Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants

Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedl...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 200; no. 1; pp. 229 - 240
Main Authors Merrild, Marie P., Ambus, Per, Rosendahl, Søren, Jakobsen, Iver
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.10.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the networkinduced suppression of seedling growth.
AbstractList Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the networkinduced suppression of seedling growth.
Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components.Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations.Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN.Interspecific and size‐asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network‐induced suppression of seedling growth.
Common mycorrhizal networks ( CMN s) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato ( Solanum lycopersicon ) seedlings grew into established networks of Rhizophagus irregularis and cucumber ( Cucumis sativus ) in two experiments. One experiment studied seedling uptake of 32 P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN . Interspecific and size‐asymmetric competition between plants may be amplified rather than relaxed by CMN s that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network‐induced suppression of seedling growth.
Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth.
Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth.Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth.
Summary Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth. [PUBLICATION ABSTRACT]
Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of ³²P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size‐asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network‐induced suppression of seedling growth.
Summary Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size‐asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network‐induced suppression of seedling growth.
Author Per Ambus
Iver Jakobsen
Marie P. Merrild
Søren Rosendahl
Author_xml – sequence: 1
  givenname: Marie P.
  surname: Merrild
  fullname: Merrild, Marie P.
  organization: Technical University of Denmark
– sequence: 2
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
  organization: Technical University of Denmark
– sequence: 3
  givenname: Søren
  surname: Rosendahl
  fullname: Rosendahl, Søren
  organization: University of Copenhagen
– sequence: 4
  givenname: Iver
  surname: Jakobsen
  fullname: Jakobsen, Iver
  organization: Technical University of Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23738787$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi3Uim4LB_4AisQFDmntcWI7R7QCilRRDiBxsxzH6Xpx7GAnWoVfj8vucqj4smT58jyvZzRzjk588AahZwRfknyu_Li5JEBr8gitSMWaUhDKT9AKYxAlq9iXM3Se0hZj3NQMHqMzoJwKLvgKxXUYhuALFds56dmpWAyLDjFu7HflCm-mXYhfU6GG0dl-KXQYRjPZyWanD7EYNyHlG-dUtJk1xhfJmM5Zf5cl3xUmTap1Nm1MV4xO-Sk9Qae9csk8PbwX6PPbN5_W1-XN7bv369c3pa4Bk7LV2HDVYGgVaY3GHaPQqR4Txiqja9VDr0jXQS0UVBhUbqlVbc9UIzTGnNIL9HKfO8bwbc51yMEmbVwuwoQ5SaihAlFhxv-Jkoo2QAmvxf-gFFjDGc7oiwfoNszR557z34RSAc3fKVIBFwQLDpl6fqDmdjCdHKMdVFzkcZIZuNoDOoaUoumltpO6n9MUlXWSYHm_KzLvivy5K9l49cA4hv6OPaTvrDPLn0H54eP10Sj3xjZNIf4yvNmNm2UKLtzZ3CrgnCABGvoDDU_euA
CitedBy_id crossref_primary_10_1139_cjb_2013_0182
crossref_primary_10_1007_s00572_018_0873_5
crossref_primary_10_1007_s11356_019_04385_x
crossref_primary_10_1093_jpe_rtac058
crossref_primary_10_1146_annurev_arplant_102820_124504
crossref_primary_10_1080_19420889_2015_1107684
crossref_primary_10_3389_fpls_2022_1047270
crossref_primary_10_1002_ecy_4418
crossref_primary_10_1111_jipb_12609
crossref_primary_10_3389_fpls_2021_778861
crossref_primary_10_1016_j_ejsobi_2021_103348
crossref_primary_10_3389_fmicb_2018_01254
crossref_primary_10_3389_fpls_2018_00607
crossref_primary_10_3390_agronomy13102619
crossref_primary_10_1111_nph_15158
crossref_primary_10_31993_2308_6459_2021_104_3_14993
crossref_primary_10_1007_s11104_019_04382_6
crossref_primary_10_1002_ecy_3339
crossref_primary_10_3390_agronomy12123214
crossref_primary_10_1016_j_apsoil_2024_105539
crossref_primary_10_1002_ecy_2122
crossref_primary_10_1111_1365_2745_12641
crossref_primary_10_1007_s00572_025_01181_z
crossref_primary_10_1007_s00374_021_01561_5
crossref_primary_10_1101_cshperspect_a034603
crossref_primary_10_1093_aob_mcv182
crossref_primary_10_1007_s00572_022_01080_7
crossref_primary_10_1002_ppp3_10178
crossref_primary_10_1016_j_apsoil_2016_04_017
crossref_primary_10_1016_j_tplants_2015_03_004
crossref_primary_10_1038_s41396_018_0059_3
crossref_primary_10_1002_ecs2_1222
crossref_primary_10_1007_s11104_024_06751_2
crossref_primary_10_1007_s11270_016_3214_3
crossref_primary_10_1007_s11056_014_9455_3
crossref_primary_10_1111_nph_14041
crossref_primary_10_1007_s00572_015_0639_2
crossref_primary_10_1016_j_gecco_2020_e01352
crossref_primary_10_1002_ece3_7417
crossref_primary_10_1038_s41396_020_00786_w
crossref_primary_10_1002_ppp3_10618
crossref_primary_10_3390_plants14060858
crossref_primary_10_1111_1365_2745_13230
crossref_primary_10_1038_nplants_2015_159
crossref_primary_10_1111_nph_15775
crossref_primary_10_1111_nph_12827
crossref_primary_10_1038_srep08122
crossref_primary_10_1016_j_funeco_2018_05_003
crossref_primary_10_3389_fevo_2020_00125
crossref_primary_10_1111_1365_2435_12594
crossref_primary_10_1002_bies_201300092
crossref_primary_10_3389_ffunb_2021_735299
crossref_primary_10_3390_microorganisms11010050
crossref_primary_10_1002_ece3_11459
crossref_primary_10_1007_s11104_019_04181_z
crossref_primary_10_1016_j_pedobi_2024_151006
crossref_primary_10_1111_nph_15806
crossref_primary_10_1371_journal_pone_0124752
crossref_primary_10_1002_ecs2_4817
crossref_primary_10_1111_1462_2920_15542
crossref_primary_10_3389_fevo_2020_602675
crossref_primary_10_1007_s40502_019_00491_7
crossref_primary_10_1080_17429145_2018_1550218
crossref_primary_10_12677_BR_2020_93020
crossref_primary_10_3389_fpls_2023_1169310
crossref_primary_10_1007_s11104_016_2863_8
crossref_primary_10_1093_plphys_kiab328
crossref_primary_10_1111_oik_06653
crossref_primary_10_1007_s11104_014_2140_7
crossref_primary_10_1890_14_2419_1
crossref_primary_10_1093_femsec_fiz020
crossref_primary_10_1111_1365_2435_13340
crossref_primary_10_1111_1365_2745_12915
crossref_primary_10_3390_jof9090870
crossref_primary_10_1016_j_soilbio_2020_108116
crossref_primary_10_1038_s41598_018_32670_1
crossref_primary_10_1002_agj2_20218
crossref_primary_10_1016_j_apsoil_2021_104127
crossref_primary_10_1016_j_soilbio_2023_109243
crossref_primary_10_1111_1365_2435_14392
crossref_primary_10_1002_ldr_5092
crossref_primary_10_1016_j_apsoil_2017_07_030
crossref_primary_10_3390_biology9080232
crossref_primary_10_1007_s11104_016_2994_y
crossref_primary_10_1111_1365_2435_14723
crossref_primary_10_1093_jxb_erv202
crossref_primary_10_1007_s00572_017_0801_0
crossref_primary_10_1007_s00572_022_01070_9
crossref_primary_10_1016_j_apsoil_2024_105274
crossref_primary_10_3732_ajb_1600142
crossref_primary_10_3389_fmicb_2024_1183024
crossref_primary_10_1371_journal_pone_0234410
crossref_primary_10_1016_j_rama_2024_06_013
crossref_primary_10_3390_d14040274
crossref_primary_10_1016_j_apsoil_2020_103662
crossref_primary_10_1111_nph_17636
crossref_primary_10_1093_jxb_erw383
crossref_primary_10_1002_ecs2_2226
crossref_primary_10_1111_1462_2920_16333
Cites_doi 10.1073/pnas.1118650109
10.1038/328420a0
10.1111/j.1469-8137.1992.tb01077.x
10.1051/agro:2003013
10.2307/2261629
10.1126/science.1208473
10.2307/2404783
10.1111/j.1365-3040.2005.01360.x
10.1104/pp.106.090522
10.1038/nature03610
10.1139/b98-037
10.1016/S0065-2504(08)60182-8
10.1111/j.1365-3040.2006.01617.x
10.1017/S0269727000007065
10.1111/ppl.12030
10.1371/journal.pone.0057716
10.1111/j.1365-2745.2007.01257.x
10.1007/s00442-002-1022-5
10.1016/0038-0717(95)00117-4
10.1111/j.1469-8137.2008.02630.x
10.1038/35095041
10.1890/0012-9658(2003)084[0898:ATOMAI]2.0.CO;2
10.1111/j.1469-8137.2004.01152.x
10.1890/0012-9658(1999)080[1180:MIECEO]2.0.CO;2
10.1016/0038-0717(82)90019-0
10.1111/j.1574-6941.2010.00956.x
10.1007/s11104-010-0571-3
10.1111/nph.12125
10.1111/j.1365-2745.2009.01570.x
10.1007/BF00317797
10.1111/j.1469-8137.1980.tb04556.x
10.1111/j.1469-8137.1976.tb04657.x
10.1016/0169-5347(90)90095-U
10.1007/978-3-540-38364-2_4
10.1201/9781439824955-c5
10.1016/j.soilbio.2006.12.031
10.1111/j.1469-8137.1992.tb04232.x
10.1007/BF00333217
10.1016/S0003-2670(00)88444-5
10.1046/j.1365-313X.1998.00252.x
10.1007/s00572-011-0372-4
10.1139/b95-391
10.1111/j.1469-8137.2004.01163.x
10.1002/jpln.1998.3581610515
10.1111/j.1469-8137.2004.01145.x
10.1104/pp.103.024380
10.1111/j.1461-0248.2004.00577.x
10.1111/j.1469-8137.2008.02721.x
10.1016/0038-0717(86)90083-0
10.1023/B:VEGE.0000026031.14086.f1
10.1111/j.1574-6941.2008.00503.x
10.1111/j.1469-8137.2008.02623.x
10.1111/j.1469-8137.2004.01274.x
ContentType Journal Article
Copyright 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Copyright © 2013 New Phytologist Trust
Copyright_xml – notice: 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
– notice: Copyright © 2013 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.12351
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Ecology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 240
ExternalDocumentID 3054311351
23738787
10_1111_nph_12351
NPH12351
newphytologist.200.1.229
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Danish Council for Independent Research | Technology and Production
  funderid: 09‐061126; 10‐082459
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5201-bc0e7a902ba1bec0d632daf01664ec5af2fa1dd258a2402a373babf6a98c00733
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:34:43 EDT 2025
Fri Jul 11 09:39:04 EDT 2025
Fri Jul 11 05:26:55 EDT 2025
Fri Jul 25 12:08:24 EDT 2025
Fri Jul 25 10:35:08 EDT 2025
Wed Feb 19 02:28:37 EST 2025
Tue Jul 01 03:09:14 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Wed Jan 22 16:40:17 EST 2025
Thu Jul 03 22:54:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords seedling growth
common mycorrhizal networks
arbuscular mycorrhizal fungi
Cucumis sativus (cucumber)
Solanum lycopersicon (tomato)
competition for phosphorus
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5201-bc0e7a902ba1bec0d632daf01664ec5af2fa1dd258a2402a373babf6a98c00733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.12351
PMID 23738787
PQID 1427810872
PQPubID 2026848
PageCount 12
ParticipantIDs proquest_miscellaneous_2524284067
proquest_miscellaneous_1439231758
proquest_miscellaneous_1433269760
proquest_journals_2513382960
proquest_journals_1427810872
pubmed_primary_23738787
crossref_citationtrail_10_1111_nph_12351
crossref_primary_10_1111_nph_12351
wiley_primary_10_1111_nph_12351_NPH12351
jstor_primary_newphytologist_200_1_229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131001
October 2013
2013-10-00
2013-Oct
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131001
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2013
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2007; 39
1995; 73
1982; 14
2004; 164
1992; 120
1980; 84
1992; 122
2004; 163
2007; 144
2004; 7
2007; 30
2013; 8
1999; 80
2005; 28
1996; 108
1996; 33
1998; 15
1992; 91
1996; 28
2009; 97
1976; 77
2004; 172
1986
2011; 21
2008; 65
1982
2013; 198
2003; 84
2010; 74
1998; 161
2001; 413
2011; 333
2011; 339
1988; 18
2012
2009; 181
2010
2002; 133
2005; 435
1987; 328
1954
2008
1986; 18
1988; 94
2007; 95
2002
2003; 133
2012; 109
2008; 180
1995; 83
2005; 165
1962; 27
2013
1998; 76
1990; 5
2003; 23
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Birch CPD (e_1_2_6_4_1) 1986
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
R Core Team (e_1_2_6_49_1) 2012
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Kormanik P (e_1_2_6_31_1) 1982
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
Smith SE (e_1_2_6_53_1) 2008
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Jakobsen I (e_1_2_6_22_1) 2002
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 133
  start-page: 54
  year: 2002
  end-page: 61
  article-title: Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra‐specific competition and size distribution
  publication-title: Oecologia
– volume: 65
  start-page: 350
  year: 2008
  end-page: 360
  article-title: Absence of carbon transfer between plants linked by a mycorrhizal network, demonstrated in an experimental microcosm
  publication-title: FEMS Microbiology Ecology
– volume: 30
  start-page: 310
  year: 2007
  end-page: 322
  article-title: Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles
  publication-title: Plant, Cell & Environment
– volume: 144
  start-page: 782
  year: 2007
  end-page: 792
  article-title: Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi
  publication-title: Plant Physiology
– volume: 84
  start-page: 898
  year: 2003
  end-page: 906
  article-title: A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings
  publication-title: Ecology
– volume: 172
  start-page: 133
  year: 2004
  end-page: 141
  article-title: Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology
  publication-title: Plant Ecology
– volume: 84
  start-page: 489
  year: 1980
  end-page: 500
  article-title: Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots
  publication-title: New Phytologist
– volume: 7
  start-page: 293
  year: 2004
  end-page: 303
  article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland
  publication-title: Ecology Letters
– volume: 18
  start-page: 607
  year: 1986
  end-page: 610
  article-title: Vesicular arbuscular mycorrhizal infection of host and nonhost plants ‐ effect on the growth‐responses of the plants and competition between them
  publication-title: Soil Biology & Biochemistry
– volume: 164
  start-page: 175
  year: 2004
  end-page: 181
  article-title: Patterns of below‐ground plant interconnections established by means of arbuscular mycorrhizal networks
  publication-title: New Phytologist
– volume: 74
  start-page: 336
  year: 2010
  end-page: 345
  article-title: Plants as resource islands and storage units – adopting the mycocentric view of arbuscular mycorrhizal networks
  publication-title: FEMS Microbiology Ecology
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– start-page: 75
  year: 2002
  end-page: 92
– volume: 180
  start-page: 890
  year: 2008
  end-page: 898
  article-title: Underground resource allocation between individual networks of mycorrhizal fungi
  publication-title: New Phytologist
– volume: 76
  start-page: 613
  year: 1998
  end-page: 619
  article-title: Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages?
  publication-title: Canadian Journal of Botany
– volume: 339
  start-page: 231
  year: 2011
  end-page: 245
  article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi
  publication-title: Plant and Soil
– volume: 28
  start-page: 73
  year: 1996
  end-page: 81
  article-title: Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus
  publication-title: Soil Biology & Biochemistry
– volume: 328
  start-page: 420
  year: 1987
  end-page: 422
  article-title: Floristic diversity in a model system using experimental microcosms
  publication-title: Nature
– volume: 73
  start-page: 1301
  year: 1995
  end-page: 1309
  article-title: Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure
  publication-title: Canadian Journal of Botany
– volume: 39
  start-page: 1450
  year: 2007
  end-page: 1458
  article-title: Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings
  publication-title: Soil Biology & Biochemistry
– volume: 161
  start-page: 601
  year: 1998
  end-page: 602
  article-title: A modified procedure for staining arbuscular mycorrhizal fungi in roots
  publication-title: Zeitschrift Fur Pflanzenernahrung und Bodenkunde
– volume: 198
  start-page: 203
  year: 2013
  end-page: 213
  article-title: Common mycorrhizal networks amplify size inequality in monocultures
  publication-title: New Phytologist
– year: 2008
– volume: 14
  start-page: 171
  year: 1982
  end-page: 178
  article-title: Vesicular‐arbuscular mycorrhiza and growth in barley: effects of irradiation and heating of soil
  publication-title: Soil Biology and Biochemistry
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural water
  publication-title: Analytica Chimica Acta
– volume: 83
  start-page: 613
  year: 1995
  end-page: 620
  article-title: Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of
  publication-title: Journal of Ecology
– start-page: 233
  year: 1986
  end-page: 237
– start-page: 79
  year: 2010
  end-page: 98
– volume: 163
  start-page: 617
  year: 2004
  end-page: 627
  article-title: The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 95
  start-page: 639
  year: 2007
  end-page: 647
  article-title: Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants
  publication-title: Journal of Ecology
– volume: 28
  start-page: 1247
  year: 2005
  end-page: 1254
  article-title: Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied
  publication-title: Plant, Cell & Environment
– volume: 122
  start-page: 281
  year: 1992
  end-page: 288
  article-title: Hyphal transport of N‐labelled nitrogen by a vesicular‐arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N
  publication-title: New Phytologist
– volume: 109
  start-page: 2666
  year: 2012
  end-page: 2671
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 108
  start-page: 79
  year: 1996
  end-page: 84
  article-title: Effect of arbuscular mycorrhiza on inter‐ and intraspecific competition of two grassland species
  publication-title: Oecologia
– volume: 5
  start-page: 360
  year: 1990
  end-page: 364
  article-title: Asymmetric competition in plant‐populations
  publication-title: Trends in Ecology & Evolution
– start-page: 37
  year: 1982
  end-page: 45
– volume: 181
  start-page: 199
  year: 2009
  end-page: 207
  article-title: Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
  publication-title: New Phytologist
– volume: 23
  start-page: 481
  year: 2003
  end-page: 488
  article-title: Long‐distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize
  publication-title: Agronomie
– year: 1954
– volume: 97
  start-page: 1139
  year: 2009
  end-page: 1150
  article-title: Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems
  publication-title: Journal of Ecology
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 18
  start-page: 243
  year: 1988
  end-page: 270
  article-title: Mycorrhizal links between plants – their functioning and ecological significance
  publication-title: Advances in Ecological Research
– volume: 435
  start-page: 819
  year: 2005
  end-page: 823
  article-title: Nitrogen transfer in the arbuscular mycorrhizal symbiosis
  publication-title: Nature
– volume: 120
  start-page: 371
  year: 1992
  end-page: 380
  article-title: External hyphae of vesicular‐arbuscular mycorrhizal fungi associated with . 1: spread of hyphae and phosphorus inflow into roots
  publication-title: New Phytologist
– volume: 33
  start-page: 1441
  year: 1996
  end-page: 1450
  article-title: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation
  publication-title: Journal of Applied Ecology
– year: 2012
– volume: 91
  start-page: 281
  year: 1992
  end-page: 287
  article-title: Density dependent interactions between VA mycorrhizal fungi and even‐aged seedlings of 2 perennial Fabaceae species
  publication-title: Oecologia
– volume: 164
  start-page: 4
  year: 2004
  end-page: 7
  article-title: Hyphal fusion to plant species connections – giant mycelia and community nutrient flow
  publication-title: New Phytologist
– volume: 15
  start-page: 791
  year: 1998
  end-page: 797
  article-title: A mutant in Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation
  publication-title: Plant Journal
– start-page: 93
  year: 2002
  end-page: 116
– volume: 165
  start-page: 899
  year: 2005
  end-page: 912
  article-title: Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus is stimulated by increased carbohydrate availability
  publication-title: New Phytologist
– year: 2013
  article-title: The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene‐silencing approach
  publication-title: Physiologia Plantarum
– volume: 77
  start-page: 641
  year: 1976
  end-page: 653
  article-title: Vesicular‐arbuscular mycorrhiza in natural vegetation systems. 1. Occurrence of infection
  publication-title: New Phytologist
– volume: 181
  start-page: 950
  year: 2009
  end-page: 959
  article-title: Mycorrhizal phosphate uptake pathway in tomato is phosphorus‐repressible and transcriptionally regulated
  publication-title: New Phytologist
– volume: 133
  start-page: 16
  year: 2003
  end-page: 20
  article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses
  publication-title: Plant Physiology
– volume: 21
  start-page: 641
  year: 2011
  end-page: 650
  article-title: Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate
  publication-title: Mycorrhiza
– volume: 80
  start-page: 1180
  year: 1999
  end-page: 1186
  article-title: Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass
  publication-title: Ecology
– volume: 94
  start-page: 13
  year: 1988
  end-page: 24
  article-title: The effects and implications of disturbance of mycorrhizal mycelial systems
  publication-title: Proceedings of the Royal Society of Edinburgh Section B‐Biological Sciences
– volume: 8
  start-page: e57716
  year: 2013
  article-title: Arbuscular‐mycorrhizal networks inhibit seedlings in rain forest soil microcosms
  publication-title: PLoS ONE
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.1118650109
– ident: e_1_2_6_14_1
  doi: 10.1038/328420a0
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1469-8137.1992.tb01077.x
– ident: e_1_2_6_45_1
– ident: e_1_2_6_25_1
  doi: 10.1051/agro:2003013
– ident: e_1_2_6_52_1
  doi: 10.2307/2261629
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1208473
– ident: e_1_2_6_30_1
  doi: 10.2307/2404783
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1365-3040.2005.01360.x
– ident: e_1_2_6_7_1
  doi: 10.1104/pp.106.090522
– ident: e_1_2_6_13_1
  doi: 10.1038/nature03610
– ident: e_1_2_6_38_1
  doi: 10.1139/b98-037
– ident: e_1_2_6_43_1
  doi: 10.1016/S0065-2504(08)60182-8
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-3040.2006.01617.x
– ident: e_1_2_6_50_1
  doi: 10.1017/S0269727000007065
– ident: e_1_2_6_15_1
  doi: 10.1111/ppl.12030
– ident: e_1_2_6_23_1
  doi: 10.1371/journal.pone.0057716
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-2745.2007.01257.x
– ident: e_1_2_6_8_1
  doi: 10.1007/s00442-002-1022-5
– ident: e_1_2_6_28_1
  doi: 10.1016/0038-0717(95)00117-4
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1469-8137.2008.02630.x
– start-page: 233
  volume-title: Proceedings of the 1st European Smposium on Mycorrhizae
  year: 1986
  ident: e_1_2_6_4_1
– ident: e_1_2_6_18_1
  doi: 10.1038/35095041
– ident: e_1_2_6_32_1
  doi: 10.1890/0012-9658(2003)084[0898:ATOMAI]2.0.CO;2
– start-page: 75
  volume-title: Mycorrhizal ecology
  year: 2002
  ident: e_1_2_6_22_1
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1469-8137.2004.01152.x
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: e_1_2_6_53_1
– ident: e_1_2_6_35_1
  doi: 10.1890/0012-9658(1999)080[1180:MIECEO]2.0.CO;2
– ident: e_1_2_6_21_1
  doi: 10.1016/0038-0717(82)90019-0
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1574-6941.2010.00956.x
– ident: e_1_2_6_56_1
  doi: 10.1007/s11104-010-0571-3
– ident: e_1_2_6_60_1
  doi: 10.1111/nph.12125
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-2745.2009.01570.x
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00317797
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1469-8137.1980.tb04556.x
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1469-8137.1976.tb04657.x
– ident: e_1_2_6_59_1
  doi: 10.1016/0169-5347(90)90095-U
– start-page: 37
  volume-title: Methods and principles of mycorrhizal research
  year: 1982
  ident: e_1_2_6_31_1
– ident: e_1_2_6_46_1
  doi: 10.1007/978-3-540-38364-2_4
– ident: e_1_2_6_39_1
  doi: 10.1201/9781439824955-c5
– ident: e_1_2_6_42_1
  doi: 10.1016/j.soilbio.2006.12.031
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1469-8137.1992.tb04232.x
– ident: e_1_2_6_37_1
  doi: 10.1007/BF00333217
– ident: e_1_2_6_40_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_6_3_1
  doi: 10.1046/j.1365-313X.1998.00252.x
– ident: e_1_2_6_24_1
  doi: 10.1007/s00572-011-0372-4
– ident: e_1_2_6_10_1
  doi: 10.1139/b95-391
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-8137.2004.01163.x
– volume-title: R: a language and environment for statistical computing
  year: 2012
  ident: e_1_2_6_49_1
– ident: e_1_2_6_57_1
  doi: 10.1002/jpln.1998.3581610515
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1469-8137.2004.01145.x
– ident: e_1_2_6_54_1
  doi: 10.1104/pp.103.024380
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1461-0248.2004.00577.x
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1469-8137.2008.02721.x
– ident: e_1_2_6_44_1
  doi: 10.1016/0038-0717(86)90083-0
– ident: e_1_2_6_6_1
  doi: 10.1023/B:VEGE.0000026031.14086.f1
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1574-6941.2008.00503.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1469-8137.2008.02623.x
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1469-8137.2004.01274.x
SSID ssj0009562
Score 2.4322288
Snippet Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on...
Summary Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN...
Common mycorrhizal networks ( CMN s) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects...
Summary Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms Agricultural soils
Agrology
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Biological competition
carbon
Carbon - metabolism
common mycorrhizal networks
Competition
competition for phosphorus
Cucumbers
Cucumis sativus
Cucumis sativus (cucumber)
Cucumis sativus - growth & development
Cucumis sativus - metabolism
Cucumis sativus - microbiology
Cucumis sativus - physiology
Cutting
Cuttings
ecological competition
Fungi
Glomeromycota
Growth
Interspecific
Lycopersicon
Lycopersicon esculentum
Lycopersicon esculentum - growth & development
Lycopersicon esculentum - metabolism
Lycopersicon esculentum - microbiology
Lycopersicon esculentum - physiology
Mycelium
Mycorrhizae - metabolism
Mycorrhizae - physiology
Mycorrhizal fungi
Mycorrhizas
Networks
Nitrogen
Phosphorus
Phosphorus - metabolism
Plant roots
Plants
Rhizophagus
Rhizophagus irregularis
Seedling growth
Seedlings
Seedlings - growth & development
Seedlings - metabolism
Seedlings - microbiology
Senescence
Shoots
soil
Solanum
Solanum lycopersicon (tomato)
Solanum lycopersicum
Symptoms
Tomatoes
Uptake
vesicular arbuscular mycorrhizae
Title Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants
URI https://www.jstor.org/stable/newphytologist.200.1.229
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12351
https://www.ncbi.nlm.nih.gov/pubmed/23738787
https://www.proquest.com/docview/1427810872
https://www.proquest.com/docview/2513382960
https://www.proquest.com/docview/1433269760
https://www.proquest.com/docview/1439231758
https://www.proquest.com/docview/2524284067
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9K8cEXtfUrWssqIr7kuGySTRafVCyHYBGxcA9C2E9OrMlxuXu4_vWd2XzQylVKHwKBzIZkMpP9_ZLfzgC8VbYwmddlnKfSxjhD-Fh7gWRFOskLIaQL_VO-nYrZWfZ1ns_34MOwFqarDzF-cKPMCO9rSnCl2ytJXi8XE1roSdSHtFoEiH7wKwV3BR8qMItMzPuqQqTiGUdem4s6OeIuoHkdt4aJ5-Qh_BouudOb_Jls1npiLv6p5njHe3oED3pAyj52EXQAe64-hHufGgSN28ewogUkTc0UOr-TrLK_WySsq8XvCxxVdyLylikSpvstMwGGBxkYQzjMloumxW21aVmvCGMtzpe0Bh4H1ZahB1QnzLdseU6inCdwdvLl5-dZ3LdpiE2O8CHWZuoKJadcqwQjYmpFyq3yiCVF5kyuPPcqsZbnpaJfOSotUq0wIJQsTegZ-RT266Z2z4HZUhlTSC6s9FnqnXS5kNoj6lFOC5tE8H54YJXpa5hTK43zauAy6MEqeDCCN6PpsivcscvoXXjqowVSGYzu0DkYs4x6dFZJxbmM4GgIi6pP8hZZEy_KZFoWfOdhTq1zSo4UMYLX42HMXvolo2rXbOgUKeJnhIT_tyEUjsTuZhueI9RCri6KCJ51UTveE6fiVfheRueF2LvZHdXp91nYeXF705dwn1OHkKBvPIL99WrjXiFOW-vjkJCX2z88Tg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3o9AAYMAcclq4yROfOAAlGpL2xVCrbS34NiOFlGS1WZXaPub-Cv8J2ach1q0RVx64BApUiaRM_bY35d8ngF4oUyioyJP_TiUxscVovDzQiBZkVbyRAhpXf2Ug7EYHUUfJ_FkA352e2Ga_BD9BzeKDDdfU4DTB-lTUV7OpgPa6Rm0kso9u_qBhK1-s7uNvfuS850Ph-9HfltTwNcxrnV-roc2UXLIcxVg84dGhNyoAoGPiKyOVcELFRjD41TRfwcVJmGusPVKptoVOMTnXoLLVEGcMvVvf-anUvwK3uV8FpGYtHmMSDfUN_XM6tcIINdB27NI2S11OzfgV-ekRuHybbBc5AN98kf-yP_Fizfheou52dsmSG7Bhi1vw5V3FeLi1R2Y0x6ZqmQKx1ejymXfV8jJ59OvJ3hX2ejka6ZIe1-smHZMwyndGCJ-NptWNR7zZc1a0RurERLQNn-8qTQMXa6avQeGzY5Jd3QXji7kfe_BZlmV9gEwkyqtE8mFkUUUFlbaWMi8QGCnbC5M4MHrboRkuk3TTtVCjrOOrmGPZa7HPHjem86a3CTrjF65YdZbIFvDAHbFkXEioTKkWZBxLj3Y6sZh1s5jNRJDnqTBME342sucqgOlHFmwB8_6yzhB0V8nVdpqSY8IkSIg6v27DREN5K7n2_AY0WSK-DPx4H4TJv07ccrPhUsPOs8N9vPdkY0_jdzJw383fQpXR4cH-9n-7njvEVzjVBDFyTm3YHMxX9rHCEsX-RM3GzD4ctGB8xuxDZuq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAX3tBAAYMAcckqcRInPnAAltWWwqpCVNpbcPzQopZstNkV2v4l_go_irHzUIu2iEsPHCJFyiRybI_9fck3MwDPhUplbIrMTyKufNwhjF8YhmSFa05Txrh29VM-Tdj4MP4wTaZb8LOLhWnyQ_Qf3KxnuPXaOnilzCknL6vZwAZ6hq2icl-vfyBfq1_vDXFwX1A6ev_l3dhvSwr4MsGtzi9koFPBA1qIEFsfKBZRJQziHhZrmQhDjQiVokkm7G8HEaVRIbDxgmfS1TfE516CyzELuK0TMfxMT2X4ZbRL-cxiNm3TGFnZUN_UM5tfo3_chGzPAmW3041uwK-ujxqBy9FgtSwG8uSP9JH_SSfehOst4iZvGhe5BVu6vA1X3s4RFa_vwMJGyMxLInB2NZpc8n2NjHwx-3aCd5WNSr4mwirvzZpIxzOczo0g3ifVbF7jsVjVpJW8kRoBgQ3yx5tKRbDHRRN5oEh1bFVHd-HwQt73HmyX81LvAFGZkDLllClu4shorhPGC4OwTuiCqdCDV90EyWWbpN3WCjnOO7KGI5a7EfPgWW9aNZlJNhm9dLOst0Cuhu7rSiPjMmKLkOZhTin3YLebhnm7itVIC2mahUGW0o2Xqa0NlFHkwB487S_j8mT_OYlSz1f2ERESBMS8f7exNAOZ6_k2NEEsmSH6TD2433hJ_07UZufCjQc7z83187sjnxyM3cmDfzd9AlcPhqP8495k_yFco7YaitNy7sL2crHSjxCTLovHbi0g8PWi_eY3Q56aWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+arbuscular+mycorrhizal+networks+amplify+competition+for+phosphorus+between+seedlings+and+established+plants&rft.jtitle=The+New+phytologist&rft.au=Merrild%2C+Marie+P&rft.au=Ambus%2C+Per&rft.au=Rosendahl%2C+S%C3%B8ren&rft.au=Jakobsen%2C+Iver&rft.date=2013-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1111%2Fnph.12351&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3054311351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon