Functional analysis of the Fusarium graminearum phosphatome

Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biol...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 207; no. 1; pp. 119 - 134
Main Authors Yun, Yingzi, Liu, Zunyong, Yin, Yanni, Jiang, Jinhua, Chen, Yun, Xu, Jin‐Rong, Ma, Zhonghua
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
AbstractList Summary Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297,Fg03333,Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum. See also the Commentary by Jia and Tang
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi.The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study.Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen‐activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis.Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Summary Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen‐activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum. See also the Commentary by Jia and Tang
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes ( Fg06297 , Fg03333 , Fg03826 and Fg07932 ) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen‐activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum . See also the Commentary by Jia and Tang
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Author Jin-Rong Xu
Yun Chen
Jinhua Jiang
Yingzi Yun
Yanni Yin
Zunyong Liu
Zhonghua Ma
Author_xml – sequence: 1
  givenname: Yingzi
  surname: Yun
  fullname: Yun, Yingzi
  organization: Zhejiang University
– sequence: 2
  givenname: Zunyong
  surname: Liu
  fullname: Liu, Zunyong
  organization: Zhejiang University
– sequence: 3
  givenname: Yanni
  surname: Yin
  fullname: Yin, Yanni
  organization: Zhejiang University
– sequence: 4
  givenname: Jinhua
  surname: Jiang
  fullname: Jiang, Jinhua
  organization: Zhejiang Academy of Agricultural Sciences
– sequence: 5
  givenname: Yun
  surname: Chen
  fullname: Chen, Yun
  organization: Zhejiang University
– sequence: 6
  givenname: Jin‐Rong
  surname: Xu
  fullname: Xu, Jin‐Rong
  organization: Northwest A&F University
– sequence: 7
  givenname: Zhonghua
  surname: Ma
  fullname: Ma, Zhonghua
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25758923$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUha2KqgzQRV-gitRNWQT8G9tihRADSKhlwaI7y_E4xKMkDnYiNG_fCwMskKC15WsvvnOurs8e2hni4BH6RvARgXU8jO0RYUzyT2hBeKVLRZjcQQuMqSorXv3ZRXs5rzHGWlT0C9qlQgqlKVugk-U8uCnEwXaFhbLJIRexKabWF8s52xTmvrhLtg-DtwneYxvz2Nop9v4AfW5sl_3X53sf3S7Pb88uy-vfF1dnp9elExTzspF13XDs4aygv3TOaS4q1RBFNbOaaV2vcMVWWhHMqFd1I5n1xDvYjWL76OfWdkzxfvZ5Mn3IznedHXycsyGSV0xA5f-BYkEwZjD6P9FKgSGRQgL64w26jnOCz8qGCsKwlETQjyjwYhxmVgyo78_UXPd-ZcYUeps25iURAA63gEsx5-SbV4Rg85i2gbTNU9rAHr9hXZjsY5pTsqH7SPEQOr9539r8url8UZRbxTpPMb0qBv8wtpspdvEuwKgUS0PAQ7O_o-zIgQ
CitedBy_id crossref_primary_10_1007_s42994_023_00096_7
crossref_primary_10_1128_mbio_02442_22
crossref_primary_10_3390_ijms20071709
crossref_primary_10_3390_jof8080763
crossref_primary_10_3390_jof7060422
crossref_primary_10_3390_jof8080880
crossref_primary_10_1186_s12864_022_08372_4
crossref_primary_10_1007_s00294_019_00931_9
crossref_primary_10_1128_AEM_03088_20
crossref_primary_10_1002_advs_202302606
crossref_primary_10_3390_ijms23031914
crossref_primary_10_1093_nar_gkz904
crossref_primary_10_1111_nph_17170
crossref_primary_10_1016_j_procbio_2024_06_015
crossref_primary_10_1111_jph_13383
crossref_primary_10_1094_PHYTO_02_21_0051_R
crossref_primary_10_1128_spectrum_05285_22
crossref_primary_10_1094_PDIS_05_19_1031_RE
crossref_primary_10_1111_1462_2920_13968
crossref_primary_10_1021_acs_jmedchem_3c00650
crossref_primary_10_1111_cmi_12770
crossref_primary_10_1371_journal_ppat_1011255
crossref_primary_10_1111_nph_15261
crossref_primary_10_3390_jof9070707
crossref_primary_10_1146_annurev_phyto_021320_010948
crossref_primary_10_1111_mpp_13074
crossref_primary_10_1007_s12275_021_1287_1
crossref_primary_10_1038_s41467_021_22917_3
crossref_primary_10_1111_mpp_13118
crossref_primary_10_1128_mBio_01292_18
crossref_primary_10_1146_annurev_phyto_082718_100318
crossref_primary_10_1111_mpp_13359
crossref_primary_10_1111_nph_13806
crossref_primary_10_3390_toxins12110717
crossref_primary_10_3389_fcimb_2018_00141
crossref_primary_10_1371_journal_pone_0145190
crossref_primary_10_1016_j_jia_2024_01_003
crossref_primary_10_1016_j_ejmech_2021_113563
crossref_primary_10_1111_1462_2920_15202
crossref_primary_10_1038_s41467_018_05683_7
crossref_primary_10_1128_mbio_01100_22
crossref_primary_10_1038_s42003_024_05942_y
crossref_primary_10_1111_nph_19297
crossref_primary_10_1021_acs_jafc_3c04557
crossref_primary_10_1186_s12864_016_3361_3
crossref_primary_10_1186_s12863_017_0511_9
crossref_primary_10_1371_journal_ppat_1005485
crossref_primary_10_3390_jof7040305
crossref_primary_10_1186_s42483_019_0023_9
crossref_primary_10_3389_fmicb_2020_00051
crossref_primary_10_1111_nph_17718
crossref_primary_10_1186_s42483_023_00219_4
crossref_primary_10_1371_journal_ppat_1011913
crossref_primary_10_1128_mbio_03030_24
crossref_primary_10_1111_1462_2920_14960
crossref_primary_10_1111_nph_19562
crossref_primary_10_3390_ijms252212172
crossref_primary_10_1128_msphere_00456_22
crossref_primary_10_1016_j_indcrop_2018_10_008
crossref_primary_10_3389_fmicb_2023_1161244
crossref_primary_10_1111_mpp_12887
crossref_primary_10_3390_jof10010001
crossref_primary_10_3389_fmicb_2020_597998
crossref_primary_10_3389_fpls_2022_1011709
crossref_primary_10_1186_s12864_016_3371_1
crossref_primary_10_3390_jof9080816
crossref_primary_10_1111_mpp_70011
crossref_primary_10_1016_j_jare_2021_09_006
crossref_primary_10_3389_fmicb_2019_01662
crossref_primary_10_3390_antibiotics11091188
crossref_primary_10_1016_j_pestbp_2022_105311
crossref_primary_10_1016_j_fgb_2020_103449
crossref_primary_10_1038_s41467_019_08726_9
crossref_primary_10_1111_1462_2920_14291
crossref_primary_10_1016_S2095_3119_21_63731_0
crossref_primary_10_1007_s00294_018_0853_5
crossref_primary_10_3389_fmicb_2021_622261
crossref_primary_10_1038_s41467_019_09145_6
crossref_primary_10_1111_nph_13457
crossref_primary_10_3389_fmicb_2019_00180
crossref_primary_10_1007_s00284_017_1356_1
crossref_primary_10_1038_s41467_020_18028_0
crossref_primary_10_1111_1462_2920_13296
crossref_primary_10_1111_pbi_13401
crossref_primary_10_3389_fcell_2023_1225774
crossref_primary_10_1038_s41598_017_04960_7
crossref_primary_10_1111_mpp_12985
crossref_primary_10_1186_s42483_023_00171_3
crossref_primary_10_3390_ijms231810445
crossref_primary_10_1128_spectrum_03881_22
crossref_primary_10_1016_j_micres_2024_127975
crossref_primary_10_3389_fgene_2023_1166832
crossref_primary_10_1016_j_rsci_2020_09_009
crossref_primary_10_1111_1462_2920_13730
crossref_primary_10_1186_s42483_023_00190_0
crossref_primary_10_1016_j_scitotenv_2023_168284
crossref_primary_10_1038_s41598_020_67597_z
crossref_primary_10_1094_PDIS_02_16_0169_RE
crossref_primary_10_1038_s41467_020_18240_y
crossref_primary_10_1111_nph_18164
crossref_primary_10_1111_mpp_12633
crossref_primary_10_1128_spectrum_04403_22
crossref_primary_10_3390_jof8080793
crossref_primary_10_1094_PHYTO_11_21_0483_R
crossref_primary_10_1111_mpp_13160
Cites_doi 10.1080/07060668209501326
10.1006/bbrc.2001.6021
10.1038/sj.emboj.7600672
10.1016/S1671-2927(11)60131-4
10.1155/2011/930940
10.1094/Phyto-77-1640
10.1128/EC.00249-10
10.1007/s00294-012-0385-3
10.1038/nmeth776
10.1099/mic.0.2007/011411-0
10.1101/gad.13.24.3244
10.1371/journal.pone.0061307
10.1111/j.1742-4658.2008.06693.x
10.1074/jbc.274.34.23991
10.1242/jcs.073056
10.2307/3756895
10.1016/j.canlet.2013.02.036
10.1128/IAI.01497-07
10.1111/j.1364-3703.2007.00383.x
10.1099/00221287-138-10-2021
10.1186/1471-2164-8-434
10.1104/pp.107.111393
10.4161/cc.7.9.5792
10.1038/ncb777
10.1016/0378-1119(87)90376-3
10.1073/pnas.1007974107
10.1111/j.1364-3703.2011.00783.x
10.1021/jf970857o
10.1007/s00294-003-0379-2
10.1016/j.cell.2006.09.026
10.1111/1462-2920.12126
10.1016/j.fgb.2009.01.002
10.1093/emboj/19.4.483
10.1016/j.fgb.2007.03.001
10.1016/j.bbagrm.2012.10.002
10.1094/MPMI-20-8-0944
10.1128/EC.00346-08
10.1111/mpp.12155
10.1074/jbc.275.4.2410
10.1105/tpc.110.075937
10.1534/g3.113.008813
10.1242/jcs.074815
10.1016/j.fgb.2009.08.005
10.1371/journal.pbio.0060140
10.1101/gr.7.10.986
10.1111/j.1365-2958.2010.07254.x
10.1186/1471-2229-11-110
10.1002/j.1460-2075.1994.tb06235.x
10.1016/j.febslet.2012.05.008
10.1016/j.fgb.2004.08.001
10.1105/tpc.110.074302
10.1016/j.fgb.2010.10.004
10.1016/j.ceb.2008.09.003
10.1111/j.1462-5822.2006.00887.x
10.1016/j.fgb.2007.09.002
10.1016/S0968-0004(00)01712-6
10.1105/tpc.112.096156
10.5423/PPJ.OA.05.2012.0059
10.1099/mic.0.057075-0
10.1371/journal.ppat.1002460
10.1266/ggs.82.447
10.1371/journal.ppat.1002310
10.4161/trns.1.3.13192
10.1371/journal.pone.0049495
10.1371/journal.pone.0025311
10.1074/jbc.271.46.29029
10.1111/j.1364-3703.2012.00829.x
10.1074/jbc.274.16.10669
10.1094/MPMI.2002.15.11.1119
10.1186/1471-2148-8-39
10.1016/j.cell.2009.10.006
10.1021/pr0602904
10.1016/j.advenzreg.2011.11.002
10.1371/journal.pone.0104194
10.1094/MPMI-07-11-0199
10.1128/MMBR.69.2.262-291.2005
10.1016/j.fgb.2013.11.005
10.1111/nph.12776
10.1016/j.fgb.2014.02.009
ContentType Journal Article
Copyright 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.13374
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

AGRICOLA
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 134
ExternalDocumentID 3697000741
25758923
10_1111_nph_13374
NPH13374
newphytologist.207.1.119
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agro‐scientific Research in the Public Interest
  funderid: 201303016
– fundername: National Key Basic Research and Development Program
  funderid: 2013CB127802
– fundername: National Science Foundation
  funderid: 31171881; 31272000
– fundername: China Agriculture Research System
  funderid: CARS‐3‐1‐15
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
RIG
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5204-f7bbf40ef40d9567ccc94568f18293a9399bd063d981032e8bf73ae1ececef83
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:32:09 EDT 2025
Thu Jul 10 18:40:37 EDT 2025
Fri Jul 11 15:15:16 EDT 2025
Fri Jul 25 12:03:28 EDT 2025
Fri Jul 25 10:11:27 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 03:09:21 EDT 2025
Wed Jan 22 17:05:25 EST 2025
Sun Aug 24 12:10:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mycotoxin
mitogen-activated protein kinase (MAPK) pathways
Fusarium graminearum
virulence
phosphatome
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5204-f7bbf40ef40d9567ccc94568f18293a9399bd063d981032e8bf73ae1ececef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13374
PMID 25758923
PQID 1683494583
PQPubID 2026848
PageCount 16
ParticipantIDs proquest_miscellaneous_1746351744
proquest_miscellaneous_1705100392
proquest_miscellaneous_1684431757
proquest_journals_2513077152
proquest_journals_1683494583
pubmed_primary_25758923
crossref_primary_10_1111_nph_13374
crossref_citationtrail_10_1111_nph_13374
wiley_primary_10_1111_nph_13374_NPH13374
jstor_primary_newphytologist_207_1_119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150701
July 2015
2015-07-00
2015-Jul
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 7
  year: 2015
  text: 20150701
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2015
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1987; 77
2002; 15
2009; 46
1965; 57
2010; 107
2013a; 15
2008; 7
2011; 11
2011; 10
2008; 8
2008; 76
2008; 6
2008; 146
2014; 63
2012; 13
2014; 66
1997; 7
2012; 52
2005; 24
2005; 69
1998; 46
2010; 22
2013; 59
2014; 4
2013; 14
2000; 19
2010; 1
2011b; 10
1982; 4
2007; 8
1999; 13
2007; 9
2007; 6
2012; 28
2008; 20
2014; 9
2007; 20
2012; 25
2006; 127
2012; 24
2008; 275
2008; 154
2003; 43
2014; 203
1987; 58
2010; 77
2001; 289
2004; 41
2015; 16
2012; 586
2000; 25
2011a; 7
2010; 123
2002; 4
2000; 275
2011; 6
2011; 7
2009; 139
2011; 2011
2013; 335
2013b; 8
1999; 274
1992; 138
1996; 271
2008; 45
1994; 13
2009; 8
2007; 82
2011; 48
2005; 2
2012; 158
2012; 7
2007; 44
2013; 1829
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
26017464 - New Phytol. 2015 Jul;207(1):1-3
References_xml – volume: 16
  start-page: 1
  year: 2015
  end-page: 13
  article-title: A transcription factor FgSte12 is required for pathogenicity in
  publication-title: Molecular Plant Pathology
– volume: 275
  start-page: 5774
  year: 2008
  end-page: 5784
  article-title: A decade of Cdc14–a personal perspective delivered on 9 July 2007 at the 32nd FEBS congress in Vienna, Austria
  publication-title: FEBS Journal
– volume: 24
  start-page: 1931
  year: 2005
  end-page: 1941
  article-title: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth
  publication-title: EMBO Journal
– volume: 4
  start-page: 349
  year: 2014
  end-page: 365
  article-title: Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in reveals interplay between phosphatases and the p38 mitogen‐activated protein kinase
  publication-title: G3: Genes, Genomes, Genetics
– volume: 57
  start-page: 962
  year: 1965
  end-page: 966
  article-title: Macroconidium formation in submerged cultures by a non‐sporulating strain of
  publication-title: Mycologia
– volume: 82
  start-page: 447
  year: 2007
  end-page: 454
  article-title: Genetic and molecular analysis of the temperature‐sensitive mutant un‐17 carrying a mutation in the gene encoding poly (A)‐polymerase in
  publication-title: Genes & Genetic Systems
– volume: 127
  start-page: 635
  year: 2006
  end-page: 648
  article-title: Global, , and site‐specific phosphorylation dynamics in signaling networks
  publication-title: Cell
– volume: 8
  start-page: e61307
  year: 2013b
  article-title: Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi‐stress tolerance in
  publication-title: PLoS ONE
– volume: 45
  start-page: 389
  year: 2008
  end-page: 399
  article-title: Conidial germination in the filamentous fungus
  publication-title: Fungal Genetics and Biology
– volume: 146
  start-page: 351
  year: 2008
  end-page: 367
  article-title: Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants
  publication-title: Plant Physiology
– volume: 22
  start-page: 2459
  year: 2010
  end-page: 2475
  article-title: A nitrogen response pathway regulates virulence functions in via the protein kinase TOR and the bZIP protein MeaB
  publication-title: Plant Cell
– volume: 158
  start-page: 1258
  year: 2012
  end-page: 1267
  article-title: Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of
  publication-title: Microbiology
– volume: 20
  start-page: 944
  year: 2007
  end-page: 954
  article-title: Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of
  publication-title: Molecular Plant–Microbe Interactions
– volume: 1
  start-page: 130
  year: 2010
  end-page: 135
  article-title: General transcription factors and subunits of RNA polymerase III. Paralogs for promoter‐ and cell type‐specific transcription in multicellular eukaryotes
  publication-title: Transcription
– volume: 123
  start-page: 4374
  year: 2010
  end-page: 4381
  article-title: Regulation of cell cycle‐specific gene expression in fission yeast by the Cdc14p‐like phosphatase Clp1p
  publication-title: Journal of Cell Science
– volume: 8
  start-page: 573
  year: 2009
  end-page: 585
  article-title: Analysis of all protein phosphatase genes in identifies a new mitotic regulator, fcp1
  publication-title: Eukaryotic Cell
– volume: 43
  start-page: 87
  year: 2003
  end-page: 95
  article-title: Mating, conidiation and pathogenicity of , the main causal agent of the head‐blight disease of wheat, are regulated by the MAP kinase gpmk1
  publication-title: Current Genetics
– volume: 20
  start-page: 661
  year: 2008
  end-page: 668
  article-title: Cdk‐counteracting phosphatases unlock mitotic exit
  publication-title: Current Opinion in Cell Biology
– volume: 6
  start-page: e140
  year: 2008
  article-title: Birth and rapid subcellular adaptation of a hominoid‐specific CDC14 protein
  publication-title: PLoS Biology
– volume: 7
  start-page: e1002310
  year: 2011
  article-title: A phenome‐based functional analysis of transcription factors in the cereal head blight fungus,
  publication-title: PLoS Pathogens
– volume: 7
  start-page: 986
  year: 1997
  end-page: 995
  article-title: The significance of digital gene expression profiles
  publication-title: Genome Research
– volume: 13
  start-page: 3244
  year: 1999
  end-page: 3258
  article-title: tumor suppressor controls cell size and number by antagonizing the Chico/PI3‐kinase signaling pathway
  publication-title: Genes & Development
– volume: 24
  start-page: 1327
  year: 2012
  end-page: 1351
  article-title: Mitogen‐activated protein kinase signaling in plant‐interacting fungi: distinct messages from conserved messengers
  publication-title: Plant Cell
– volume: 1829
  start-page: 283
  year: 2013
  end-page: 295
  article-title: Yeast RNA polymerase III transcription factors and effectors
  publication-title: Biochimica et Biophysica Acta (BBA)‐Gene Regulatory Mechanisms
– volume: 15
  start-page: 2696
  year: 2013a
  end-page: 2711
  article-title: Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of
  publication-title: Environmental Microbiology
– volume: 138
  start-page: 2021
  year: 1992
  end-page: 2028
  article-title: Physiological analysis of mutants of impaired in sulphate assimilation
  publication-title: Journal of General Microbiology
– volume: 11
  start-page: 110
  year: 2011
  article-title: forms mycotoxin producing infection structures on wheat
  publication-title: BMC Plant Biology
– volume: 41
  start-page: 973
  year: 2004
  end-page: 981
  article-title: Double‐joint PCR: a PCR‐based molecular tool for gene manipulations in filamentous fungi
  publication-title: Fungal Genetics and Biology
– volume: 63
  start-page: 24
  year: 2014
  end-page: 41
  article-title: Trehalose 6‐phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in
  publication-title: Fungal Genetics and Biology
– volume: 14
  start-page: 71
  year: 2013
  end-page: 83
  article-title: Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in
  publication-title: Molecular Plant Pathology
– volume: 271
  start-page: 29029
  year: 1996
  end-page: 29033
  article-title: The yeast HAL2 nucleotidase is an target of salt toxicity
  publication-title: Journal of Biological Chemistry
– volume: 9
  start-page: e104194
  year: 2014
  article-title: TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex
  publication-title: PLoS ONE
– volume: 46
  start-page: 287
  year: 2009
  end-page: 298
  article-title: Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi
  publication-title: Fungal Genetics and Biology
– volume: 59
  start-page: 33
  year: 2013
  end-page: 41
  article-title: A serine/threonine‐protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in
  publication-title: Current Genetics
– volume: 203
  start-page: 219
  year: 2014
  end-page: 232
  article-title: The TOR signaling pathway regulates vegetative development and virulence in
  publication-title: New Phytologist
– volume: 2011
  start-page: 930940
  year: 2011
  article-title: The dynamical systems properties of the HOG signaling cascade
  publication-title: Journal of Signal Transduction
– volume: 289
  start-page: 608
  year: 2001
  end-page: 615
  article-title: Dual‐specificity protein phosphatase Yvh1p, which is required for vegetative growth and sporulation, interacts with yeast pescadillo homolog in
  publication-title: Biochemical and Biophysical Research Communications
– volume: 10
  start-page: 1385
  year: 2011b
  end-page: 1390
  article-title: Functional characterization of a ‐like gene in
  publication-title: Agricultural Sciences in China
– volume: 46
  start-page: 909
  year: 2009
  end-page: 918
  article-title: The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in
  publication-title: Fungal Genetics and Biology
– volume: 6
  start-page: e25311
  year: 2011
  article-title: A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in
  publication-title: PLoS ONE
– volume: 123
  start-page: 2867
  year: 2010
  end-page: 2876
  article-title: Cdc14: a highly conserved family of phosphatases with non‐conserved functions?
  publication-title: Journal of Cell Science
– volume: 335
  start-page: 9
  year: 2013
  end-page: 18
  article-title: Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer
  publication-title: Cancer Letters
– volume: 4
  start-page: 195
  year: 1982
  end-page: 209
  article-title: Epidemiology of wheat head blight and maize ear rot caused by
  publication-title: Canadian Journal of Plant Pathology
– volume: 7
  start-page: e1002460
  year: 2011a
  article-title: Functional analysis of the kinome of the wheat scab fungus
  publication-title: PLoS Pathogens
– volume: 7
  start-page: 1184
  year: 2008
  end-page: 1190
  article-title: The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells
  publication-title: Cell Cycle
– volume: 69
  start-page: 262
  year: 2005
  end-page: 291
  article-title: Cell wall integrity signaling in
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 9
  start-page: 1491
  year: 2007
  end-page: 1506
  article-title: Two mitogen‐activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in
  publication-title: Cellular Microbiology
– volume: 107
  start-page: 17539
  year: 2010
  end-page: 17544
  article-title: A phosphorylation‐regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 19
  start-page: 483
  year: 2000
  end-page: 488
  article-title: Protein phosphorylation and protein phosphatases De Panne, Belgium, September 19–24, 1999
  publication-title: EMBO Journal
– volume: 25
  start-page: 596
  year: 2000
  end-page: 601
  article-title: The regulation of protein function by multisite phosphorylation – a 25 year update
  publication-title: Trends in Biochemical Sciences
– volume: 275
  start-page: 2410
  year: 2000
  end-page: 2414
  article-title: The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53
  publication-title: Journal of Biological Chemistry
– volume: 77
  start-page: 891
  year: 2010
  end-page: 911
  article-title: Trehalose 6‐phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen
  publication-title: Molecular Microbiology
– volume: 44
  start-page: 1191
  year: 2007
  end-page: 1204
  article-title: Global molecular surveillance reveals novel head blight species and trichothecene toxin diversity
  publication-title: Fungal Genetics and Biology
– volume: 28
  start-page: 259
  year: 2012
  end-page: 269
  article-title: Functional roles of a putative B'delta regulatory subunit and a catalytic subunit of protein phosphatase 2A in the cereal pathogen
  publication-title: Plant Pathology Journal
– volume: 8
  start-page: 39
  year: 2008
  article-title: Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers
  publication-title: BMC Evolutionary Biology
– volume: 154
  start-page: 326
  year: 2008
  end-page: 336
  article-title: Functional characterization of CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit
  publication-title: Microbiology
– volume: 77
  start-page: 1640
  year: 1987
  end-page: 1646
  article-title: Nitrate nonutilizing mutants of and their use in vegetative compatibility tests
  publication-title: Phytopathology
– volume: 66
  start-page: 79
  year: 2014
  end-page: 85
  article-title: The protein phosphatase PhzA of is involved in oxidative stress tolerance and fungal virulence
  publication-title: Fungal Genetics and Biology
– volume: 22
  start-page: 2495
  year: 2010
  end-page: 2508
  article-title: The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus
  publication-title: Plant Cell
– volume: 52
  start-page: 229
  year: 2012
  end-page: 238
  article-title: Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease
  publication-title: Advances in Biological Regulation
– volume: 10
  start-page: 21
  year: 2011
  end-page: 33
  article-title: Type 2C protein phosphatases in fungi
  publication-title: Eukaryotic Cell
– volume: 274
  start-page: 23991
  year: 1999
  end-page: 23995
  article-title: Identification of the human YVH1 protein‐tyrosine phosphatase orthologue reveals a novel zinc binding domain essential for function
  publication-title: Journal of Biological Chemistry
– volume: 76
  start-page: 1686
  year: 2008
  end-page: 1694
  article-title: Combined inactivation of the and genes results in avirulence in a mouse model for systemic infection
  publication-title: Infection and Immunity
– volume: 4
  start-page: 318
  year: 2002
  end-page: 322
  article-title: Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation
  publication-title: Nature Cell Biology
– volume: 274
  start-page: 10669
  year: 1999
  end-page: 10672
  article-title: The role of phosphatases in inositol signaling reactions
  publication-title: Journal of Biological Chemistry
– volume: 2
  start-page: 591
  year: 2005
  end-page: 598
  article-title: Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry
  publication-title: Nature Methods
– volume: 13
  start-page: 61
  year: 1994
  end-page: 70
  article-title: , a novel protein phosphatase promotes adaptation to pheromone response in
  publication-title: EMBO Journal
– volume: 15
  start-page: 1119
  year: 2002
  end-page: 1127
  article-title: A mitogen‐activated protein kinase gene ( ) in is required for female fertility, heterokaryon formation, and plant infection
  publication-title: Molecular Plant–Microbe Interactions
– volume: 6
  start-page: 133
  year: 2007
  end-page: 140
  article-title: A novel quantitative proteomics strategy to study phosphorylation‐dependent peptide–protein interactions
  publication-title: Journal of Proteome Research
– volume: 25
  start-page: 481
  year: 2012
  end-page: 495
  article-title: Identification of pathogenesis‐associated genes by T‐DNA‐mediated insertional mutagenesis in : a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence
  publication-title: Molecular Plant–Microbe Interactions
– volume: 139
  start-page: 468
  year: 2009
  end-page: 484
  article-title: Serine/threonine phosphatases: mechanism through structure
  publication-title: Cell
– volume: 46
  start-page: 1414
  year: 1998
  end-page: 1418
  article-title: Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography/mass spectrometry
  publication-title: Journal of Agricultural Food Chemistry
– volume: 586
  start-page: 2732
  year: 2012
  end-page: 2739
  article-title: The human phosphatase interactome: an intricate family portrait
  publication-title: FEBS Letters
– volume: 7
  start-page: e49495
  year: 2012
  article-title: The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in
  publication-title: PLoS ONE
– volume: 58
  start-page: 201
  year: 1987
  end-page: 216
  article-title: Plasmid construction by homologous recombination in yeast
  publication-title: Gene
– volume: 48
  start-page: 113
  year: 2011
  end-page: 123
  article-title: Paralogous genes in mediate differential sensitivity to sterol demethylation inhibitors
  publication-title: Fungal Genetics and Biology
– volume: 8
  start-page: 434
  year: 2007
  article-title: The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains
  publication-title: BMC Genomics
– volume: 13
  start-page: 414
  year: 2012
  end-page: 430
  article-title: The top 10 fungal pathogens in molecular plant pathology
  publication-title: Molecular Plant Pathology
– volume: 8
  start-page: 173
  year: 2007
  end-page: 184
  article-title: The Slt2‐type MAP kinase Bmp3 of is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization
  publication-title: Molecular Plant Pathology
– ident: e_1_2_6_66_1
  doi: 10.1080/07060668209501326
– ident: e_1_2_6_57_1
  doi: 10.1006/bbrc.2001.6021
– ident: e_1_2_6_58_1
  doi: 10.1038/sj.emboj.7600672
– ident: e_1_2_6_73_1
  doi: 10.1016/S1671-2927(11)60131-4
– ident: e_1_2_6_41_1
  doi: 10.1155/2011/930940
– ident: e_1_2_6_31_1
  doi: 10.1094/Phyto-77-1640
– ident: e_1_2_6_5_1
  doi: 10.1128/EC.00249-10
– ident: e_1_2_6_16_1
  doi: 10.1007/s00294-012-0385-3
– ident: e_1_2_6_68_1
  doi: 10.1038/nmeth776
– ident: e_1_2_6_11_1
  doi: 10.1099/mic.0.2007/011411-0
– ident: e_1_2_6_21_1
  doi: 10.1101/gad.13.24.3244
– ident: e_1_2_6_75_1
  doi: 10.1371/journal.pone.0061307
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1742-4658.2008.06693.x
– ident: e_1_2_6_44_1
  doi: 10.1074/jbc.274.34.23991
– ident: e_1_2_6_48_1
  doi: 10.1242/jcs.073056
– ident: e_1_2_6_10_1
  doi: 10.2307/3756895
– ident: e_1_2_6_60_1
  doi: 10.1016/j.canlet.2013.02.036
– ident: e_1_2_6_38_1
  doi: 10.1128/IAI.01497-07
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1364-3703.2007.00383.x
– ident: e_1_2_6_70_1
  doi: 10.1099/00221287-138-10-2021
– ident: e_1_2_6_9_1
  doi: 10.1186/1471-2164-8-434
– ident: e_1_2_6_29_1
  doi: 10.1104/pp.107.111393
– ident: e_1_2_6_7_1
  doi: 10.4161/cc.7.9.5792
– ident: e_1_2_6_39_1
  doi: 10.1038/ncb777
– ident: e_1_2_6_37_1
  doi: 10.1016/0378-1119(87)90376-3
– ident: e_1_2_6_28_1
  doi: 10.1073/pnas.1007974107
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1364-3703.2011.00783.x
– ident: e_1_2_6_42_1
  doi: 10.1021/jf970857o
– ident: e_1_2_6_26_1
  doi: 10.1007/s00294-003-0379-2
– ident: e_1_2_6_47_1
  doi: 10.1016/j.cell.2006.09.026
– ident: e_1_2_6_74_1
  doi: 10.1111/1462-2920.12126
– ident: e_1_2_6_53_1
  doi: 10.1016/j.fgb.2009.01.002
– ident: e_1_2_6_80_1
  doi: 10.1093/emboj/19.4.483
– ident: e_1_2_6_65_1
  doi: 10.1016/j.fgb.2007.03.001
– ident: e_1_2_6_2_1
  doi: 10.1016/j.bbagrm.2012.10.002
– ident: e_1_2_6_18_1
  doi: 10.1094/MPMI-20-8-0944
– ident: e_1_2_6_62_1
  doi: 10.1128/EC.00346-08
– ident: e_1_2_6_22_1
  doi: 10.1111/mpp.12155
– ident: e_1_2_6_33_1
  doi: 10.1074/jbc.275.4.2410
– ident: e_1_2_6_36_1
  doi: 10.1105/tpc.110.075937
– ident: e_1_2_6_19_1
  doi: 10.1534/g3.113.008813
– ident: e_1_2_6_43_1
  doi: 10.1242/jcs.074815
– ident: e_1_2_6_71_1
  doi: 10.1016/j.fgb.2009.08.005
– ident: e_1_2_6_54_1
  doi: 10.1371/journal.pbio.0060140
– ident: e_1_2_6_6_1
  doi: 10.1101/gr.7.10.986
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2958.2010.07254.x
– ident: e_1_2_6_8_1
  doi: 10.1186/1471-2229-11-110
– ident: e_1_2_6_15_1
  doi: 10.1002/j.1460-2075.1994.tb06235.x
– ident: e_1_2_6_56_1
  doi: 10.1016/j.febslet.2012.05.008
– ident: e_1_2_6_77_1
  doi: 10.1016/j.fgb.2004.08.001
– ident: e_1_2_6_14_1
  doi: 10.1105/tpc.110.074302
– ident: e_1_2_6_35_1
  doi: 10.1016/j.fgb.2010.10.004
– ident: e_1_2_6_51_1
  doi: 10.1016/j.ceb.2008.09.003
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1462-5822.2006.00887.x
– ident: e_1_2_6_59_1
  doi: 10.1016/j.fgb.2007.09.002
– ident: e_1_2_6_12_1
  doi: 10.1016/S0968-0004(00)01712-6
– ident: e_1_2_6_23_1
  doi: 10.1105/tpc.112.096156
– ident: e_1_2_6_30_1
  doi: 10.5423/PPJ.OA.05.2012.0059
– ident: e_1_2_6_3_1
  doi: 10.1099/mic.0.057075-0
– ident: e_1_2_6_72_1
  doi: 10.1371/journal.ppat.1002460
– ident: e_1_2_6_67_1
  doi: 10.1266/ggs.82.447
– ident: e_1_2_6_63_1
  doi: 10.1371/journal.ppat.1002310
– ident: e_1_2_6_69_1
  doi: 10.4161/trns.1.3.13192
– ident: e_1_2_6_78_1
  doi: 10.1371/journal.pone.0049495
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0025311
– ident: e_1_2_6_45_1
  doi: 10.1074/jbc.271.46.29029
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1364-3703.2012.00829.x
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.274.16.10669
– ident: e_1_2_6_24_1
  doi: 10.1094/MPMI.2002.15.11.1119
– ident: e_1_2_6_49_1
  doi: 10.1186/1471-2148-8-39
– ident: e_1_2_6_61_1
  doi: 10.1016/j.cell.2009.10.006
– ident: e_1_2_6_79_1
  doi: 10.1021/pr0602904
– ident: e_1_2_6_25_1
  doi: 10.1016/j.advenzreg.2011.11.002
– ident: e_1_2_6_17_1
  doi: 10.1371/journal.pone.0104194
– ident: e_1_2_6_20_1
  doi: 10.1094/MPMI-07-11-0199
– ident: e_1_2_6_32_1
  doi: 10.1128/MMBR.69.2.262-291.2005
– ident: e_1_2_6_64_1
  doi: 10.1016/j.fgb.2013.11.005
– ident: e_1_2_6_76_1
  doi: 10.1111/nph.12776
– ident: e_1_2_6_46_1
  doi: 10.1016/j.fgb.2014.02.009
– reference: 26017464 - New Phytol. 2015 Jul;207(1):1-3
SSID ssj0009562
Score 2.4911785
Snippet Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the...
Summary Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of...
Summary Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Amino Acid Motifs
Biogenesis
Cell Division
Deletion
Deletion mutant
Eukaryotes
eukaryotic cells
Functional analysis
Fungal Proteins - chemistry
Fungal Proteins - metabolism
Fungi
Fusarium - cytology
Fusarium - enzymology
Fusarium - genetics
Fusarium - pathogenicity
Fusarium graminearum
Fusarium head blight
Gene Deletion
Genes
Genes, Fungal
Growth
hyphae
Hyphae - growth & development
Kinases
Metabolism
mitogen-activated protein kinase
Mitogen-Activated Protein Kinases - metabolism
mitogen‐activated protein kinase (MAPK) pathways
mutants
mycotoxin
Organelle Biogenesis
phenotype
Phenotypes
Phosphatase
phosphatome
Phosphoric Monoester Hydrolases - metabolism
Phytopathogenic fungi
plant pathogenic fungi
Protein kinase
Proteome - metabolism
Regulators
Ribosomes
Ribosomes - metabolism
Saccharomyces cerevisiae - metabolism
Sequence Homology, Amino Acid
signal transduction
Spores, Fungal - growth & development
Trichothecenes - metabolism
vegetative growth
Virulence
Western blotting
wheat
Title Functional analysis of the Fusarium graminearum phosphatome
URI https://www.jstor.org/stable/newphytologist.207.1.119
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13374
https://www.ncbi.nlm.nih.gov/pubmed/25758923
https://www.proquest.com/docview/1683494583
https://www.proquest.com/docview/2513077152
https://www.proquest.com/docview/1684431757
https://www.proquest.com/docview/1705100392
https://www.proquest.com/docview/1746351744
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL2U0oe9bO0-03XDG2PsxcGxZUmmT9tYCIOVMTrIw8BIskRgqx2a-KH99TuSP2hHVsYICQZfJ9GVjnSOc3NE9MYVLM8sT2LBmIqZqDykHIs1oGSSzGY6FGN-OeOL7-zzMl_u0enwX5jOH2K84eaREeZrD3ClNzdAXq9XUwgs4b1Afa2WJ0Tf0huGuzwdHJg548veVchX8YxX3lqLunLEXUTzNm8NC8_8Af0YvnJXb_Jz2m711Fz_4eb4n206pPs9IY3edyPoiPZs_ZAOPjQgjVeP6HSOda-7XRip3r8kalwE2hjN2w2EdnsR-QIvfLS6xPF61WzWKyj5C_uYzuefzj8u4n6_hdjkacJiJ7R2LLF4VkifMMagJ7l00CBFpgpwGV2B0lSF9DZ8VmonMmVn1uDhZPaE9uumts8oKqQ0ms80h1phtsoLo5yw0MPWqhQKZULvhsSXpvci91ti_CoHTYJMlCETE3o9hq47A45dQW9D740RkCQYpWEHYKClTBNRznBNMaGToXvLHqybcsalN-nJZbbzNBggJkIBojOhV-NpoND_tKJq27ThLVigYuKOGOEnwASE9K4YBgaIVzTpaTf6xjZhcs0l-DiSF8bQ39NRnn1dhIPjfw99TvfABfOuEvmE9reXrX0BvrXVLwOwfgPpZCXG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sq6Av3i-jq1YR8aVDp02TFH3xNoy6O4iMMC9SmjRhQLcddqYP-uv9kl7YlXERGWYI9PSSk5zk-9IzX4ie2YylieFRKBgrQiZKF1KWhQqhpKPEJMonYx7N-ewr-7hMl3v0qv8vTKsPMSy4ucjw47ULcLcgfSrKq_VqDIYl2AW66Hb0dsr5777EpyR3edxrMHPGl52ukMvjGU49Mxu1CYm7oOZZ5Oqnnuk1-tY_dJtx8n3cbNVY__pDz_F_a3WdrnaYNHjddqIbtGeqm3TpTQ3c-PMWvZxi6mtXDIOikzAJahsAOQbTZgOu3RwHLscL9y5OUF6v6s16BTJ_bG7TYvp-8XYWdlsuhDqNIxZaoZRlkcG3hP-E1hqNyaUFDcmSIgOcUSVQTZlJp8RnpLIiKczEaHysTO7QflVX5h4FmZRa8YniICzMlGmmCysMKLExRQySMqIXvedz3cmRu10xfuQ9LYEncu-JET0dTNetBscuo-e--QYLsBJ0VL8JMAImjyORT3BONqKDvn3zLl43-YRLp9OTymTnYYBAjIUCWGdET4bDCET3dqWoTN34SzCPxsQ5NsKNgREw6Xk2DCAQv6jS3bb7DXXC-JpKQHI4z3eiv7sjn3-e-cL9fzd9TJdni6PD_PDD_NMDugJomLaJyQe0vz1pzEPAr6165KPsNy3tKeI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFL2sq4gvfutWV40i4ktKmkxmEvZJXUP9Kous0AchZCYzFNxNwrZ50F_vmckHu1IXkdISyE3buTNn5pz09gzRS5OyONI88AVjhc9EaSFlmC8BJRVEOpKuGPPLgs-_sY_LeLlDB8N_YTp_iPGGm0WGm68twJvSnAN51aymEFiCXaGrjAep3bfh8Gt4znGXh4MFM2d82dsK2TKe8dILi1FXj7iNaV4krm7lyW7R9-E7dwUnP6btRk7Vrz_sHP-zUbfpZs9IvTfdELpDO7q6S9fe1mCNP-_RQYaFr7tf6BW9gYlXGw-80cvaNZR2e-rZCi98dHGG42ZVr5sVpPypvk_H2fvjd3O_33DBV3EYMN8IKQ0LNJ4l0ieUUuhKnhiIkDQqUpAZWYLTlGliffh0Io2ICj3TCg-TRA9ot6orvUdemiRK8pnkkCtMl3GqCiM0BLHWRQiJMqHXQ-Jz1ZuR2z0xTvJBlCATucvEhF6MoU3nwLEt6JXrvTECmgTD1G0BDLjkYSDyGa5JJ7Q_dG_eo3Wdz3hiXXriJNp6GhQQM6EA05nQ8_E0YGh_WykqXbfuLZjjYuKSGGFnwACM9LIYBgqIVzTpYTf6xjZhdo0TEHIkz42hv6cjXxzN3cGjfw99RtePDrP884fFp8d0A7ww7qqS92l3c9bqJ-BeG_nUYew3kbookQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+analysis+of+the+Fusarium+graminearum+phosphatome&rft.jtitle=The+New+phytologist&rft.au=Yun%2C+Yingzi&rft.au=Liu%2C+Zunyong&rft.au=Yin%2C+Yanni&rft.au=Jiang%2C+Jinhua&rft.date=2015-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=207&rft.issue=1&rft.spage=119&rft.epage=134&rft_id=info:doi/10.1111%2Fnph.13374&rft.externalDBID=10.1111%252Fnph.13374&rft.externalDocID=NPH13374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon