Optimal temperature for malaria transmission is dramatically lower than previously predicted
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C....
Saved in:
Published in | Ecology letters Vol. 16; no. 1; pp. 22 - 30 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.01.2013
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal‐response models will aid in understanding the effects of current and future temperature regimes on disease transmission. |
---|---|
AbstractList | The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 degree C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 degree C (6 degree C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 degree C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 degree C optimum and the decline above 28 degree C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. [PUBLICATION ABSTRACT] The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in A frica validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal‐response models will aid in understanding the effects of current and future temperature regimes on disease transmission. |
Author | Paaijmans, Krijn P. Smith, Thomas C. Balzer, Christian Ryan, Sadie J. Johnson, Leah R. Pawar, Samraat Ben-Horin, Tal Lafferty, Kevin D. McNally, Amy Mordecai, Erin A. de Moor, Emily |
Author_xml | – sequence: 1 givenname: Erin A. surname: Mordecai fullname: Mordecai, Erin A. email: Mordecai@lifesci.ucsb.edu organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA – sequence: 2 givenname: Krijn P. surname: Paaijmans fullname: Paaijmans, Krijn P. organization: Department of Entomology, Merkle Lab, Center for Infectious Disease Dynamics, Penn State University, University Park, PA, 16802, USA – sequence: 3 givenname: Leah R. surname: Johnson fullname: Johnson, Leah R. organization: Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, IL, 60637, Chicago, USA – sequence: 4 givenname: Christian surname: Balzer fullname: Balzer, Christian organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA – sequence: 5 givenname: Tal surname: Ben-Horin fullname: Ben-Horin, Tal organization: Bren School of Environmental Science and Management, University of California, CA, 93106, Santa Barbara, USA – sequence: 6 givenname: Emily surname: de Moor fullname: de Moor, Emily organization: Geography Department, University of California, CA, 93106, Santa Barbara, USA – sequence: 7 givenname: Amy surname: McNally fullname: McNally, Amy organization: Geography Department, University of California, CA, 93106, Santa Barbara, USA – sequence: 8 givenname: Samraat surname: Pawar fullname: Pawar, Samraat organization: Department of Biomathematics, David Geffen School of Medicine, University of California, CA, 90095-1766, Los Angeles, USA – sequence: 9 givenname: Sadie J. surname: Ryan fullname: Ryan, Sadie J. organization: Department of Environmental and Forest Biology and Division of Environmental Science, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, NY, 13210, Syracuse, USA – sequence: 10 givenname: Thomas C. surname: Smith fullname: Smith, Thomas C. organization: Ecology, Evolution, and Marine Biology Department, University of California, CA, 93106, Santa Barbara, USA – sequence: 11 givenname: Kevin D. surname: Lafferty fullname: Lafferty, Kevin D. organization: Ecology, Evolution, and Marine Biology Department, University of California, 93106, Santa Barbara, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853511$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23050931$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LFDEQhoOsuB968A9Igwh66N1U0ul0jjKM48LgelAUEUK6uxqzpj9M0q7z783szM7CgmAOSVE89VblrVNyNIwDEvIc6Dmkc4EOz4FREI_ICRQl5JQV1dEh5l-PyWkI15QCUxKekGPGqaCKwwn5fjVF2xuXRewn9CbOHrNu9FnKGW9NFr0ZQm9DsOOQ2ZC13vQm2sY4t8nceIM-iz_MkE0ef9txDimbwtY2Edun5HFnXMBn-_eMfH63_LR4n6-vVpeLt-u8EYyKnKmi5i2XgJJSaUwKy6qUQkHdcuDAoGDYMuiQFnUna6okRSobFIB1xxU_I693upMff80Yok4DN-icGTCNpIEJKatCquo_UF4lS5naqr58gF6Psx_SR7ZUWap0iUS92VGNH0Pw2OnJJ0P9RgPV2-3otB19u53EvtgrznWP7YG8W0cCXu0BE5LDXfK-seGeKyvBBWy5ix13Yx1u_t1RL9fLu9b5rsKGiH8OFcb_1KXkUugvH1b6o0rqC_VNr_hfvBu1lw |
CitedBy_id | crossref_primary_10_1089_vbz_2015_1822 crossref_primary_10_1645_16_148 crossref_primary_10_1038_srep03932 crossref_primary_10_1186_s12936_018_2230_8 crossref_primary_10_1002_oa_2862 crossref_primary_10_1111_1365_2656_13786 crossref_primary_10_1186_s12936_015_0849_2 crossref_primary_10_1038_s41598_021_90997_8 crossref_primary_10_1098_rsif_2021_0165 crossref_primary_10_2139_ssrn_4116229 crossref_primary_10_1073_pnas_1501193113 crossref_primary_10_1109_ACCESS_2023_3248292 crossref_primary_10_1371_journal_pcbi_1006047 crossref_primary_10_3390_medsci11010003 crossref_primary_10_1002_ecy_3685 crossref_primary_10_4081_gh_2023_1184 crossref_primary_10_7554_eLife_69630 crossref_primary_10_1186_s12936_023_04531_4 crossref_primary_10_1371_journal_pone_0259780 crossref_primary_10_1016_j_ijpara_2016_11_008 crossref_primary_10_1038_s41467_019_13562_y crossref_primary_10_1371_journal_pone_0169982 crossref_primary_10_12688_wellcomeopenres_12928_1 crossref_primary_10_1080_10643389_2013_852392 crossref_primary_10_1371_journal_pntd_0005797 crossref_primary_10_1017_S0031182024000313 crossref_primary_10_1142_S0217979223501588 crossref_primary_10_1086_684590 crossref_primary_10_1016_j_artmed_2017_12_002 crossref_primary_10_1186_s12936_018_2220_x crossref_primary_10_1371_journal_pone_0184587 crossref_primary_10_56786_PHWR_2023_16_17_1 crossref_primary_10_1016_j_epidem_2019_05_003 crossref_primary_10_1038_s41467_023_43810_1 crossref_primary_10_1111_tops_12175 crossref_primary_10_1016_j_mbs_2016_03_013 crossref_primary_10_1186_s13071_016_1384_x crossref_primary_10_7554_eLife_69628 crossref_primary_10_1016_j_mbs_2019_01_002 crossref_primary_10_1073_pnas_2301653120 crossref_primary_10_1016_j_joclim_2021_100015 crossref_primary_10_1038_s41598_019_41651_x crossref_primary_10_1371_journal_ppat_1003365 crossref_primary_10_1186_s13071_018_2709_8 crossref_primary_10_1016_j_envres_2022_114028 crossref_primary_10_7717_peerj_2642 crossref_primary_10_1371_journal_pone_0079276 crossref_primary_10_1017_S0031182016001311 crossref_primary_10_1016_j_gecco_2020_e01069 crossref_primary_10_1186_s12936_021_03718_x crossref_primary_10_1098_rsbl_2022_0365 crossref_primary_10_1016_j_ijheh_2018_04_003 crossref_primary_10_1038_s41598_021_94601_x crossref_primary_10_1111_ele_14381 crossref_primary_10_1186_s12936_015_0863_4 crossref_primary_10_1016_j_apgeog_2015_03_010 crossref_primary_10_1111_ele_14386 crossref_primary_10_1016_j_sste_2022_100478 crossref_primary_10_1007_s12346_022_00589_8 crossref_primary_10_1038_s41467_021_25182_6 crossref_primary_10_1007_s00484_019_01814_x crossref_primary_10_1371_journal_pone_0129869 crossref_primary_10_1139_cjfas_2015_0094 crossref_primary_10_1016_j_ijppaw_2015_08_001 crossref_primary_10_1186_s12936_022_04417_x crossref_primary_10_1038_s41586_024_07546_2 crossref_primary_10_1186_s41182_018_0127_4 crossref_primary_10_3389_fmicb_2019_02651 crossref_primary_10_1038_s41558_018_0294_7 crossref_primary_10_1111_1365_2664_12522 crossref_primary_10_1111_gcb_12240 crossref_primary_10_1111_1748_5967_12692 crossref_primary_10_1371_journal_pone_0201665 crossref_primary_10_1111_gcb_17378 crossref_primary_10_1007_s11686_022_00588_4 crossref_primary_10_3389_fevo_2020_00189 crossref_primary_10_1098_rsif_2016_0481 crossref_primary_10_3390_insects10110393 crossref_primary_10_1186_s11671_023_03849_x crossref_primary_10_1016_j_health_2023_100137 crossref_primary_10_1016_j_joclim_2023_100272 crossref_primary_10_1098_rspb_2018_2351 crossref_primary_10_1242_bio_037762 crossref_primary_10_1016_j_epidem_2019_100382 crossref_primary_10_1242_jeb_104638 crossref_primary_10_1371_journal_pone_0106752 crossref_primary_10_1002_ece3_3576 crossref_primary_10_1371_journal_pclm_0000115 crossref_primary_10_1101_cshperspect_a025601 crossref_primary_10_3389_fvets_2023_1229676 crossref_primary_10_1017_S0031182018001750 crossref_primary_10_1289_ehp_1307799 crossref_primary_10_1038_s41598_024_52724_x crossref_primary_10_1371_journal_pgph_0001607 crossref_primary_10_4236_ojs_2017_76063 crossref_primary_10_1214_17_AOAS1090 crossref_primary_10_1007_s10661_018_6677_4 crossref_primary_10_1371_journal_pntd_0005640 crossref_primary_10_1111_gcb_12303 crossref_primary_10_1186_s12879_023_08741_8 crossref_primary_10_1098_rstb_2022_0017 crossref_primary_10_1371_journal_pone_0081931 crossref_primary_10_1080_17513758_2019_1570363 crossref_primary_10_1007_s40572_020_00290_5 crossref_primary_10_1186_1756_3305_6_20 crossref_primary_10_1016_j_sste_2022_100537 crossref_primary_10_1371_journal_pcbi_1008658 crossref_primary_10_1007_s10661_019_7410_7 crossref_primary_10_1186_s12936_016_1549_2 crossref_primary_10_1002_ecy_2430 crossref_primary_10_3934_mbe_2018003 crossref_primary_10_1007_s12237_014_9847_9 crossref_primary_10_1016_j_actatropica_2017_02_004 crossref_primary_10_1007_s10441_014_9209_9 crossref_primary_10_1111_tmi_13128 crossref_primary_10_1017_S0950268817002254 crossref_primary_10_1155_2020_5056432 crossref_primary_10_1051_mmnp_2020044 crossref_primary_10_1098_rspb_2016_2078 crossref_primary_10_1111_nyas_13306 crossref_primary_10_1186_1475_2875_13_192 crossref_primary_10_3178_hrl_15_98 crossref_primary_10_1073_pnas_2309087121 crossref_primary_10_12688_aasopenres_13074_2 crossref_primary_10_1534_genetics_116_197632 crossref_primary_10_18772_26180197_2022_v4n3a1 crossref_primary_10_1111_sapm_12296 crossref_primary_10_12688_aasopenres_13074_3 crossref_primary_10_1016_j_amc_2020_125711 crossref_primary_10_1080_24694452_2020_1800300 crossref_primary_10_1098_rsos_231764 crossref_primary_10_1016_j_parepi_2023_e00297 crossref_primary_10_1142_S179352451750005X crossref_primary_10_1155_2018_8397815 crossref_primary_10_1590_0074_02760170113 crossref_primary_10_1186_s12936_018_2342_1 crossref_primary_10_1186_s12936_019_2689_y crossref_primary_10_1098_rstb_2015_0208 crossref_primary_10_1371_journal_pntd_0008614 crossref_primary_10_1098_rsos_160969 crossref_primary_10_1186_s12936_018_2478_z crossref_primary_10_2139_ssrn_3149887 crossref_primary_10_3390_ijerph18147255 crossref_primary_10_1142_S0218339015500308 crossref_primary_10_1111_ele_12720 crossref_primary_10_1016_S2542_5196_24_00021_4 crossref_primary_10_1111_ele_14228 crossref_primary_10_1890_ES15_00094_1 crossref_primary_10_1186_s12936_017_1932_7 crossref_primary_10_1098_rspb_2020_1093 crossref_primary_10_1186_s12889_021_10305_x crossref_primary_10_1073_pnas_2017537118 crossref_primary_10_3389_fclim_2022_929667 crossref_primary_10_1111_1365_2664_13490 crossref_primary_10_1098_rspb_2020_1526 crossref_primary_10_1098_rspb_2022_0089 crossref_primary_10_1111_gcb_15950 crossref_primary_10_1186_s12936_017_2068_5 crossref_primary_10_1080_17513758_2023_2199766 crossref_primary_10_1371_journal_pone_0055777 crossref_primary_10_7554_eLife_56974 crossref_primary_10_1038_s43856_022_00073_z crossref_primary_10_1371_journal_pbio_3000938 crossref_primary_10_1016_j_ijpara_2021_01_001 crossref_primary_10_7717_peerj_13183 crossref_primary_10_1029_2022GH000698 crossref_primary_10_1016_S2542_5196_22_00039_0 crossref_primary_10_1038_s41559_020_1182_x crossref_primary_10_1007_s44197_022_00054_4 crossref_primary_10_1016_j_pt_2015_03_006 crossref_primary_10_1186_s12936_017_1741_z crossref_primary_10_1186_s12936_015_0873_2 crossref_primary_10_1371_journal_pntd_0005568 crossref_primary_10_1038_s41559_023_02301_8 crossref_primary_10_1038_s41598_023_33868_8 crossref_primary_10_1002_wcc_406 crossref_primary_10_1155_2017_6182492 crossref_primary_10_1111_gcb_15384 crossref_primary_10_3389_fevo_2022_758277 crossref_primary_10_1186_s13071_015_1250_2 crossref_primary_10_1890_13_1964_1 crossref_primary_10_1038_s42003_022_03962_0 crossref_primary_10_1038_s41598_023_31632_6 crossref_primary_10_1007_s10640_024_00853_2 crossref_primary_10_1371_journal_pntd_0011836 crossref_primary_10_1007_s11524_023_00732_z crossref_primary_10_1111_geb_13831 crossref_primary_10_1038_s41467_022_28145_7 crossref_primary_10_3389_fpubh_2023_1252910 crossref_primary_10_1086_728882 crossref_primary_10_1016_j_euroecorev_2016_12_006 crossref_primary_10_1002_vms3_897 crossref_primary_10_1007_s12591_019_00466_y crossref_primary_10_1016_j_epidem_2018_05_010 crossref_primary_10_1088_1748_9326_ab26c7 crossref_primary_10_1186_s12936_021_03846_4 crossref_primary_10_1017_S0031182017000026 crossref_primary_10_1111_febs_15564 crossref_primary_10_1111_geb_13390 crossref_primary_10_7554_eLife_37762 crossref_primary_10_1186_s12936_017_2121_4 crossref_primary_10_1371_journal_ppat_1011944 crossref_primary_10_1002_ecy_4373 crossref_primary_10_1007_s13355_014_0270_2 crossref_primary_10_1142_S1793962322500131 crossref_primary_10_1371_journal_pntd_0007213 crossref_primary_10_1016_j_pt_2014_01_007 crossref_primary_10_1007_s10393_014_0992_1 crossref_primary_10_2139_ssrn_4151618 crossref_primary_10_1186_s12936_019_2871_2 crossref_primary_10_1371_journal_pone_0200638 crossref_primary_10_1111_nyas_13229 crossref_primary_10_1146_annurev_ecolsys_121415_032147 crossref_primary_10_1186_s13071_023_06037_z crossref_primary_10_1016_j_heliyon_2023_e15252 crossref_primary_10_1016_j_matcom_2023_10_009 crossref_primary_10_1371_journal_pntd_0006354 crossref_primary_10_1016_j_mbs_2022_108936 crossref_primary_10_1111_1365_2656_12180 crossref_primary_10_3390_atmos13030418 crossref_primary_10_2139_ssrn_3986223 crossref_primary_10_3389_fvets_2020_519059 crossref_primary_10_1016_j_envsoft_2019_06_010 crossref_primary_10_1093_conphys_cot022 crossref_primary_10_1098_rspb_2018_0795 crossref_primary_10_3389_fphar_2022_929442 crossref_primary_10_1186_s12936_022_04424_y crossref_primary_10_1186_s13071_018_3058_3 crossref_primary_10_1088_1748_9326_ab7520 crossref_primary_10_1371_journal_pone_0178836 crossref_primary_10_7717_peerj_3577 crossref_primary_10_1111_evo_13840 crossref_primary_10_1111_tbed_14513 crossref_primary_10_1186_s13071_016_1402_z crossref_primary_10_1142_S1793524521500674 crossref_primary_10_1111_1365_2664_13001 crossref_primary_10_3390_ijerph16245156 crossref_primary_10_1371_journal_pcbi_1008292 crossref_primary_10_1098_rstb_2018_0266 crossref_primary_10_1111_ele_13335 crossref_primary_10_1007_s40808_016_0095_9 crossref_primary_10_1016_j_tmaid_2020_101815 crossref_primary_10_1098_rstb_2012_0145 crossref_primary_10_1371_journal_pcbi_1010161 crossref_primary_10_1080_21505594_2015_1023985 crossref_primary_10_3389_fmala_2024_1338648 crossref_primary_10_1098_rstb_2018_0269 crossref_primary_10_3389_fpubh_2023_1162535 crossref_primary_10_7554_eLife_65655 crossref_primary_10_1371_journal_pntd_0010839 crossref_primary_10_7189_jogh_14_04021 crossref_primary_10_1080_10911359_2017_1336961 crossref_primary_10_4137_EHI_S33384 crossref_primary_10_1115_1_4064182 crossref_primary_10_1002_wea_3022 crossref_primary_10_1093_jme_tjz002 crossref_primary_10_1126_science_adk8755 crossref_primary_10_1016_j_worlddev_2019_104734 crossref_primary_10_1142_S0218339020400033 crossref_primary_10_1111_1365_2664_13455 crossref_primary_10_1007_s00285_020_01503_z crossref_primary_10_1038_srep27771 crossref_primary_10_3389_fmicb_2024_1362714 crossref_primary_10_1371_journal_pntd_0005121 crossref_primary_10_1098_rsif_2023_0470 crossref_primary_10_1016_j_gene_2023_147516 crossref_primary_10_3390_ijerph16183474 crossref_primary_10_1086_702846 crossref_primary_10_1186_s12936_020_03224_6 crossref_primary_10_1073_pnas_1705067115 crossref_primary_10_1186_s12936_024_04880_8 crossref_primary_10_1038_s41467_017_01798_5 crossref_primary_10_1073_pnas_1905315116 crossref_primary_10_1371_journal_pone_0199579 crossref_primary_10_1186_s13071_020_3924_7 crossref_primary_10_1038_s41467_022_29613_w crossref_primary_10_1186_s13071_021_04826_y crossref_primary_10_1038_s41598_018_22989_0 crossref_primary_10_1186_s12936_017_1848_2 crossref_primary_10_1186_s12936_017_2036_0 crossref_primary_10_1186_s12936_019_2991_8 crossref_primary_10_1007_s13762_023_04836_6 crossref_primary_10_1111_ele_12937 crossref_primary_10_1186_s12942_018_0122_3 crossref_primary_10_1098_rspb_2019_2446 crossref_primary_10_1186_1475_2875_12_452 crossref_primary_10_1371_journal_pone_0248604 crossref_primary_10_1111_ele_13675 crossref_primary_10_1016_j_pt_2013_12_010 crossref_primary_10_1111_nyas_13950 crossref_primary_10_1016_j_jue_2020_103279 crossref_primary_10_1186_1475_2875_13_72 crossref_primary_10_1136_bmjgh_2020_004292 crossref_primary_10_1186_s13071_019_3391_1 crossref_primary_10_1016_S2542_5196_20_30178_9 crossref_primary_10_1186_1475_2875_13_126 crossref_primary_10_1016_j_accre_2021_05_003 crossref_primary_10_1186_1475_2875_13_241 crossref_primary_10_1371_journal_pone_0199357 crossref_primary_10_3389_fmicb_2020_00901 crossref_primary_10_1016_j_ijpara_2019_12_003 crossref_primary_10_1016_j_amc_2018_11_001 crossref_primary_10_1111_jen_12196 crossref_primary_10_1186_s13071_015_1038_4 crossref_primary_10_3390_tropicalmed8060310 crossref_primary_10_1098_rspb_2016_0298 crossref_primary_10_1098_rstb_2018_0255 crossref_primary_10_1186_s13071_021_04851_x crossref_primary_10_1038_srep05349 crossref_primary_10_1111_1365_2435_12487 crossref_primary_10_1890_ES14_00201_1 crossref_primary_10_1038_srep01300 crossref_primary_10_1007_s00285_018_1229_7 crossref_primary_10_1371_journal_pcbi_1007954 crossref_primary_10_1093_ee_nvad092 crossref_primary_10_1016_j_scitotenv_2018_01_300 crossref_primary_10_1111_jvec_12236 crossref_primary_10_1038_s41598_024_60555_z crossref_primary_10_1086_696096 crossref_primary_10_1002_ecs2_1271 crossref_primary_10_1038_s41467_020_18239_5 crossref_primary_10_1038_s41598_022_07837_6 crossref_primary_10_1098_rspb_2020_3217 crossref_primary_10_1371_journal_pbio_3002260 crossref_primary_10_1098_rspb_2019_1578 crossref_primary_10_1186_1756_3305_6_235 crossref_primary_10_1038_s41467_024_47265_w crossref_primary_10_1002_eap_2334 crossref_primary_10_1186_s13071_018_2761_4 crossref_primary_10_12688_f1000research_8766_1 crossref_primary_10_1371_journal_pbio_2003489 crossref_primary_10_1186_s12936_017_1706_2 crossref_primary_10_1186_s12936_023_04821_x crossref_primary_10_1016_j_mbs_2024_109189 crossref_primary_10_1007_s10393_017_1286_1 crossref_primary_10_1126_science_1239401 crossref_primary_10_3389_fpubh_2022_892366 crossref_primary_10_1111_rssc_12230 crossref_primary_10_1186_s13071_014_0593_4 crossref_primary_10_1098_rsbl_2019_0275 crossref_primary_10_1098_rstb_2013_0551 crossref_primary_10_1007_s00484_022_02390_3 crossref_primary_10_1186_1475_2875_13_457 crossref_primary_10_1016_j_jaridenv_2015_08_010 crossref_primary_10_21523_gcj5_17010104 crossref_primary_10_1007_s11356_021_14625_8 crossref_primary_10_1017_S0950268816002764 crossref_primary_10_1016_S2542_5196_23_00249_8 crossref_primary_10_1080_22221751_2019_1707125 crossref_primary_10_1371_journal_ppat_1009131 crossref_primary_10_1002_jez_2581 crossref_primary_10_1093_icb_icw049 crossref_primary_10_1057_s41287_024_00630_3 crossref_primary_10_1111_gcb_13005 crossref_primary_10_1371_journal_pone_0298259 crossref_primary_10_7554_eLife_58511 crossref_primary_10_1007_s00285_016_1054_9 crossref_primary_10_1111_1365_2656_12363 crossref_primary_10_1098_rstb_2013_0557 crossref_primary_10_1111_ecog_06634 crossref_primary_10_1111_gcb_17041 crossref_primary_10_2139_ssrn_3033595 crossref_primary_10_1111_oik_05864 crossref_primary_10_1186_s13071_019_3547_z crossref_primary_10_1371_journal_pntd_0005604 crossref_primary_10_1016_j_idm_2022_05_007 crossref_primary_10_1007_s10584_014_1172_6 crossref_primary_10_1007_s10393_018_1320_y crossref_primary_10_3389_fenvs_2020_00135 crossref_primary_10_1007_s00247_023_05807_2 crossref_primary_10_1002_ecm_1603 crossref_primary_10_1371_journal_pntd_0009525 |
Cites_doi | 10.1073/pnas.0903423106 10.1016/S0065-308X(05)62010-6 10.1023/A:1005365413932 10.1093/jmedent/35.5.639 10.1016/0035-9203(52)90076-X 10.1016/j.gloenvcha.2011.06.001 10.1002/9780471722199 10.4269/ajtmh.2007.77.660 10.1073/pnas.1006422107 10.1093/jmedent/45.6.963 10.1603/033.046.0105 10.1073/pnas.0906909106 10.1111/j.1461-0248.2011.01661.x 10.1289/ehp.0901256 10.1371/journal.pbio.0050042 10.4269/ajtmh.1940.s1-20.703 10.1073/pnas.1015178108 10.1186/1475-2875-7-141 10.1603/0022-2585-40.5.706 10.1186/1756-3305-4-92 10.4269/ajtmh.1933.s1-13.265 10.1086/662551 10.1111/j.1570-7458.1992.tb01583.x 10.1016/S1473-3099(04)01043-6 10.1186/1475-2875-10-35 10.1890/08-0079.1 10.1093/acprof:oso/9780198570875.001.1 10.1093/ee/28.1.22 10.1038/nature09098 10.1007/978-1-4020-3929-4_5 10.1016/S0035-9203(00)90246-3 10.1073/pnas.0709472105 10.1086/321314 10.1079/BER2003259 10.1046/j.1570-7458.2002.00957.x 10.1016/S0169-4758(99)01396-4 10.1098/rspb.2010.2020 10.1256/qj.04.176 10.2307/3283550 10.1177/096228029300200103 10.1038/nclimate1084 10.1086/663677 |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd/CNRS 2014 INIST-CNRS 2012 Blackwell Publishing Ltd/CNRS. Copyright © 2013 Blackwell Publishing Ltd/CNRS |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd/CNRS – notice: 2014 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd/CNRS. – notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 F1W H95 H97 L.G |
DOI | 10.1111/ele.12015 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic Entomology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | Thrall, Peter |
Editor_xml | – sequence: 1 givenname: Peter surname: Thrall fullname: Thrall, Peter – sequence: 12 givenname: Peter surname: Thrall fullname: Thrall, Peter |
EndPage | 30 |
ExternalDocumentID | 2838130691 10_1111_ele_12015 23050931 26853511 ELE12015 ark_67375_WNG_P9351C9Z_G |
Genre | letter Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GrantInformation_xml | – fundername: Luce Environmental Science to Solutions – fundername: Michael J. Connell Trust – fundername: NSF funderid: #EF‐0553768; EF‐0914384; DGE‐1144085 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAPBV ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW PQEST UMP CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 F1W H95 H97 L.G |
ID | FETCH-LOGICAL-c5205-294b3d371e7007aad376867591bd31312142ed21fe04bf7b0970e07ce51ebf393 |
IEDL.DBID | DR2 |
ISSN | 1461-023X |
IngestDate | Wed Dec 04 01:16:03 EST 2024 Wed Dec 04 11:37:48 EST 2024 Thu Oct 10 19:17:27 EDT 2024 Fri Dec 06 05:21:15 EST 2024 Sat Sep 28 08:06:55 EDT 2024 Tue Sep 20 21:40:53 EDT 2022 Sat Aug 24 00:55:45 EDT 2024 Wed Oct 30 09:52:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Protozoa Apicomplexa Protozoal disease Temperature Disease Malaria Insecta Transmission Parasite Environmental factor Ecology Parasitosis Dynamical climatology Infection Climate change Plasmodium falciparum Anopheles Arthropoda Culicidae Ectoparasite Invertebrata disease ecology Vector Diptera |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5205-294b3d371e7007aad376867591bd31312142ed21fe04bf7b0970e07ce51ebf393 |
Notes | istex:F4EDF250578D0CF3BAD574F8BB74F395F74F5D9A ArticleID:ELE12015 NSF - No. #EF-0553768; No. EF-0914384; No. DGE-1144085 Michael J. Connell Trust ark:/67375/WNG-P9351C9Z-G Luce Environmental Science to Solutions ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23050931 |
PQID | 1236692365 |
PQPubID | 32390 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1257784798 proquest_miscellaneous_1238111299 proquest_journals_1236692365 crossref_primary_10_1111_ele_12015 pubmed_primary_23050931 pascalfrancis_primary_26853511 wiley_primary_10_1111_ele_12015_ELE12015 istex_primary_ark_67375_WNG_P9351C9Z_G |
PublicationCentury | 2000 |
PublicationDate | January 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Lardeux, F.J., Tejerina, R.H., Quispe, V. & Chavez, T.K. (2008). A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J., 7, 17. Briere, J.F., Pracros, P., Le Roux, A.Y. & Pierre, J.S. (1999). A novel rate model of temperature-dependent development for arthropods. Environ. Entomol., 28, 22-29. Takken, W., Stuke, K. & Klowden, M.J. (2002). Biological differences in reproductive strategy between the mosquito sibling species Anopheles gambiae sensu stricto and An. quadriannulatus. Entomol. Exp. Appl., 103, 83-89. Seber, G.A.F. & Wild, C.J. (2003). Nonlinear Regression. Wiley-Interscience, Hoboken, NJ. Béguin, A., Hales, S., Rocklöv, J., Åström, C., Louis, V.R. & Sauerborn, R. (2011). The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob. Envion. Change, 21, 1209-1214. Knowles, R. & Basu, B.C. (1943). Laboratory studies on the infectivity of Anopheles stephensi. J. Mal. Inst. India, 5, 1-29. Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M. et al. (2005). The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961-3012. Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA, 108, 10591-10596. Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res., 2, 23-41. Gething, P., Van Boeckel, T., Smith, D., Guerra, C., Patil, A., Snow, R. et al. (2011). Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors, 4, 92. Angilletta, M.J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, New York. Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.J., Snow, R.W. & Hay, S.I. (2010). Climate change and the global malaria recession. Nature, 465, 342-345. Martens, W.J.M., Jetten, T.H. & Focks, D.A. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Chang., 35, 145-156. Boyd, M.F. & Stratman-Thomas, W.K. (1933). A note on the transmission of quartan malaria by Anopheles quadrimaculatus. Am. J. Trop. Med. Hyg., 13, 265-271. Gill, C.A. (1938). The Seasonal Periodicity of Malaria and the Mechanism of the Epidemic Wave. Churchill, Ltd, London. Parham, P.E. & Michael, E. (2010). Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect., 118, 620-626. Eling, W., Hooghof, J., van de Vegte-Bolmer, M., Sauerwein, R. & van Gemert, G.-J. (2001). Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. Proc. Exp. Appl. Entomol., 12, 151-156. Takken, W., Klowden, M.J. & Chambers, G.M. (1998). Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J. Med. Entomol., 35, 639-645. Paaijmans, K.P., Blanford, S., Bell, A.S., Blanford, J.I., Read, A.F. & Thomas, M.B. (2010). Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA, 107, 15135-15139. Craig, M.H., Snow, R.W. & leSueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today, 15, 105-111. Amarasekare, P. & Savage, V. (2012). A framework for elucidating the temperature dependence of fitness. Am. Nat., 179, 178-191. Neuheimer, A.B., Thresher, R.E., Lyle, J.M. & Semmens, J.M. (2011). Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang., 1, 110-113. Bodker, R., Akida, J., Shayo, D., Kisinza, W., Msangeni, H.A. & Pedersen, E.M., et al. (2003). Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J. Med. Entomol., 40, 706-717. Englund, G., Öhlund, G., Hein, C.L. & Diehl, S. (2011). Temperature dependence of the functional response. Ecol. Lett., 14, 914-921. Alonso, D., Bouma, M.J. & Pascual, M. (2011). Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. R. Soc. Lond. B Biol. Sci., 278, 1661-1669. Stratman-Thomas, W.K. (1940). The influence of temperature on Plasmodium vivax. Am. J. Trop. Med. Hyg., 20, 703-715. Johnson, F.M., Eyring, H. & Stover, B.J. (1974). The Theory of Rate Processes in Biology and Medicine. John Wiley, New York. Hay, S.I., Rogers, D.J., Toomer, J.F. & Snow, R.W. (2000). Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans. R. Soc. Trop. Med. Hyg., 94, 113-127. Hay, S.I., Guerra, C.A., Tatem, A.J., Noor, A.M. & Snow, R.W. (2004). The global distribution and population at risk of malaria: past, present and future. Lancet Infect. Dis., 4, 327-336. Ikemoto, T. (2008). Tropical malaria does not mean hot environments. J. Med. Entomol., 45, 963-969. Smith, D.L., McKenzie, F.E., Snow, R.W. & Hay, S.I. (2007). Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol., 5, e42. Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA, 105, 6668-6672. Huey, R.B. & Berrigan, D. (2001). Temperature, demography, and ectotherm fitness. Am. Nat., 158, 204-210. Pampana, E. (1963). A Textbook of Malaria Eradication. Oxford University Press, London. R Core Development Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Paaijmans, K.P., Read, A.F. & Thomas, M.B. (2009). Understanding the link between malaria risk and climate. Proc. Natl Acad. Sci. USA, 106, 13844-13849. Shute, P.G. & Maryon, M. (1952). A study of human malaria oocysts as an aid to species diagnosis. Trans. R. Soc. Trop. Med. Hyg., 46, 275-292. WHO (2011). World Malaria Report 2011. World Health Organization, Geneva, p. 278. Pascual, M., Dobson, A.P. & Bouma, M.J. (2009). Underestimating malaria risk under variable temperatures. Proc. Natl Acad. Sci. USA, 106, 13645-13646. Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. (2009). Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol., 46, 33-41. Ermert, V., Fink, A.H., Jones, A.E. & Morse, A.P. (2011). Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar. J., 10, 17. Afrane, Y.A., Zhou, G., Lawson, B.W., Githeko, A.K. & Yan, G. (2007). Life-table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship. Am. J. Trop. Med. Hyg., 77, 660-666. Bozinovic, F., Bastias, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A. & Angilletta, M.J. Jr (2011). The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool., 84, 543-552. Lyimo, E.O., Takken, W. & Koella, J.C. (1992). Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol. Exp. Appl., 63, 265-271. Siddons, L.B. (1944). Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies giles. J. Mal. Inst. India, 5, 375-388. Bayoh, M.N. & Lindsay, S.W. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res., 93, 375-381. Lafferty, K.D. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888-900. Vaughan, J.A., Noden, B.H. & Beier, J.C. (1992). Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J. Parasitol., 78, 716-724. 2011; 278 2009; 46 2005; 131 2010; 107 2010; 465 2000; 94 2004; 4 1974 2008; 7 2011; 10 2008; 105 2011; 14 2003; 93 2007; 77 1938 1993; 2 1944; 5 2012; 179 2001 2010; 118 2002; 103 1999; 15 2009; 90 2011; 21 2007; 5 2001; 12 2003; 40 1940; 20 1943; 5 2011; 1 2011 2010 1999; 28 2011; 84 2009 2007 2006 2005 2003 2011; 4 1992; 78 1933; 13 2011; 108 1952; 46 1997; 35 2008; 45 1963 2001; 158 1992; 63 2009; 106 1998; 35 e_1_2_7_5_1 Knowles R. (e_1_2_7_31_1) 1943; 5 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Boyd M.F. (e_1_2_7_11_1) 1933; 13 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 WHO (e_1_2_7_54_1) 2011 e_1_2_7_37_1 Johnson F.M. (e_1_2_7_30_1) 1974 e_1_2_7_6_1 e_1_2_7_4_1 R Core Development Team (e_1_2_7_42_1) 2010 e_1_2_7_8_1 Afrane Y.A. (e_1_2_7_2_1) 2007; 77 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Siddons L.B. (e_1_2_7_46_1) 1944; 5 Eling W. (e_1_2_7_19_1) 2001; 12 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 Pampana E. (e_1_2_7_39_1) 1963 e_1_2_7_38_1 Gill C.A. (e_1_2_7_24_1) 1938 |
References_xml | – volume: 46 start-page: 33 year: 2009 end-page: 41 article-title: Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of , vector of chikungunya and dengue in the Indian Ocean publication-title: J. Med. Entomol. – year: 2009 – volume: 5 start-page: 1 year: 1943 end-page: 29 article-title: Laboratory studies on the infectivity of publication-title: J. Mal. Inst. India – start-page: 278 year: 2011 – volume: 84 start-page: 543 year: 2011 end-page: 552 article-title: The mean and variance of environmental temperature interact to determine physiological tolerance and fitness publication-title: Physiol. Biochem. Zool. – year: 2001 – volume: 13 start-page: 265 year: 1933 end-page: 271 article-title: A note on the transmission of quartan malaria by publication-title: Am. J. Trop. Med. Hyg. – volume: 4 start-page: 327 year: 2004 end-page: 336 article-title: The global distribution and population at risk of malaria: past, present and future publication-title: Lancet Infect. Dis. – volume: 108 start-page: 10591 year: 2011 end-page: 10596 article-title: Systematic variation in the temperature dependence of physiological and ecological traits publication-title: Proc. Natl Acad. Sci. USA – volume: 45 start-page: 963 year: 2008 end-page: 969 article-title: Tropical malaria does not mean hot environments publication-title: J. Med. Entomol. – volume: 107 start-page: 15135 year: 2010 end-page: 15139 article-title: Influence of climate on malaria transmission depends on daily temperature variation publication-title: Proc. Natl Acad. Sci. USA – volume: 10 start-page: 17 year: 2011 article-title: Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review publication-title: Malar. J. – volume: 35 start-page: 639 year: 1998 end-page: 645 article-title: Effect of body size on host seeking and blood meal utilization in (Diptera: Culicidae): the disadvantage of being small publication-title: J. Med. Entomol. – volume: 28 start-page: 22 year: 1999 end-page: 29 article-title: A novel rate model of temperature‐dependent development for arthropods publication-title: Environ. Entomol. – volume: 106 start-page: 13844 year: 2009 end-page: 13849 article-title: Understanding the link between malaria risk and climate publication-title: Proc. Natl Acad. Sci. USA – volume: 94 start-page: 113 year: 2000 end-page: 127 article-title: Annual entomological inoculation rates (EIR) across Africa: literature survey, internet access and review publication-title: Trans. R. Soc. Trop. Med. Hyg. – volume: 46 start-page: 275 year: 1952 end-page: 292 article-title: A study of human malaria oocysts as an aid to species diagnosis publication-title: Trans. R. Soc. Trop. Med. Hyg. – start-page: 345 year: 2006 end-page: 381 – volume: 21 start-page: 1209 year: 2011 end-page: 1214 article-title: The opposing effects of climate change and socio‐economic development on the global distribution of malaria publication-title: Glob. Envion. Change – volume: 5 start-page: 375 year: 1944 end-page: 388 article-title: Observations on the influence of atmospheric temperature and humidity on the infectivity of publication-title: J. Mal. Inst. India – volume: 465 start-page: 342 year: 2010 end-page: 345 article-title: Climate change and the global malaria recession publication-title: Nature – year: 1938 – volume: 35 start-page: 145 year: 1997 end-page: 156 article-title: Sensitivity of malaria, schistosomiasis and dengue to global warming publication-title: Clim. Chang. – volume: 179 start-page: 178 year: 2012 end-page: 191 article-title: A framework for elucidating the temperature dependence of fitness publication-title: Am. Nat. – volume: 106 start-page: 13645 year: 2009 end-page: 13646 article-title: Underestimating malaria risk under variable temperatures publication-title: Proc. Natl Acad. Sci. USA – volume: 105 start-page: 6668 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proc. Natl Acad. Sci. USA – start-page: 19 year: 2007 end-page: 91 – volume: 78 start-page: 716 year: 1992 end-page: 724 article-title: Population dynamics of sporogony in laboratory‐infected publication-title: J. Parasitol. – volume: 12 start-page: 151 year: 2001 end-page: 156 article-title: Tropical temperatures can inhibit development of the human malaria parasite in the mosquito publication-title: Proc. Exp. Appl. Entomol. – volume: 118 start-page: 620 year: 2010 end-page: 626 article-title: Modeling the effects of weather and climate change on malaria transmission publication-title: Environ. Health Perspect. – volume: 103 start-page: 83 year: 2002 end-page: 89 article-title: Biological differences in reproductive strategy between the mosquito sibling species and publication-title: Entomol. Exp. Appl. – volume: 40 start-page: 706 year: 2003 end-page: 717 article-title: Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania publication-title: J. Med. Entomol. – volume: 131 start-page: 2961 year: 2005 end-page: 3012 article-title: The ERA‐40 re‐analysis publication-title: Q. J. R. Meteorol. Soc. – volume: 90 start-page: 888 year: 2009 end-page: 900 article-title: The ecology of climate change and infectious diseases publication-title: Ecology – volume: 7 start-page: 17 year: 2008 article-title: A physiological time analysis of the duration of the gonotrophic cycle of and its implications for malaria transmission in Bolivia publication-title: Malar. J. – volume: 15 start-page: 105 year: 1999 end-page: 111 article-title: A climate‐based distribution model of malaria transmission in sub‐Saharan Africa publication-title: Parasitol. Today – year: 2003 – volume: 278 start-page: 1661 year: 2011 end-page: 1669 article-title: Epidemic malaria and warmer temperatures in recent decades in an East African highland publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 63 start-page: 265 year: 1992 end-page: 271 article-title: Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of publication-title: Entomol. Exp. Appl. – volume: 158 start-page: 204 year: 2001 end-page: 210 article-title: Temperature, demography, and ectotherm fitness publication-title: Am. Nat. – start-page: 134 year: 2001 – year: 2010 – volume: 4 start-page: 92 year: 2011 article-title: Modelling the global constraints of temperature on transmission of and publication-title: Parasit. Vectors – year: 1963 – start-page: 41 year: 2005 end-page: 50 article-title: A model structure for estimating malaria risk – volume: 5 start-page: e42 year: 2007 article-title: Revisiting the basic reproductive number for malaria and its implications for malaria control publication-title: PLoS Biol. – volume: 77 start-page: 660 year: 2007 end-page: 666 article-title: Life‐table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship publication-title: Am. J. Trop. Med. Hyg. – volume: 20 start-page: 703 year: 1940 end-page: 715 article-title: The influence of temperature on publication-title: Am. J. Trop. Med. Hyg. – volume: 2 start-page: 23 year: 1993 end-page: 41 article-title: The estimation of the basic reproduction number for infectious diseases publication-title: Stat. Methods Med. Res. – year: 1974 – volume: 93 start-page: 375 year: 2003 end-page: 381 article-title: Effect of temperature on the development of the aquatic stages of sensu stricto (Diptera: Culicidae) publication-title: Bull. Entomol. Res. – volume: 14 start-page: 914 year: 2011 end-page: 921 article-title: Temperature dependence of the functional response publication-title: Ecol. Lett. – volume: 1 start-page: 110 year: 2011 end-page: 113 article-title: Tolerance limit for fish growth exceeded by warming waters publication-title: Nat. Clim. Chang. – ident: e_1_2_7_37_1 doi: 10.1073/pnas.0903423106 – ident: e_1_2_7_43_1 doi: 10.1016/S0065-308X(05)62010-6 – volume: 5 start-page: 1 year: 1943 ident: e_1_2_7_31_1 article-title: Laboratory studies on the infectivity of Anopheles stephensi publication-title: J. Mal. Inst. India contributor: fullname: Knowles R. – ident: e_1_2_7_35_1 doi: 10.1023/A:1005365413932 – ident: e_1_2_7_50_1 doi: 10.1093/jmedent/35.5.639 – volume-title: The Seasonal Periodicity of Malaria and the Mechanism of the Epidemic Wave year: 1938 ident: e_1_2_7_24_1 contributor: fullname: Gill C.A. – ident: e_1_2_7_45_1 doi: 10.1016/0035-9203(52)90076-X – ident: e_1_2_7_9_1 doi: 10.1016/j.gloenvcha.2011.06.001 – ident: e_1_2_7_48_1 – ident: e_1_2_7_44_1 doi: 10.1002/9780471722199 – volume: 77 start-page: 660 year: 2007 ident: e_1_2_7_2_1 article-title: Life‐table analysis of Anopheles arabiensis in Western Kenya highland effects of land covers on larval and adult survivorship publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2007.77.660 contributor: fullname: Afrane Y.A. – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1006422107 – ident: e_1_2_7_29_1 doi: 10.1093/jmedent/45.6.963 – ident: e_1_2_7_15_1 doi: 10.1603/033.046.0105 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0906909106 – ident: e_1_2_7_20_1 doi: 10.1111/j.1461-0248.2011.01661.x – ident: e_1_2_7_40_1 doi: 10.1289/ehp.0901256 – volume-title: The Theory of Rate Processes in Biology and Medicine year: 1974 ident: e_1_2_7_30_1 contributor: fullname: Johnson F.M. – ident: e_1_2_7_47_1 doi: 10.1371/journal.pbio.0050042 – ident: e_1_2_7_10_1 – ident: e_1_2_7_49_1 doi: 10.4269/ajtmh.1940.s1-20.703 – ident: e_1_2_7_16_1 doi: 10.1073/pnas.1015178108 – ident: e_1_2_7_33_1 doi: 10.1186/1475-2875-7-141 – volume: 5 start-page: 375 year: 1944 ident: e_1_2_7_46_1 article-title: Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies giles publication-title: J. Mal. Inst. India contributor: fullname: Siddons L.B. – ident: e_1_2_7_6_1 doi: 10.1603/0022-2585-40.5.706 – ident: e_1_2_7_23_1 doi: 10.1186/1756-3305-4-92 – volume: 13 start-page: 265 year: 1933 ident: e_1_2_7_11_1 article-title: A note on the transmission of quartan malaria by Anopheles quadrimaculatus publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1933.s1-13.265 contributor: fullname: Boyd M.F. – ident: e_1_2_7_12_1 doi: 10.1086/662551 – ident: e_1_2_7_34_1 doi: 10.1111/j.1570-7458.1992.tb01583.x – volume-title: R: A language and environment for statistical computing year: 2010 ident: e_1_2_7_42_1 contributor: fullname: R Core Development Team – ident: e_1_2_7_26_1 doi: 10.1016/S1473-3099(04)01043-6 – ident: e_1_2_7_21_1 doi: 10.1186/1475-2875-10-35 – ident: e_1_2_7_32_1 doi: 10.1890/08-0079.1 – ident: e_1_2_7_5_1 doi: 10.1093/acprof:oso/9780198570875.001.1 – ident: e_1_2_7_13_1 doi: 10.1093/ee/28.1.22 – ident: e_1_2_7_22_1 doi: 10.1038/nature09098 – ident: e_1_2_7_27_1 doi: 10.1007/978-1-4020-3929-4_5 – ident: e_1_2_7_25_1 doi: 10.1016/S0035-9203(00)90246-3 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_7_7_1 – ident: e_1_2_7_28_1 doi: 10.1086/321314 – start-page: 278 volume-title: World Malaria Report 2011 year: 2011 ident: e_1_2_7_54_1 contributor: fullname: WHO – ident: e_1_2_7_8_1 doi: 10.1079/BER2003259 – volume: 12 start-page: 151 year: 2001 ident: e_1_2_7_19_1 article-title: Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito publication-title: Proc. Exp. Appl. Entomol. contributor: fullname: Eling W. – ident: e_1_2_7_51_1 doi: 10.1046/j.1570-7458.2002.00957.x – ident: e_1_2_7_14_1 doi: 10.1016/S0169-4758(99)01396-4 – ident: e_1_2_7_3_1 doi: 10.1098/rspb.2010.2020 – ident: e_1_2_7_52_1 doi: 10.1256/qj.04.176 – ident: e_1_2_7_53_1 doi: 10.2307/3283550 – ident: e_1_2_7_18_1 doi: 10.1177/096228029300200103 – ident: e_1_2_7_36_1 doi: 10.1038/nclimate1084 – ident: e_1_2_7_4_1 doi: 10.1086/663677 – volume-title: A Textbook of Malaria Eradication year: 1963 ident: e_1_2_7_39_1 contributor: fullname: Pampana E. |
SSID | ssj0012971 |
Score | 2.610545 |
Snippet | The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 22 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Animals Anopheles Biological and medical sciences Climate Change Culicidae - parasitology Culicidae - physiology disease ecology Disease transmission Ecology Female Fundamental and applied biological sciences. Psychology General aspects Host-Parasite Interactions Human protozoal diseases Humans Infectious diseases Malaria Malaria - transmission Medical sciences Models, Biological Mosquitoes Parasitic diseases Plasmodium falciparum Plasmodium falciparum - physiology Protozoal diseases Temperature Temperature effects |
Title | Optimal temperature for malaria transmission is dramatically lower than previously predicted |
URI | https://api.istex.fr/ark:/67375/WNG-P9351C9Z-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12015 https://www.ncbi.nlm.nih.gov/pubmed/23050931 https://www.proquest.com/docview/1236692365 https://search.proquest.com/docview/1238111299 https://search.proquest.com/docview/1257784798 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-CLtn41WssqIr7kyGaz2Sw-SXttEa0iFg8phN1kF0rPa7ncgedf78zmQ09UxLclmZDs7MzubzazvwF45qXQVnIfW524OBMpj60zGKxUPvM4LVoXynS-Pc1PzrLXEznZgJf9WZiWH2LYcCPPCPM1ObixzU9OjrPyiOPyRQfMuVCUznf4YaCOwmWsDbayHMPlVEw6ViHK4hmeXFuLtkitXyk30jSoHt_Wtfgd8FzHsWEhOroN530X2vyTy9FyYUfVt1_YHf-zj9twqwOo7FVrUTuw4WZ34EZbsnKFrXGguV7dhfN3ONt8QVFit-qomRlCYIbXMAA3bEHLIJoR7cexi4bVcxP4Yc10umJTqs7GaN-eXVOm8dWywavYrC8qBMH34Oxo_PHgJO5qNcSVTBMZpzqzohaKO4Wowxhs5gUGI5rbWnDBidnN1Sn3LsmsVzbRKnGJqpzkznqhxX3YnF3N3C6w2leFEbrwXOSZMd7WrlI4jGlO52S1ieBpP2rldUvJUfahDCqsDAqL4HkYz0HCzC8ph03J8tPpcfleC8kP9OfyOIL9tQEfHkhzRDIIRyPY6y2g7Py7KYmzJkdsnOOLngy3UaX0u8XMHCqNZApOcFb_TUYqhQBBFxE8aK3rxwcI4uYR-AEvgo38ubPl-M04NB7-u-gjuJmGyh60m7QHm4v50j1GfLWw-8GRvgNcox8J |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQhe-IYFxggIIV5SxXGcxBIvaHQr0BWENlEhkGUntjSt66Z-SJS_njvnA4oAId6s9KLG5zv7d5fL7wCeOsGlEcxFRsY2SnnCImM1BiulSx1ui8b6Np2Ho2xwnL4Zi_EGvGi_han5IbqEG3mG36_JwSkh_ZOX47bcY3h-iUuwhe7OqKDr1YeOPAoPsjrcSjMMmBM-bniFqI6nu3XtNNoixX6l6kg9RwW5urPF76DnOpL1R9H-dfjSTqKuQDntLRemV377hd_xf2d5A641GDV8WRvVTdiw01twue5aucJR3zNdr27D53e44ZyhKBFcNezMIaLgEK9hDK7DBZ2EaEmUkgtP5mE1054iVk8mq3BCDdpCSt2HF1RsfL6c41UcVicl4uA7cLzfP9obRE27hqgUSSyiRKaGVzxnNkfgoTUOswLjEclMxRlnRO5mq4Q5G6fG5SaWeWzjvLSCWeO45Hdhc3o-tdsQVq4sNJeFYzxLtXamsmWO65hk9Kms1AE8aZdNXdSsHKqNZlBhyissgGd-QTsJPTulMrZcqI-jA_VecsH25Cd1EMDu2op3NyQZghlEpAHstCagGhefK6KtyRAeZ_hHj7ufUaX0xkVPLSqNZApGiFb-TUbkOWIEWQRwrzavHw_AiZ6H4wM890by58mq_rDvB_f_XfQRXBkcHQ7V8PXo7QO4mvhGH5Rc2oHNxWxpHyLcWphd71XfAUvVIyo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qi-IX39rVWqOI-GWPzWZfwU_S3rVqPYtYPKQQkt0ESq_X4x7g-dc7k33oiYr4LezNcpvJTOY32dnfADx3qZAm5S40MrJhImIeGqsxWSld4nBbNNa36Xw_zA5PkrejdLQBr9pvYWp-iO7AjTzD79fk4NPK_eTkuCv3OIav9ApsJVksiTh__2PHHYVxrM62kgzz5ViMGlohKuPpbl0LRluk169UHKnnqB9XN7b4HfJcB7I-Eg1uwmk7h7oA5by3XJhe-e0Xesf_nOQtuNEgVPa6NqnbsGEnd-Bq3bNyhaO-57le3YXTD7jdXKAo0Vs13MwMMTDDa5iBa7agOIh2RAdy7GzOqpn2BLF6PF6xMbVnY3Rwz6ZUany5nONVHFZnJaLge3Ay6H_aOwybZg1hmcZRGuICGFGJnNscYYfWOMwKzEYkN5XgghO1m61i7myUGJebSOaRjfLSptwaJ6S4D5uTy4ndBla5stBCFo6LLNHamcqWOS5jnNGHslIH8KxdNTWtOTlUm8ugwpRXWAAv_Hp2Enp2TkVseao-Dw_UsRQp35Nf1EEAu2sL3t0QZwhlEI8GsNNagGocfK6ItCZDcJzhHz3tfkaV0vsWPbGoNJIpOOFZ-TeZNM8RIcgigAe1df14AEHkPAIf4KW3kT9PVvWP-n7w8N9Fn8C14_2BOnozfPcIrse-ywedLO3A5mK2tI8Ray3Mrvep78fcIdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+temperature+for+malaria+transmission+is+dramatically+lower+than+previously+predicted&rft.jtitle=Ecology+letters&rft.au=Mordecai%2C+Erin+A.&rft.au=Paaijmans%2C+Krijn+P.&rft.au=Johnson%2C+Leah+R.&rft.au=Balzer%2C+Christian&rft.date=2013-01-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=1&rft.spage=22&rft.epage=30&rft_id=info:doi/10.1111%2Fele.12015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ele_12015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |