Reduced transpiration response to precipitation pulses precedes mortality in a piñon–juniper woodland subject to prolonged drought

Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to res...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 200; no. 2; pp. 375 - 387
Main Authors Plaut, Jennifer A., Wadsworth, W. Duncan, Pangle, Robert, Yepez, Enrico A., McDowell, Nate G., Pockman, William T.
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.10.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon–juniper (Pinus edulis–Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.
AbstractList Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.
Summary Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above‐average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon–juniper (Pinus edulis–Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post‐event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post‐pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought‐related mortality. Featured paper: See also the Editorial by McDowell et al
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above‐average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon–juniper (Pinus edulis–Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post‐event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post‐pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought‐related mortality.
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above‐average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon–juniper ( P inus edulis – J uniperus monosperma ) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post‐event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post‐pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought‐related mortality. Featured paper: See also the Editorial by McDowell et al
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon–juniper (Pinus edulis–Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.
Summary Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality. Featured paper: See also the Editorial by McDowell et al [PUBLICATION ABSTRACT]
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival.We analyzed 5 yr of data from a rainfall manipulation experiment in pinon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control.Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses.Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality.Original Abstract: Featured paper: See also the Editorial by McDowell et al
Author Jennifer A. Plaut
Enrico A. Yepez
Nate G. Mc Dowell
W. Duncan Wadsworth
Robert Pangle
William T. Pockman
Author_xml – sequence: 1
  givenname: Jennifer A.
  surname: Plaut
  fullname: Plaut, Jennifer A.
  organization: 1 University of New Mexico
– sequence: 2
  givenname: W. Duncan
  surname: Wadsworth
  fullname: Wadsworth, W. Duncan
  organization: Rice University
– sequence: 3
  givenname: Robert
  surname: Pangle
  fullname: Pangle, Robert
  organization: 1 University of New Mexico
– sequence: 4
  givenname: Enrico A.
  surname: Yepez
  fullname: Yepez, Enrico A.
  organization: Instituto Tecnológico de Sonora
– sequence: 5
  givenname: Nate G.
  surname: McDowell
  fullname: McDowell, Nate G.
  organization: Los Alamos National Laboratory
– sequence: 6
  givenname: William T.
  surname: Pockman
  fullname: Pockman, William T.
  organization: 1 University of New Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23844951$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhS1URNPCghdAI7GBxbT-t2eJKqBIFSAEEjvL43ESRxN7sD2KsmPTJ-iT8Ay8CU-C00lYVPx5Y8v-zjnXuvcEHPngLQCPETxDZZ37YXmGMGnwPTBDlDe1REQcgRmEWNac8s_H4CSlFYSwYRw_AMeYSEobhmbg-oPtRmO7Kkft0-Cizi74Kto0BJ9slUM1RGvc4PL0Mox9sun20nblsA4x697lbeV8pavBff8W_I-vN6vRu8HGahNC12vfVWlsV9bkyTH0wS9KahfDuFjmh-D-XBffR_v9FHx69fLjxWV99e71m4sXV7VhGOJa6Fa00FhsJRQSYd52Zk40M5JRoRlnaM45bxnvpG2QEYwwzQSDAksLkZHkFDybfEsFX0abslq7ZGxfCrRhTAozTLGAGPN_oohSiTFsJPkPlFBBMeS7Ap7eQVdhjL78uWQjQkTx-ytVYglDTNBd7JM9NbZr26khurWOW3VobgHOJ8DEkFK0c2X2XSzNdr1CUO3GR5XxUbfjUxTP7ygOpr9j9-4b19vtn0H19v3lQVFPilXKIf5SeLsZlttcRmLhylcxhAorUpr3E5S75hg
CitedBy_id crossref_primary_10_3390_f7090203
crossref_primary_10_1007_s11056_014_9405_0
crossref_primary_10_1111_gcb_14720
crossref_primary_10_1029_2020WR027592
crossref_primary_10_1007_s00284_021_02394_z
crossref_primary_10_1002_ece3_3584
crossref_primary_10_1002_2015WR017244
crossref_primary_10_1016_j_agrformet_2024_109897
crossref_primary_10_1111_nph_14192
crossref_primary_10_1016_j_foreco_2014_11_023
crossref_primary_10_1111_pce_13340
crossref_primary_10_1088_1748_9326_ab0921
crossref_primary_10_1111_nph_16043
crossref_primary_10_3390_f15010090
crossref_primary_10_1111_gcb_14954
crossref_primary_10_1111_nph_16042
crossref_primary_10_5194_hess_26_4995_2022
crossref_primary_10_1007_s10021_017_0185_1
crossref_primary_10_1016_j_jaridenv_2018_10_001
crossref_primary_10_1038_s41598_020_63420_x
crossref_primary_10_1007_s13595_014_0404_2
crossref_primary_10_1007_s10265_014_0685_4
crossref_primary_10_1016_j_biocon_2018_06_035
crossref_primary_10_1038_srep15110
crossref_primary_10_1111_pce_12588
crossref_primary_10_1016_j_jaridenv_2015_09_004
crossref_primary_10_1146_annurev_ecolsys_120213_091650
crossref_primary_10_1002_eco_1654
crossref_primary_10_1007_s00468_014_1050_x
crossref_primary_10_1016_j_agrformet_2015_08_269
crossref_primary_10_3389_ffgc_2019_00021
crossref_primary_10_1111_nph_19119
crossref_primary_10_1007_s10333_019_00763_w
crossref_primary_10_1088_1748_9326_aad8cb
crossref_primary_10_1111_ele_13455
crossref_primary_10_1111_2041_210X_13094
crossref_primary_10_1002_ecs2_4603
crossref_primary_10_1111_nph_15860
crossref_primary_10_3390_w9060404
crossref_primary_10_1002_ece3_1422
crossref_primary_10_1016_j_agwat_2023_108467
crossref_primary_10_1016_j_foreco_2020_118764
crossref_primary_10_3390_f13122016
crossref_primary_10_3398_064_079_0304
crossref_primary_10_1093_treephys_tpv005
crossref_primary_10_1111_nph_14774
crossref_primary_10_1016_j_envexpbot_2017_03_009
crossref_primary_10_1111_nph_13205
crossref_primary_10_1007_s11258_016_0677_7
crossref_primary_10_3390_agronomy14030439
crossref_primary_10_1093_treephys_tpz008
crossref_primary_10_1111_gcb_12713
crossref_primary_10_5194_hess_25_4741_2021
crossref_primary_10_1111_nph_13354
crossref_primary_10_1016_j_agrformet_2022_109269
crossref_primary_10_1038_nplants_2016_109
crossref_primary_10_1029_2022WR034117
crossref_primary_10_1142_S2345737615500074
crossref_primary_10_1016_j_jhydrol_2024_130799
crossref_primary_10_1038_s41467_020_14300_5
crossref_primary_10_1073_pnas_2410467121
crossref_primary_10_1111_nph_12502
crossref_primary_10_1111_nph_12465
crossref_primary_10_1093_treephys_tpz099
crossref_primary_10_1371_journal_pone_0092770
crossref_primary_10_5194_bg_18_831_2021
crossref_primary_10_1002_eco_1593
crossref_primary_10_1016_j_foreco_2020_118639
crossref_primary_10_1007_s11258_018_0813_7
crossref_primary_10_1007_s13595_018_0778_7
crossref_primary_10_1111_1365_2435_12426
crossref_primary_10_1002_ecs2_3433
Cites_doi 10.1111/j.1365-3040.2009.02023.x
10.1111/j.1469-8137.2010.03340.x
10.1111/j.1399-3054.2006.00669.x
10.1016/j.tree.2011.06.003
10.1029/2010JG001486
10.1111/j.1469-8137.2010.03393.x
10.1093/treephys/27.12.1711
10.1093/treephys/tps025
10.1038/nature11377
10.1104/pp.110.170704
10.1007/978-1-4419-0318-1
10.1007/s00442-008-1152-5
10.5194/bg-9-1007-2012
10.1038/nclimate1633
10.1007/s11104-007-9351-0
10.1126/science.1155121
10.1093/treephys/3.4.309
10.1111/j.1469-8137.2010.03232.x
10.1071/FP09103
10.1007/s00442-004-1570-y
10.1093/treephys/24.1.107
10.1002/jgrd.50111
10.1890/080016
10.2307/2390121
10.1007/s11104-007-9349-7
10.1641/B580908
10.1111/j.1365-3040.2012.02512.x
10.1007/s00442-004-1524-4
10.1146/annurev.es.04.110173.000325
10.1046/j.1365-2435.1998.00275.x
10.1111/j.1365-2435.2009.01577.x
10.1093/treephys/tpq054
10.1073/pnas.0910856107
10.1093/treephys/tpr143
10.1038/nclimate1693
10.1007/s00442-004-1682-4
10.1038/ngeo671
10.1111/j.1365-2486.2009.01961.x
10.1029/2010EO170003
10.1890/11-1269.1
10.1111/j.1469-8137.2007.02047.x
10.1007/s00442-007-0777-0
10.1093/treephys/tpq096
10.2747/0272-3646.31.4.293
10.1093/treephys/19.10.681
10.1126/science.1201609
10.1111/j.1469-8137.2008.02687.x
10.1890/ES11-00369.1
10.1038/nclimate1787
10.1016/j.foreco.2009.09.001
10.5194/bg-8-2179-2011
10.1073/pnas.0901438106
10.1088/1748-9326/3/4/044006
10.1104/pp.108.129783
10.1175/JHM-D-10-05003.1
10.1073/pnas.0904580106
10.1007/s00382-010-0990-0
10.1111/pce.12089
10.1016/j.tplants.2009.07.002
10.1111/gcb.12100
10.1890/06-2094.1
10.1073/pnas.0908053106
10.1111/j.1365-2745.2011.01804.x
10.1111/j.1365-2486.2010.02363.x
10.1002/eco.65
10.1111/j.1469-8137.2009.03167.x
10.1046/j.0140-7791.2003.01082.x
10.1111/nph.12174
10.1034/j.1399-3054.2003.00038.x
10.1111/j.1365-2486.2009.01852.x
10.1006/jare.2000.0682
10.1029/2006WR005690
10.1038/nature11575
10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
ContentType Journal Article
Copyright 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Copyright © 2013 New Phytologist Trust
Copyright_xml – notice: 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
– notice: Copyright © 2013 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.12392
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 387
ExternalDocumentID 3104505601
23844951
10_1111_nph_12392
NPH12392
newphytologist.200.2.375
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation's Graduate Research Fellowship Program
– fundername: Department of Energy's Office of Science
– fundername: NSF DEB
  funderid: 0620482
– fundername: NIH
  funderid: NCI T32 CA096520
– fundername: NCI NIH HHS
  grantid: T32 CA096520
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AGHNM
AS~
CAG
COF
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
XOL
YXE
ZCG
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5202-7ab7b0ce2e8078126bdcf3a5c8547a5651f666b56d8e91c7535a5750728e01c83
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:35:39 EDT 2025
Fri Jul 11 11:25:18 EDT 2025
Fri Jul 11 09:27:55 EDT 2025
Fri Jul 25 10:45:53 EDT 2025
Fri Jul 25 10:21:38 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
Tue Jul 01 03:09:15 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Aug 20 07:25:11 EDT 2025
Thu Jul 03 22:54:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hydraulic conductance
die-off
carbon starvation
hydraulic failure
semi-arid
mixed effects model
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5202-7ab7b0ce2e8078126bdcf3a5c8547a5651f666b56d8e91c7535a5750728e01c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.12392
PMID 23844951
PQID 1443515743
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_2524270226
proquest_miscellaneous_1448220983
proquest_miscellaneous_1434742068
proquest_journals_2513379838
proquest_journals_1443515743
pubmed_primary_23844951
crossref_citationtrail_10_1111_nph_12392
crossref_primary_10_1111_nph_12392
wiley_primary_10_1111_nph_12392_NPH12392
jstor_primary_newphytologist_200_2_375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131001
October 2013
2013-10-00
2013-Oct
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131001
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2013
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2011; 116
1987; 3
2013; 3
2003; 117
2010; 107
2000; 46
2004; 24
2010; 187
2010; 188
2008; 305
2011; 99
2010; 186
2008; 3
2011; 17
2012; 13
2012; 489
2007b; 27
2011; 155
2012; 491
2009; 14
2000
1999; 19
2013; 118
2007; 174
2013; 198
2011; 26
2008; 158
2006; 127
2010; 3
2012; 22
2010; 30
1998; 12
2009; 15
2009; 23
2010; 31
2011; 333
2012
2009; 181
2004; 141
2008; 18
2009
2013; 91
2008; 58
2007
2000; 70
2012; 38
2008; 320
2012; 35
2012; 32
2011; 8
2007a; 153
1994; 8
2009; 36
2012; 3
2009; 32
2010; 259
2003; 26
2009; 7
2008; 44
2013
2010; 91
2009; 2
2009; 149
2009; 106
1973; 4
2012; 9
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Allison I (e_1_2_6_5_1) 2009
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
Gelman A (e_1_2_6_27_1) 2007
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
R Core Team (e_1_2_6_53_1) 2012
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 19
  start-page: 681
  year: 1999
  end-page: 687
  article-title: Potential errors in measurement of nonuniform sap flow using heat dissipation probes
  publication-title: Tree Physiology
– year: 2009
– volume: 26
  start-page: 523
  year: 2011
  end-page: 532
  article-title: Interdependence of mechanisms underlying climate‐driven vegetation mortality
  publication-title: Trends in Ecology and Evolution
– volume: 4
  start-page: 25
  year: 1973
  end-page: 51
  article-title: Desert ecosystems: environment and producers
  publication-title: Annual Review of Ecology and Systematics
– volume: 32
  start-page: 478
  year: 2012
  end-page: 489
  article-title: Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest
  publication-title: Tree Physiology
– volume: 158
  start-page: 385
  year: 2008
  end-page: 397
  article-title: Using multiple trait associations to define hydraulic functional types in plant communities of south‐western Australia
  publication-title: Oecologia
– volume: 106
  start-page: E68
  year: 2009
  article-title: Lack of direct evidence for the carbon‐starvation hypothesis to explain drought‐induced mortality in trees
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 187
  start-page: 666
  year: 2010
  end-page: 681
  article-title: Assessing uncertainties in a second‐generation dynamic vegetation model caused by ecological scale limitations
  publication-title: New Phytologist
– volume: 3
  start-page: 309
  year: 1987
  end-page: 319
  article-title: Evaluation of transpiration in a Douglas‐fir stand by means of sap flow measurements
  publication-title: Tree Physiology
– volume: 17
  start-page: 1505
  year: 2011
  end-page: 1515
  article-title: Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland
  publication-title: Global Change Biology
– volume: 70
  start-page: 517
  year: 2000
  end-page: 537
  article-title: Intra‐ and interspecific variation for summer precipitation use in pinyon‐juniper woodlands
  publication-title: Ecological Monographs
– volume: 30
  start-page: 1545
  year: 2010
  end-page: 1554
  article-title: Calibration of thermal dissipation sap flow probes for ring‐ and diffuse‐porous trees
  publication-title: Tree Physiology
– volume: 141
  start-page: 254
  year: 2004
  end-page: 268
  article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
  publication-title: Oecologia
– volume: 44
  start-page: W05S16
  year: 2008
  article-title: Precipitation thresholds for CO uptake in grass and shrub plant communities on Walnut Gulch Experimental Watershed
  publication-title: Water Resources Research
– volume: 3
  start-page: 292
  year: 2012
  end-page: 297
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nature Climate Change
– volume: 3
  start-page: 143
  year: 2010
  end-page: 154
  article-title: Ecohydrology of a semi‐arid forest: partitioning among water balance components and its implications for predicted precipitation changes
  publication-title: Ecohydrology
– volume: 153
  start-page: 787
  year: 2007a
  end-page: 798
  article-title: Seasonal variations in moisture use in a piñon–juniper woodland
  publication-title: Oecologia
– volume: 198
  start-page: 567
  year: 2013
  end-page: 578
  article-title: Drought causes predisposition to insect attacks and mortality of piñon‐juniper woodlands
  publication-title: New Phytologist
– volume: 13
  start-page: 366
  year: 2012
  end-page: 378
  article-title: Comparing twentieth‐ and twenty‐first‐century patterns of interannual precipitation variability over the western United States and northern Mexico
  publication-title: Journal of Hydrometeorology
– volume: 117
  start-page: 186
  year: 2003
  end-page: 194
  article-title: Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in (Carob tree)
  publication-title: Physiologia Plantarum
– volume: 141
  start-page: 269
  year: 2004
  end-page: 281
  article-title: A multi‐scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA
  publication-title: Oecologia
– volume: 12
  start-page: 906
  year: 1998
  end-page: 911
  article-title: Limits to water transport in and : implications for drought tolerance and regulation of transpiration
  publication-title: Functional Ecology
– volume: 35
  start-page: 1601
  year: 2012
  end-page: 1617
  article-title: Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought
  publication-title: Plant, Cell & Environment
– volume: 23
  start-page: 922
  year: 2009
  end-page: 930
  article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
  publication-title: Functional Ecology
– volume: 107
  start-page: 21277
  year: 2010
  end-page: 21282
  article-title: Greenhouse warming and the 21 century hydroclimate of southwestern North America
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 259
  start-page: 660
  year: 2010
  end-page: 684
  article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests
  publication-title: Forest Ecology and Management
– volume: 188
  start-page: 533
  year: 2010
  end-page: 542
  article-title: Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit
  publication-title: New Phytologist
– volume: 118
  start-page: 1690
  year: 2013
  end-page: 1699
  article-title: The response of the North American Monsoon to increased greenhouse gas forcing
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2
  start-page: 737
  year: 2009
  end-page: 738
  article-title: CO emissions from forests
  publication-title: Nature Geoscience
– volume: 46
  start-page: 397
  year: 2000
  end-page: 412
  article-title: Responses of photosynthesis and water relations to rainfall in the desert shrub creosote bush ( ) as influenced by municipal biosolids
  publication-title: Journal of Arid Environments
– volume: 9
  start-page: 1007
  year: 2012
  end-page: 1024
  article-title: How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonall water‐limited Northern Hemisphere shrublands and forests?
  publication-title: Biogeosciences
– volume: 38
  start-page: 795
  year: 2012
  end-page: 814
  article-title: Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5
  publication-title: Climate Dynamics
– volume: 149
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers
  publication-title: Plant Physiology
– volume: 58
  start-page: 811
  year: 2008
  end-page: 821
  article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems
  publication-title: BioScience
– volume: 91
  start-page: 1188
  year: 2013
  end-page: 1196
  article-title: Drought's legacy: multi‐year hydraulic deterioration underlies widespread aspen die‐off and portends increased future risk
  publication-title: Global Change Biology
– volume: 491
  start-page: 435
  year: 2012
  end-page: 438
  article-title: Little change in global drought over the past 60 years
  publication-title: Nature
– volume: 186
  start-page: 274
  year: 2010
  end-page: 281
  article-title: Physiological mechanisms of drought‐induced tree mortality are far from being resolved
  publication-title: New Phytologist
– volume: 14
  start-page: 530
  year: 2009
  end-page: 534
  article-title: Confronting Maxwell's demon: biophysics of xylem embolism repair
  publication-title: Trends in Plant Science
– volume: 8
  start-page: 125
  year: 1994
  end-page: 135
  article-title: Three methods for monitoring the gas exchange of individual tree canopies – ventilated‐ chamber, sap‐flow and Penman‐Monteith measurements on evergreen oaks
  publication-title: Functional Ecology
– volume: 27
  start-page: 1711
  year: 2007b
  end-page: 1720
  article-title: Differential summer water use by and Juniperus osteosperma reflects contrasting hydraulic characteristics
  publication-title: Tree Physiology
– volume: 18
  start-page: 911
  year: 2008
  end-page: 927
  article-title: Transpiration and hydraulic strategies in a piñon–juniper woodland
  publication-title: Ecological Applications
– volume: 24
  start-page: 107
  year: 2004
  end-page: 114
  article-title: Drought resistance of : root hydraulics and water relations
  publication-title: Tree Physiology
– volume: 305
  start-page: 49
  year: 2008
  end-page: 59
  article-title: Variations in the radial gradient of sap velocity in trunks of forest and fruit trees
  publication-title: Plant and Soil
– volume: 91
  start-page: 153
  year: 2010
  end-page: 154
  article-title: Climate induced tree mortality: earth system consequences
  publication-title: EOS Transactions, AGU
– volume: 32
  start-page: 1584
  year: 2009
  end-page: 1595
  article-title: Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species
  publication-title: Plant, Cell & Environment
– volume: 8
  start-page: 2179
  year: 2011
  end-page: 2194
  article-title: Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long‐term throughfall exclusion in the perhumid tropics
  publication-title: Biogeosciences
– volume: 26
  start-page: 1633
  year: 2003
  end-page: 1645
  article-title: Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels
  publication-title: Plant, Cell & Environment
– volume: 116
  start-page: G03025
  year: 2011
  article-title: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests
  publication-title: Journal of Geophysical Research
– volume: 99
  start-page: 714
  year: 2011
  end-page: 723
  article-title: Extreme climatic event‐triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications
  publication-title: Journal of Ecology
– year: 2007
– volume: 181
  start-page: 672
  year: 2009
  end-page: 682
  article-title: Drought‐induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C woody legume,
  publication-title: New Phytologist
– year: 2000
– volume: 127
  start-page: 404
  year: 2006
  end-page: 412
  article-title: Measuring transpiration responses to summer precipitation in a Mediterranean climate: a simple screening tool for identifying plant water‐use strategies
  publication-title: Physiologia Plantarum
– volume: 174
  start-page: 799
  year: 2007
  end-page: 810
  article-title: Photosynthetic performance and water relations in young pubescent oak ( ) trees during drought stress and recovery
  publication-title: New Phytologist
– volume: 155
  start-page: 1051
  year: 2011
  end-page: 1059
  article-title: Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality
  publication-title: Plant Physiology
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 333
  start-page: 988
  year: 2011
  end-page: 993
  article-title: A large and persistent carbon sink in the World's forests
  publication-title: Science
– year: 2012
– volume: 106
  start-page: E106
  year: 2009
  article-title: Poor methodology for predicting large‐scale tree die‐off
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 489
  start-page: 423
  year: 2012
  end-page: 426
  article-title: Afternoon rain more likely over drier soils
  publication-title: Nature
– volume: 186
  start-page: 264
  year: 2010
  end-page: 266
  article-title: The mechanisms of carbon starvation: how, when, or does it even occur at all?
  publication-title: New Phytologist
– volume: 305
  start-page: 121
  year: 2008
  end-page: 130
  article-title: The response of sap flow to pulses of rain in a temperate Australian woodland
  publication-title: Plant and Soil
– volume: 30
  start-page: 1001
  year: 2010
  end-page: 1015
  article-title: Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole‐plant hydraulic performance under future atmospheric CO concentration
  publication-title: Tree Physiology
– volume: 3
  year: 2008
  article-title: Protecting climate with forests
  publication-title: Environmental Research Letters
– volume: 15
  start-page: 2163
  year: 2009
  end-page: 2175
  article-title: Long‐term transpiration change with rainfall decline in a Mediterranean forest
  publication-title: Global Change Biology
– volume: 3
  start-page: 28
  year: 2012
  article-title: Methodology and performance of a rainfall manipulation experiment in a piñon‐juniper woodland
  publication-title: Ecosphere
– volume: 22
  start-page: 1365
  year: 2012
  end-page: 1388
  article-title: Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic‐envelope approach
  publication-title: Ecological Applications
– volume: 32
  start-page: 764
  year: 2012
  end-page: 775
  article-title: Carbon dynamics in trees: feast or famine?
  publication-title: Tree Physiology
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 3
  start-page: 482
  year: 2012
  end-page: 486
  article-title: Projections of declining surface‐water availability for the southwestern United States
  publication-title: Nature Climate Change
– volume: 31
  start-page: 293
  year: 2010
  end-page: 306
  article-title: Increasing drought in the American Southwest? A continental perspective using a spatial analytical evaluation of recent trends
  publication-title: Physical Geography
– volume: 141
  start-page: 194
  year: 2004
  end-page: 210
  article-title: Modifying the ‘pulse‐reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses
  publication-title: Oecologia
– volume: 7
  start-page: 185
  year: 2009
  end-page: 189
  article-title: Tree die‐off in response to global change‐type drought: mortality insights from a decade of plant water potential measurements
  publication-title: Frontiers in Ecology and the Environment
– volume: 15
  start-page: 2894
  year: 2009
  end-page: 2904
  article-title: Contingent productivity responses to more extreme rainfall regimes across a grassland biome
  publication-title: Global Change Biology
– volume: 36
  start-page: 815
  year: 2009
  end-page: 825
  article-title: Starch‐to‐ sugar conversion in wood parenchyma of field‐growing plants: a component of the signal pathway for embolism repair?
  publication-title: Functional Plant Biology
– year: 2013
  article-title: Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes
  publication-title: Plant, Cell & Environment
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-3040.2009.02023.x
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1469-8137.2010.03340.x
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1399-3054.2006.00669.x
– ident: e_1_2_6_41_1
  doi: 10.1016/j.tree.2011.06.003
– ident: e_1_2_6_44_1
  doi: 10.1029/2010JG001486
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1469-8137.2010.03393.x
– ident: e_1_2_6_72_1
  doi: 10.1093/treephys/27.12.1711
– ident: e_1_2_6_24_1
  doi: 10.1093/treephys/tps025
– ident: e_1_2_6_67_1
  doi: 10.1038/nature11377
– ident: e_1_2_6_40_1
  doi: 10.1104/pp.110.170704
– ident: e_1_2_6_51_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_6_45_1
  doi: 10.1007/s00442-008-1152-5
– ident: e_1_2_6_56_1
  doi: 10.5194/bg-9-1007-2012
– ident: e_1_2_6_20_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_6_18_1
  doi: 10.1007/s11104-007-9351-0
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1155121
– ident: e_1_2_6_29_1
  doi: 10.1093/treephys/3.4.309
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1469-8137.2010.03232.x
– ident: e_1_2_6_62_1
  doi: 10.1071/FP09103
– ident: e_1_2_6_39_1
  doi: 10.1007/s00442-004-1570-y
– ident: e_1_2_6_69_1
  doi: 10.1093/treephys/24.1.107
– ident: e_1_2_6_19_1
  doi: 10.1002/jgrd.50111
– ident: e_1_2_6_11_1
  doi: 10.1890/080016
– ident: e_1_2_6_28_1
  doi: 10.2307/2390121
– volume-title: The Copenhagen Diagnosis, 2009: updating the World on the latest climate science
  year: 2009
  ident: e_1_2_6_5_1
– ident: e_1_2_6_78_1
  doi: 10.1007/s11104-007-9349-7
– volume-title: R: a language and environment for statistical computing
  year: 2012
  ident: e_1_2_6_53_1
– ident: e_1_2_6_33_1
  doi: 10.1641/B580908
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1365-3040.2012.02512.x
– ident: e_1_2_6_55_1
  doi: 10.1007/s00442-004-1524-4
– ident: e_1_2_6_48_1
  doi: 10.1146/annurev.es.04.110173.000325
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1365-2435.1998.00275.x
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2435.2009.01577.x
– ident: e_1_2_6_21_1
  doi: 10.1093/treephys/tpq054
– ident: e_1_2_6_65_1
  doi: 10.1073/pnas.0910856107
– ident: e_1_2_6_61_1
  doi: 10.1093/treephys/tpr143
– ident: e_1_2_6_74_1
  doi: 10.1038/nclimate1693
– ident: e_1_2_6_31_1
  doi: 10.1007/s00442-004-1682-4
– volume-title: Data analysis using regression and multilevel/hierarchical models
  year: 2007
  ident: e_1_2_6_27_1
– ident: e_1_2_6_70_1
  doi: 10.1038/ngeo671
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-2486.2009.01961.x
– ident: e_1_2_6_3_1
  doi: 10.1029/2010EO170003
– ident: e_1_2_6_47_1
  doi: 10.1890/11-1269.1
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1469-8137.2007.02047.x
– ident: e_1_2_6_71_1
  doi: 10.1007/s00442-007-0777-0
– ident: e_1_2_6_16_1
  doi: 10.1093/treephys/tpq096
– ident: e_1_2_6_7_1
  doi: 10.2747/0272-3646.31.4.293
– ident: e_1_2_6_17_1
  doi: 10.1093/treephys/19.10.681
– ident: e_1_2_6_49_1
  doi: 10.1126/science.1201609
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1469-8137.2008.02687.x
– ident: e_1_2_6_50_1
  doi: 10.1890/ES11-00369.1
– ident: e_1_2_6_64_1
  doi: 10.1038/nclimate1787
– ident: e_1_2_6_4_1
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_2_6_63_1
  doi: 10.5194/bg-8-2179-2011
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0901438106
– ident: e_1_2_6_32_1
  doi: 10.1088/1748-9326/3/4/044006
– ident: e_1_2_6_13_1
  doi: 10.1104/pp.108.129783
– ident: e_1_2_6_58_1
  doi: 10.1175/JHM-D-10-05003.1
– ident: e_1_2_6_59_1
  doi: 10.1073/pnas.0904580106
– ident: e_1_2_6_46_1
  doi: 10.1007/s00382-010-0990-0
– ident: e_1_2_6_8_1
– ident: e_1_2_6_35_1
  doi: 10.1111/pce.12089
– ident: e_1_2_6_79_1
  doi: 10.1016/j.tplants.2009.07.002
– ident: e_1_2_6_6_1
  doi: 10.1111/gcb.12100
– ident: e_1_2_6_73_1
  doi: 10.1890/06-2094.1
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.0908053106
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2745.2011.01804.x
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1365-2486.2010.02363.x
– ident: e_1_2_6_77_1
  doi: 10.1002/eco.65
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1469-8137.2009.03167.x
– ident: e_1_2_6_14_1
  doi: 10.1046/j.0140-7791.2003.01082.x
– ident: e_1_2_6_26_1
  doi: 10.1111/nph.12174
– ident: e_1_2_6_38_1
  doi: 10.1034/j.1399-3054.2003.00038.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2486.2009.01852.x
– ident: e_1_2_6_76_1
  doi: 10.1006/jare.2000.0682
– ident: e_1_2_6_22_1
  doi: 10.1029/2006WR005690
– ident: e_1_2_6_66_1
  doi: 10.1038/nature11575
– ident: e_1_2_6_75_1
  doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
SSID ssj0009562
Score 2.3845608
Snippet Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality...
Summary Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation...
Summary Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 375
SubjectTerms Additives
Agricultural Irrigation
Atmospheric precipitations
Carbon - metabolism
carbon starvation
Climate change
Climate prediction
die‐off
Drought
Droughts
Ecosystem
Global climate
hydraulic conductance
hydraulic failure
Hydraulics
infrastructure
Irrigation
Juniperus - physiology
mixed effects model
Modeling
Models, Theoretical
Mortality
New Mexico
Pinus
Pinus - physiology
pinyon-juniper
Plant Transpiration - physiology
Precipitation
Pulse irrigation
Rain
Rainfall
semi‐arid
Soil
Soil moisture
Soil water
Survival
Transpiration
Trees
Vapor Pressure
vapor pressure deficit
Vapour pressure
Woodlands
Title Reduced transpiration response to precipitation pulses precedes mortality in a piñon–juniper woodland subject to prolonged drought
URI https://www.jstor.org/stable/newphytologist.200.2.375
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12392
https://www.ncbi.nlm.nih.gov/pubmed/23844951
https://www.proquest.com/docview/1443515743
https://www.proquest.com/docview/2513379838
https://www.proquest.com/docview/1434742068
https://www.proquest.com/docview/1448220983
https://www.proquest.com/docview/2524270226
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEG6WxYMX_3-iq7Qi4iVD0ul0J-xJxWUQXGRxYQ5C6O7U6PiThJnkoCcvPsE-ic_gm_gkVnV-2JVZEW8hqXTSlarqr5LKV4w9ckYnYECGSokylOBsaIzJQ4NObsp8qaShH4VfHar5sXy5SBc7bH_8F6bnh5heuJFn-HhNDm7s5pSTV837GYbdnOIv1WoRIDoSpwh3lRgZmJVUi4FViKp4pjPPrEV9OeI2oHkWt_qF5-Ayezvecl9v8nHWtXbmvv7B5vifc7rCLg2AlD_tLegq24HqGrvwrEbQ-OU6-35E1K5Q8taToK96e-HrvrIWeFvzhvgxmoHqmzcdrrUbvxNK3Pjs4T1Cfb6quOHN6uePuvr17eRDV60aWHMq-aHiSr7pLL0S6kfEiFy9w6uWvolQe4MdH7x483weDp0bQpcKDLHaWG0jBwKIzj4WypZumZjUZanUBjFkvMS0yaaqzCCPHaZMqUHcGGmRQRS7LLnJdqu6gtuM2yxOLGgNeYpowknrYrDO5WWZg8ijKGBPxmdYuGGu1F3jUzGmN6jUwis1YA8n0abn8tgm9NgbwiSB2Q0avG8mjI5HbTsLUSQ6DdjeaCnF4PcbTKQQfsYpwrKthwV109F5lmQBezAdRoemrzSmgrqjIRKppYjUX2UkArsIBzpfRpC-NEI0FbBbvSFPc0KcJjEzjlF53hzPV0dx-HruN-78u-hddlFQ0xBf8rjHdtt1B_cQurX2vvfR3ywTRTc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VBQku_FNCCxiEEJesEsexE6kXQFQLtCtUtdJeUGQ7Xlhok2g3OdATF56gT8Iz8CY8CWPnRy3aIsQt2sx649mZ8TfO-BuAp1qKyEjDfM5p7jOjlS-lTH2JTi7zdMaZtAeF9yZ8fMjeTuPpGmz3Z2Fafohhw816hovX1sHthvQZLy-qTyOMuykG4Eu2o7dLqPbpGcpdTnsOZs74tOMVsnU8w1fPrUZtQeIqqHkeubqlZ-c6fOgfuq04-TJqajXSJ3_wOf7vrG7AtQ6TkhetEd2ENVPcgssvS8SNX2_D933L7mpyUjse9HlrMmTRFtcaUpekshQZVcf2TaoGl9ul-9DkeHHsED6ifTIviCTV_OePsvj17fRzU8wrsyC26sfWV5Jlo-yuUDsiBuXiI_5q7voI1XfgcOf1waux3zVv8HVMMcoKqYQKtKHGMtqHlKtczyIZ6yRmQiKMDGeYOamY54lJQ41ZUywROgaCJiYIdRLdhfWiLMw9ICoJI2WEMGmMgEIzpUOjtE7zPDU0DQIPnvd_Yqa7udoGG0dZn-GgUjOnVA-eDKJVS-exSuiZs4RBAhMctHnXTxh9z3buzGgWidiDrd5Uss71l5hLIQINY0RmK29T21BHpEmUePB4uI0-bV_UyMKUjR0iYoLRgP9VhiG2C3Cgi2Wo1ZdAlMY92GgteZgTQjWGyXGIynP2eLE6ssn7sbu4_--ij-DK-GBvN9t9M3m3CVep7SHiKiC3YL1eNOYBIrlaPXQO-xtFGUlS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEK5sVmO8-HYdXbU1xnhhAk3TDfGkrpPxNdls3GQOJqRfo-MDyAwc9OTFX-Av8Tf4T_wlVjeP7JpZY7wRKBq6qKr-CoqvAO5pKWIrLQs4pyZgVqtASpkFEp1cmmzBmXQ_Cr-a8ekhez5P5lvwsP8XpuWHGF64Oc_w8do5eGUWR5y8qN6NMexmGH9PMR6mzqT3DugRxl1Oewpmzvi8oxVyZTzDqccWo7YecRPSPA5c_cozOQ9v-ntuC04-jJtajfWXP-gc_3NSF-Bch0jJo9aELsKWLS7B6cclosbPl-HbgeN2tYbUngV92RoMWbWltZbUJakcQUbVcX2TqsHFdu13WoMbnzy-R6xPlgWRpFr-_FEWv75-f98Uy8quiKv5cdWVZN0o906oHRFDcvEWr2p8F6H6ChxOnr5-Mg261g2BTijGWCGVUKG21Do--4hyZfQilolOEyYkgshogXmTSrhJbRZpzJkSicAxFDS1YaTT-CpsF2VhrwFRaRQrK4TNEoQTmikdWaV1ZkxmaRaGI3jQP8Ncd3N17TU-5n1-g0rNvVJHcHcQrVoyj01C970hDBKY3qDF-27C6Hmub2dO81gkI9jtLSXvHH-NmRTizyhBXLbxMHXtdESWxukI7gyH0aPdZxpZ2LJxQ8RMMBryv8owRHYhDnSyDHX6EojR-Ah2WkMe5oRAjWFqHKHyvDmerI58tj_1G9f_XfQ2nNnfm-Qvn81e3ICz1DUQ8eWPu7Bdrxp7E2FcrW55d_0NX9VICg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+transpiration+response+to+precipitation+pulses+precedes+mortality+in+a+pi%C3%B1on%E2%80%93juniper+woodland+subject+to+prolonged+drought&rft.jtitle=The+New+phytologist&rft.au=Plaut%2C+Jennifer+A&rft.au=W+Duncan+Wadsworth&rft.au=Pangle%2C+Robert&rft.au=Yepez%2C+Enrico+A&rft.date=2013-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=2&rft.spage=375&rft.epage=387&rft_id=info:doi/10.1111%2Fnph.12392&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon