Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retai...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 218; no. 4; pp. 1558 - 1569
Main Authors Kurokawa, Yusuke, Nagai, Keisuke, Huan, Phung Danh, Shimazaki, Kousuke, Qu, Huangqi, Mori, Yoshinao, Toda, Yosuke, Kuroha, Takeshi, Hayashi, Nagao, Aiga, Saori, Itoh, Jun‐ichi, Yoshimura, Atsushi, Sasaki‐Sekimoto, Yuko, Ohta, Hiroyuki, Shimojima, Mie, Malik, Al Imran, Pedersen, Ole, Colmer, Timothy David, Ashikari, Motoyuki
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.06.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.
AbstractList Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown.We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated.Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis.The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas.
Floods impede gas (O and CO ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.
Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.
Summary Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas. See also the Commentary on this article by Ismail, 218: 1298–1300.
Floods impede gas (O 2 and CO 2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant ( dripping wet leaf 7 , drp7 ) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 ( LGF 1 ) was identified as the gene determining leaf gas films. LGF 1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF 1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF 1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas. See also the Commentary on this article by Ismail, 218 : 1298–1300 .
Author Jun-ichi Itoh
Atsushi Yoshimura
Kousuke Shimazaki
Huangqi Qu
Yosuke Toda
Takeshi Kuroha
Al Imran Malik
Phung Danh Huan
Mie Shimojima
Ole Pedersen
Timothy David Colmer
Motoyuki Ashikari
Keisuke Nagai
Hiroyuki Ohta
Nagao Hayashi
Yusuke Kurokawa
Yoshinao Mori
Yuko Sasaki-Sekimoto
Saori Aiga
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Kurokawa
  fullname: Kurokawa, Yusuke
  organization: Nagoya University
– sequence: 2
  givenname: Keisuke
  surname: Nagai
  fullname: Nagai, Keisuke
  organization: Nagoya University
– sequence: 3
  givenname: Phung Danh
  surname: Huan
  fullname: Huan, Phung Danh
  organization: Vietnam National University of Agriculture
– sequence: 4
  givenname: Kousuke
  surname: Shimazaki
  fullname: Shimazaki, Kousuke
  organization: Tokyo Institute of Technology
– sequence: 5
  givenname: Huangqi
  surname: Qu
  fullname: Qu, Huangqi
  organization: Nagoya University
– sequence: 6
  givenname: Yoshinao
  surname: Mori
  fullname: Mori, Yoshinao
  organization: Nagoya University
– sequence: 7
  givenname: Yosuke
  surname: Toda
  fullname: Toda, Yosuke
  organization: Nagoya University
– sequence: 8
  givenname: Takeshi
  surname: Kuroha
  fullname: Kuroha, Takeshi
  organization: Tohoku University
– sequence: 9
  givenname: Nagao
  surname: Hayashi
  fullname: Hayashi, Nagao
  organization: National Agriculture and Food Research Organization
– sequence: 10
  givenname: Saori
  surname: Aiga
  fullname: Aiga, Saori
  organization: The University of Tokyo
– sequence: 11
  givenname: Jun‐ichi
  surname: Itoh
  fullname: Itoh, Jun‐ichi
  organization: The University of Tokyo
– sequence: 12
  givenname: Atsushi
  surname: Yoshimura
  fullname: Yoshimura, Atsushi
  organization: Kyushu University
– sequence: 13
  givenname: Yuko
  surname: Sasaki‐Sekimoto
  fullname: Sasaki‐Sekimoto, Yuko
  organization: Japan Science and Technology Agency
– sequence: 14
  givenname: Hiroyuki
  surname: Ohta
  fullname: Ohta, Hiroyuki
  organization: Tokyo Institute of Technology
– sequence: 15
  givenname: Mie
  surname: Shimojima
  fullname: Shimojima, Mie
  organization: Tokyo Institute of Technology
– sequence: 16
  givenname: Al Imran
  surname: Malik
  fullname: Malik, Al Imran
  organization: The University of Western Australia
– sequence: 17
  givenname: Ole
  orcidid: 0000-0002-0827-946X
  surname: Pedersen
  fullname: Pedersen, Ole
  email: opedersen@bio.ku.dk
  organization: The University of Western Australia
– sequence: 18
  givenname: Timothy David
  orcidid: 0000-0002-3383-9596
  surname: Colmer
  fullname: Colmer, Timothy David
  email: timothy.colmer@uwa.edu.au
  organization: The University of Western Australia
– sequence: 19
  givenname: Motoyuki
  orcidid: 0000-0002-8945-2366
  surname: Ashikari
  fullname: Ashikari, Motoyuki
  email: ashi@agr.nagoya-u.ac.jp
  organization: Nagoya University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29498045$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFEEQhhuJmE304A9QGrwkh0mqv2eOIZgPWFREwdvQO1Od7WW2e-2eIc6_t5NNchCsSxXU874U9R6RgxADEvKewRkrdR526zOmwMArsmBSN1XNhDkgCwBeV1rqX4fkKOcNADRK8zfkkDeyqUGqBZm--w7pgNbR9dynuFvHle_8OFMbenpnM3V-2GZqE9IuBocpYU9XZU3v7R-a5zCuMftM7zAgPVleX7HTR2mBx-RX04h0jNQNMfZlGDDZ0OFb8trZIeO7p35Mfl59_nF5Uy2_Xt9eXiyrTnGAStkOgUthjVKNMVpj0xuGRoDW3HDmrGbKOm4coGt6LpU0VglnJNS1KsJjcrL33aX4e8I8tlufOxwGGzBOueXAQBihJBT00z_oJk4plOsKJZQBJqUo1Ome6lLMOaFrd8lvbZpbBu1DFm3Jon3MorAfnxyn1Rb7F_L5-QU43wP3fsD5_07tl283z5Yf9opNHmN6UTQlaKYUF38BLSicLQ
CitedBy_id crossref_primary_10_1016_j_envexpbot_2020_104188
crossref_primary_10_1007_s13157_019_01190_7
crossref_primary_10_1016_j_rsci_2020_11_006
crossref_primary_10_1021_acsanm_9b02301
crossref_primary_10_1071_FP19117
crossref_primary_10_1021_acs_jafc_9b01899
crossref_primary_10_1093_aob_mcaa171
crossref_primary_10_1016_j_semcdb_2019_04_005
crossref_primary_10_1111_nph_16816
crossref_primary_10_3390_plants9020262
crossref_primary_10_3390_plants11030376
crossref_primary_10_1016_j_envexpbot_2024_105824
crossref_primary_10_1093_jxb_erad457
crossref_primary_10_3390_ijms21207497
crossref_primary_10_1021_acsomega_2c02820
crossref_primary_10_1071_FP23226
crossref_primary_10_1002_pld3_240
crossref_primary_10_1186_s12870_018_1616_7
crossref_primary_10_3390_su151914253
crossref_primary_10_1016_j_surfin_2021_101455
crossref_primary_10_1016_j_plaphy_2023_108224
crossref_primary_10_1016_j_envexpbot_2021_104448
crossref_primary_10_1016_j_fcr_2022_108760
crossref_primary_10_18307_2023_0213
crossref_primary_10_1111_nph_15188
crossref_primary_10_1016_j_jplph_2022_153815
crossref_primary_10_3390_plants11070977
crossref_primary_10_1007_s11032_019_1005_4
crossref_primary_10_1016_j_plipres_2020_101072
crossref_primary_10_3390_agronomy13102599
crossref_primary_10_3390_metabo10020068
crossref_primary_10_1007_s11032_020_01190_0
crossref_primary_10_1111_ppl_13251
crossref_primary_10_1111_plb_13618
crossref_primary_10_3389_fpls_2024_1355729
crossref_primary_10_3389_fpls_2019_01326
crossref_primary_10_1007_s12298_020_00893_0
crossref_primary_10_1093_pcp_pcz009
crossref_primary_10_1002_fes3_163
crossref_primary_10_1007_s11033_022_07853_9
crossref_primary_10_3390_ijms22031088
crossref_primary_10_3390_ijms232113025
crossref_primary_10_1111_nph_16267
crossref_primary_10_1270_jsbbs_22086
crossref_primary_10_1093_jxb_erab532
crossref_primary_10_1271_kagakutoseibutsu_59_586
crossref_primary_10_1111_tpj_15947
crossref_primary_10_3390_ijms25073757
crossref_primary_10_1134_S1021443719060086
crossref_primary_10_1007_s10853_022_07172_1
crossref_primary_10_3390_plants12233948
crossref_primary_10_3389_fpls_2020_627331
crossref_primary_10_1007_s11032_020_01122_y
crossref_primary_10_1007_s10722_020_00904_9
crossref_primary_10_3390_plants12030494
crossref_primary_10_3389_fpls_2024_1385165
crossref_primary_10_1016_j_plantsci_2022_111340
crossref_primary_10_3390_ijms222312970
crossref_primary_10_1093_aob_mcy153
crossref_primary_10_1111_pbi_13140
crossref_primary_10_1186_s12284_023_00671_y
Cites_doi 10.1073/pnas.1316412110
10.1016/0304-3770(85)90053-1
10.1007/s11103-011-9839-0
10.1111/j.1469-8137.2007.02318.x
10.1006/anbo.1997.0400
10.1007/s11103-009-9483-0
10.1093/mp/ssr028
10.4319/lo.1976.21.4.0540
10.1016/S0163-7827(02)00045-0
10.1098/rsta.2009.0022
10.1242/jeb.24.3-4.270
10.1104/pp.72.2.447
10.1016/j.fcr.2013.01.007
10.1093/jxb/eru166
10.1021/la0344682
10.1093/jxb/eru457
10.1007/978-3-642-38797-5_9
10.1038/nature04920
10.1093/aobpla/plr030
10.1007/s00425-011-1481-1
10.1111/pce.12873
10.1270/jsbbs.62.178
10.1073/pnas.1108444108
10.1016/j.plantsci.2016.05.005
10.1104/pp.106.086785
10.1242/jeb.065128
10.1111/pce.12300
10.1016/S0031-9422(00)00513-6
10.1007/s00425-008-0770-9
10.1111/nph.12048
10.1194/jlr.M029512
10.1007/s004250050096
10.3389/fbioe.2014.00032
10.1111/j.1365-313X.2008.03769.x
10.1104/pp.107.107300
10.3389/fpls.2013.00140
10.1128/jb.168.3.1291-1301.1986
10.1016/j.pmatsci.2008.07.003
10.1146/annurev.arplant.59.103006.093219
10.1007/s11103-010-9656-x
10.1371/journal.pone.0065139
10.1016/S0022-1910(99)00096-7
10.1046/j.1365-313X.1994.6020271.x
10.1111/pce.12717
10.21273/HORTSCI.18.5.698
10.1038/nmeth.2089
ContentType Journal Article
Copyright Copyright © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright_xml – notice: Copyright © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
DBID NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.15070
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1569
ExternalDocumentID 10_1111_nph_15070
29498045
NPH15070
90021552
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: JICA
– fundername: Villum Foundation
– fundername: JSPS KAKENHI
  funderid: JP16K18565
– fundername: MEXT Grant‐in‐Aid for Scientific Research on Innovative Areas
  funderid: 17H06473
– fundername: Sassakawa Foundation
– fundername: SATREPS
– fundername: Danish Research Council
– fundername: JST
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
24P
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
AASVR
ABEFU
ABEML
ACQPF
AGUYK
AS~
CAG
COF
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
XOL
YXE
ZCG
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5200-5ace0243a75597766e9d71e730662721fa615af27f0ef9d24547a53f740885243
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Wed Dec 04 12:17:06 EST 2024
Tue Nov 19 05:33:53 EST 2024
Fri Dec 06 06:32:31 EST 2024
Wed Oct 16 00:49:31 EDT 2024
Sat Aug 24 01:01:33 EDT 2024
Tue Dec 10 23:55:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Oryza sativa
air film
underwater photosynthesis
submergence tolerance
epicuticular waxes
wax biosynthesis
primary alcohol
superhydrophobic
Language English
License 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5200-5ace0243a75597766e9d71e730662721fa615af27f0ef9d24547a53f740885243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8945-2366
0000-0002-3383-9596
0000-0002-0827-946X
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/nph.15070
PMID 29498045
PQID 2035701443
PQPubID 2026848
PageCount 12
ParticipantIDs proquest_miscellaneous_2010373540
proquest_journals_2035701443
crossref_primary_10_1111_nph_15070
pubmed_primary_29498045
wiley_primary_10_1111_nph_15070_NPH15070
jstor_primary_90021552
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – sequence: 0
  name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1976; 21
2007; 145
2013; 4
2000; 46
2008; 228
2003; 19
1983; 18
2016; 39
2013; 8
1985; 21
2012; 53
2014; 65
2009; 58
2009; 54
2014; 2
2013; 152
2013; 110
2013; 197
2012; 215
2001; 57
2009; 367
2003; 42
2010; 74
2006; 442
2012; 62
1947; 24
2008; 59
2011; 77
2016; 249
1983; 72
1995; 19
2011; 4
1983; 33
1997; 202
2011; 2011
2011; 108
1986; 168
2009; 70
1997; 79
2015; 66
2014; 37
2017
2006; 142
2015
2012; 235
2008; 177
2014; 75
1994; 6
2012; 9
29738087 - New Phytol. 2018 Jun;218(4):1298-1300
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
FAO (e_1_2_7_7_1) 2015
Satoh H (e_1_2_7_34_1) 1983; 33
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
Thomson D (e_1_2_7_37_1) 1995; 19
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 367
  start-page: 1487
  year: 2009
  end-page: 1509
  article-title: Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 108
  start-page: 12354
  year: 2011
  end-page: 12359
  article-title: An ATP‐binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 19
  start-page: 394
  year: 1995
  end-page: 397
  article-title: Single‐step protocol for preparation of plant tissue for analysis by PCR
  publication-title: BioTechniques
– volume: 6
  start-page: 271
  year: 1994
  end-page: 282
  article-title: Efficient transformation of rice ( L.) mediated by and sequence analysis of the boundaries of the T‐DNA
  publication-title: Plant Journal
– volume: 228
  start-page: 675
  year: 2008
  end-page: 685
  article-title: encodes a β–ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf
  publication-title: Planta
– volume: 215
  start-page: 705
  year: 2012
  end-page: 709
  article-title: Physical gills prevent drowning of many wetland insects, spiders and plants
  publication-title: Journal of Experimental Biology
– volume: 197
  start-page: 1193
  year: 2013
  end-page: 1203
  article-title: Internal aeration of paddy field rice ( L.) during complete submergence – importance of light and floodwater O
  publication-title: New Phytologist
– volume: 21
  start-page: 540
  year: 1976
  end-page: 547
  article-title: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton
  publication-title: Limnology and Oceanography
– volume: 42
  start-page: 51
  year: 2003
  end-page: 80
  article-title: Biosynthesis and secretion of plant cuticular wax
  publication-title: Progress in Lipid Research
– volume: 66
  start-page: 1165
  year: 2015
  end-page: 1178
  article-title: FAR5, a fatty acyl‐coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat ( L.)
  publication-title: Journal of Experimental Botany
– volume: 110
  start-page: 17790
  year: 2013
  end-page: 17795
  article-title: Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress‐induced wax deposition in rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 72
  start-page: 447
  year: 1983
  end-page: 454
  article-title: How does deep water rice solve its aeration problem?
  publication-title: Plant Physiology
– volume: 2
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Fatty acid‐derived biofuels and chemicals production in
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 19
  start-page: 8343
  year: 2003
  end-page: 8348
  article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?
  publication-title: Langmuir
– volume: 142
  start-page: 866
  year: 2006
  end-page: 877
  article-title: encodes an alcohol‐forming fatty acyl‐coenzyme A reductase involved in cuticular wax production in Arabidopsis
  publication-title: Plant Physiology
– volume: 58
  start-page: 147
  year: 2009
  end-page: 156
  article-title: Surviving floods: leaf gas films improve O and CO exchange, root aeration, and growth of completely submerged rice
  publication-title: Plant Journal
– volume: 152
  start-page: 83
  year: 2013
  end-page: 93
  article-title: The contribution of submergence‐tolerant (Sub1) rice varieties to food security in flood‐prone rainfed lowland areas in Asia
  publication-title: Field Crops Research
– volume: 46
  start-page: 13
  year: 2000
  end-page: 19
  article-title: Surviving the flood: plastron respiration in the non‐tracheate arthropod (Amblypygi: Arachnida)
  publication-title: Journal of Insect Physiology
– volume: 39
  start-page: 1537
  year: 2016
  end-page: 1548
  article-title: Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient
  publication-title: Plant, Cell & Environment
– volume: 177
  start-page: 918
  year: 2008
  end-page: 926
  article-title: Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO and O exchange
  publication-title: New Phytologist
– year: 2017
  article-title: Leaf gas films contribute to rice ( ) submergence tolerance during saline floods
  publication-title: Plant, Cell & Environment
– volume: 70
  start-page: 443
  year: 2009
  end-page: 456
  article-title: Characterization of ‐homologous genes in rice involved in leaf wax accumulation and drought resistance
  publication-title: Plant Molecular Biology
– volume: 202
  start-page: 1
  year: 1997
  end-page: 8
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
– volume: 62
  start-page: 178
  year: 2012
  end-page: 185
  article-title: Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage
  publication-title: Breeding Science
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 18
  start-page: 698
  year: 1983
  end-page: 699
  article-title: A method for measuring leaf volume, density, thickness, and internal gas volume
  publication-title: HortScience
– volume: 24
  start-page: 270
  year: 1947
  end-page: 303
  article-title: Studies on plastron respiration; the respiratory efficiency of the plastron in
  publication-title: Journal of Experimental Biology
– volume: 8
  start-page: e65139
  year: 2013
  article-title: Rice is involved in leaf cuticular wax accumulation and drought resistance
  publication-title: PLoS ONE
– volume: 21
  start-page: 251
  year: 1985
  end-page: 263
  article-title: Laboratory culture of submersed freshwater macrophytes on natural sediments
  publication-title: Aquatic Botany
– year: 2015
– volume: 4
  start-page: 985
  year: 2011
  end-page: 995
  article-title: Rice is involved in leaf cuticular wax and cuticle membrane
  publication-title: Molecular Plant
– volume: 235
  start-page: 39
  year: 2012
  end-page: 52
  article-title: Wax crystal‐sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax
  publication-title: Planta
– volume: 57
  start-page: 115
  year: 2001
  end-page: 123
  article-title: Cuticular waxes on eceriferum mutants of
  publication-title: Phytochemistry
– volume: 77
  start-page: 631
  year: 2011
  end-page: 641
  article-title: The rice ( ) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces
  publication-title: Plant Molecular Biology
– volume: 79
  start-page: 667
  year: 1997
  end-page: 677
  article-title: Characterization and distribution of water‐repelent, self‐cleaning plant surfaces
  publication-title: Annals of Botany
– volume: 65
  start-page: 3225
  year: 2014
  end-page: 3233
  article-title: Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes
  publication-title: Journal of Experimental Botany
– volume: 54
  start-page: 137
  year: 2009
  end-page: 178
  article-title: Multifunctional surface structures of plants: an inspiration for biomimetics
  publication-title: Progress in Materials Science
– volume: 4
  start-page: 140
  year: 2013
  article-title: Underwater photosynthesis of submerged plants – recent advances and methods
  publication-title: Frontiers in Plant Science
– volume: 74
  start-page: 91
  year: 2010
  end-page: 103
  article-title: Mutation in ( ) causes abnormal cuticle formation and rapid water loss in rice
  publication-title: Plant Molecular Biology
– volume: 59
  start-page: 683
  year: 2008
  end-page: 707
  article-title: Sealing plant surfaces: cuticular wax formation by epidermal cells
  publication-title: Annual Review of Plant Biology
– volume: 37
  start-page: 2433
  year: 2014
  end-page: 2452
  article-title: The mechanism of improved aeration due to gas films on leaves of submerged rice
  publication-title: Plant, Cell & Environment
– volume: 145
  start-page: 653
  year: 2007
  end-page: 667
  article-title: The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis
  publication-title: Plant Physiology
– volume: 53
  start-page: 2153
  year: 2012
  end-page: 2161
  article-title: Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes
  publication-title: Journal of Lipid Research
– volume: 2011
  start-page: plr030
  year: 2011
  article-title: A perspective on underwater photosynthesis in submerged terrestrial wetland plants
  publication-title: AoB Plants
– volume: 33
  start-page: 242
  year: 1983
  end-page: 243
  article-title: Gene analysis of some dripping‐wet leaf mutants in rice
  publication-title: Japanese Journal of Breeding
– volume: 442
  start-page: 705
  year: 2006
  end-page: 708
  article-title: is an ethylene‐response‐factor‐like gene that confers submergence tolerance to rice
  publication-title: Nature
– volume: 168
  start-page: 1291
  year: 1986
  end-page: 1301
  article-title: The hypervirulence of A281 is encoded in a region of pTiBo542 outside of T‐DNA
  publication-title: Journal of Bacteriology
– volume: 75
  start-page: 255
  year: 2014
  end-page: 307
  article-title: Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water
  publication-title: Progress in Botany
– volume: 249
  start-page: 35
  year: 2016
  end-page: 45
  article-title: , a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice
  publication-title: Plant Science
– ident: e_1_2_7_50_1
  doi: 10.1073/pnas.1316412110
– ident: e_1_2_7_36_1
  doi: 10.1016/0304-3770(85)90053-1
– ident: e_1_2_7_45_1
  doi: 10.1007/s11103-011-9839-0
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1469-8137.2007.02318.x
– ident: e_1_2_7_23_1
  doi: 10.1006/anbo.1997.0400
– ident: e_1_2_7_14_1
  doi: 10.1007/s11103-009-9483-0
– ident: e_1_2_7_28_1
  doi: 10.1093/mp/ssr028
– ident: e_1_2_7_16_1
  doi: 10.4319/lo.1976.21.4.0540
– ident: e_1_2_7_19_1
  doi: 10.1016/S0163-7827(02)00045-0
– volume: 33
  start-page: 242
  year: 1983
  ident: e_1_2_7_34_1
  article-title: Gene analysis of some dripping‐wet leaf mutants in rice
  publication-title: Japanese Journal of Breeding
  contributor:
    fullname: Satoh H
– ident: e_1_2_7_17_1
  doi: 10.1098/rsta.2009.0022
– ident: e_1_2_7_38_1
  doi: 10.1242/jeb.24.3-4.270
– ident: e_1_2_7_31_1
  doi: 10.1104/pp.72.2.447
– ident: e_1_2_7_15_1
  doi: 10.1016/j.fcr.2013.01.007
– ident: e_1_2_7_42_1
  doi: 10.1093/jxb/eru166
– ident: e_1_2_7_21_1
  doi: 10.1021/la0344682
– ident: e_1_2_7_40_1
  doi: 10.1093/jxb/eru457
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-38797-5_9
– ident: e_1_2_7_44_1
  doi: 10.1038/nature04920
– ident: e_1_2_7_6_1
  doi: 10.1093/aobpla/plr030
– ident: e_1_2_7_20_1
  doi: 10.1007/s00425-011-1481-1
– volume: 19
  start-page: 394
  year: 1995
  ident: e_1_2_7_37_1
  article-title: Single‐step protocol for preparation of plant tissue for analysis by PCR
  publication-title: BioTechniques
  contributor:
    fullname: Thomson D
– ident: e_1_2_7_11_1
  doi: 10.1111/pce.12873
– ident: e_1_2_7_22_1
  doi: 10.1270/jsbbs.62.178
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.1108444108
– ident: e_1_2_7_47_1
  doi: 10.1016/j.plantsci.2016.05.005
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.106.086785
– ident: e_1_2_7_25_1
  doi: 10.1242/jeb.065128
– ident: e_1_2_7_39_1
  doi: 10.1111/pce.12300
– ident: e_1_2_7_29_1
  doi: 10.1016/S0031-9422(00)00513-6
– ident: e_1_2_7_46_1
  doi: 10.1007/s00425-008-0770-9
– ident: e_1_2_7_41_1
  doi: 10.1111/nph.12048
– ident: e_1_2_7_10_1
  doi: 10.1194/jlr.M029512
– ident: e_1_2_7_2_1
  doi: 10.1007/s004250050096
– ident: e_1_2_7_49_1
  doi: 10.3389/fbioe.2014.00032
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1365-313X.2008.03769.x
– ident: e_1_2_7_8_1
  doi: 10.1104/pp.107.107300
– ident: e_1_2_7_26_1
  doi: 10.3389/fpls.2013.00140
– ident: e_1_2_7_13_1
  doi: 10.1128/jb.168.3.1291-1301.1986
– ident: e_1_2_7_18_1
  doi: 10.1016/j.pmatsci.2008.07.003
– ident: e_1_2_7_33_1
  doi: 10.1146/annurev.arplant.59.103006.093219
– ident: e_1_2_7_24_1
  doi: 10.1007/s11103-010-9656-x
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0065139
– ident: e_1_2_7_9_1
  doi: 10.1016/S0022-1910(99)00096-7
– ident: e_1_2_7_12_1
  doi: 10.1046/j.1365-313X.1994.6020271.x
– ident: e_1_2_7_43_1
  doi: 10.1111/pce.12717
– ident: e_1_2_7_30_1
  doi: 10.21273/HORTSCI.18.5.698
– ident: e_1_2_7_35_1
  doi: 10.1038/nmeth.2089
– volume-title: Rice production 1993–2013
  year: 2015
  ident: e_1_2_7_7_1
  contributor:
    fullname: FAO
SSID ssj0009562
Score 2.5616655
Snippet Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on...
Summary Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films...
Floods impede gas (O and CO ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on...
Floods impede gas (O 2 and CO 2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on...
SourceID proquest
crossref
pubmed
wiley
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 1558
SubjectTerms air film
Alcohol
Alcohols
Alleles
Breeding
Carbon dioxide
Complementation
epicuticular waxes
Floods
Gas exchange
Gene expression
Genotypes
Hydrophobicity
Leaves
Oryza sativa
Photosynthesis
Platelets
primary alcohol
Retention
Stability
Submergence
submergence tolerance
superhydrophobic
Underwater
underwater photosynthesis
wax biosynthesis
Waxes
Title Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance
URI https://www.jstor.org/stable/90021552
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15070
https://www.ncbi.nlm.nih.gov/pubmed/29498045
https://www.proquest.com/docview/2035701443
https://search.proquest.com/docview/2010373540
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N0x544XuQMZBBPIyHVI0TJ4144qtUCCY0MakPSJEdn2lFl1RNK1b-eu6cJtoQSIg3S7YTx-e7-9m5-xnguUlMyjx2YemUChNryjDPFIaIcU7-IcJhzLnDn07TyXnyYaqme_Cyy4Vp-SH6AzfWDG-vWcG1aa4oebWcDRjN8H49ijMO53t7Jq8Q7qayY2BOk3S6YxXiKJ6-5zVf1IYj_gloXset3vGMb8HXbshtvMn3wWZtBuXP39gc__ObbsPNHSAVr9oVdAf2sLoLB69rAo3be7A5I0MiFqidmG3tql7OajMvCbkLXVnxTTfCzRcXjdArFKVPHlyhFYaqxQ99KZptRQCzmTeC1imKk4_vx9EL39WHyPNdWyjWtXAcPk-FBfI9H3gfzsfvvryZhLubGsKSaZtCpUtkakOdeT67NMXcZhGS9WB-eRk5TcBJO5m5IbrcSmYR0yp2WUJGTlHHQ9iv6gofgiC8Yq1WlkyDSSKd5iPyJlSUZJUxdjaAZ53MimVLyFF0GxmavsJPXwCHXpp9i9xjGyUDOO7EW-yUtSnkMFYZ7yzjAJ721aRm_O9EV1hvuA0nVPIhWQAP2mXRP1zmST4iaBzAiRfu38dVnH6e-MLRvzd9BDfo5aM2PO0Y9terDT4mILQ2T_yK_wWkIABS
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiS48F4ILGAQh-WQqnHipJG48CoFuhVa7Uq9oMiJx7SiJFXTCsqvZ8Zpol0EEuJmKXbkeF6fnZnPAM_yKI-Zx84vrFJ-ZPLCTxOFPmKYUnwIsB9y7fDxJB6dRR-maroHL9pamIYfojtwY8tw_poNnA-kz1l5uZz1GM7Qhv0SmXvACV1vTuQ5yt1YthzMcRRPd7xCnMfTDb0QjZqExD9BzYvI1YWe4XX43E66yTj52tus817x8zc-x__9qhtwbYdJxctGiW7CHpa34PKrinDj9jZsTsiXiAVqK2Zbs6qWsyqfFwTehS6N-KJrYeeLb7XQKxSFqx9coRE5PRbf9Q9Rb0vCmPW8FqSqKI7G74bBczfUZcnzdVso1pWwnEFPjQXyVR94B86Gb09fj_zdZQ1-wcxNvtIFMruhThylXRxjapIAyYEwxbwMrCbspK1MbB9taiQTiWkV2iQiP6do4AHsl1WJ90AQZDFGK0PeIY8CHacDCijUlOSYMbTGg6et0LJlw8mRtXsZWr7MLZ8HB06cXY_UwRslPThs5Zvt7LXOZD9UCW8uQw-edI_J0vj3iS6x2nAfrqnkczIP7jZ60b1cplE6IHTswZGT7t_nlU0-jVzj_r93fQxXRqfH42z8fvLxAVyliQyabLVD2F-vNviQcNE6f-TU_xe7BARz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NAyFe-B4EBhjEw3hI1XzYacQTMEqBUU0Tk_qAFDnxmVbrkqppBeWv585pog2BhHizFDtyfF8_O3c_A7zI41wxj51fWCn92OSFnyYSfcQopfgQYD_i2uHPYzU6jT9O5GQHXrW1MA0_RHfgxpbh_DUb-MLYC0ZeLqY9RjO0X78SqzBl4vzDk_AC464KWwpmFavJllaI03i6oZeCUZOP-CekeRm4usgzvAlf2zk3CSdnvfUq7xU_f6Nz_M-PugU3tohUvG5U6DbsYHkHrr6pCDVu7sL6hDyJmKO2Yroxy2oxrfJZQdBd6NKIb7oWdjY_r4Veoihc9eASjcjpsfiuf4h6UxLCrGe1IEVFcXD0fhi8dENdjjxftoViVQnL-fPUmCNf9IH34HT47svbkb-9qsEvmLfJl7pA5jbUiSO0UwpTkwRI7oMJ5sPAakJO2oaJ7aNNTcg0YlpGNonJy0kauAe7ZVXiAxAEWIzR0pBvyONAq3RA4YSaIblljKzx4Hkrs2zRMHJk7U6Gli9zy-fBnpNm1yN14EaGHuy34s221lpnYT-SCW8tIw-edY_JzvjniS6xWnMfrqjkUzIP7jdq0b2clC8dEDb24MAJ9-_zysbHI9d4-O9dn8K148NhdvRh_OkRXKd5DJpUtX3YXS3X-JhA0Sp_4pT_F6bWAyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+leaf+hydrophobicity+and+gas+films+are+conferred+by+a+wax+synthesis+gene+%28LGF1%29+and+contribute+to+flood+tolerance&rft.jtitle=The+New+phytologist&rft.au=Kurokawa%2C+Yusuke&rft.au=Nagai%2C+Keisuke&rft.au=Phung%2C+Danh+Huan&rft.au=Shimazaki%2C+Kousuke&rft.date=2018-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=218&rft.issue=4&rft.spage=1558&rft.epage=1569&rft_id=info:doi/10.1111%2Fnph.15070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon