang, Nandakumar, Reinert, Huang, Laustsen, Gao, Sun, Jensen, Troldborg, Assil (CR52) 2020; 21
Bago, Malik, Munson, Prescott, Davies, Sommer, Shpiro, Ward, Cross, Ganley (CR1) 2014; 463
Jena, Mehto, Nath, Chauhan, Sahu, Dhar, Das, Kolapalli, Murmu, Jain (CR19) 2020; 21
Luo, Li, Li, Lian, Yang, Zhong, Shu (CR27) 2016; 17
Thurston, Boyle, Allen, Ravenhill, Karpiyevich, Bloor, Kaul, Noad, Foeglein, Matthews (CR41) 2016; 35
Xu, Wan, Shou, Huang, You, Shou, Wang, Zhou, Liu (CR50) 2016; 12
Chen, Meng, Qin, Liang, Tan, He, Zhou, Chen, Huang, Wang (CR2) 2016; 64
Fracchiolla, Chang, Hurley, Martens (CR11) 2020; 219
Prabakaran, Bodda, Krapp, Zhang, Christensen, Sun, Reinert, Cai, Jensen, Skouboe (CR34) 2018; 37
Ge, Zhang, Schekman (CR13) 2014; 3
Liang, Seo, Choi, Kwak, Ge, Rodgers, Shi, Leslie, Hopfner, Ha (CR23) 2014; 15
Li, Wu, Gao, Wang, Sun, Chen (CR22) 2013; 341
Fischer, Wang, Padman, Lazarou, Youle (CR9) 2020; 219
Huang, Xu, Wan, Shou, Qian, You, Liu, Chang, Zhou, Lippincott‐Schwartz (CR16) 2015; 57
Sui, Zhou, Imamichi, Jiao, Sherman, Lane, Imamichi (CR39) 2017; 10
Watson, Manzanillo, Cox (CR45) 2012; 150
Watson, Bell, MacDuff, Kimmey, Diner, Olivas, Vance, Stallings, Virgin, Cox (CR46) 2015; 17
Dooley, Razi, Polson, Girardin, Wilson, Tooze (CR6) 2014; 55
Liu, Wu, Wang, Li, Tian, Siraj, Sehgal, Wang, Wang, Shang (CR24) 2019; 26
Motwani, Pesiridis, Fitzgerald (CR30) 2019; 20
Davis, Wang, Zhu, Stahmer, Lakshminarayan, Ghassemian, Jiang, Miller, Ferro‐Novick (CR5) 2016; 5
Itakura, Kishi‐Itakura, Mizushima (CR18) 2012; 151
Grant (CR14) 1998; 72
Niso‐Santano, Malik, Pietrocola, Bravo‐San Pedro, Marino, Cianfanelli, Ben‐Younes, Troncoso, Markaki, Sica (CR31) 2015; 34
Sun, Zhang, Jiang, Pan, Tan, Yu, Guo, Yin, Shen, Shu (CR40) 2018; 25
Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (CR53) 2017; 67
Shen, Shi, Liu, Su, Huang, Zhang, Peng, Zhou, Sun, Wan (CR36) 2021; 17
Jiang, Xia, Hu, Sun, Yan, Lei, Shu, Guo, Liu (CR20) 2018; 15
Du, Chen (CR7) 2018; 361
Ma, Serrano, Davis, Prigge, Ridge (CR28) 2020; 34
Judith, Jefferies, Boeing, Frith, Snijders, Tooze (CR21) 2019; 218
Lu, Yi, Gubas, Wang, Wu, Ren, Wu, Shi, Ouyang, Tan (CR26) 2019; 15
Wan, You, Xu, Zhou, Guan, Peng, Wong, Su, Zhou, Xia (CR43) 2017; 68
Chen, Sun, Chen (CR3) 2016; 17
Lu, Yang, Huang, Hu, Guo, Wu, Lin, Kovacs, Yu, Zhang (CR25) 2011; 21
Wan, You, Zhou, Xu, Peng, Zhou, Yi, Shi, Liu (CR44) 2018; 72
Ohnstad, Delgado, North, Nasa, Kettenbach, Schultz, Shoemaker (CR32) 2020; 39
Wu, Jin, Liu, Zhang, Ma, Zhao, Yang, Li, Cui (CR47) 2021; 17
McNab, Mayer‐Barber, Sher, Wack, O'Garra (CR29) 2015; 15
Su, Yang, Wang, Shen, Huang, Peng, Zhang, Wan, Wong, Sun (CR38) 2017; 67
Polson, de Lartigue, Rigden, Reedijk, Urbe, Clague, Tooze (CR33) 2010; 6
2015; 57
2018; 361
2015; 34
2015; 15
2015; 17
2016b; 17
2013; 2
2019; 629
2018; 564
2019; 15
2017; 68
2016b; 76
2017; 67
2020; 39
2019; 38
2019; 567
2020; 34
2013; 341
2016; 17
2016; 35
2016a; 64
2018; 25
2016; 12
2012; 150
2016; 5
2012; 151
2018; 9
2014; 3
2019; 20
2021; 596
2021; 17
2017; 10
2019; 26
2014; 15
2011; 21
2019; 218
1998; 72
2018; 72
2009; 461
2020; 21
2014; 463
2016a; 14
2020; 219
2014; 55
2018; 37
2018; 15
2010; 6
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 13156
  year: 2020
  end-page: 13170
  ident: CR28
  article-title: The cGAS‐STING pathway: the role of self‐DNA sensing in inflammatory lung disease
  publication-title: FASEB J
– volume: 151
  start-page: 1256
  year: 2012
  end-page: 1269
  ident: CR18
  article-title: The hairpin‐type tail‐anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
– volume: 15
  start-page: 858
  year: 2018
  end-page: 867
  ident: CR20
  article-title: IFITM3 inhibits virus‐triggered induction of type I interferon by mediating autophagosome‐dependent degradation of IRF3
  publication-title: Cell Mol Immunol
– volume: 629
  start-page: 17
  year: 2019
  end-page: 33
  ident: CR37
  article-title: Detection and quantification of cytoplasmic DNA
  publication-title: Methods Enzymol
– volume: 12
  start-page: 1118
  year: 2016
  end-page: 1128
  ident: CR50
  article-title: TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters
  publication-title: Autophagy
– volume: 37
  year: 2018
  ident: CR10
  article-title: The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes
  publication-title: EMBO J
– volume: 68
  start-page: 323
  year: 2017
  end-page: 335
  ident: CR43
  article-title: mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis
  publication-title: Mol Cell
– volume: 72
  start-page: 303
  year: 2018
  end-page: 315
  ident: CR44
  article-title: mTORC1‐regulated and HUWE1‐mediated WIPI2 degradation controls autophagy flux
  publication-title: Mol Cell
– volume: 72
  start-page: 197
  year: 1998
  end-page: 233
  ident: CR14
  article-title: Ara‐C: cellular and molecular pharmacology
  publication-title: Adv Cancer Res
– volume: 21
  start-page: 343
  year: 2011
  end-page: 357
  ident: CR25
  article-title: The WD40 repeat PtdIns(3)P‐binding protein EPG‐6 regulates progression of omegasomes to autophagosomes
  publication-title: Dev Cell
– volume: 64
  start-page: 105
  year: 2016
  end-page: 119
  ident: CR2
  article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses
  publication-title: Mol Cell
– volume: 2
  year: 2013
  ident: CR12
  article-title: The ER‐Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
  publication-title: Elife
– volume: 596
  start-page: 570
  year: 2021
  end-page: 575
  ident: CR4
  article-title: Tonic prime‐boost of STING signalling mediates Niemann‐pick disease type C
  publication-title: Nature
– volume: 15
  start-page: 87
  year: 2015
  end-page: 103
  ident: CR29
  article-title: Type I interferons in infectious disease
  publication-title: Nat Rev Immunol
– volume: 218
  start-page: 1634
  year: 2019
  end-page: 1652
  ident: CR21
  article-title: ATG9A shapes the forming autophagosome through arfaptin 2 and phosphatidylinositol 4‐kinase III beta
  publication-title: J Cell Biol
– volume: 67
  start-page: 907
  year: 2017
  end-page: 921
  ident: CR38
  article-title: VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy
  publication-title: Mol Cell
– volume: 17
  start-page: 811
  year: 2015
  end-page: 819
  ident: CR46
  article-title: The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy
  publication-title: Cell Host Microbe
– volume: 17
  start-page: 1379
  year: 2021
  end-page: 1392
  ident: CR47
  article-title: Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression
  publication-title: Autophagy
– volume: 14
  start-page: 282
  year: 2016
  end-page: 297
  ident: CR48
  article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis
  publication-title: Cell Rep
– volume: 567
  start-page: 262
  year: 2019
  end-page: 266
  ident: CR15
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
– volume: 5
  year: 2016
  ident: CR5
  article-title: Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation
  publication-title: Elife
– volume: 15
  start-page: 1917
  year: 2019
  end-page: 1934
  ident: CR26
  article-title: Suppression of autophagy during mitosis via CUL4‐RING ubiquitin ligases‐mediated WIPI2 polyubiquitination and proteasomal degradation
  publication-title: Autophagy
– volume: 35
  start-page: 1779
  year: 2016
  end-page: 1792
  ident: CR41
  article-title: Recruitment of TBK1 to cytosol‐invading salmonella induces WIPI2‐dependent antibacterial autophagy
  publication-title: EMBO J
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: CR17
  article-title: STING regulates intracellular DNA‐mediated, type I interferon‐dependent innate immunity
  publication-title: Nature
– volume: 26
  start-page: 1735
  year: 2019
  end-page: 1749
  ident: CR24
  article-title: STING directly activates autophagy to tune the innate immune response
  publication-title: Cell Death Differ
– volume: 218
  start-page: 1787
  year: 2019
  end-page: 1798
  ident: CR42
  article-title: ATG2 transports lipids to promote autophagosome biogenesis
  publication-title: J Cell Biol
– volume: 39
  year: 2020
  ident: CR32
  article-title: Receptor‐mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy
  publication-title: EMBO J
– volume: 463
  start-page: 413
  year: 2014
  end-page: 427
  ident: CR1
  article-title: Characterization of VPS34‐IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3‐phosphate‐binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3‐kinase
  publication-title: Biochem J
– volume: 17
  start-page: 1142
  year: 2016
  end-page: 1149
  ident: CR3
  article-title: Regulation and function of the cGAS‐STING pathway of cytoplasmic DNA sensing
  publication-title: Nat Immunol
– volume: 219
  year: 2020
  ident: CR9
  article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain
  publication-title: J Cell Biol
– volume: 3
  year: 2014
  ident: CR13
  article-title: Phosphatidylinositol 3‐kinase and COPII generate LC3 lipidation vesicles from the ER‐Golgi intermediate compartment
  publication-title: Elife
– volume: 361
  start-page: 704
  year: 2018
  end-page: 709
  ident: CR7
  article-title: DNA‐induced liquid phase condensation of cGAS activates innate immune signaling
  publication-title: Science
– volume: 20
  start-page: 657
  year: 2019
  end-page: 674
  ident: CR30
  article-title: DNA sensing by the cGAS‐STING pathway in health and disease
  publication-title: Nat Rev Genet
– volume: 57
  start-page: 456
  year: 2015
  end-page: 466
  ident: CR16
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol Cell
– volume: 25
  start-page: 3086
  year: 2018
  end-page: 3098
  ident: CR40
  article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking
  publication-title: Cell Rep
– volume: 37
  year: 2018
  ident: CR34
  article-title: Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1
  publication-title: EMBO J
– volume: 564
  start-page: 439
  year: 2018
  end-page: 443
  ident: CR35
  article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity
  publication-title: Nature
– volume: 9
  start-page: 2329
  year: 2018
  ident: CR51
  article-title: UBXN3B positively regulates STING‐mediated antiviral immune responses
  publication-title: Nat Commun
– volume: 10
  start-page: eaah5054
  year: 2017
  ident: CR39
  article-title: STING is an essential mediator of the Ku70‐mediated production of IFN‐gimel 1 in response to exogenous DNA
  publication-title: Sci Signal
– volume: 15
  start-page: 228
  year: 2014
  end-page: 238
  ident: CR23
  article-title: Crosstalk between the cGAS DNA sensor and beclin‐1 autophagy protein shapes innate antimicrobial immune responses
  publication-title: Cell Host Microbe
– volume: 17
  start-page: 1057
  year: 2016
  end-page: 1066
  ident: CR27
  article-title: iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING
  publication-title: Nat Immunol
– volume: 17
  start-page: 1157
  year: 2021
  end-page: 1169
  ident: CR36
  article-title: Acetylation of STX17 (syntaxin 17) controls autophagosome maturation
  publication-title: Autophagy
– volume: 67
  start-page: 974
  year: 2017
  end-page: 989
  ident: CR53
  article-title: The ER‐localized transmembrane protein EPG‐3/VMP1 regulates SERCA activity to control ER‐isolation membrane contacts for autophagosome formation
  publication-title: Mol Cell
– volume: 21
  start-page: 868
  year: 2020
  end-page: 879
  ident: CR52
  article-title: STEEP mediates STING ER exit and activation of signaling
  publication-title: Nat Immunol
– volume: 38
  year: 2019
  ident: CR8
  article-title: Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy
  publication-title: EMBO J
– volume: 34
  start-page: 1025
  year: 2015
  end-page: 1041
  ident: CR31
  article-title: Unsaturated fatty acids induce non‐canonical autophagy
  publication-title: EMBO J
– volume: 150
  start-page: 803
  year: 2012
  end-page: 815
  ident: CR45
  article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway
  publication-title: Cell
– volume: 21
  year: 2020
  ident: CR19
  article-title: Autoimmunity gene IRGM suppresses cGAS‐STING and RIG‐I‐MAVS signaling to control interferon response
  publication-title: EMBO Rep
– volume: 6
  start-page: 506
  year: 2010
  end-page: 522
  ident: CR33
  article-title: Mammalian Atg18 (WIPI2) localizes to omegasome‐anchored phagophores and positively regulates LC3 lipidation
  publication-title: Autophagy
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  ident: CR22
  article-title: Pivotal roles of cGAS‐cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
– volume: 55
  start-page: 238
  year: 2014
  end-page: 252
  ident: CR6
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1
  publication-title: Mol Cell
– volume: 219
  year: 2020
  ident: CR11
  article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy
  publication-title: J Cell Biol
– volume: 76
  start-page: 6747
  year: 2016
  end-page: 6759
  ident: CR49
  article-title: Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis
  publication-title: Cancer Res
– volume: 72
  start-page: 197
  year: 1998
  end-page: 233
  article-title: Ara‐C: cellular and molecular pharmacology
  publication-title: Adv Cancer Res
– volume: 20
  start-page: 657
  year: 2019
  end-page: 674
  article-title: DNA sensing by the cGAS‐STING pathway in health and disease
  publication-title: Nat Rev Genet
– volume: 38
  year: 2019
  article-title: Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy
  publication-title: EMBO J
– volume: 34
  start-page: 13156
  year: 2020
  end-page: 13170
  article-title: The cGAS‐STING pathway: the role of self‐DNA sensing in inflammatory lung disease
  publication-title: FASEB J
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  article-title: STING regulates intracellular DNA‐mediated, type I interferon‐dependent innate immunity
  publication-title: Nature
– volume: 564
  start-page: 439
  year: 2018
  end-page: 443
  article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity
  publication-title: Nature
– volume: 17
  start-page: 1057
  year: 2016
  end-page: 1066
  article-title: iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING
  publication-title: Nat Immunol
– volume: 2
  year: 2013
  article-title: The ER‐Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
  publication-title: Elife
– volume: 15
  start-page: 1917
  year: 2019
  end-page: 1934
  article-title: Suppression of autophagy during mitosis via CUL4‐RING ubiquitin ligases‐mediated WIPI2 polyubiquitination and proteasomal degradation
  publication-title: Autophagy
– volume: 14
  start-page: 282
  year: 2016a
  end-page: 297
  article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis
  publication-title: Cell Rep
– volume: 15
  start-page: 87
  year: 2015
  end-page: 103
  article-title: Type I interferons in infectious disease
  publication-title: Nat Rev Immunol
– volume: 37
  year: 2018
  article-title: The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes
  publication-title: EMBO J
– volume: 596
  start-page: 570
  year: 2021
  end-page: 575
  article-title: Tonic prime‐boost of STING signalling mediates Niemann‐pick disease type C
  publication-title: Nature
– volume: 218
  start-page: 1787
  year: 2019
  end-page: 1798
  article-title: ATG2 transports lipids to promote autophagosome biogenesis
  publication-title: J Cell Biol
– volume: 12
  start-page: 1118
  year: 2016
  end-page: 1128
  article-title: TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters
  publication-title: Autophagy
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  article-title: Pivotal roles of cGAS‐cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
– volume: 629
  start-page: 17
  year: 2019
  end-page: 33
  article-title: Detection and quantification of cytoplasmic DNA
  publication-title: Methods Enzymol
– volume: 5
  year: 2016
  article-title: Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation
  publication-title: Elife
– volume: 10
  start-page: eaah5054
  year: 2017
  article-title: STING is an essential mediator of the Ku70‐mediated production of IFN‐gimel 1 in response to exogenous DNA
  publication-title: Sci Signal
– volume: 219
  year: 2020
  article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy
  publication-title: J Cell Biol
– volume: 9
  start-page: 2329
  year: 2018
  article-title: UBXN3B positively regulates STING‐mediated antiviral immune responses
  publication-title: Nat Commun
– volume: 219
  year: 2020
  article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain
  publication-title: J Cell Biol
– volume: 21
  start-page: 343
  year: 2011
  end-page: 357
  article-title: The WD40 repeat PtdIns(3)P‐binding protein EPG‐6 regulates progression of omegasomes to autophagosomes
  publication-title: Dev Cell
– volume: 17
  start-page: 1379
  year: 2021
  end-page: 1392
  article-title: Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression
  publication-title: Autophagy
– volume: 26
  start-page: 1735
  year: 2019
  end-page: 1749
  article-title: STING directly activates autophagy to tune the innate immune response
  publication-title: Cell Death Differ
– volume: 17
  start-page: 811
  year: 2015
  end-page: 819
  article-title: The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy
  publication-title: Cell Host Microbe
– volume: 67
  start-page: 907
  year: 2017
  end-page: 921
  article-title: VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy
  publication-title: Mol Cell
– volume: 463
  start-page: 413
  year: 2014
  end-page: 427
  article-title: Characterization of VPS34‐IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3‐phosphate‐binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3‐kinase
  publication-title: Biochem J
– volume: 39
  year: 2020
  article-title: Receptor‐mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy
  publication-title: EMBO J
– volume: 17
  start-page: 1157
  year: 2021
  end-page: 1169
  article-title: Acetylation of STX17 (syntaxin 17) controls autophagosome maturation
  publication-title: Autophagy
– volume: 218
  start-page: 1634
  year: 2019
  end-page: 1652
  article-title: ATG9A shapes the forming autophagosome through arfaptin 2 and phosphatidylinositol 4‐kinase III beta
  publication-title: J Cell Biol
– volume: 15
  start-page: 228
  year: 2014
  end-page: 238
  article-title: Crosstalk between the cGAS DNA sensor and beclin‐1 autophagy protein shapes innate antimicrobial immune responses
  publication-title: Cell Host Microbe
– volume: 25
  start-page: 3086
  year: 2018
  end-page: 3098
  article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking
  publication-title: Cell Rep
– volume: 21
  start-page: 868
  year: 2020
  end-page: 879
  article-title: STEEP mediates STING ER exit and activation of signaling
  publication-title: Nat Immunol
– volume: 3
  year: 2014
  article-title: Phosphatidylinositol 3‐kinase and COPII generate LC3 lipidation vesicles from the ER‐Golgi intermediate compartment
  publication-title: Elife
– volume: 35
  start-page: 1779
  year: 2016
  end-page: 1792
  article-title: Recruitment of TBK1 to cytosol‐invading salmonella induces WIPI2‐dependent antibacterial autophagy
  publication-title: EMBO J
– volume: 150
  start-page: 803
  year: 2012
  end-page: 815
  article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway
  publication-title: Cell
– volume: 55
  start-page: 238
  year: 2014
  end-page: 252
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1
  publication-title: Mol Cell
– volume: 361
  start-page: 704
  year: 2018
  end-page: 709
  article-title: DNA‐induced liquid phase condensation of cGAS activates innate immune signaling
  publication-title: Science
– volume: 567
  start-page: 262
  year: 2019
  end-page: 266
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
– volume: 72
  start-page: 303
  year: 2018
  end-page: 315
  article-title: mTORC1‐regulated and HUWE1‐mediated WIPI2 degradation controls autophagy flux
  publication-title: Mol Cell
– volume: 15
  start-page: 858
  year: 2018
  end-page: 867
  article-title: IFITM3 inhibits virus‐triggered induction of type I interferon by mediating autophagosome‐dependent degradation of IRF3
  publication-title: Cell Mol Immunol
– volume: 34
  start-page: 1025
  year: 2015
  end-page: 1041
  article-title: Unsaturated fatty acids induce non‐canonical autophagy
  publication-title: EMBO J
– volume: 6
  start-page: 506
  year: 2010
  end-page: 522
  article-title: Mammalian Atg18 (WIPI2) localizes to omegasome‐anchored phagophores and positively regulates LC3 lipidation
  publication-title: Autophagy
– volume: 67
  start-page: 974
  year: 2017
  end-page: 989
  article-title: The ER‐localized transmembrane protein EPG‐3/VMP1 regulates SERCA activity to control ER‐isolation membrane contacts for autophagosome formation
  publication-title: Mol Cell
– volume: 64
  start-page: 105
  year: 2016a
  end-page: 119
  article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses
  publication-title: Mol Cell
– volume: 21
  year: 2020
  article-title: Autoimmunity gene IRGM suppresses cGAS‐STING and RIG‐I‐MAVS signaling to control interferon response
  publication-title: EMBO Rep
– volume: 68
  start-page: 323
  year: 2017
  end-page: 335
  article-title: mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis
  publication-title: Mol Cell
– volume: 37
  year: 2018
  article-title: Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1
  publication-title: EMBO J
– volume: 76
  start-page: 6747
  year: 2016b
  end-page: 6759
  article-title: Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis
  publication-title: Cancer Res
– volume: 17
  start-page: 1142
  year: 2016b
  end-page: 1149
  article-title: Regulation and function of the cGAS‐STING pathway of cytoplasmic DNA sensing
  publication-title: Nat Immunol
– volume: 151
  start-page: 1256
  year: 2012
  end-page: 1269
  article-title: The hairpin‐type tail‐anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
– volume: 57
  start-page: 456
  year: 2015
  end-page: 466
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol Cell
– ident: e_1_2_9_42_1
  doi: 10.15252/embj.201694491
– ident: e_1_2_9_48_1
  doi: 10.1080/15548627.2020.1761653
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1244040
– ident: e_1_2_9_28_1
  doi: 10.1038/ni.3510
– ident: e_1_2_9_14_1
  doi: 10.7554/eLife.04135
– ident: e_1_2_9_27_1
  doi: 10.1080/15548627.2019.1596484
– ident: e_1_2_9_32_1
  doi: 10.15252/embj.201489363
– ident: e_1_2_9_36_1
  doi: 10.1038/s41586-018-0705-y
– ident: e_1_2_9_24_1
  doi: 10.1016/j.chom.2014.01.009
– ident: e_1_2_9_12_1
  doi: 10.1083/jcb.201912098
– ident: e_1_2_9_26_1
  doi: 10.1016/j.devcel.2011.06.024
– ident: e_1_2_9_9_1
  doi: 10.15252/embj.2018100554
– ident: e_1_2_9_39_1
  doi: 10.1016/j.molcel.2017.07.024
– ident: e_1_2_9_2_1
  doi: 10.1042/BJ20140889
– ident: e_1_2_9_37_1
  doi: 10.1080/15548627.2020.1752471
– ident: e_1_2_9_34_1
  doi: 10.4161/auto.6.4.11863
– ident: e_1_2_9_53_1
  doi: 10.1038/s41590-020-0730-5
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-018-04759-8
– ident: e_1_2_9_50_1
  doi: 10.1158/0008-5472.CAN-16-1404
– ident: e_1_2_9_43_1
  doi: 10.1083/jcb.201811139
– ident: e_1_2_9_30_1
  doi: 10.1038/nri3787
– ident: e_1_2_9_7_1
  doi: 10.1016/j.molcel.2014.05.021
– ident: e_1_2_9_11_1
  doi: 10.15252/embj.201797840
– ident: e_1_2_9_38_1
  doi: 10.1016/bs.mie.2019.07.042
– ident: e_1_2_9_8_1
  doi: 10.1126/science.aat1022
– ident: e_1_2_9_41_1
  doi: 10.1016/j.celrep.2018.11.048
– ident: e_1_2_9_4_1
  doi: 10.1038/ni.3558
– ident: e_1_2_9_51_1
  doi: 10.1080/15548627.2016.1175693
– ident: e_1_2_9_33_1
  doi: 10.15252/embj.2020104948
– ident: e_1_2_9_25_1
  doi: 10.1038/s41418-018-0251-z
– ident: e_1_2_9_17_1
  doi: 10.1016/j.molcel.2014.12.013
– ident: e_1_2_9_3_1
  doi: 10.1016/j.molcel.2016.08.025
– ident: e_1_2_9_40_1
  doi: 10.1126/scisignal.aah5054
– ident: e_1_2_9_22_1
  doi: 10.1083/jcb.201901115
– ident: e_1_2_9_21_1
  doi: 10.1038/cmi.2017.15
– ident: e_1_2_9_49_1
  doi: 10.1016/j.celrep.2015.12.029
– ident: e_1_2_9_45_1
  doi: 10.1016/j.molcel.2018.09.017
– ident: e_1_2_9_46_1
  doi: 10.1016/j.cell.2012.06.040
– ident: e_1_2_9_47_1
  doi: 10.1016/j.chom.2015.05.004
– ident: e_1_2_9_35_1
  doi: 10.15252/embj.201797858
– ident: e_1_2_9_5_1
  doi: 10.1038/s41586-021-03762-2
– ident: e_1_2_9_16_1
  doi: 10.1038/s41586-019-1006-9
– ident: e_1_2_9_13_1
  doi: 10.7554/eLife.00947
– ident: e_1_2_9_54_1
  doi: 10.1016/j.molcel.2017.08.005
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cell.2012.11.001
– ident: e_1_2_9_29_1
  doi: 10.1096/fj.202001607R
– ident: e_1_2_9_6_1
  doi: 10.7554/eLife.21167
– ident: e_1_2_9_10_1
  doi: 10.1083/jcb.202009128
– ident: e_1_2_9_18_1
  doi: 10.1038/nature08476
– ident: e_1_2_9_44_1
  doi: 10.1016/j.molcel.2017.09.020
– ident: e_1_2_9_31_1
  doi: 10.1038/s41576-019-0151-1
– ident: e_1_2_9_15_1
  doi: 10.1016/S0065-230X(08)60703-4
– ident: e_1_2_9_20_1
  doi: 10.15252/embr.202050051
SSID ssj0005871
Score 2.5655043
Snippet The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular...
The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e112387
SubjectTerms Attenuation
Autophagosomes - metabolism
Autophagy
Autophagy - physiology
Binding
cGAS
Clearances
cytoplasmic DNA
Deoxyribonucleic acid
DNA
DNA - metabolism
EMBO07
EMBO19
Humans
Life Sciences
Membrane Proteins - genetics
Membrane Proteins - metabolism
Nucleotidyltransferases - metabolism
Signal transduction
Signaling
STING
Vesicles
WIPI2
Title STING directly recruits WIPI2 for autophagosome formation during STING‐induced autophagy
URI https://link.springer.com/article/10.15252/embj.2022112387
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022112387
https://www.ncbi.nlm.nih.gov/pubmed/36872914
https://www.proquest.com/docview/2801863907
https://www.proquest.com/docview/2783791607
https://pubmed.ncbi.nlm.nih.gov/PMC10106988
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEaIXBOW19CEjcQEp6jqx48mxrPrYSq2QWETFJRrHcSlqs1V397A3fgK_kV_COMlmWZWHOEWWHSf22Prm83hmAF6nDhVpslFhVREpZrVRZlUSeU-sQBMDPgZ_55PT9OijOj7TZ-15R_CF-dV-r2Md75ZX9ivTuJiJCqOLuQv3tExMSNIwSAfLyxxYU6v6NEVJzFqD5O96WAWgW1rl7cuRnYV0VX-tAejgETxsNUex14j6Mdwpqw243-SSnG_Ag8EiddsT-PxhNDw9FA1cXc4FP25mF9OJ-DR8P4wF66mCZiGiAJ2PJ-OrUnQujKJxWxR1Bz--fWfGzrJ3XfP5Uxgd7I8GR1GbRCEqdNw3kVMOMUUrZaFIErrgmaqQpCeJfbTKa-MdFphRiNxu4hKNs6zUee2dp-QZrFXjqnwBImO8cw6pT94rZiXkEzLcsSUrTVJiD3YXE5sXbYDxkOfiMg9EI4giD6LIl6LowZvujesmuMZf2m4tZJW322ySx4yvyDpWn6tfddU82cHqQVU5nnEbwxw8C3H0evC8EW33sSRFJhdS9QBXhN41CMG3V2uqiy91EG4ZyHSGPOq3i_Wx_K8_D0LXK-ifo833T94dL4sv_-cjm7DOhSSYvKTZgrXpzazcZs1panfqTbMT0Ev_BOlXEDo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKi9oFJ-GiiwSHAAyWrWXtvjA4dQWuK0iZAaRMXF2vV6Iah1UJMI5cYj9BV4NZ6EWf9FUfkRh54sa9br3Z1Zz3yenRmAZ4FGIX2pnFSJ1BGEap1ICc8xRpIBLUnho413HgyD3nvRP_VP1-BHHQtTnHavXZLFl7qq0ePuZefqCwE6lyAL6ZmwOkh5lC2-EUybvorfEE-fu-7hwWi_51SVBJzUdzuho4VGDFBxngrJJWobnilQciM5dlAJ44dGY4qRtOnLQzfDUCuybIxvtJEedXsD1tEP0G_BerfbP-kvz5FggeqKHzmCY1T5Qn835FXdd8WgvXous3HOrprOhe473IJbldHKuqWU3Ya1LN-Gm2UZy8U2bOzXVePuwMeTUTx8y0pNebZgdLmYj2dT9iF-F7uMTGQm5zaZgfw0mU7OM9ZET7IyYpIVHfz8fjnONYmdbpov7sLoOlb9HrTySZ7tAItI1WqNsiONEQSIpPFkSB0rqXjoZdiGvXphk7TKbW5LbJwlFuNYViSWFcmSFW140Tzxtczr8Ze2uzWvkmqHTxOXVDuSedch8tOGTIttHS4yzyZzahMS_I9sCr823C9Z27zMC5BwDRdtwBWmNw1s3u9VSj7-XOT_5hbHR0izflnLx3Jcf56EX0jQP2ebHAxe95e3D_7nJU9gozcaHCfH8fDoIWwSwbOeNx7uQmt2Mc8ekQE3U4-rLcQgueZN-wut41DV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIcAAp2nXixJMDB9h2aVq6qsQiql4iO45hUZuturtCe-Mn8Ef4U_wSxnmtVuUhDj1FiSd27Blr5st4ZgCeRQaFCpX2Mi0yTxCq9WItAs9aRQa0IoWPLt55fxjtfBC7h-HhGvxoYmHK0-6NS7KKaXBZmopZ99TYpl6P381P9BcCdz7BF9I5sj5UuZcvvhJkm75Ktoi_z31_sD3q73h1VQEvC_2e9IwwiBFqzjOhuELjQjUFKm4Vxx5qYUNpDWYYK5fKXPo5SqPJyrGhNVYF1O0luEywiDus14_6yxMlWOK78peO4BjXXtHfffCqFjxn2p4_odm6aVeN6FILDm7Cjdp8Za8rebsFa3mxAVeqgpaLDbjWb-rH3Yaj96Nk-JZVOvN4wehyNh_PpuxjcpD4jIxlpuYurYH6NJlOTnLWxlGyKnaSlR38_PZ9XBgSQNOSL-7A6CLW_C6sF5Mivw8sJqVrDKqeslYQNFI2UJI61kpzGeTYgW6zsGlWZzl3xTaOU4d2HCtSx4p0yYoOvGjfOK0yfPyFdrPhVVrv9Wnqk5JHMvR61Py0babFdq4XVeSTOdFIDGTskvl14F7F2nawIEJCOFx0AFeY3hK4DOCrLcX4c5kJnDtEHyPN-mUjH8vv-vMkwlKC_jnbdHv_ze7y9sH_DPIErh5sDdJ3yXDvIVyn54FzwXG5Ceuzs3n-iCy5mX5c7h8G6QXv118ssVOv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STING+directly+recruits+WIPI2+for+autophagosome+formation+during+STING%E2%80%90induced+autophagy&rft.jtitle=The+EMBO+journal&rft.au=Wan%2C+Wei&rft.au=Qian%2C+Chuying&rft.au=Wang%2C+Qian&rft.au=Li%2C+Jin&rft.date=2023-04-17&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=8&rft_id=info:doi/10.15252%2Fembj.2022112387&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_embj_2022112387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon