Optimal temperature for malaria transmission is dramatically lower than previously predicted

The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C....

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 16; no. 1; pp. 22 - 30
Main Authors Mordecai, Erin A., Paaijmans, Krijn P., Johnson, Leah R., Balzer, Christian, Ben-Horin, Tal, de Moor, Emily, McNally, Amy, Pawar, Samraat, Ryan, Sadie J., Smith, Thomas C., Lafferty, Kevin D.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2013
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal‐response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
AbstractList The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 degree C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 degree C (6 degree C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 degree C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 degree C optimum and the decline above 28 degree C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. [PUBLICATION ABSTRACT]
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in A frica validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal‐response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
Author Paaijmans, Krijn P.
Smith, Thomas C.
Balzer, Christian
Ryan, Sadie J.
Johnson, Leah R.
Pawar, Samraat
Ben-Horin, Tal
Lafferty, Kevin D.
McNally, Amy
Mordecai, Erin A.
de Moor, Emily
Author_xml – sequence: 1
  givenname: Erin A.
  surname: Mordecai
  fullname: Mordecai, Erin A.
  email: Mordecai@lifesci.ucsb.edu
  organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA
– sequence: 2
  givenname: Krijn P.
  surname: Paaijmans
  fullname: Paaijmans, Krijn P.
  organization: Department of Entomology, Merkle Lab, Center for Infectious Disease Dynamics, Penn State University, University Park, PA, 16802, USA
– sequence: 3
  givenname: Leah R.
  surname: Johnson
  fullname: Johnson, Leah R.
  organization: Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, IL, 60637, Chicago, USA
– sequence: 4
  givenname: Christian
  surname: Balzer
  fullname: Balzer, Christian
  organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA
– sequence: 5
  givenname: Tal
  surname: Ben-Horin
  fullname: Ben-Horin, Tal
  organization: Bren School of Environmental Science and Management, University of California, CA, 93106, Santa Barbara, USA
– sequence: 6
  givenname: Emily
  surname: de Moor
  fullname: de Moor, Emily
  organization: Geography Department, University of California, CA, 93106, Santa Barbara, USA
– sequence: 7
  givenname: Amy
  surname: McNally
  fullname: McNally, Amy
  organization: Geography Department, University of California, CA, 93106, Santa Barbara, USA
– sequence: 8
  givenname: Samraat
  surname: Pawar
  fullname: Pawar, Samraat
  organization: Department of Biomathematics, David Geffen School of Medicine, University of California, CA, 90095-1766, Los Angeles, USA
– sequence: 9
  givenname: Sadie J.
  surname: Ryan
  fullname: Ryan, Sadie J.
  organization: Department of Environmental and Forest Biology and Division of Environmental Science, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, NY, 13210, Syracuse, USA
– sequence: 10
  givenname: Thomas C.
  surname: Smith
  fullname: Smith, Thomas C.
  organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA
– sequence: 11
  givenname: Kevin D.
  surname: Lafferty
  fullname: Lafferty, Kevin D.
  organization: Ecology, Evolution, and Marine Biology Department, University of California, 93106, Santa Barbara, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853511$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23050931$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuB968A9Igwh66N1U0ul0jjKM48LgelAUEUK6uxqzpj9M0q7z783szM7CgmAOSVE89VblrVNyNIwDEvIc6Dmkc4EOz4FREI_ICRQl5JQV1dEh5l-PyWkI15QCUxKekGPGqaCKwwn5fjVF2xuXRewn9CbOHrNu9FnKGW9NFr0ZQm9DsOOQ2ZC13vQm2sY4t8nceIM-iz_MkE0ef9txDimbwtY2Edun5HFnXMBn-_eMfH63_LR4n6-vVpeLt-u8EYyKnKmi5i2XgJJSaUwKy6qUQkHdcuDAoGDYMuiQFnUna6okRSobFIB1xxU_I693upMff80Yok4DN-icGTCNpIEJKatCquo_UF4lS5naqr58gF6Psx_SR7ZUWap0iUS92VGNH0Pw2OnJJ0P9RgPV2-3otB19u53EvtgrznWP7YG8W0cCXu0BE5LDXfK-seGeKyvBBWy5ix13Yx1u_t1RL9fLu9b5rsKGiH8OFcb_1KXkUugvH1b6o0rqC_VNr_hfvBu1lw
CitedBy_id crossref_primary_10_1089_vbz_2015_1822
crossref_primary_10_1645_16_148
crossref_primary_10_1038_srep03932
crossref_primary_10_1186_s12936_018_2230_8
crossref_primary_10_1002_oa_2862
crossref_primary_10_1111_1365_2656_13786
crossref_primary_10_1186_s12936_015_0849_2
crossref_primary_10_1038_s41598_021_90997_8
crossref_primary_10_1098_rsif_2021_0165
crossref_primary_10_2139_ssrn_4116229
crossref_primary_10_1073_pnas_1501193113
crossref_primary_10_1109_ACCESS_2023_3248292
crossref_primary_10_1371_journal_pcbi_1006047
crossref_primary_10_3390_medsci11010003
crossref_primary_10_1002_ecy_3685
crossref_primary_10_4081_gh_2023_1184
crossref_primary_10_7554_eLife_69630
crossref_primary_10_1186_s12936_023_04531_4
crossref_primary_10_1371_journal_pone_0259780
crossref_primary_10_1016_j_ijpara_2016_11_008
crossref_primary_10_1038_s41467_019_13562_y
crossref_primary_10_1371_journal_pone_0169982
crossref_primary_10_12688_wellcomeopenres_12928_1
crossref_primary_10_1080_10643389_2013_852392
crossref_primary_10_1371_journal_pntd_0005797
crossref_primary_10_1017_S0031182024000313
crossref_primary_10_1142_S0217979223501588
crossref_primary_10_1086_684590
crossref_primary_10_1016_j_artmed_2017_12_002
crossref_primary_10_1186_s12936_018_2220_x
crossref_primary_10_1371_journal_pone_0184587
crossref_primary_10_56786_PHWR_2023_16_17_1
crossref_primary_10_1016_j_epidem_2019_05_003
crossref_primary_10_1038_s41467_023_43810_1
crossref_primary_10_1111_tops_12175
crossref_primary_10_1016_j_mbs_2016_03_013
crossref_primary_10_1186_s13071_016_1384_x
crossref_primary_10_7554_eLife_69628
crossref_primary_10_1016_j_mbs_2019_01_002
crossref_primary_10_1073_pnas_2301653120
crossref_primary_10_1016_j_joclim_2021_100015
crossref_primary_10_1038_s41598_019_41651_x
crossref_primary_10_1371_journal_ppat_1003365
crossref_primary_10_1186_s13071_018_2709_8
crossref_primary_10_1016_j_envres_2022_114028
crossref_primary_10_7717_peerj_2642
crossref_primary_10_1371_journal_pone_0079276
crossref_primary_10_1017_S0031182016001311
crossref_primary_10_1016_j_gecco_2020_e01069
crossref_primary_10_1186_s12936_021_03718_x
crossref_primary_10_1098_rsbl_2022_0365
crossref_primary_10_1016_j_ijheh_2018_04_003
crossref_primary_10_1038_s41598_021_94601_x
crossref_primary_10_1111_ele_14381
crossref_primary_10_1186_s12936_015_0863_4
crossref_primary_10_1016_j_apgeog_2015_03_010
crossref_primary_10_1111_ele_14386
crossref_primary_10_1016_j_sste_2022_100478
crossref_primary_10_1007_s12346_022_00589_8
crossref_primary_10_1038_s41467_021_25182_6
crossref_primary_10_1007_s00484_019_01814_x
crossref_primary_10_1371_journal_pone_0129869
crossref_primary_10_1139_cjfas_2015_0094
crossref_primary_10_1016_j_ijppaw_2015_08_001
crossref_primary_10_1186_s12936_022_04417_x
crossref_primary_10_1038_s41586_024_07546_2
crossref_primary_10_1186_s41182_018_0127_4
crossref_primary_10_3389_fmicb_2019_02651
crossref_primary_10_1038_s41558_018_0294_7
crossref_primary_10_1111_1365_2664_12522
crossref_primary_10_1111_gcb_12240
crossref_primary_10_1111_1748_5967_12692
crossref_primary_10_1371_journal_pone_0201665
crossref_primary_10_1111_gcb_17378
crossref_primary_10_1007_s11686_022_00588_4
crossref_primary_10_3389_fevo_2020_00189
crossref_primary_10_1098_rsif_2016_0481
crossref_primary_10_3390_insects10110393
crossref_primary_10_1186_s11671_023_03849_x
crossref_primary_10_1016_j_health_2023_100137
crossref_primary_10_1016_j_joclim_2023_100272
crossref_primary_10_1098_rspb_2018_2351
crossref_primary_10_1242_bio_037762
crossref_primary_10_1016_j_epidem_2019_100382
crossref_primary_10_1242_jeb_104638
crossref_primary_10_1371_journal_pone_0106752
crossref_primary_10_1002_ece3_3576
crossref_primary_10_1371_journal_pclm_0000115
crossref_primary_10_1101_cshperspect_a025601
crossref_primary_10_3389_fvets_2023_1229676
crossref_primary_10_1017_S0031182018001750
crossref_primary_10_1289_ehp_1307799
crossref_primary_10_1038_s41598_024_52724_x
crossref_primary_10_1371_journal_pgph_0001607
crossref_primary_10_4236_ojs_2017_76063
crossref_primary_10_1214_17_AOAS1090
crossref_primary_10_1007_s10661_018_6677_4
crossref_primary_10_1371_journal_pntd_0005640
crossref_primary_10_1111_gcb_12303
crossref_primary_10_1186_s12879_023_08741_8
crossref_primary_10_1098_rstb_2022_0017
crossref_primary_10_1371_journal_pone_0081931
crossref_primary_10_1080_17513758_2019_1570363
crossref_primary_10_1007_s40572_020_00290_5
crossref_primary_10_1186_1756_3305_6_20
crossref_primary_10_1016_j_sste_2022_100537
crossref_primary_10_1371_journal_pcbi_1008658
crossref_primary_10_1007_s10661_019_7410_7
crossref_primary_10_1186_s12936_016_1549_2
crossref_primary_10_1002_ecy_2430
crossref_primary_10_3934_mbe_2018003
crossref_primary_10_1007_s12237_014_9847_9
crossref_primary_10_1016_j_actatropica_2017_02_004
crossref_primary_10_1007_s10441_014_9209_9
crossref_primary_10_1111_tmi_13128
crossref_primary_10_1017_S0950268817002254
crossref_primary_10_1155_2020_5056432
crossref_primary_10_1051_mmnp_2020044
crossref_primary_10_1098_rspb_2016_2078
crossref_primary_10_1111_nyas_13306
crossref_primary_10_1186_1475_2875_13_192
crossref_primary_10_3178_hrl_15_98
crossref_primary_10_1073_pnas_2309087121
crossref_primary_10_12688_aasopenres_13074_2
crossref_primary_10_1534_genetics_116_197632
crossref_primary_10_18772_26180197_2022_v4n3a1
crossref_primary_10_1111_sapm_12296
crossref_primary_10_12688_aasopenres_13074_3
crossref_primary_10_1016_j_amc_2020_125711
crossref_primary_10_1080_24694452_2020_1800300
crossref_primary_10_1098_rsos_231764
crossref_primary_10_1016_j_parepi_2023_e00297
crossref_primary_10_1142_S179352451750005X
crossref_primary_10_1155_2018_8397815
crossref_primary_10_1590_0074_02760170113
crossref_primary_10_1186_s12936_018_2342_1
crossref_primary_10_1186_s12936_019_2689_y
crossref_primary_10_1098_rstb_2015_0208
crossref_primary_10_1371_journal_pntd_0008614
crossref_primary_10_1098_rsos_160969
crossref_primary_10_1186_s12936_018_2478_z
crossref_primary_10_2139_ssrn_3149887
crossref_primary_10_3390_ijerph18147255
crossref_primary_10_1142_S0218339015500308
crossref_primary_10_1111_ele_12720
crossref_primary_10_1016_S2542_5196_24_00021_4
crossref_primary_10_1111_ele_14228
crossref_primary_10_1890_ES15_00094_1
crossref_primary_10_1186_s12936_017_1932_7
crossref_primary_10_1098_rspb_2020_1093
crossref_primary_10_1186_s12889_021_10305_x
crossref_primary_10_1073_pnas_2017537118
crossref_primary_10_3389_fclim_2022_929667
crossref_primary_10_1111_1365_2664_13490
crossref_primary_10_1098_rspb_2020_1526
crossref_primary_10_1098_rspb_2022_0089
crossref_primary_10_1111_gcb_15950
crossref_primary_10_1186_s12936_017_2068_5
crossref_primary_10_1080_17513758_2023_2199766
crossref_primary_10_1371_journal_pone_0055777
crossref_primary_10_7554_eLife_56974
crossref_primary_10_1038_s43856_022_00073_z
crossref_primary_10_1371_journal_pbio_3000938
crossref_primary_10_1016_j_ijpara_2021_01_001
crossref_primary_10_7717_peerj_13183
crossref_primary_10_1029_2022GH000698
crossref_primary_10_1016_S2542_5196_22_00039_0
crossref_primary_10_1038_s41559_020_1182_x
crossref_primary_10_1007_s44197_022_00054_4
crossref_primary_10_1016_j_pt_2015_03_006
crossref_primary_10_1186_s12936_017_1741_z
crossref_primary_10_1186_s12936_015_0873_2
crossref_primary_10_1371_journal_pntd_0005568
crossref_primary_10_1038_s41559_023_02301_8
crossref_primary_10_1038_s41598_023_33868_8
crossref_primary_10_1002_wcc_406
crossref_primary_10_1155_2017_6182492
crossref_primary_10_1111_gcb_15384
crossref_primary_10_3389_fevo_2022_758277
crossref_primary_10_1186_s13071_015_1250_2
crossref_primary_10_1890_13_1964_1
crossref_primary_10_1038_s42003_022_03962_0
crossref_primary_10_1038_s41598_023_31632_6
crossref_primary_10_1007_s10640_024_00853_2
crossref_primary_10_1371_journal_pntd_0011836
crossref_primary_10_1007_s11524_023_00732_z
crossref_primary_10_1111_geb_13831
crossref_primary_10_1038_s41467_022_28145_7
crossref_primary_10_3389_fpubh_2023_1252910
crossref_primary_10_1086_728882
crossref_primary_10_1016_j_euroecorev_2016_12_006
crossref_primary_10_1002_vms3_897
crossref_primary_10_1007_s12591_019_00466_y
crossref_primary_10_1016_j_epidem_2018_05_010
crossref_primary_10_1088_1748_9326_ab26c7
crossref_primary_10_1186_s12936_021_03846_4
crossref_primary_10_1017_S0031182017000026
crossref_primary_10_1111_febs_15564
crossref_primary_10_1111_geb_13390
crossref_primary_10_7554_eLife_37762
crossref_primary_10_1186_s12936_017_2121_4
crossref_primary_10_1371_journal_ppat_1011944
crossref_primary_10_1002_ecy_4373
crossref_primary_10_1007_s13355_014_0270_2
crossref_primary_10_1142_S1793962322500131
crossref_primary_10_1371_journal_pntd_0007213
crossref_primary_10_1016_j_pt_2014_01_007
crossref_primary_10_1007_s10393_014_0992_1
crossref_primary_10_2139_ssrn_4151618
crossref_primary_10_1186_s12936_019_2871_2
crossref_primary_10_1371_journal_pone_0200638
crossref_primary_10_1111_nyas_13229
crossref_primary_10_1146_annurev_ecolsys_121415_032147
crossref_primary_10_1186_s13071_023_06037_z
crossref_primary_10_1016_j_heliyon_2023_e15252
crossref_primary_10_1016_j_matcom_2023_10_009
crossref_primary_10_1371_journal_pntd_0006354
crossref_primary_10_1016_j_mbs_2022_108936
crossref_primary_10_1111_1365_2656_12180
crossref_primary_10_3390_atmos13030418
crossref_primary_10_2139_ssrn_3986223
crossref_primary_10_3389_fvets_2020_519059
crossref_primary_10_1016_j_envsoft_2019_06_010
crossref_primary_10_1093_conphys_cot022
crossref_primary_10_1098_rspb_2018_0795
crossref_primary_10_3389_fphar_2022_929442
crossref_primary_10_1186_s12936_022_04424_y
crossref_primary_10_1186_s13071_018_3058_3
crossref_primary_10_1088_1748_9326_ab7520
crossref_primary_10_1371_journal_pone_0178836
crossref_primary_10_7717_peerj_3577
crossref_primary_10_1111_evo_13840
crossref_primary_10_1111_tbed_14513
crossref_primary_10_1186_s13071_016_1402_z
crossref_primary_10_1142_S1793524521500674
crossref_primary_10_1111_1365_2664_13001
crossref_primary_10_3390_ijerph16245156
crossref_primary_10_1371_journal_pcbi_1008292
crossref_primary_10_1098_rstb_2018_0266
crossref_primary_10_1111_ele_13335
crossref_primary_10_1007_s40808_016_0095_9
crossref_primary_10_1016_j_tmaid_2020_101815
crossref_primary_10_1098_rstb_2012_0145
crossref_primary_10_1371_journal_pcbi_1010161
crossref_primary_10_1080_21505594_2015_1023985
crossref_primary_10_3389_fmala_2024_1338648
crossref_primary_10_1098_rstb_2018_0269
crossref_primary_10_3389_fpubh_2023_1162535
crossref_primary_10_7554_eLife_65655
crossref_primary_10_1371_journal_pntd_0010839
crossref_primary_10_7189_jogh_14_04021
crossref_primary_10_1080_10911359_2017_1336961
crossref_primary_10_4137_EHI_S33384
crossref_primary_10_1115_1_4064182
crossref_primary_10_1002_wea_3022
crossref_primary_10_1093_jme_tjz002
crossref_primary_10_1126_science_adk8755
crossref_primary_10_1016_j_worlddev_2019_104734
crossref_primary_10_1142_S0218339020400033
crossref_primary_10_1111_1365_2664_13455
crossref_primary_10_1007_s00285_020_01503_z
crossref_primary_10_1038_srep27771
crossref_primary_10_3389_fmicb_2024_1362714
crossref_primary_10_1371_journal_pntd_0005121
crossref_primary_10_1098_rsif_2023_0470
crossref_primary_10_1016_j_gene_2023_147516
crossref_primary_10_3390_ijerph16183474
crossref_primary_10_1086_702846
crossref_primary_10_1186_s12936_020_03224_6
crossref_primary_10_1073_pnas_1705067115
crossref_primary_10_1186_s12936_024_04880_8
crossref_primary_10_1038_s41467_017_01798_5
crossref_primary_10_1073_pnas_1905315116
crossref_primary_10_1371_journal_pone_0199579
crossref_primary_10_1186_s13071_020_3924_7
crossref_primary_10_1038_s41467_022_29613_w
crossref_primary_10_1186_s13071_021_04826_y
crossref_primary_10_1038_s41598_018_22989_0
crossref_primary_10_1186_s12936_017_1848_2
crossref_primary_10_1186_s12936_017_2036_0
crossref_primary_10_1186_s12936_019_2991_8
crossref_primary_10_1007_s13762_023_04836_6
crossref_primary_10_1111_ele_12937
crossref_primary_10_1186_s12942_018_0122_3
crossref_primary_10_1098_rspb_2019_2446
crossref_primary_10_1186_1475_2875_12_452
crossref_primary_10_1371_journal_pone_0248604
crossref_primary_10_1111_ele_13675
crossref_primary_10_1016_j_pt_2013_12_010
crossref_primary_10_1111_nyas_13950
crossref_primary_10_1016_j_jue_2020_103279
crossref_primary_10_1186_1475_2875_13_72
crossref_primary_10_1136_bmjgh_2020_004292
crossref_primary_10_1186_s13071_019_3391_1
crossref_primary_10_1016_S2542_5196_20_30178_9
crossref_primary_10_1186_1475_2875_13_126
crossref_primary_10_1016_j_accre_2021_05_003
crossref_primary_10_1186_1475_2875_13_241
crossref_primary_10_1371_journal_pone_0199357
crossref_primary_10_3389_fmicb_2020_00901
crossref_primary_10_1016_j_ijpara_2019_12_003
crossref_primary_10_1016_j_amc_2018_11_001
crossref_primary_10_1111_jen_12196
crossref_primary_10_1186_s13071_015_1038_4
crossref_primary_10_3390_tropicalmed8060310
crossref_primary_10_1098_rspb_2016_0298
crossref_primary_10_1098_rstb_2018_0255
crossref_primary_10_1186_s13071_021_04851_x
crossref_primary_10_1038_srep05349
crossref_primary_10_1111_1365_2435_12487
crossref_primary_10_1890_ES14_00201_1
crossref_primary_10_1038_srep01300
crossref_primary_10_1007_s00285_018_1229_7
crossref_primary_10_1371_journal_pcbi_1007954
crossref_primary_10_1093_ee_nvad092
crossref_primary_10_1016_j_scitotenv_2018_01_300
crossref_primary_10_1111_jvec_12236
crossref_primary_10_1038_s41598_024_60555_z
crossref_primary_10_1086_696096
crossref_primary_10_1002_ecs2_1271
crossref_primary_10_1038_s41467_020_18239_5
crossref_primary_10_1038_s41598_022_07837_6
crossref_primary_10_1098_rspb_2020_3217
crossref_primary_10_1371_journal_pbio_3002260
crossref_primary_10_1098_rspb_2019_1578
crossref_primary_10_1186_1756_3305_6_235
crossref_primary_10_1038_s41467_024_47265_w
crossref_primary_10_1002_eap_2334
crossref_primary_10_1186_s13071_018_2761_4
crossref_primary_10_12688_f1000research_8766_1
crossref_primary_10_1371_journal_pbio_2003489
crossref_primary_10_1186_s12936_017_1706_2
crossref_primary_10_1186_s12936_023_04821_x
crossref_primary_10_1016_j_mbs_2024_109189
crossref_primary_10_1007_s10393_017_1286_1
crossref_primary_10_1126_science_1239401
crossref_primary_10_3389_fpubh_2022_892366
crossref_primary_10_1111_rssc_12230
crossref_primary_10_1186_s13071_014_0593_4
crossref_primary_10_1098_rsbl_2019_0275
crossref_primary_10_1098_rstb_2013_0551
crossref_primary_10_1007_s00484_022_02390_3
crossref_primary_10_1186_1475_2875_13_457
crossref_primary_10_1016_j_jaridenv_2015_08_010
crossref_primary_10_21523_gcj5_17010104
crossref_primary_10_1007_s11356_021_14625_8
crossref_primary_10_1017_S0950268816002764
crossref_primary_10_1016_S2542_5196_23_00249_8
crossref_primary_10_1080_22221751_2019_1707125
crossref_primary_10_1371_journal_ppat_1009131
crossref_primary_10_1002_jez_2581
crossref_primary_10_1093_icb_icw049
crossref_primary_10_1057_s41287_024_00630_3
crossref_primary_10_1111_gcb_13005
crossref_primary_10_1371_journal_pone_0298259
crossref_primary_10_7554_eLife_58511
crossref_primary_10_1007_s00285_016_1054_9
crossref_primary_10_1111_1365_2656_12363
crossref_primary_10_1098_rstb_2013_0557
crossref_primary_10_1111_ecog_06634
crossref_primary_10_1111_gcb_17041
crossref_primary_10_2139_ssrn_3033595
crossref_primary_10_1111_oik_05864
crossref_primary_10_1186_s13071_019_3547_z
crossref_primary_10_1371_journal_pntd_0005604
crossref_primary_10_1016_j_idm_2022_05_007
crossref_primary_10_1007_s10584_014_1172_6
crossref_primary_10_1007_s10393_018_1320_y
crossref_primary_10_3389_fenvs_2020_00135
crossref_primary_10_1007_s00247_023_05807_2
crossref_primary_10_1002_ecm_1603
crossref_primary_10_1371_journal_pntd_0009525
Cites_doi 10.1073/pnas.0903423106
10.1016/S0065-308X(05)62010-6
10.1023/A:1005365413932
10.1093/jmedent/35.5.639
10.1016/0035-9203(52)90076-X
10.1016/j.gloenvcha.2011.06.001
10.1002/9780471722199
10.4269/ajtmh.2007.77.660
10.1073/pnas.1006422107
10.1093/jmedent/45.6.963
10.1603/033.046.0105
10.1073/pnas.0906909106
10.1111/j.1461-0248.2011.01661.x
10.1289/ehp.0901256
10.1371/journal.pbio.0050042
10.4269/ajtmh.1940.s1-20.703
10.1073/pnas.1015178108
10.1186/1475-2875-7-141
10.1603/0022-2585-40.5.706
10.1186/1756-3305-4-92
10.4269/ajtmh.1933.s1-13.265
10.1086/662551
10.1111/j.1570-7458.1992.tb01583.x
10.1016/S1473-3099(04)01043-6
10.1186/1475-2875-10-35
10.1890/08-0079.1
10.1093/acprof:oso/9780198570875.001.1
10.1093/ee/28.1.22
10.1038/nature09098
10.1007/978-1-4020-3929-4_5
10.1016/S0035-9203(00)90246-3
10.1073/pnas.0709472105
10.1086/321314
10.1079/BER2003259
10.1046/j.1570-7458.2002.00957.x
10.1016/S0169-4758(99)01396-4
10.1098/rspb.2010.2020
10.1256/qj.04.176
10.2307/3283550
10.1177/096228029300200103
10.1038/nclimate1084
10.1086/663677
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd/CNRS
2014 INIST-CNRS
2012 Blackwell Publishing Ltd/CNRS.
Copyright © 2013 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2012 Blackwell Publishing Ltd/CNRS
– notice: 2014 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd/CNRS.
– notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
F1W
H95
H97
L.G
DOI 10.1111/ele.12015
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
Entomology Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor Thrall, Peter
Editor_xml – sequence: 1
  givenname: Peter
  surname: Thrall
  fullname: Thrall, Peter
– sequence: 12
  givenname: Peter
  surname: Thrall
  fullname: Thrall, Peter
EndPage 30
ExternalDocumentID 2838130691
10_1111_ele_12015
23050931
26853511
ELE12015
ark_67375_WNG_P9351C9Z_G
Genre letter
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GrantInformation_xml – fundername: Luce Environmental Science to Solutions
– fundername: Michael J. Connell Trust
– fundername: NSF
  funderid: #EF‐0553768; EF‐0914384; DGE‐1144085
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
PQEST
UMP
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
F1W
H95
H97
L.G
ID FETCH-LOGICAL-c5205-294b3d371e7007aad376867591bd31312142ed21fe04bf7b0970e07ce51ebf393
IEDL.DBID DR2
ISSN 1461-023X
IngestDate Wed Dec 04 01:16:03 EST 2024
Wed Dec 04 11:37:48 EST 2024
Thu Oct 10 19:17:27 EDT 2024
Fri Dec 06 05:21:15 EST 2024
Sat Sep 28 08:06:55 EDT 2024
Tue Sep 20 21:40:53 EDT 2022
Sat Aug 24 00:55:45 EDT 2024
Wed Oct 30 09:52:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Protozoa
Apicomplexa
Protozoal disease
Temperature
Disease
Malaria
Insecta
Transmission
Parasite
Environmental factor
Ecology
Parasitosis
Dynamical climatology
Infection
Climate change
Plasmodium falciparum
Anopheles
Arthropoda
Culicidae
Ectoparasite
Invertebrata
disease ecology
Vector
Diptera
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5205-294b3d371e7007aad376867591bd31312142ed21fe04bf7b0970e07ce51ebf393
Notes istex:F4EDF250578D0CF3BAD574F8BB74F395F74F5D9A
ArticleID:ELE12015
NSF - No. #EF-0553768; No. EF-0914384; No. DGE-1144085
Michael J. Connell Trust
ark:/67375/WNG-P9351C9Z-G
Luce Environmental Science to Solutions
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23050931
PQID 1236692365
PQPubID 32390
PageCount 9
ParticipantIDs proquest_miscellaneous_1257784798
proquest_miscellaneous_1238111299
proquest_journals_1236692365
crossref_primary_10_1111_ele_12015
pubmed_primary_23050931
pascalfrancis_primary_26853511
wiley_primary_10_1111_ele_12015_ELE12015
istex_primary_ark_67375_WNG_P9351C9Z_G
PublicationCentury 2000
PublicationDate January 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Lardeux, F.J., Tejerina, R.H., Quispe, V. & Chavez, T.K. (2008). A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J., 7, 17.
Briere, J.F., Pracros, P., Le Roux, A.Y. & Pierre, J.S. (1999). A novel rate model of temperature-dependent development for arthropods. Environ. Entomol., 28, 22-29.
Takken, W., Stuke, K. & Klowden, M.J. (2002). Biological differences in reproductive strategy between the mosquito sibling species Anopheles gambiae sensu stricto and An. quadriannulatus. Entomol. Exp. Appl., 103, 83-89.
Seber, G.A.F. & Wild, C.J. (2003). Nonlinear Regression. Wiley-Interscience, Hoboken, NJ.
Béguin, A., Hales, S., Rocklöv, J., Åström, C., Louis, V.R. & Sauerborn, R. (2011). The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob. Envion. Change, 21, 1209-1214.
Knowles, R. & Basu, B.C. (1943). Laboratory studies on the infectivity of Anopheles stephensi. J. Mal. Inst. India, 5, 1-29.
Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M. et al. (2005). The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961-3012.
Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA, 108, 10591-10596.
Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res., 2, 23-41.
Gething, P., Van Boeckel, T., Smith, D., Guerra, C., Patil, A., Snow, R. et al. (2011). Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors, 4, 92.
Angilletta, M.J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, New York.
Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.J., Snow, R.W. & Hay, S.I. (2010). Climate change and the global malaria recession. Nature, 465, 342-345.
Martens, W.J.M., Jetten, T.H. & Focks, D.A. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Chang., 35, 145-156.
Boyd, M.F. & Stratman-Thomas, W.K. (1933). A note on the transmission of quartan malaria by Anopheles quadrimaculatus. Am. J. Trop. Med. Hyg., 13, 265-271.
Gill, C.A. (1938). The Seasonal Periodicity of Malaria and the Mechanism of the Epidemic Wave. Churchill, Ltd, London.
Parham, P.E. & Michael, E. (2010). Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect., 118, 620-626.
Eling, W., Hooghof, J., van de Vegte-Bolmer, M., Sauerwein, R. & van Gemert, G.-J. (2001). Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. Proc. Exp. Appl. Entomol., 12, 151-156.
Takken, W., Klowden, M.J. & Chambers, G.M. (1998). Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J. Med. Entomol., 35, 639-645.
Paaijmans, K.P., Blanford, S., Bell, A.S., Blanford, J.I., Read, A.F. & Thomas, M.B. (2010). Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA, 107, 15135-15139.
Craig, M.H., Snow, R.W. & leSueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today, 15, 105-111.
Amarasekare, P. & Savage, V. (2012). A framework for elucidating the temperature dependence of fitness. Am. Nat., 179, 178-191.
Neuheimer, A.B., Thresher, R.E., Lyle, J.M. & Semmens, J.M. (2011). Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang., 1, 110-113.
Bodker, R., Akida, J., Shayo, D., Kisinza, W., Msangeni, H.A. & Pedersen, E.M., et al. (2003). Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J. Med. Entomol., 40, 706-717.
Englund, G., Öhlund, G., Hein, C.L. & Diehl, S. (2011). Temperature dependence of the functional response. Ecol. Lett., 14, 914-921.
Alonso, D., Bouma, M.J. & Pascual, M. (2011). Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. R. Soc. Lond. B Biol. Sci., 278, 1661-1669.
Stratman-Thomas, W.K. (1940). The influence of temperature on Plasmodium vivax. Am. J. Trop. Med. Hyg., 20, 703-715.
Johnson, F.M., Eyring, H. & Stover, B.J. (1974). The Theory of Rate Processes in Biology and Medicine. John Wiley, New York.
Hay, S.I., Rogers, D.J., Toomer, J.F. & Snow, R.W. (2000). Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans. R. Soc. Trop. Med. Hyg., 94, 113-127.
Hay, S.I., Guerra, C.A., Tatem, A.J., Noor, A.M. & Snow, R.W. (2004). The global distribution and population at risk of malaria: past, present and future. Lancet Infect. Dis., 4, 327-336.
Ikemoto, T. (2008). Tropical malaria does not mean hot environments. J. Med. Entomol., 45, 963-969.
Smith, D.L., McKenzie, F.E., Snow, R.W. & Hay, S.I. (2007). Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol., 5, e42.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA, 105, 6668-6672.
Huey, R.B. & Berrigan, D. (2001). Temperature, demography, and ectotherm fitness. Am. Nat., 158, 204-210.
Pampana, E. (1963). A Textbook of Malaria Eradication. Oxford University Press, London.
R Core Development Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Paaijmans, K.P., Read, A.F. & Thomas, M.B. (2009). Understanding the link between malaria risk and climate. Proc. Natl Acad. Sci. USA, 106, 13844-13849.
Shute, P.G. & Maryon, M. (1952). A study of human malaria oocysts as an aid to species diagnosis. Trans. R. Soc. Trop. Med. Hyg., 46, 275-292.
WHO (2011). World Malaria Report 2011. World Health Organization, Geneva, p. 278.
Pascual, M., Dobson, A.P. & Bouma, M.J. (2009). Underestimating malaria risk under variable temperatures. Proc. Natl Acad. Sci. USA, 106, 13645-13646.
Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. (2009). Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol., 46, 33-41.
Ermert, V., Fink, A.H., Jones, A.E. & Morse, A.P. (2011). Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar. J., 10, 17.
Afrane, Y.A., Zhou, G., Lawson, B.W., Githeko, A.K. & Yan, G. (2007). Life-table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship. Am. J. Trop. Med. Hyg., 77, 660-666.
Bozinovic, F., Bastias, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A. & Angilletta, M.J. Jr (2011). The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool., 84, 543-552.
Lyimo, E.O., Takken, W. & Koella, J.C. (1992). Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol. Exp. Appl., 63, 265-271.
Siddons, L.B. (1944). Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies giles. J. Mal. Inst. India, 5, 375-388.
Bayoh, M.N. & Lindsay, S.W. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res., 93, 375-381.
Lafferty, K.D. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888-900.
Vaughan, J.A., Noden, B.H. & Beier, J.C. (1992). Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J. Parasitol., 78, 716-724.
2011; 278
2009; 46
2005; 131
2010; 107
2010; 465
2000; 94
2004; 4
1974
2008; 7
2011; 10
2008; 105
2011; 14
2003; 93
2007; 77
1938
1993; 2
1944; 5
2012; 179
2001
2010; 118
2002; 103
1999; 15
2009; 90
2011; 21
2007; 5
2001; 12
2003; 40
1940; 20
1943; 5
2011; 1
2011
2010
1999; 28
2011; 84
2009
2007
2006
2005
2003
2011; 4
1992; 78
1933; 13
2011; 108
1952; 46
1997; 35
2008; 45
1963
2001; 158
1992; 63
2009; 106
1998; 35
e_1_2_7_5_1
Knowles R. (e_1_2_7_31_1) 1943; 5
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Boyd M.F. (e_1_2_7_11_1) 1933; 13
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
WHO (e_1_2_7_54_1) 2011
e_1_2_7_37_1
Johnson F.M. (e_1_2_7_30_1) 1974
e_1_2_7_6_1
e_1_2_7_4_1
R Core Development Team (e_1_2_7_42_1) 2010
e_1_2_7_8_1
Afrane Y.A. (e_1_2_7_2_1) 2007; 77
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Siddons L.B. (e_1_2_7_46_1) 1944; 5
Eling W. (e_1_2_7_19_1) 2001; 12
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Pampana E. (e_1_2_7_39_1) 1963
e_1_2_7_38_1
Gill C.A. (e_1_2_7_24_1) 1938
References_xml – volume: 46
  start-page: 33
  year: 2009
  end-page: 41
  article-title: Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of , vector of chikungunya and dengue in the Indian Ocean
  publication-title: J. Med. Entomol.
– year: 2009
– volume: 5
  start-page: 1
  year: 1943
  end-page: 29
  article-title: Laboratory studies on the infectivity of
  publication-title: J. Mal. Inst. India
– start-page: 278
  year: 2011
– volume: 84
  start-page: 543
  year: 2011
  end-page: 552
  article-title: The mean and variance of environmental temperature interact to determine physiological tolerance and fitness
  publication-title: Physiol. Biochem. Zool.
– year: 2001
– volume: 13
  start-page: 265
  year: 1933
  end-page: 271
  article-title: A note on the transmission of quartan malaria by
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 4
  start-page: 327
  year: 2004
  end-page: 336
  article-title: The global distribution and population at risk of malaria: past, present and future
  publication-title: Lancet Infect. Dis.
– volume: 108
  start-page: 10591
  year: 2011
  end-page: 10596
  article-title: Systematic variation in the temperature dependence of physiological and ecological traits
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 45
  start-page: 963
  year: 2008
  end-page: 969
  article-title: Tropical malaria does not mean hot environments
  publication-title: J. Med. Entomol.
– volume: 107
  start-page: 15135
  year: 2010
  end-page: 15139
  article-title: Influence of climate on malaria transmission depends on daily temperature variation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 10
  start-page: 17
  year: 2011
  article-title: Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review
  publication-title: Malar. J.
– volume: 35
  start-page: 639
  year: 1998
  end-page: 645
  article-title: Effect of body size on host seeking and blood meal utilization in (Diptera: Culicidae): the disadvantage of being small
  publication-title: J. Med. Entomol.
– volume: 28
  start-page: 22
  year: 1999
  end-page: 29
  article-title: A novel rate model of temperature‐dependent development for arthropods
  publication-title: Environ. Entomol.
– volume: 106
  start-page: 13844
  year: 2009
  end-page: 13849
  article-title: Understanding the link between malaria risk and climate
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 94
  start-page: 113
  year: 2000
  end-page: 127
  article-title: Annual entomological inoculation rates (EIR) across Africa: literature survey, internet access and review
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
– volume: 46
  start-page: 275
  year: 1952
  end-page: 292
  article-title: A study of human malaria oocysts as an aid to species diagnosis
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
– start-page: 345
  year: 2006
  end-page: 381
– volume: 21
  start-page: 1209
  year: 2011
  end-page: 1214
  article-title: The opposing effects of climate change and socio‐economic development on the global distribution of malaria
  publication-title: Glob. Envion. Change
– volume: 5
  start-page: 375
  year: 1944
  end-page: 388
  article-title: Observations on the influence of atmospheric temperature and humidity on the infectivity of
  publication-title: J. Mal. Inst. India
– volume: 465
  start-page: 342
  year: 2010
  end-page: 345
  article-title: Climate change and the global malaria recession
  publication-title: Nature
– year: 1938
– volume: 35
  start-page: 145
  year: 1997
  end-page: 156
  article-title: Sensitivity of malaria, schistosomiasis and dengue to global warming
  publication-title: Clim. Chang.
– volume: 179
  start-page: 178
  year: 2012
  end-page: 191
  article-title: A framework for elucidating the temperature dependence of fitness
  publication-title: Am. Nat.
– volume: 106
  start-page: 13645
  year: 2009
  end-page: 13646
  article-title: Underestimating malaria risk under variable temperatures
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 105
  start-page: 6668
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proc. Natl Acad. Sci. USA
– start-page: 19
  year: 2007
  end-page: 91
– volume: 78
  start-page: 716
  year: 1992
  end-page: 724
  article-title: Population dynamics of sporogony in laboratory‐infected
  publication-title: J. Parasitol.
– volume: 12
  start-page: 151
  year: 2001
  end-page: 156
  article-title: Tropical temperatures can inhibit development of the human malaria parasite in the mosquito
  publication-title: Proc. Exp. Appl. Entomol.
– volume: 118
  start-page: 620
  year: 2010
  end-page: 626
  article-title: Modeling the effects of weather and climate change on malaria transmission
  publication-title: Environ. Health Perspect.
– volume: 103
  start-page: 83
  year: 2002
  end-page: 89
  article-title: Biological differences in reproductive strategy between the mosquito sibling species and
  publication-title: Entomol. Exp. Appl.
– volume: 40
  start-page: 706
  year: 2003
  end-page: 717
  article-title: Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania
  publication-title: J. Med. Entomol.
– volume: 131
  start-page: 2961
  year: 2005
  end-page: 3012
  article-title: The ERA‐40 re‐analysis
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 90
  start-page: 888
  year: 2009
  end-page: 900
  article-title: The ecology of climate change and infectious diseases
  publication-title: Ecology
– volume: 7
  start-page: 17
  year: 2008
  article-title: A physiological time analysis of the duration of the gonotrophic cycle of and its implications for malaria transmission in Bolivia
  publication-title: Malar. J.
– volume: 15
  start-page: 105
  year: 1999
  end-page: 111
  article-title: A climate‐based distribution model of malaria transmission in sub‐Saharan Africa
  publication-title: Parasitol. Today
– year: 2003
– volume: 278
  start-page: 1661
  year: 2011
  end-page: 1669
  article-title: Epidemic malaria and warmer temperatures in recent decades in an East African highland
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
– volume: 63
  start-page: 265
  year: 1992
  end-page: 271
  article-title: Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of
  publication-title: Entomol. Exp. Appl.
– volume: 158
  start-page: 204
  year: 2001
  end-page: 210
  article-title: Temperature, demography, and ectotherm fitness
  publication-title: Am. Nat.
– start-page: 134
  year: 2001
– year: 2010
– volume: 4
  start-page: 92
  year: 2011
  article-title: Modelling the global constraints of temperature on transmission of and
  publication-title: Parasit. Vectors
– year: 1963
– start-page: 41
  year: 2005
  end-page: 50
  article-title: A model structure for estimating malaria risk
– volume: 5
  start-page: e42
  year: 2007
  article-title: Revisiting the basic reproductive number for malaria and its implications for malaria control
  publication-title: PLoS Biol.
– volume: 77
  start-page: 660
  year: 2007
  end-page: 666
  article-title: Life‐table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 20
  start-page: 703
  year: 1940
  end-page: 715
  article-title: The influence of temperature on
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 2
  start-page: 23
  year: 1993
  end-page: 41
  article-title: The estimation of the basic reproduction number for infectious diseases
  publication-title: Stat. Methods Med. Res.
– year: 1974
– volume: 93
  start-page: 375
  year: 2003
  end-page: 381
  article-title: Effect of temperature on the development of the aquatic stages of sensu stricto (Diptera: Culicidae)
  publication-title: Bull. Entomol. Res.
– volume: 14
  start-page: 914
  year: 2011
  end-page: 921
  article-title: Temperature dependence of the functional response
  publication-title: Ecol. Lett.
– volume: 1
  start-page: 110
  year: 2011
  end-page: 113
  article-title: Tolerance limit for fish growth exceeded by warming waters
  publication-title: Nat. Clim. Chang.
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.0903423106
– ident: e_1_2_7_43_1
  doi: 10.1016/S0065-308X(05)62010-6
– volume: 5
  start-page: 1
  year: 1943
  ident: e_1_2_7_31_1
  article-title: Laboratory studies on the infectivity of Anopheles stephensi
  publication-title: J. Mal. Inst. India
  contributor:
    fullname: Knowles R.
– ident: e_1_2_7_35_1
  doi: 10.1023/A:1005365413932
– ident: e_1_2_7_50_1
  doi: 10.1093/jmedent/35.5.639
– volume-title: The Seasonal Periodicity of Malaria and the Mechanism of the Epidemic Wave
  year: 1938
  ident: e_1_2_7_24_1
  contributor:
    fullname: Gill C.A.
– ident: e_1_2_7_45_1
  doi: 10.1016/0035-9203(52)90076-X
– ident: e_1_2_7_9_1
  doi: 10.1016/j.gloenvcha.2011.06.001
– ident: e_1_2_7_48_1
– ident: e_1_2_7_44_1
  doi: 10.1002/9780471722199
– volume: 77
  start-page: 660
  year: 2007
  ident: e_1_2_7_2_1
  article-title: Life‐table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2007.77.660
  contributor:
    fullname: Afrane Y.A.
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1006422107
– ident: e_1_2_7_29_1
  doi: 10.1093/jmedent/45.6.963
– ident: e_1_2_7_15_1
  doi: 10.1603/033.046.0105
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0906909106
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1461-0248.2011.01661.x
– ident: e_1_2_7_40_1
  doi: 10.1289/ehp.0901256
– volume-title: The Theory of Rate Processes in Biology and Medicine
  year: 1974
  ident: e_1_2_7_30_1
  contributor:
    fullname: Johnson F.M.
– ident: e_1_2_7_47_1
  doi: 10.1371/journal.pbio.0050042
– ident: e_1_2_7_10_1
– ident: e_1_2_7_49_1
  doi: 10.4269/ajtmh.1940.s1-20.703
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.1015178108
– ident: e_1_2_7_33_1
  doi: 10.1186/1475-2875-7-141
– volume: 5
  start-page: 375
  year: 1944
  ident: e_1_2_7_46_1
  article-title: Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies giles
  publication-title: J. Mal. Inst. India
  contributor:
    fullname: Siddons L.B.
– ident: e_1_2_7_6_1
  doi: 10.1603/0022-2585-40.5.706
– ident: e_1_2_7_23_1
  doi: 10.1186/1756-3305-4-92
– volume: 13
  start-page: 265
  year: 1933
  ident: e_1_2_7_11_1
  article-title: A note on the transmission of quartan malaria by Anopheles quadrimaculatus
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.1933.s1-13.265
  contributor:
    fullname: Boyd M.F.
– ident: e_1_2_7_12_1
  doi: 10.1086/662551
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1570-7458.1992.tb01583.x
– volume-title: R: A language and environment for statistical computing
  year: 2010
  ident: e_1_2_7_42_1
  contributor:
    fullname: R Core Development Team
– ident: e_1_2_7_26_1
  doi: 10.1016/S1473-3099(04)01043-6
– ident: e_1_2_7_21_1
  doi: 10.1186/1475-2875-10-35
– ident: e_1_2_7_32_1
  doi: 10.1890/08-0079.1
– ident: e_1_2_7_5_1
  doi: 10.1093/acprof:oso/9780198570875.001.1
– ident: e_1_2_7_13_1
  doi: 10.1093/ee/28.1.22
– ident: e_1_2_7_22_1
  doi: 10.1038/nature09098
– ident: e_1_2_7_27_1
  doi: 10.1007/978-1-4020-3929-4_5
– ident: e_1_2_7_25_1
  doi: 10.1016/S0035-9203(00)90246-3
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_7_7_1
– ident: e_1_2_7_28_1
  doi: 10.1086/321314
– start-page: 278
  volume-title: World Malaria Report 2011
  year: 2011
  ident: e_1_2_7_54_1
  contributor:
    fullname: WHO
– ident: e_1_2_7_8_1
  doi: 10.1079/BER2003259
– volume: 12
  start-page: 151
  year: 2001
  ident: e_1_2_7_19_1
  article-title: Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito
  publication-title: Proc. Exp. Appl. Entomol.
  contributor:
    fullname: Eling W.
– ident: e_1_2_7_51_1
  doi: 10.1046/j.1570-7458.2002.00957.x
– ident: e_1_2_7_14_1
  doi: 10.1016/S0169-4758(99)01396-4
– ident: e_1_2_7_3_1
  doi: 10.1098/rspb.2010.2020
– ident: e_1_2_7_52_1
  doi: 10.1256/qj.04.176
– ident: e_1_2_7_53_1
  doi: 10.2307/3283550
– ident: e_1_2_7_18_1
  doi: 10.1177/096228029300200103
– ident: e_1_2_7_36_1
  doi: 10.1038/nclimate1084
– ident: e_1_2_7_4_1
  doi: 10.1086/663677
– volume-title: A Textbook of Malaria Eradication
  year: 1963
  ident: e_1_2_7_39_1
  contributor:
    fullname: Pampana E.
SSID ssj0012971
Score 2.610545
Snippet The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Animals
Anopheles
Biological and medical sciences
Climate Change
Culicidae - parasitology
Culicidae - physiology
disease ecology
Disease transmission
Ecology
Female
Fundamental and applied biological sciences. Psychology
General aspects
Host-Parasite Interactions
Human protozoal diseases
Humans
Infectious diseases
Malaria
Malaria - transmission
Medical sciences
Models, Biological
Mosquitoes
Parasitic diseases
Plasmodium falciparum
Plasmodium falciparum - physiology
Protozoal diseases
Temperature
Temperature effects
Title Optimal temperature for malaria transmission is dramatically lower than previously predicted
URI https://api.istex.fr/ark:/67375/WNG-P9351C9Z-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12015
https://www.ncbi.nlm.nih.gov/pubmed/23050931
https://www.proquest.com/docview/1236692365
https://search.proquest.com/docview/1238111299
https://search.proquest.com/docview/1257784798
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-CLtn41WssqIr7kyGaz2Sw-SXttEa0iFg8phN1kF0rPa7ncgedf78zmQ09UxLclmZDs7MzubzazvwF45qXQVnIfW524OBMpj60zGKxUPvM4LVoXynS-Pc1PzrLXEznZgJf9WZiWH2LYcCPPCPM1ObixzU9OjrPyiOPyRQfMuVCUznf4YaCOwmWsDbayHMPlVEw6ViHK4hmeXFuLtkitXyk30jSoHt_Wtfgd8FzHsWEhOroN530X2vyTy9FyYUfVt1_YHf-zj9twqwOo7FVrUTuw4WZ34EZbsnKFrXGguV7dhfN3ONt8QVFit-qomRlCYIbXMAA3bEHLIJoR7cexi4bVcxP4Yc10umJTqs7GaN-eXVOm8dWywavYrC8qBMH34Oxo_PHgJO5qNcSVTBMZpzqzohaKO4Wowxhs5gUGI5rbWnDBidnN1Sn3LsmsVzbRKnGJqpzkznqhxX3YnF3N3C6w2leFEbrwXOSZMd7WrlI4jGlO52S1ieBpP2rldUvJUfahDCqsDAqL4HkYz0HCzC8ph03J8tPpcfleC8kP9OfyOIL9tQEfHkhzRDIIRyPY6y2g7Py7KYmzJkdsnOOLngy3UaX0u8XMHCqNZApOcFb_TUYqhQBBFxE8aK3rxwcI4uYR-AEvgo38ubPl-M04NB7-u-gjuJmGyh60m7QHm4v50j1GfLWw-8GRvgNcox8J
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQhe-IYFxggIIV5SxXGcxBIvaHQr0BWENlEhkGUntjSt66Z-SJS_njvnA4oAId6s9KLG5zv7d5fL7wCeOsGlEcxFRsY2SnnCImM1BiulSx1ui8b6Np2Ho2xwnL4Zi_EGvGi_han5IbqEG3mG36_JwSkh_ZOX47bcY3h-iUuwhe7OqKDr1YeOPAoPsjrcSjMMmBM-bniFqI6nu3XtNNoixX6l6kg9RwW5urPF76DnOpL1R9H-dfjSTqKuQDntLRemV377hd_xf2d5A641GDV8WRvVTdiw01twue5aucJR3zNdr27D53e44ZyhKBFcNezMIaLgEK9hDK7DBZ2EaEmUkgtP5mE1054iVk8mq3BCDdpCSt2HF1RsfL6c41UcVicl4uA7cLzfP9obRE27hqgUSSyiRKaGVzxnNkfgoTUOswLjEclMxRlnRO5mq4Q5G6fG5SaWeWzjvLSCWeO45Hdhc3o-tdsQVq4sNJeFYzxLtXamsmWO65hk9Kms1AE8aZdNXdSsHKqNZlBhyissgGd-QTsJPTulMrZcqI-jA_VecsH25Cd1EMDu2op3NyQZghlEpAHstCagGhefK6KtyRAeZ_hHj7ufUaX0xkVPLSqNZApGiFb-TUbkOWIEWQRwrzavHw_AiZ6H4wM890by58mq_rDvB_f_XfQRXBkcHQ7V8PXo7QO4mvhGH5Rc2oHNxWxpHyLcWphd71XfAUvVIyo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qi-IX39rVWqOI-GWPzWZfwU_S3rVqPYtYPKQQkt0ESq_X4x7g-dc7k33oiYr4LezNcpvJTOY32dnfADx3qZAm5S40MrJhImIeGqsxWSld4nBbNNa36Xw_zA5PkrejdLQBr9pvYWp-iO7AjTzD79fk4NPK_eTkuCv3OIav9ApsJVksiTh__2PHHYVxrM62kgzz5ViMGlohKuPpbl0LRluk169UHKnnqB9XN7b4HfJcB7I-Eg1uwmk7h7oA5by3XJhe-e0Xesf_nOQtuNEgVPa6NqnbsGEnd-Bq3bNyhaO-57le3YXTD7jdXKAo0Vs13MwMMTDDa5iBa7agOIh2RAdy7GzOqpn2BLF6PF6xMbVnY3Rwz6ZUany5nONVHFZnJaLge3Ay6H_aOwybZg1hmcZRGuICGFGJnNscYYfWOMwKzEYkN5XgghO1m61i7myUGJebSOaRjfLSptwaJ6S4D5uTy4ndBla5stBCFo6LLNHamcqWOS5jnNGHslIH8KxdNTWtOTlUm8ugwpRXWAAv_Hp2Enp2TkVseao-Dw_UsRQp35Nf1EEAu2sL3t0QZwhlEI8GsNNagGocfK6ItCZDcJzhHz3tfkaV0vsWPbGoNJIpOOFZ-TeZNM8RIcgigAe1df14AEHkPAIf4KW3kT9PVvWP-n7w8N9Fn8C14_2BOnozfPcIrse-ywedLO3A5mK2tI8Ray3Mrvep78fcIdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+temperature+for+malaria+transmission+is+dramatically+lower+than+previously+predicted&rft.jtitle=Ecology+letters&rft.au=Mordecai%2C+Erin+A.&rft.au=Paaijmans%2C+Krijn+P.&rft.au=Johnson%2C+Leah+R.&rft.au=Balzer%2C+Christian&rft.date=2013-01-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=1&rft.spage=22&rft.epage=30&rft_id=info:doi/10.1111%2Fele.12015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ele_12015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon