STING directly recruits WIPI2 for autophagosome formation during STING‐induced autophagy
The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts...
Saved in:
Published in | The EMBO journal Vol. 42; no. 8; pp. e112387 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.04.2023
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.
Synopsis
STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation.
STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy.
STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy.
STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling.
Graphical Abstract
STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. |
---|---|
AbstractList | The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. image STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. Synopsis STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Graphical Abstract STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. Synopsis STING‐induced autophagy does not depend on ULK1 complex and PIK3C3 complex. Here, we report that STING directly interacts with WIPI2 and brings WIPI2 to STING‐positive vesicles. Our results reveal a mechanism by which WIPI2 is recruited to phagophore for LC3 lipidation and phagophore expansion during STING‐induced autophagosome formation. STING brings WIPI2 to STING‐positive vesicles for autophagosome formation during STING‐induced autophagy. STING and PI3P competitively bind to WIPI2, which leads to mutual inhibition between STING‐induced autophagy and PI3P‐dependent autophagy. STING‐WIPI2 interaction is required for autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS‐STING pathway‐induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING‐induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P‐binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING‐induced autophagy and canonical PI3P‐dependent autophagy. Furthermore, we show that the STING‐WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation. STING interacts with the autophagy protein WIPI2 to promote autophagy‐dependent clearance of cytoplasmic DNA and the attenuation of cGAS‐STING signaling. |
Author | Wan, Wei Qian, Chuying Zhang, Hongtao Shen, Han‐Ming Liu, Wei Wang, Qian Wang, Lei Zhou, Tianhua Li, Jin Pu, Maomao Huang, Yewei He, Zhengfu |
AuthorAffiliation | 4 Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto Hangzhou China 2 Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China 3 Faculty of Health Sciences University of Macau Macau China 1 Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China – name: 4 Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto Hangzhou China – name: 3 Faculty of Health Sciences University of Macau Macau China – name: 2 Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-6939-3402 surname: Wan fullname: Wan, Wei email: wanwei@zju.edu.cn organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 2 givenname: Chuying surname: Qian fullname: Qian, Chuying organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 3 givenname: Qian surname: Wang fullname: Wang, Qian organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 4 givenname: Jin orcidid: 0000-0002-5379-150X surname: Li fullname: Li, Jin organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 5 givenname: Hongtao surname: Zhang fullname: Zhang, Hongtao organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 6 givenname: Lei surname: Wang fullname: Wang, Lei organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 7 givenname: Maomao surname: Pu fullname: Pu, Maomao organization: Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine – sequence: 8 givenname: Yewei surname: Huang fullname: Huang, Yewei organization: Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine – sequence: 9 givenname: Zhengfu surname: He fullname: He, Zhengfu organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 10 givenname: Tianhua orcidid: 0000-0002-1791-2124 surname: Zhou fullname: Zhou, Tianhua organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine – sequence: 11 givenname: Han‐Ming orcidid: 0000-0001-7369-5227 surname: Shen fullname: Shen, Han‐Ming organization: Faculty of Health Sciences, University of Macau – sequence: 12 givenname: Wei orcidid: 0000-0002-8033-4718 surname: Liu fullname: Liu, Wei email: liuwei666@zju.edu.cn organization: Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36872914$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFPSsUiU03Kb5OYt9ISIhWpUxVfiRGQmJjObEz9SixBzsBzY5H4Bl5EjIz7ZRWAlZXsr9z7s85IHvOO0PIU6DHULCCvTBdtThmlDEAlqF4QCaQc5oyKoo9MqGMQ5oDlvvkIMYFpbRAAY_IfsZRsBLyCfnyaTZ9f55oG0zdt6tkLGGwfUw-Tz9OWdL4kKih98srNffRd2b90qneepfoIVg3TzYGv378tE4PtdE7fPWYPGxUG82T63pIZm_OZqdv08sP59PT15dpXYxzpjrXiBwrgDpXoFAXiHmOChoFSLHKm0I0GmssFc9YLphBoauM8aZodKOyQ_Jqa7scqs7o2rg-qFYug-1UWEmvrLz74-yVnPtvEihQXiKODkfXDsF_HUzsZWdjbdpWOeOHKJnATJTAqRjR5_fQhR-CG9eTDCkgz8oN9ezPkXaz3Jx9BOgWqIOPMZhmhwCVm2TlOll5m-wo4fckte03QYxL2fZfwpdb4XfbmtV_G8mzdycXd-SwlcflOm4Tbjf-a8vf9aHKcg |
CitedBy_id | crossref_primary_10_1016_j_prp_2024_155654 crossref_primary_10_1111_tra_12918 crossref_primary_10_3390_ijms25031828 crossref_primary_10_1038_s44319_024_00215_5 crossref_primary_10_2174_0113895575271977231115062803 crossref_primary_10_3389_fnagi_2024_1429005 crossref_primary_10_1080_15548627_2023_2202108 crossref_primary_10_3390_cells12192345 crossref_primary_10_1242_jcs_261028 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1016_j_bbcan_2024_189249 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1016_j_cytogfr_2024_07_003 crossref_primary_10_1016_j_tcb_2024_09_002 crossref_primary_10_15252_embr_202357265 crossref_primary_10_1016_j_bcp_2023_115938 crossref_primary_10_3389_fcvm_2024_1357343 crossref_primary_10_1080_15548627_2023_2287932 crossref_primary_10_1016_j_isci_2024_111594 crossref_primary_10_1016_j_neulet_2024_137700 crossref_primary_10_1111_liv_70063 crossref_primary_10_1016_j_tcb_2024_05_004 crossref_primary_10_1021_acsptsci_4c00310 crossref_primary_10_1016_j_immuni_2024_11_017 crossref_primary_10_1016_j_arr_2024_102602 crossref_primary_10_3390_cells13100825 crossref_primary_10_3390_molecules28073127 crossref_primary_10_3389_fphar_2024_1431894 crossref_primary_10_1038_s41419_024_07208_1 crossref_primary_10_1002_jmv_29403 crossref_primary_10_1016_j_celrep_2024_113886 crossref_primary_10_1016_j_cell_2024_05_031 |
Cites_doi | 10.15252/embj.201694491 10.1080/15548627.2020.1761653 10.1126/science.1244040 10.1038/ni.3510 10.7554/eLife.04135 10.1080/15548627.2019.1596484 10.15252/embj.201489363 10.1038/s41586-018-0705-y 10.1016/j.chom.2014.01.009 10.1083/jcb.201912098 10.1016/j.devcel.2011.06.024 10.15252/embj.2018100554 10.1016/j.molcel.2017.07.024 10.1042/BJ20140889 10.1080/15548627.2020.1752471 10.4161/auto.6.4.11863 10.1038/s41590-020-0730-5 10.1038/s41467-018-04759-8 10.1158/0008-5472.CAN-16-1404 10.1083/jcb.201811139 10.1038/nri3787 10.1016/j.molcel.2014.05.021 10.15252/embj.201797840 10.1016/bs.mie.2019.07.042 10.1126/science.aat1022 10.1016/j.celrep.2018.11.048 10.1038/ni.3558 10.1080/15548627.2016.1175693 10.15252/embj.2020104948 10.1038/s41418-018-0251-z 10.1016/j.molcel.2014.12.013 10.1016/j.molcel.2016.08.025 10.1126/scisignal.aah5054 10.1083/jcb.201901115 10.1038/cmi.2017.15 10.1016/j.celrep.2015.12.029 10.1016/j.molcel.2018.09.017 10.1016/j.cell.2012.06.040 10.1016/j.chom.2015.05.004 10.15252/embj.201797858 10.1038/s41586-021-03762-2 10.1038/s41586-019-1006-9 10.7554/eLife.00947 10.1016/j.molcel.2017.08.005 10.1016/j.cell.2012.11.001 10.1096/fj.202001607R 10.7554/eLife.21167 10.1083/jcb.202009128 10.1038/nature08476 10.1016/j.molcel.2017.09.020 10.1038/s41576-019-0151-1 10.1016/S0065-230X(08)60703-4 10.15252/embr.202050051 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023 The Authors 2023 The Authors. 2023 EMBO |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 EMBO |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.2022112387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Wei Wan et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC10106988 36872914 10_15252_embj_2022112387 EMBJ2022112387 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Young Elite Scientists Sponsorship Program by CAST grantid: 2019QNRC001 – fundername: Chao Kuang Piu High‐tech Development Fund grantid: 2020QN024 – fundername: MOE | Fundamental Research Funds for the Central Universities (Fundamental Research Fund for the Central Universities) grantid: 2020XZZX002‐16 funderid: 10.13039/501100012226 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2021YFA1300303 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31970694; 31790402; 92057203; 91754000; 32230023 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China (NSFC) funderid: 31970694; 31790402; 92057203; 91754000; 32230023 – fundername: Young Elite Scientists Sponsorship Program by CAST funderid: 2019QNRC001 – fundername: MOE | Fundamental Research Funds for the Central Universities (Fundamental Research Fund for the Central Universities) funderid: 2020XZZX002‐16 – fundername: MOST | National Key Research and Development Program of China (NKPs) funderid: 2021YFA1300303 – fundername: Chao Kuang Piu High‐tech Development Fund funderid: 2020QN024 – fundername: ; grantid: 31970694; 31790402; 92057203; 91754000; 32230023 – fundername: ; grantid: 2020XZZX002‐16 – fundername: ; grantid: 2021YFA1300303 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5207-d4d8868b11c4a1a8d588448a1fa1808b4f57fd8c89a632472e87db326f5fdfa3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:35:36 EDT 2025 Fri Jul 11 02:14:59 EDT 2025 Fri Jul 25 10:50:53 EDT 2025 Wed Feb 19 02:04:00 EST 2025 Thu Apr 24 22:52:38 EDT 2025 Tue Jul 01 01:47:24 EDT 2025 Wed Jan 22 16:24:10 EST 2025 Fri Feb 21 02:36:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | cGAS STING autophagy WIPI2 cytoplasmic DNA |
Language | English |
License | 2023 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5207-d4d8868b11c4a1a8d588448a1fa1808b4f57fd8c89a632472e87db326f5fdfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6939-3402 0000-0002-1791-2124 0000-0002-5379-150X 0000-0002-8033-4718 0000-0001-7369-5227 |
OpenAccessLink | https://www.embopress.org/action/downloadSupplement?doi=10.15252/embj.2022112387&file=embj2022112387.reviewer_comments.pdf |
PMID | 36872914 |
PQID | 2801863907 |
PQPubID | 35985 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10106988 proquest_miscellaneous_2783791607 proquest_journals_2801863907 pubmed_primary_36872914 crossref_primary_10_15252_embj_2022112387 crossref_citationtrail_10_15252_embj_2022112387 wiley_primary_10_15252_embj_2022112387_EMBJ2022112387 springer_journals_10_15252_embj_2022112387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 17 April 2023 |
PublicationDateYYYYMMDD | 2023-04-17 |
PublicationDate_xml | – month: 04 year: 2023 text: 17 April 2023 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Xia, Konno, Barber (CR49) 2016; 76 Fletcher, Ulferts, Jacquin, Veith, Gammoh, Arasteh, Mayer, Carding, Wileman, Beale (CR10) 2018; 37 Spada, Yamazaki, Vanpouille‐Box (CR37) 2019; 629 Chu, Tu, Yang, Wu, Repa, Yan (CR4) 2021; 596 Dudley, Cabodevilla, Makar, Sztacho, Michelberger, Marsh, Houston, Martens, Jiang, Gammoh (CR8) 2019; 38 Ge, Melville, Zhang, Schekman (CR12) 2013; 2 Gui, Yang, Li, Tan, Shi, Li, Du, Chen (CR15) 2019; 567 Valverde, Yu, Boggavarapu, Kumar, Lees, Walz, Reinisch, Melia (CR42) 2019; 218 Yang, Wang, Ketkar, Ma, Yang, Cui, Geng, Mordue, Fujimoto, Cheng (CR51) 2018; 9 Ramanjulu, Pesiridis, Yang, Concha, Singhaus, Zhang, Tran, Moore, Lehmann, Eberl (CR35) 2018; 564 Xia, Konno, Ahn, Barber (CR48) 2016; 14 Ishikawa, Ma, Barber (CR17) 2009; 461 Zhang, Nandakumar, Reinert, Huang, Laustsen, Gao, Sun, Jensen, Troldborg, Assil (CR52) 2020; 21 Bago, Malik, Munson, Prescott, Davies, Sommer, Shpiro, Ward, Cross, Ganley (CR1) 2014; 463 Jena, Mehto, Nath, Chauhan, Sahu, Dhar, Das, Kolapalli, Murmu, Jain (CR19) 2020; 21 Luo, Li, Li, Lian, Yang, Zhong, Shu (CR27) 2016; 17 Thurston, Boyle, Allen, Ravenhill, Karpiyevich, Bloor, Kaul, Noad, Foeglein, Matthews (CR41) 2016; 35 Xu, Wan, Shou, Huang, You, Shou, Wang, Zhou, Liu (CR50) 2016; 12 Chen, Meng, Qin, Liang, Tan, He, Zhou, Chen, Huang, Wang (CR2) 2016; 64 Fracchiolla, Chang, Hurley, Martens (CR11) 2020; 219 Prabakaran, Bodda, Krapp, Zhang, Christensen, Sun, Reinert, Cai, Jensen, Skouboe (CR34) 2018; 37 Ge, Zhang, Schekman (CR13) 2014; 3 Liang, Seo, Choi, Kwak, Ge, Rodgers, Shi, Leslie, Hopfner, Ha (CR23) 2014; 15 Li, Wu, Gao, Wang, Sun, Chen (CR22) 2013; 341 Fischer, Wang, Padman, Lazarou, Youle (CR9) 2020; 219 Huang, Xu, Wan, Shou, Qian, You, Liu, Chang, Zhou, Lippincott‐Schwartz (CR16) 2015; 57 Sui, Zhou, Imamichi, Jiao, Sherman, Lane, Imamichi (CR39) 2017; 10 Watson, Manzanillo, Cox (CR45) 2012; 150 Watson, Bell, MacDuff, Kimmey, Diner, Olivas, Vance, Stallings, Virgin, Cox (CR46) 2015; 17 Dooley, Razi, Polson, Girardin, Wilson, Tooze (CR6) 2014; 55 Liu, Wu, Wang, Li, Tian, Siraj, Sehgal, Wang, Wang, Shang (CR24) 2019; 26 Motwani, Pesiridis, Fitzgerald (CR30) 2019; 20 Davis, Wang, Zhu, Stahmer, Lakshminarayan, Ghassemian, Jiang, Miller, Ferro‐Novick (CR5) 2016; 5 Itakura, Kishi‐Itakura, Mizushima (CR18) 2012; 151 Grant (CR14) 1998; 72 Niso‐Santano, Malik, Pietrocola, Bravo‐San Pedro, Marino, Cianfanelli, Ben‐Younes, Troncoso, Markaki, Sica (CR31) 2015; 34 Sun, Zhang, Jiang, Pan, Tan, Yu, Guo, Yin, Shen, Shu (CR40) 2018; 25 Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (CR53) 2017; 67 Shen, Shi, Liu, Su, Huang, Zhang, Peng, Zhou, Sun, Wan (CR36) 2021; 17 Jiang, Xia, Hu, Sun, Yan, Lei, Shu, Guo, Liu (CR20) 2018; 15 Du, Chen (CR7) 2018; 361 Ma, Serrano, Davis, Prigge, Ridge (CR28) 2020; 34 Judith, Jefferies, Boeing, Frith, Snijders, Tooze (CR21) 2019; 218 Lu, Yi, Gubas, Wang, Wu, Ren, Wu, Shi, Ouyang, Tan (CR26) 2019; 15 Wan, You, Xu, Zhou, Guan, Peng, Wong, Su, Zhou, Xia (CR43) 2017; 68 Chen, Sun, Chen (CR3) 2016; 17 Lu, Yang, Huang, Hu, Guo, Wu, Lin, Kovacs, Yu, Zhang (CR25) 2011; 21 Wan, You, Zhou, Xu, Peng, Zhou, Yi, Shi, Liu (CR44) 2018; 72 Ohnstad, Delgado, North, Nasa, Kettenbach, Schultz, Shoemaker (CR32) 2020; 39 Wu, Jin, Liu, Zhang, Ma, Zhao, Yang, Li, Cui (CR47) 2021; 17 McNab, Mayer‐Barber, Sher, Wack, O'Garra (CR29) 2015; 15 Su, Yang, Wang, Shen, Huang, Peng, Zhang, Wan, Wong, Sun (CR38) 2017; 67 Polson, de Lartigue, Rigden, Reedijk, Urbe, Clague, Tooze (CR33) 2010; 6 2015; 57 2018; 361 2015; 34 2015; 15 2015; 17 2016b; 17 2013; 2 2019; 629 2018; 564 2019; 15 2017; 68 2016b; 76 2017; 67 2020; 39 2019; 38 2019; 567 2020; 34 2013; 341 2016; 17 2016; 35 2016a; 64 2018; 25 2016; 12 2012; 150 2016; 5 2012; 151 2018; 9 2014; 3 2019; 20 2021; 596 2021; 17 2017; 10 2019; 26 2014; 15 2011; 21 2019; 218 1998; 72 2018; 72 2009; 461 2020; 21 2014; 463 2016a; 14 2020; 219 2014; 55 2018; 37 2018; 15 2010; 6 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 34 start-page: 13156 year: 2020 end-page: 13170 ident: CR28 article-title: The cGAS‐STING pathway: the role of self‐DNA sensing in inflammatory lung disease publication-title: FASEB J – volume: 151 start-page: 1256 year: 2012 end-page: 1269 ident: CR18 article-title: The hairpin‐type tail‐anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell – volume: 15 start-page: 858 year: 2018 end-page: 867 ident: CR20 article-title: IFITM3 inhibits virus‐triggered induction of type I interferon by mediating autophagosome‐dependent degradation of IRF3 publication-title: Cell Mol Immunol – volume: 629 start-page: 17 year: 2019 end-page: 33 ident: CR37 article-title: Detection and quantification of cytoplasmic DNA publication-title: Methods Enzymol – volume: 12 start-page: 1118 year: 2016 end-page: 1128 ident: CR50 article-title: TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters publication-title: Autophagy – volume: 37 year: 2018 ident: CR10 article-title: The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes publication-title: EMBO J – volume: 68 start-page: 323 year: 2017 end-page: 335 ident: CR43 article-title: mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis publication-title: Mol Cell – volume: 72 start-page: 303 year: 2018 end-page: 315 ident: CR44 article-title: mTORC1‐regulated and HUWE1‐mediated WIPI2 degradation controls autophagy flux publication-title: Mol Cell – volume: 72 start-page: 197 year: 1998 end-page: 233 ident: CR14 article-title: Ara‐C: cellular and molecular pharmacology publication-title: Adv Cancer Res – volume: 21 start-page: 343 year: 2011 end-page: 357 ident: CR25 article-title: The WD40 repeat PtdIns(3)P‐binding protein EPG‐6 regulates progression of omegasomes to autophagosomes publication-title: Dev Cell – volume: 64 start-page: 105 year: 2016 end-page: 119 ident: CR2 article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses publication-title: Mol Cell – volume: 2 year: 2013 ident: CR12 article-title: The ER‐Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis publication-title: Elife – volume: 596 start-page: 570 year: 2021 end-page: 575 ident: CR4 article-title: Tonic prime‐boost of STING signalling mediates Niemann‐pick disease type C publication-title: Nature – volume: 15 start-page: 87 year: 2015 end-page: 103 ident: CR29 article-title: Type I interferons in infectious disease publication-title: Nat Rev Immunol – volume: 218 start-page: 1634 year: 2019 end-page: 1652 ident: CR21 article-title: ATG9A shapes the forming autophagosome through arfaptin 2 and phosphatidylinositol 4‐kinase III beta publication-title: J Cell Biol – volume: 67 start-page: 907 year: 2017 end-page: 921 ident: CR38 article-title: VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy publication-title: Mol Cell – volume: 17 start-page: 811 year: 2015 end-page: 819 ident: CR46 article-title: The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy publication-title: Cell Host Microbe – volume: 17 start-page: 1379 year: 2021 end-page: 1392 ident: CR47 article-title: Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression publication-title: Autophagy – volume: 14 start-page: 282 year: 2016 end-page: 297 ident: CR48 article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis publication-title: Cell Rep – volume: 567 start-page: 262 year: 2019 end-page: 266 ident: CR15 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature – volume: 5 year: 2016 ident: CR5 article-title: Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation publication-title: Elife – volume: 15 start-page: 1917 year: 2019 end-page: 1934 ident: CR26 article-title: Suppression of autophagy during mitosis via CUL4‐RING ubiquitin ligases‐mediated WIPI2 polyubiquitination and proteasomal degradation publication-title: Autophagy – volume: 35 start-page: 1779 year: 2016 end-page: 1792 ident: CR41 article-title: Recruitment of TBK1 to cytosol‐invading salmonella induces WIPI2‐dependent antibacterial autophagy publication-title: EMBO J – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: CR17 article-title: STING regulates intracellular DNA‐mediated, type I interferon‐dependent innate immunity publication-title: Nature – volume: 26 start-page: 1735 year: 2019 end-page: 1749 ident: CR24 article-title: STING directly activates autophagy to tune the innate immune response publication-title: Cell Death Differ – volume: 218 start-page: 1787 year: 2019 end-page: 1798 ident: CR42 article-title: ATG2 transports lipids to promote autophagosome biogenesis publication-title: J Cell Biol – volume: 39 year: 2020 ident: CR32 article-title: Receptor‐mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy publication-title: EMBO J – volume: 463 start-page: 413 year: 2014 end-page: 427 ident: CR1 article-title: Characterization of VPS34‐IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3‐phosphate‐binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3‐kinase publication-title: Biochem J – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: CR3 article-title: Regulation and function of the cGAS‐STING pathway of cytoplasmic DNA sensing publication-title: Nat Immunol – volume: 219 year: 2020 ident: CR9 article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain publication-title: J Cell Biol – volume: 3 year: 2014 ident: CR13 article-title: Phosphatidylinositol 3‐kinase and COPII generate LC3 lipidation vesicles from the ER‐Golgi intermediate compartment publication-title: Elife – volume: 361 start-page: 704 year: 2018 end-page: 709 ident: CR7 article-title: DNA‐induced liquid phase condensation of cGAS activates innate immune signaling publication-title: Science – volume: 20 start-page: 657 year: 2019 end-page: 674 ident: CR30 article-title: DNA sensing by the cGAS‐STING pathway in health and disease publication-title: Nat Rev Genet – volume: 57 start-page: 456 year: 2015 end-page: 466 ident: CR16 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol Cell – volume: 25 start-page: 3086 year: 2018 end-page: 3098 ident: CR40 article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking publication-title: Cell Rep – volume: 37 year: 2018 ident: CR34 article-title: Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1 publication-title: EMBO J – volume: 564 start-page: 439 year: 2018 end-page: 443 ident: CR35 article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity publication-title: Nature – volume: 9 start-page: 2329 year: 2018 ident: CR51 article-title: UBXN3B positively regulates STING‐mediated antiviral immune responses publication-title: Nat Commun – volume: 10 start-page: eaah5054 year: 2017 ident: CR39 article-title: STING is an essential mediator of the Ku70‐mediated production of IFN‐gimel 1 in response to exogenous DNA publication-title: Sci Signal – volume: 15 start-page: 228 year: 2014 end-page: 238 ident: CR23 article-title: Crosstalk between the cGAS DNA sensor and beclin‐1 autophagy protein shapes innate antimicrobial immune responses publication-title: Cell Host Microbe – volume: 17 start-page: 1057 year: 2016 end-page: 1066 ident: CR27 article-title: iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING publication-title: Nat Immunol – volume: 17 start-page: 1157 year: 2021 end-page: 1169 ident: CR36 article-title: Acetylation of STX17 (syntaxin 17) controls autophagosome maturation publication-title: Autophagy – volume: 67 start-page: 974 year: 2017 end-page: 989 ident: CR53 article-title: The ER‐localized transmembrane protein EPG‐3/VMP1 regulates SERCA activity to control ER‐isolation membrane contacts for autophagosome formation publication-title: Mol Cell – volume: 21 start-page: 868 year: 2020 end-page: 879 ident: CR52 article-title: STEEP mediates STING ER exit and activation of signaling publication-title: Nat Immunol – volume: 38 year: 2019 ident: CR8 article-title: Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy publication-title: EMBO J – volume: 34 start-page: 1025 year: 2015 end-page: 1041 ident: CR31 article-title: Unsaturated fatty acids induce non‐canonical autophagy publication-title: EMBO J – volume: 150 start-page: 803 year: 2012 end-page: 815 ident: CR45 article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway publication-title: Cell – volume: 21 year: 2020 ident: CR19 article-title: Autoimmunity gene IRGM suppresses cGAS‐STING and RIG‐I‐MAVS signaling to control interferon response publication-title: EMBO Rep – volume: 6 start-page: 506 year: 2010 end-page: 522 ident: CR33 article-title: Mammalian Atg18 (WIPI2) localizes to omegasome‐anchored phagophores and positively regulates LC3 lipidation publication-title: Autophagy – volume: 341 start-page: 1390 year: 2013 end-page: 1394 ident: CR22 article-title: Pivotal roles of cGAS‐cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science – volume: 55 start-page: 238 year: 2014 end-page: 252 ident: CR6 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1 publication-title: Mol Cell – volume: 219 year: 2020 ident: CR11 article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy publication-title: J Cell Biol – volume: 76 start-page: 6747 year: 2016 end-page: 6759 ident: CR49 article-title: Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis publication-title: Cancer Res – volume: 72 start-page: 197 year: 1998 end-page: 233 article-title: Ara‐C: cellular and molecular pharmacology publication-title: Adv Cancer Res – volume: 20 start-page: 657 year: 2019 end-page: 674 article-title: DNA sensing by the cGAS‐STING pathway in health and disease publication-title: Nat Rev Genet – volume: 38 year: 2019 article-title: Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy publication-title: EMBO J – volume: 34 start-page: 13156 year: 2020 end-page: 13170 article-title: The cGAS‐STING pathway: the role of self‐DNA sensing in inflammatory lung disease publication-title: FASEB J – volume: 461 start-page: 788 year: 2009 end-page: 792 article-title: STING regulates intracellular DNA‐mediated, type I interferon‐dependent innate immunity publication-title: Nature – volume: 564 start-page: 439 year: 2018 end-page: 443 article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity publication-title: Nature – volume: 17 start-page: 1057 year: 2016 end-page: 1066 article-title: iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING publication-title: Nat Immunol – volume: 2 year: 2013 article-title: The ER‐Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis publication-title: Elife – volume: 15 start-page: 1917 year: 2019 end-page: 1934 article-title: Suppression of autophagy during mitosis via CUL4‐RING ubiquitin ligases‐mediated WIPI2 polyubiquitination and proteasomal degradation publication-title: Autophagy – volume: 14 start-page: 282 year: 2016a end-page: 297 article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis publication-title: Cell Rep – volume: 15 start-page: 87 year: 2015 end-page: 103 article-title: Type I interferons in infectious disease publication-title: Nat Rev Immunol – volume: 37 year: 2018 article-title: The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes publication-title: EMBO J – volume: 596 start-page: 570 year: 2021 end-page: 575 article-title: Tonic prime‐boost of STING signalling mediates Niemann‐pick disease type C publication-title: Nature – volume: 218 start-page: 1787 year: 2019 end-page: 1798 article-title: ATG2 transports lipids to promote autophagosome biogenesis publication-title: J Cell Biol – volume: 12 start-page: 1118 year: 2016 end-page: 1128 article-title: TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters publication-title: Autophagy – volume: 341 start-page: 1390 year: 2013 end-page: 1394 article-title: Pivotal roles of cGAS‐cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science – volume: 629 start-page: 17 year: 2019 end-page: 33 article-title: Detection and quantification of cytoplasmic DNA publication-title: Methods Enzymol – volume: 5 year: 2016 article-title: Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation publication-title: Elife – volume: 10 start-page: eaah5054 year: 2017 article-title: STING is an essential mediator of the Ku70‐mediated production of IFN‐gimel 1 in response to exogenous DNA publication-title: Sci Signal – volume: 219 year: 2020 article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy publication-title: J Cell Biol – volume: 9 start-page: 2329 year: 2018 article-title: UBXN3B positively regulates STING‐mediated antiviral immune responses publication-title: Nat Commun – volume: 219 year: 2020 article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain publication-title: J Cell Biol – volume: 21 start-page: 343 year: 2011 end-page: 357 article-title: The WD40 repeat PtdIns(3)P‐binding protein EPG‐6 regulates progression of omegasomes to autophagosomes publication-title: Dev Cell – volume: 17 start-page: 1379 year: 2021 end-page: 1392 article-title: Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression publication-title: Autophagy – volume: 26 start-page: 1735 year: 2019 end-page: 1749 article-title: STING directly activates autophagy to tune the innate immune response publication-title: Cell Death Differ – volume: 17 start-page: 811 year: 2015 end-page: 819 article-title: The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy publication-title: Cell Host Microbe – volume: 67 start-page: 907 year: 2017 end-page: 921 article-title: VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy publication-title: Mol Cell – volume: 463 start-page: 413 year: 2014 end-page: 427 article-title: Characterization of VPS34‐IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3‐phosphate‐binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3‐kinase publication-title: Biochem J – volume: 39 year: 2020 article-title: Receptor‐mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy publication-title: EMBO J – volume: 17 start-page: 1157 year: 2021 end-page: 1169 article-title: Acetylation of STX17 (syntaxin 17) controls autophagosome maturation publication-title: Autophagy – volume: 218 start-page: 1634 year: 2019 end-page: 1652 article-title: ATG9A shapes the forming autophagosome through arfaptin 2 and phosphatidylinositol 4‐kinase III beta publication-title: J Cell Biol – volume: 15 start-page: 228 year: 2014 end-page: 238 article-title: Crosstalk between the cGAS DNA sensor and beclin‐1 autophagy protein shapes innate antimicrobial immune responses publication-title: Cell Host Microbe – volume: 25 start-page: 3086 year: 2018 end-page: 3098 article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking publication-title: Cell Rep – volume: 21 start-page: 868 year: 2020 end-page: 879 article-title: STEEP mediates STING ER exit and activation of signaling publication-title: Nat Immunol – volume: 3 year: 2014 article-title: Phosphatidylinositol 3‐kinase and COPII generate LC3 lipidation vesicles from the ER‐Golgi intermediate compartment publication-title: Elife – volume: 35 start-page: 1779 year: 2016 end-page: 1792 article-title: Recruitment of TBK1 to cytosol‐invading salmonella induces WIPI2‐dependent antibacterial autophagy publication-title: EMBO J – volume: 150 start-page: 803 year: 2012 end-page: 815 article-title: Extracellular DNA targets bacteria for autophagy by activating the host DNA‐sensing pathway publication-title: Cell – volume: 55 start-page: 238 year: 2014 end-page: 252 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1 publication-title: Mol Cell – volume: 361 start-page: 704 year: 2018 end-page: 709 article-title: DNA‐induced liquid phase condensation of cGAS activates innate immune signaling publication-title: Science – volume: 567 start-page: 262 year: 2019 end-page: 266 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature – volume: 72 start-page: 303 year: 2018 end-page: 315 article-title: mTORC1‐regulated and HUWE1‐mediated WIPI2 degradation controls autophagy flux publication-title: Mol Cell – volume: 15 start-page: 858 year: 2018 end-page: 867 article-title: IFITM3 inhibits virus‐triggered induction of type I interferon by mediating autophagosome‐dependent degradation of IRF3 publication-title: Cell Mol Immunol – volume: 34 start-page: 1025 year: 2015 end-page: 1041 article-title: Unsaturated fatty acids induce non‐canonical autophagy publication-title: EMBO J – volume: 6 start-page: 506 year: 2010 end-page: 522 article-title: Mammalian Atg18 (WIPI2) localizes to omegasome‐anchored phagophores and positively regulates LC3 lipidation publication-title: Autophagy – volume: 67 start-page: 974 year: 2017 end-page: 989 article-title: The ER‐localized transmembrane protein EPG‐3/VMP1 regulates SERCA activity to control ER‐isolation membrane contacts for autophagosome formation publication-title: Mol Cell – volume: 64 start-page: 105 year: 2016a end-page: 119 article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses publication-title: Mol Cell – volume: 21 year: 2020 article-title: Autoimmunity gene IRGM suppresses cGAS‐STING and RIG‐I‐MAVS signaling to control interferon response publication-title: EMBO Rep – volume: 68 start-page: 323 year: 2017 end-page: 335 article-title: mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis publication-title: Mol Cell – volume: 37 year: 2018 article-title: Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1 publication-title: EMBO J – volume: 76 start-page: 6747 year: 2016b end-page: 6759 article-title: Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis publication-title: Cancer Res – volume: 17 start-page: 1142 year: 2016b end-page: 1149 article-title: Regulation and function of the cGAS‐STING pathway of cytoplasmic DNA sensing publication-title: Nat Immunol – volume: 151 start-page: 1256 year: 2012 end-page: 1269 article-title: The hairpin‐type tail‐anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell – volume: 57 start-page: 456 year: 2015 end-page: 466 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol Cell – ident: e_1_2_9_42_1 doi: 10.15252/embj.201694491 – ident: e_1_2_9_48_1 doi: 10.1080/15548627.2020.1761653 – ident: e_1_2_9_23_1 doi: 10.1126/science.1244040 – ident: e_1_2_9_28_1 doi: 10.1038/ni.3510 – ident: e_1_2_9_14_1 doi: 10.7554/eLife.04135 – ident: e_1_2_9_27_1 doi: 10.1080/15548627.2019.1596484 – ident: e_1_2_9_32_1 doi: 10.15252/embj.201489363 – ident: e_1_2_9_36_1 doi: 10.1038/s41586-018-0705-y – ident: e_1_2_9_24_1 doi: 10.1016/j.chom.2014.01.009 – ident: e_1_2_9_12_1 doi: 10.1083/jcb.201912098 – ident: e_1_2_9_26_1 doi: 10.1016/j.devcel.2011.06.024 – ident: e_1_2_9_9_1 doi: 10.15252/embj.2018100554 – ident: e_1_2_9_39_1 doi: 10.1016/j.molcel.2017.07.024 – ident: e_1_2_9_2_1 doi: 10.1042/BJ20140889 – ident: e_1_2_9_37_1 doi: 10.1080/15548627.2020.1752471 – ident: e_1_2_9_34_1 doi: 10.4161/auto.6.4.11863 – ident: e_1_2_9_53_1 doi: 10.1038/s41590-020-0730-5 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-018-04759-8 – ident: e_1_2_9_50_1 doi: 10.1158/0008-5472.CAN-16-1404 – ident: e_1_2_9_43_1 doi: 10.1083/jcb.201811139 – ident: e_1_2_9_30_1 doi: 10.1038/nri3787 – ident: e_1_2_9_7_1 doi: 10.1016/j.molcel.2014.05.021 – ident: e_1_2_9_11_1 doi: 10.15252/embj.201797840 – ident: e_1_2_9_38_1 doi: 10.1016/bs.mie.2019.07.042 – ident: e_1_2_9_8_1 doi: 10.1126/science.aat1022 – ident: e_1_2_9_41_1 doi: 10.1016/j.celrep.2018.11.048 – ident: e_1_2_9_4_1 doi: 10.1038/ni.3558 – ident: e_1_2_9_51_1 doi: 10.1080/15548627.2016.1175693 – ident: e_1_2_9_33_1 doi: 10.15252/embj.2020104948 – ident: e_1_2_9_25_1 doi: 10.1038/s41418-018-0251-z – ident: e_1_2_9_17_1 doi: 10.1016/j.molcel.2014.12.013 – ident: e_1_2_9_3_1 doi: 10.1016/j.molcel.2016.08.025 – ident: e_1_2_9_40_1 doi: 10.1126/scisignal.aah5054 – ident: e_1_2_9_22_1 doi: 10.1083/jcb.201901115 – ident: e_1_2_9_21_1 doi: 10.1038/cmi.2017.15 – ident: e_1_2_9_49_1 doi: 10.1016/j.celrep.2015.12.029 – ident: e_1_2_9_45_1 doi: 10.1016/j.molcel.2018.09.017 – ident: e_1_2_9_46_1 doi: 10.1016/j.cell.2012.06.040 – ident: e_1_2_9_47_1 doi: 10.1016/j.chom.2015.05.004 – ident: e_1_2_9_35_1 doi: 10.15252/embj.201797858 – ident: e_1_2_9_5_1 doi: 10.1038/s41586-021-03762-2 – ident: e_1_2_9_16_1 doi: 10.1038/s41586-019-1006-9 – ident: e_1_2_9_13_1 doi: 10.7554/eLife.00947 – ident: e_1_2_9_54_1 doi: 10.1016/j.molcel.2017.08.005 – ident: e_1_2_9_19_1 doi: 10.1016/j.cell.2012.11.001 – ident: e_1_2_9_29_1 doi: 10.1096/fj.202001607R – ident: e_1_2_9_6_1 doi: 10.7554/eLife.21167 – ident: e_1_2_9_10_1 doi: 10.1083/jcb.202009128 – ident: e_1_2_9_18_1 doi: 10.1038/nature08476 – ident: e_1_2_9_44_1 doi: 10.1016/j.molcel.2017.09.020 – ident: e_1_2_9_31_1 doi: 10.1038/s41576-019-0151-1 – ident: e_1_2_9_15_1 doi: 10.1016/S0065-230X(08)60703-4 – ident: e_1_2_9_20_1 doi: 10.15252/embr.202050051 |
SSID | ssj0005871 |
Score | 2.5655043 |
Snippet | The cGAS‐STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular... The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e112387 |
SubjectTerms | Attenuation Autophagosomes - metabolism Autophagy Autophagy - physiology Binding cGAS Clearances cytoplasmic DNA Deoxyribonucleic acid DNA DNA - metabolism EMBO07 EMBO19 Humans Life Sciences Membrane Proteins - genetics Membrane Proteins - metabolism Nucleotidyltransferases - metabolism Signal transduction Signaling STING Vesicles WIPI2 |
Title | STING directly recruits WIPI2 for autophagosome formation during STING‐induced autophagy |
URI | https://link.springer.com/article/10.15252/embj.2022112387 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022112387 https://www.ncbi.nlm.nih.gov/pubmed/36872914 https://www.proquest.com/docview/2801863907 https://www.proquest.com/docview/2783791607 https://pubmed.ncbi.nlm.nih.gov/PMC10106988 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEaIXBOW19CEjcQEp6jqx48mxrPrYSq2QWETFJRrHcSlqs1V397A3fgK_kV_COMlmWZWHOEWWHSf22Prm83hmAF6nDhVpslFhVREpZrVRZlUSeU-sQBMDPgZ_55PT9OijOj7TZ-15R_CF-dV-r2Md75ZX9ivTuJiJCqOLuQv3tExMSNIwSAfLyxxYU6v6NEVJzFqD5O96WAWgW1rl7cuRnYV0VX-tAejgETxsNUex14j6Mdwpqw243-SSnG_Ag8EiddsT-PxhNDw9FA1cXc4FP25mF9OJ-DR8P4wF66mCZiGiAJ2PJ-OrUnQujKJxWxR1Bz--fWfGzrJ3XfP5Uxgd7I8GR1GbRCEqdNw3kVMOMUUrZaFIErrgmaqQpCeJfbTKa-MdFphRiNxu4hKNs6zUee2dp-QZrFXjqnwBImO8cw6pT94rZiXkEzLcsSUrTVJiD3YXE5sXbYDxkOfiMg9EI4giD6LIl6LowZvujesmuMZf2m4tZJW322ySx4yvyDpWn6tfddU82cHqQVU5nnEbwxw8C3H0evC8EW33sSRFJhdS9QBXhN41CMG3V2uqiy91EG4ZyHSGPOq3i_Wx_K8_D0LXK-ifo833T94dL4sv_-cjm7DOhSSYvKTZgrXpzazcZs1panfqTbMT0Ev_BOlXEDo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKi9oFJ-GiiwSHAAyWrWXtvjA4dQWuK0iZAaRMXF2vV6Iah1UJMI5cYj9BV4NZ6EWf9FUfkRh54sa9br3Z1Zz3yenRmAZ4FGIX2pnFSJ1BGEap1ICc8xRpIBLUnho413HgyD3nvRP_VP1-BHHQtTnHavXZLFl7qq0ePuZefqCwE6lyAL6ZmwOkh5lC2-EUybvorfEE-fu-7hwWi_51SVBJzUdzuho4VGDFBxngrJJWobnilQciM5dlAJ44dGY4qRtOnLQzfDUCuybIxvtJEedXsD1tEP0G_BerfbP-kvz5FggeqKHzmCY1T5Qn835FXdd8WgvXous3HOrprOhe473IJbldHKuqWU3Ya1LN-Gm2UZy8U2bOzXVePuwMeTUTx8y0pNebZgdLmYj2dT9iF-F7uMTGQm5zaZgfw0mU7OM9ZET7IyYpIVHfz8fjnONYmdbpov7sLoOlb9HrTySZ7tAItI1WqNsiONEQSIpPFkSB0rqXjoZdiGvXphk7TKbW5LbJwlFuNYViSWFcmSFW140Tzxtczr8Ze2uzWvkmqHTxOXVDuSedch8tOGTIttHS4yzyZzahMS_I9sCr823C9Z27zMC5BwDRdtwBWmNw1s3u9VSj7-XOT_5hbHR0izflnLx3Jcf56EX0jQP2ebHAxe95e3D_7nJU9gozcaHCfH8fDoIWwSwbOeNx7uQmt2Mc8ekQE3U4-rLcQgueZN-wut41DV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIcAAp2nXixJMDB9h2aVq6qsQiql4iO45hUZuturtCe-Mn8Ef4U_wSxnmtVuUhDj1FiSd27Blr5st4ZgCeRQaFCpX2Mi0yTxCq9WItAs9aRQa0IoWPLt55fxjtfBC7h-HhGvxoYmHK0-6NS7KKaXBZmopZ99TYpl6P381P9BcCdz7BF9I5sj5UuZcvvhJkm75Ktoi_z31_sD3q73h1VQEvC_2e9IwwiBFqzjOhuELjQjUFKm4Vxx5qYUNpDWYYK5fKXPo5SqPJyrGhNVYF1O0luEywiDus14_6yxMlWOK78peO4BjXXtHfffCqFjxn2p4_odm6aVeN6FILDm7Cjdp8Za8rebsFa3mxAVeqgpaLDbjWb-rH3Yaj96Nk-JZVOvN4wehyNh_PpuxjcpD4jIxlpuYurYH6NJlOTnLWxlGyKnaSlR38_PZ9XBgSQNOSL-7A6CLW_C6sF5Mivw8sJqVrDKqeslYQNFI2UJI61kpzGeTYgW6zsGlWZzl3xTaOU4d2HCtSx4p0yYoOvGjfOK0yfPyFdrPhVVrv9Wnqk5JHMvR61Py0babFdq4XVeSTOdFIDGTskvl14F7F2nawIEJCOFx0AFeY3hK4DOCrLcX4c5kJnDtEHyPN-mUjH8vv-vMkwlKC_jnbdHv_ze7y9sH_DPIErh5sDdJ3yXDvIVyn54FzwXG5Ceuzs3n-iCy5mX5c7h8G6QXv118ssVOv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STING+directly+recruits+WIPI2+for+autophagosome+formation+during+STING%E2%80%90induced+autophagy&rft.jtitle=The+EMBO+journal&rft.au=Wan%2C+Wei&rft.au=Qian%2C+Chuying&rft.au=Wang%2C+Qian&rft.au=Li%2C+Jin&rft.date=2023-04-17&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=8&rft_id=info:doi/10.15252%2Fembj.2022112387&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_embj_2022112387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |