Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance
Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retai...
Saved in:
Published in | The New phytologist Vol. 218; no. 4; pp. 1558 - 1569 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.06.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown.
We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated.
Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis.
The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas. |
---|---|
AbstractList | Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown.We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated.Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis.The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas. Floods impede gas (O and CO ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas. Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas. Summary Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas. See also the Commentary on this article by Ismail, 218: 1298–1300. Floods impede gas (O 2 and CO 2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant ( dripping wet leaf 7 , drp7 ) which does not retain gas films on leaves, and its wild‐type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 ( LGF 1 ) was identified as the gene determining leaf gas films. LGF 1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2‐fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF 1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF 1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood‐prone areas. See also the Commentary on this article by Ismail, 218 : 1298–1300 . |
Author | Jun-ichi Itoh Atsushi Yoshimura Kousuke Shimazaki Huangqi Qu Yosuke Toda Takeshi Kuroha Al Imran Malik Phung Danh Huan Mie Shimojima Ole Pedersen Timothy David Colmer Motoyuki Ashikari Keisuke Nagai Hiroyuki Ohta Nagao Hayashi Yusuke Kurokawa Yoshinao Mori Yuko Sasaki-Sekimoto Saori Aiga |
Author_xml | – sequence: 1 givenname: Yusuke surname: Kurokawa fullname: Kurokawa, Yusuke organization: Nagoya University – sequence: 2 givenname: Keisuke surname: Nagai fullname: Nagai, Keisuke organization: Nagoya University – sequence: 3 givenname: Phung Danh surname: Huan fullname: Huan, Phung Danh organization: Vietnam National University of Agriculture – sequence: 4 givenname: Kousuke surname: Shimazaki fullname: Shimazaki, Kousuke organization: Tokyo Institute of Technology – sequence: 5 givenname: Huangqi surname: Qu fullname: Qu, Huangqi organization: Nagoya University – sequence: 6 givenname: Yoshinao surname: Mori fullname: Mori, Yoshinao organization: Nagoya University – sequence: 7 givenname: Yosuke surname: Toda fullname: Toda, Yosuke organization: Nagoya University – sequence: 8 givenname: Takeshi surname: Kuroha fullname: Kuroha, Takeshi organization: Tohoku University – sequence: 9 givenname: Nagao surname: Hayashi fullname: Hayashi, Nagao organization: National Agriculture and Food Research Organization – sequence: 10 givenname: Saori surname: Aiga fullname: Aiga, Saori organization: The University of Tokyo – sequence: 11 givenname: Jun‐ichi surname: Itoh fullname: Itoh, Jun‐ichi organization: The University of Tokyo – sequence: 12 givenname: Atsushi surname: Yoshimura fullname: Yoshimura, Atsushi organization: Kyushu University – sequence: 13 givenname: Yuko surname: Sasaki‐Sekimoto fullname: Sasaki‐Sekimoto, Yuko organization: Japan Science and Technology Agency – sequence: 14 givenname: Hiroyuki surname: Ohta fullname: Ohta, Hiroyuki organization: Tokyo Institute of Technology – sequence: 15 givenname: Mie surname: Shimojima fullname: Shimojima, Mie organization: Tokyo Institute of Technology – sequence: 16 givenname: Al Imran surname: Malik fullname: Malik, Al Imran organization: The University of Western Australia – sequence: 17 givenname: Ole orcidid: 0000-0002-0827-946X surname: Pedersen fullname: Pedersen, Ole email: opedersen@bio.ku.dk organization: The University of Western Australia – sequence: 18 givenname: Timothy David orcidid: 0000-0002-3383-9596 surname: Colmer fullname: Colmer, Timothy David email: timothy.colmer@uwa.edu.au organization: The University of Western Australia – sequence: 19 givenname: Motoyuki orcidid: 0000-0002-8945-2366 surname: Ashikari fullname: Ashikari, Motoyuki email: ashi@agr.nagoya-u.ac.jp organization: Nagoya University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29498045$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rFEEQhhuJmE304A9QGrwkh0mqv2eOIZgPWFREwdvQO1Od7WW2e-2eIc6_t5NNchCsSxXU874U9R6RgxADEvKewRkrdR526zOmwMArsmBSN1XNhDkgCwBeV1rqX4fkKOcNADRK8zfkkDeyqUGqBZm--w7pgNbR9dynuFvHle_8OFMbenpnM3V-2GZqE9IuBocpYU9XZU3v7R-a5zCuMftM7zAgPVleX7HTR2mBx-RX04h0jNQNMfZlGDDZ0OFb8trZIeO7p35Mfl59_nF5Uy2_Xt9eXiyrTnGAStkOgUthjVKNMVpj0xuGRoDW3HDmrGbKOm4coGt6LpU0VglnJNS1KsJjcrL33aX4e8I8tlufOxwGGzBOueXAQBihJBT00z_oJk4plOsKJZQBJqUo1Ome6lLMOaFrd8lvbZpbBu1DFm3Jon3MorAfnxyn1Rb7F_L5-QU43wP3fsD5_07tl283z5Yf9opNHmN6UTQlaKYUF38BLSicLQ |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2020_104188 crossref_primary_10_1007_s13157_019_01190_7 crossref_primary_10_1016_j_rsci_2020_11_006 crossref_primary_10_1021_acsanm_9b02301 crossref_primary_10_1071_FP19117 crossref_primary_10_1021_acs_jafc_9b01899 crossref_primary_10_1093_aob_mcaa171 crossref_primary_10_1016_j_semcdb_2019_04_005 crossref_primary_10_1111_nph_16816 crossref_primary_10_3390_plants9020262 crossref_primary_10_3390_plants11030376 crossref_primary_10_1016_j_envexpbot_2024_105824 crossref_primary_10_1093_jxb_erad457 crossref_primary_10_3390_ijms21207497 crossref_primary_10_1021_acsomega_2c02820 crossref_primary_10_1071_FP23226 crossref_primary_10_1002_pld3_240 crossref_primary_10_1186_s12870_018_1616_7 crossref_primary_10_3390_su151914253 crossref_primary_10_1016_j_surfin_2021_101455 crossref_primary_10_1016_j_plaphy_2023_108224 crossref_primary_10_1016_j_envexpbot_2021_104448 crossref_primary_10_1016_j_fcr_2022_108760 crossref_primary_10_18307_2023_0213 crossref_primary_10_1111_nph_15188 crossref_primary_10_1016_j_jplph_2022_153815 crossref_primary_10_3390_plants11070977 crossref_primary_10_1007_s11032_019_1005_4 crossref_primary_10_1016_j_plipres_2020_101072 crossref_primary_10_3390_agronomy13102599 crossref_primary_10_3390_metabo10020068 crossref_primary_10_1007_s11032_020_01190_0 crossref_primary_10_1111_ppl_13251 crossref_primary_10_1111_plb_13618 crossref_primary_10_3389_fpls_2024_1355729 crossref_primary_10_3389_fpls_2019_01326 crossref_primary_10_1007_s12298_020_00893_0 crossref_primary_10_1093_pcp_pcz009 crossref_primary_10_1002_fes3_163 crossref_primary_10_1007_s11033_022_07853_9 crossref_primary_10_3390_ijms22031088 crossref_primary_10_3390_ijms232113025 crossref_primary_10_1111_nph_16267 crossref_primary_10_1270_jsbbs_22086 crossref_primary_10_1093_jxb_erab532 crossref_primary_10_1271_kagakutoseibutsu_59_586 crossref_primary_10_1111_tpj_15947 crossref_primary_10_3390_ijms25073757 crossref_primary_10_1134_S1021443719060086 crossref_primary_10_1007_s10853_022_07172_1 crossref_primary_10_3390_plants12233948 crossref_primary_10_3389_fpls_2020_627331 crossref_primary_10_1007_s11032_020_01122_y crossref_primary_10_1007_s10722_020_00904_9 crossref_primary_10_3390_plants12030494 crossref_primary_10_3389_fpls_2024_1385165 crossref_primary_10_1016_j_plantsci_2022_111340 crossref_primary_10_3390_ijms222312970 crossref_primary_10_1093_aob_mcy153 crossref_primary_10_1111_pbi_13140 crossref_primary_10_1186_s12284_023_00671_y |
Cites_doi | 10.1073/pnas.1316412110 10.1016/0304-3770(85)90053-1 10.1007/s11103-011-9839-0 10.1111/j.1469-8137.2007.02318.x 10.1006/anbo.1997.0400 10.1007/s11103-009-9483-0 10.1093/mp/ssr028 10.4319/lo.1976.21.4.0540 10.1016/S0163-7827(02)00045-0 10.1098/rsta.2009.0022 10.1242/jeb.24.3-4.270 10.1104/pp.72.2.447 10.1016/j.fcr.2013.01.007 10.1093/jxb/eru166 10.1021/la0344682 10.1093/jxb/eru457 10.1007/978-3-642-38797-5_9 10.1038/nature04920 10.1093/aobpla/plr030 10.1007/s00425-011-1481-1 10.1111/pce.12873 10.1270/jsbbs.62.178 10.1073/pnas.1108444108 10.1016/j.plantsci.2016.05.005 10.1104/pp.106.086785 10.1242/jeb.065128 10.1111/pce.12300 10.1016/S0031-9422(00)00513-6 10.1007/s00425-008-0770-9 10.1111/nph.12048 10.1194/jlr.M029512 10.1007/s004250050096 10.3389/fbioe.2014.00032 10.1111/j.1365-313X.2008.03769.x 10.1104/pp.107.107300 10.3389/fpls.2013.00140 10.1128/jb.168.3.1291-1301.1986 10.1016/j.pmatsci.2008.07.003 10.1146/annurev.arplant.59.103006.093219 10.1007/s11103-010-9656-x 10.1371/journal.pone.0065139 10.1016/S0022-1910(99)00096-7 10.1046/j.1365-313X.1994.6020271.x 10.1111/pce.12717 10.21273/HORTSCI.18.5.698 10.1038/nmeth.2089 |
ContentType | Journal Article |
Copyright | Copyright © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
Copyright_xml | – notice: Copyright © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
DBID | NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
DOI | 10.1111/nph.15070 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1569 |
ExternalDocumentID | 10_1111_nph_15070 29498045 NPH15070 90021552 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: JICA – fundername: Villum Foundation – fundername: JSPS KAKENHI funderid: JP16K18565 – fundername: MEXT Grant‐in‐Aid for Scientific Research on Innovative Areas funderid: 17H06473 – fundername: Sassakawa Foundation – fundername: SATREPS – fundername: Danish Research Council – fundername: JST |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 24P 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ AASVR ABEFU ABEML ACQPF AGUYK AS~ CAG COF FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG XOL YXE ZCG NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5200-5ace0243a75597766e9d71e730662721fa615af27f0ef9d24547a53f740885243 |
IEDL.DBID | DR2 |
ISSN | 0028-646X |
IngestDate | Wed Dec 04 12:17:06 EST 2024 Tue Nov 19 05:33:53 EST 2024 Fri Dec 06 06:32:31 EST 2024 Wed Oct 16 00:49:31 EDT 2024 Sat Aug 24 01:01:33 EDT 2024 Tue Dec 10 23:55:06 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Oryza sativa air film underwater photosynthesis submergence tolerance epicuticular waxes wax biosynthesis primary alcohol superhydrophobic |
Language | English |
License | 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5200-5ace0243a75597766e9d71e730662721fa615af27f0ef9d24547a53f740885243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8945-2366 0000-0002-3383-9596 0000-0002-0827-946X |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/nph.15070 |
PMID | 29498045 |
PQID | 2035701443 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2010373540 proquest_journals_2035701443 crossref_primary_10_1111_nph_15070 pubmed_primary_29498045 wiley_primary_10_1111_nph_15070_NPH15070 jstor_primary_90021552 |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – sequence: 0 name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 1976; 21 2007; 145 2013; 4 2000; 46 2008; 228 2003; 19 1983; 18 2016; 39 2013; 8 1985; 21 2012; 53 2014; 65 2009; 58 2009; 54 2014; 2 2013; 152 2013; 110 2013; 197 2012; 215 2001; 57 2009; 367 2003; 42 2010; 74 2006; 442 2012; 62 1947; 24 2008; 59 2011; 77 2016; 249 1983; 72 1995; 19 2011; 4 1983; 33 1997; 202 2011; 2011 2011; 108 1986; 168 2009; 70 1997; 79 2015; 66 2014; 37 2017 2006; 142 2015 2012; 235 2008; 177 2014; 75 1994; 6 2012; 9 29738087 - New Phytol. 2018 Jun;218(4):1298-1300 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 FAO (e_1_2_7_7_1) 2015 Satoh H (e_1_2_7_34_1) 1983; 33 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 Thomson D (e_1_2_7_37_1) 1995; 19 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 367 start-page: 1487 year: 2009 end-page: 1509 article-title: Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 108 start-page: 12354 year: 2011 end-page: 12359 article-title: An ATP‐binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 19 start-page: 394 year: 1995 end-page: 397 article-title: Single‐step protocol for preparation of plant tissue for analysis by PCR publication-title: BioTechniques – volume: 6 start-page: 271 year: 1994 end-page: 282 article-title: Efficient transformation of rice ( L.) mediated by and sequence analysis of the boundaries of the T‐DNA publication-title: Plant Journal – volume: 228 start-page: 675 year: 2008 end-page: 685 article-title: encodes a β–ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf publication-title: Planta – volume: 215 start-page: 705 year: 2012 end-page: 709 article-title: Physical gills prevent drowning of many wetland insects, spiders and plants publication-title: Journal of Experimental Biology – volume: 197 start-page: 1193 year: 2013 end-page: 1203 article-title: Internal aeration of paddy field rice ( L.) during complete submergence – importance of light and floodwater O publication-title: New Phytologist – volume: 21 start-page: 540 year: 1976 end-page: 547 article-title: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton publication-title: Limnology and Oceanography – volume: 42 start-page: 51 year: 2003 end-page: 80 article-title: Biosynthesis and secretion of plant cuticular wax publication-title: Progress in Lipid Research – volume: 66 start-page: 1165 year: 2015 end-page: 1178 article-title: FAR5, a fatty acyl‐coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat ( L.) publication-title: Journal of Experimental Botany – volume: 110 start-page: 17790 year: 2013 end-page: 17795 article-title: Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress‐induced wax deposition in rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 72 start-page: 447 year: 1983 end-page: 454 article-title: How does deep water rice solve its aeration problem? publication-title: Plant Physiology – volume: 2 start-page: 1 year: 2014 end-page: 6 article-title: Fatty acid‐derived biofuels and chemicals production in publication-title: Frontiers in Bioengineering and Biotechnology – volume: 19 start-page: 8343 year: 2003 end-page: 8348 article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? publication-title: Langmuir – volume: 142 start-page: 866 year: 2006 end-page: 877 article-title: encodes an alcohol‐forming fatty acyl‐coenzyme A reductase involved in cuticular wax production in Arabidopsis publication-title: Plant Physiology – volume: 58 start-page: 147 year: 2009 end-page: 156 article-title: Surviving floods: leaf gas films improve O and CO exchange, root aeration, and growth of completely submerged rice publication-title: Plant Journal – volume: 152 start-page: 83 year: 2013 end-page: 93 article-title: The contribution of submergence‐tolerant (Sub1) rice varieties to food security in flood‐prone rainfed lowland areas in Asia publication-title: Field Crops Research – volume: 46 start-page: 13 year: 2000 end-page: 19 article-title: Surviving the flood: plastron respiration in the non‐tracheate arthropod (Amblypygi: Arachnida) publication-title: Journal of Insect Physiology – volume: 39 start-page: 1537 year: 2016 end-page: 1548 article-title: Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient publication-title: Plant, Cell & Environment – volume: 177 start-page: 918 year: 2008 end-page: 926 article-title: Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO and O exchange publication-title: New Phytologist – year: 2017 article-title: Leaf gas films contribute to rice ( ) submergence tolerance during saline floods publication-title: Plant, Cell & Environment – volume: 70 start-page: 443 year: 2009 end-page: 456 article-title: Characterization of ‐homologous genes in rice involved in leaf wax accumulation and drought resistance publication-title: Plant Molecular Biology – volume: 202 start-page: 1 year: 1997 end-page: 8 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta – volume: 62 start-page: 178 year: 2012 end-page: 185 article-title: Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage publication-title: Breeding Science – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 18 start-page: 698 year: 1983 end-page: 699 article-title: A method for measuring leaf volume, density, thickness, and internal gas volume publication-title: HortScience – volume: 24 start-page: 270 year: 1947 end-page: 303 article-title: Studies on plastron respiration; the respiratory efficiency of the plastron in publication-title: Journal of Experimental Biology – volume: 8 start-page: e65139 year: 2013 article-title: Rice is involved in leaf cuticular wax accumulation and drought resistance publication-title: PLoS ONE – volume: 21 start-page: 251 year: 1985 end-page: 263 article-title: Laboratory culture of submersed freshwater macrophytes on natural sediments publication-title: Aquatic Botany – year: 2015 – volume: 4 start-page: 985 year: 2011 end-page: 995 article-title: Rice is involved in leaf cuticular wax and cuticle membrane publication-title: Molecular Plant – volume: 235 start-page: 39 year: 2012 end-page: 52 article-title: Wax crystal‐sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax publication-title: Planta – volume: 57 start-page: 115 year: 2001 end-page: 123 article-title: Cuticular waxes on eceriferum mutants of publication-title: Phytochemistry – volume: 77 start-page: 631 year: 2011 end-page: 641 article-title: The rice ( ) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces publication-title: Plant Molecular Biology – volume: 79 start-page: 667 year: 1997 end-page: 677 article-title: Characterization and distribution of water‐repelent, self‐cleaning plant surfaces publication-title: Annals of Botany – volume: 65 start-page: 3225 year: 2014 end-page: 3233 article-title: Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes publication-title: Journal of Experimental Botany – volume: 54 start-page: 137 year: 2009 end-page: 178 article-title: Multifunctional surface structures of plants: an inspiration for biomimetics publication-title: Progress in Materials Science – volume: 4 start-page: 140 year: 2013 article-title: Underwater photosynthesis of submerged plants – recent advances and methods publication-title: Frontiers in Plant Science – volume: 74 start-page: 91 year: 2010 end-page: 103 article-title: Mutation in ( ) causes abnormal cuticle formation and rapid water loss in rice publication-title: Plant Molecular Biology – volume: 59 start-page: 683 year: 2008 end-page: 707 article-title: Sealing plant surfaces: cuticular wax formation by epidermal cells publication-title: Annual Review of Plant Biology – volume: 37 start-page: 2433 year: 2014 end-page: 2452 article-title: The mechanism of improved aeration due to gas films on leaves of submerged rice publication-title: Plant, Cell & Environment – volume: 145 start-page: 653 year: 2007 end-page: 667 article-title: The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis publication-title: Plant Physiology – volume: 53 start-page: 2153 year: 2012 end-page: 2161 article-title: Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes publication-title: Journal of Lipid Research – volume: 2011 start-page: plr030 year: 2011 article-title: A perspective on underwater photosynthesis in submerged terrestrial wetland plants publication-title: AoB Plants – volume: 33 start-page: 242 year: 1983 end-page: 243 article-title: Gene analysis of some dripping‐wet leaf mutants in rice publication-title: Japanese Journal of Breeding – volume: 442 start-page: 705 year: 2006 end-page: 708 article-title: is an ethylene‐response‐factor‐like gene that confers submergence tolerance to rice publication-title: Nature – volume: 168 start-page: 1291 year: 1986 end-page: 1301 article-title: The hypervirulence of A281 is encoded in a region of pTiBo542 outside of T‐DNA publication-title: Journal of Bacteriology – volume: 75 start-page: 255 year: 2014 end-page: 307 article-title: Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water publication-title: Progress in Botany – volume: 249 start-page: 35 year: 2016 end-page: 45 article-title: , a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice publication-title: Plant Science – ident: e_1_2_7_50_1 doi: 10.1073/pnas.1316412110 – ident: e_1_2_7_36_1 doi: 10.1016/0304-3770(85)90053-1 – ident: e_1_2_7_45_1 doi: 10.1007/s11103-011-9839-0 – ident: e_1_2_7_5_1 doi: 10.1111/j.1469-8137.2007.02318.x – ident: e_1_2_7_23_1 doi: 10.1006/anbo.1997.0400 – ident: e_1_2_7_14_1 doi: 10.1007/s11103-009-9483-0 – ident: e_1_2_7_28_1 doi: 10.1093/mp/ssr028 – ident: e_1_2_7_16_1 doi: 10.4319/lo.1976.21.4.0540 – ident: e_1_2_7_19_1 doi: 10.1016/S0163-7827(02)00045-0 – volume: 33 start-page: 242 year: 1983 ident: e_1_2_7_34_1 article-title: Gene analysis of some dripping‐wet leaf mutants in rice publication-title: Japanese Journal of Breeding contributor: fullname: Satoh H – ident: e_1_2_7_17_1 doi: 10.1098/rsta.2009.0022 – ident: e_1_2_7_38_1 doi: 10.1242/jeb.24.3-4.270 – ident: e_1_2_7_31_1 doi: 10.1104/pp.72.2.447 – ident: e_1_2_7_15_1 doi: 10.1016/j.fcr.2013.01.007 – ident: e_1_2_7_42_1 doi: 10.1093/jxb/eru166 – ident: e_1_2_7_21_1 doi: 10.1021/la0344682 – ident: e_1_2_7_40_1 doi: 10.1093/jxb/eru457 – ident: e_1_2_7_4_1 doi: 10.1007/978-3-642-38797-5_9 – ident: e_1_2_7_44_1 doi: 10.1038/nature04920 – ident: e_1_2_7_6_1 doi: 10.1093/aobpla/plr030 – ident: e_1_2_7_20_1 doi: 10.1007/s00425-011-1481-1 – volume: 19 start-page: 394 year: 1995 ident: e_1_2_7_37_1 article-title: Single‐step protocol for preparation of plant tissue for analysis by PCR publication-title: BioTechniques contributor: fullname: Thomson D – ident: e_1_2_7_11_1 doi: 10.1111/pce.12873 – ident: e_1_2_7_22_1 doi: 10.1270/jsbbs.62.178 – ident: e_1_2_7_3_1 doi: 10.1073/pnas.1108444108 – ident: e_1_2_7_47_1 doi: 10.1016/j.plantsci.2016.05.005 – ident: e_1_2_7_32_1 doi: 10.1104/pp.106.086785 – ident: e_1_2_7_25_1 doi: 10.1242/jeb.065128 – ident: e_1_2_7_39_1 doi: 10.1111/pce.12300 – ident: e_1_2_7_29_1 doi: 10.1016/S0031-9422(00)00513-6 – ident: e_1_2_7_46_1 doi: 10.1007/s00425-008-0770-9 – ident: e_1_2_7_41_1 doi: 10.1111/nph.12048 – ident: e_1_2_7_10_1 doi: 10.1194/jlr.M029512 – ident: e_1_2_7_2_1 doi: 10.1007/s004250050096 – ident: e_1_2_7_49_1 doi: 10.3389/fbioe.2014.00032 – ident: e_1_2_7_27_1 doi: 10.1111/j.1365-313X.2008.03769.x – ident: e_1_2_7_8_1 doi: 10.1104/pp.107.107300 – ident: e_1_2_7_26_1 doi: 10.3389/fpls.2013.00140 – ident: e_1_2_7_13_1 doi: 10.1128/jb.168.3.1291-1301.1986 – ident: e_1_2_7_18_1 doi: 10.1016/j.pmatsci.2008.07.003 – ident: e_1_2_7_33_1 doi: 10.1146/annurev.arplant.59.103006.093219 – ident: e_1_2_7_24_1 doi: 10.1007/s11103-010-9656-x – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0065139 – ident: e_1_2_7_9_1 doi: 10.1016/S0022-1910(99)00096-7 – ident: e_1_2_7_12_1 doi: 10.1046/j.1365-313X.1994.6020271.x – ident: e_1_2_7_43_1 doi: 10.1111/pce.12717 – ident: e_1_2_7_30_1 doi: 10.21273/HORTSCI.18.5.698 – ident: e_1_2_7_35_1 doi: 10.1038/nmeth.2089 – volume-title: Rice production 1993–2013 year: 2015 ident: e_1_2_7_7_1 contributor: fullname: FAO |
SSID | ssj0009562 |
Score | 2.5616655 |
Snippet | Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on... Summary Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films... Floods impede gas (O and CO ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on... Floods impede gas (O 2 and CO 2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on... |
SourceID | proquest crossref pubmed wiley jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1558 |
SubjectTerms | air film Alcohol Alcohols Alleles Breeding Carbon dioxide Complementation epicuticular waxes Floods Gas exchange Gene expression Genotypes Hydrophobicity Leaves Oryza sativa Photosynthesis Platelets primary alcohol Retention Stability Submergence submergence tolerance superhydrophobic Underwater underwater photosynthesis wax biosynthesis Waxes |
Title | Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance |
URI | https://www.jstor.org/stable/90021552 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15070 https://www.ncbi.nlm.nih.gov/pubmed/29498045 https://www.proquest.com/docview/2035701443 https://search.proquest.com/docview/2010373540 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N0x544XuQMZBBPIyHVI0TJ4144qtUCCY0MakPSJEdn2lFl1RNK1b-eu6cJtoQSIg3S7YTx-e7-9m5-xnguUlMyjx2YemUChNryjDPFIaIcU7-IcJhzLnDn07TyXnyYaqme_Cyy4Vp-SH6AzfWDG-vWcG1aa4oebWcDRjN8H49ijMO53t7Jq8Q7qayY2BOk3S6YxXiKJ6-5zVf1IYj_gloXset3vGMb8HXbshtvMn3wWZtBuXP39gc__ObbsPNHSAVr9oVdAf2sLoLB69rAo3be7A5I0MiFqidmG3tql7OajMvCbkLXVnxTTfCzRcXjdArFKVPHlyhFYaqxQ99KZptRQCzmTeC1imKk4_vx9EL39WHyPNdWyjWtXAcPk-FBfI9H3gfzsfvvryZhLubGsKSaZtCpUtkakOdeT67NMXcZhGS9WB-eRk5TcBJO5m5IbrcSmYR0yp2WUJGTlHHQ9iv6gofgiC8Yq1WlkyDSSKd5iPyJlSUZJUxdjaAZ53MimVLyFF0GxmavsJPXwCHXpp9i9xjGyUDOO7EW-yUtSnkMFYZ7yzjAJ721aRm_O9EV1hvuA0nVPIhWQAP2mXRP1zmST4iaBzAiRfu38dVnH6e-MLRvzd9BDfo5aM2PO0Y9terDT4mILQ2T_yK_wWkIABS |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiS48F4ILGAQh-WQqnHipJG48CoFuhVa7Uq9oMiJx7SiJFXTCsqvZ8Zpol0EEuJmKXbkeF6fnZnPAM_yKI-Zx84vrFJ-ZPLCTxOFPmKYUnwIsB9y7fDxJB6dRR-maroHL9pamIYfojtwY8tw_poNnA-kz1l5uZz1GM7Qhv0SmXvACV1vTuQ5yt1YthzMcRRPd7xCnMfTDb0QjZqExD9BzYvI1YWe4XX43E66yTj52tus817x8zc-x__9qhtwbYdJxctGiW7CHpa34PKrinDj9jZsTsiXiAVqK2Zbs6qWsyqfFwTehS6N-KJrYeeLb7XQKxSFqx9coRE5PRbf9Q9Rb0vCmPW8FqSqKI7G74bBczfUZcnzdVso1pWwnEFPjQXyVR94B86Gb09fj_zdZQ1-wcxNvtIFMruhThylXRxjapIAyYEwxbwMrCbspK1MbB9taiQTiWkV2iQiP6do4AHsl1WJ90AQZDFGK0PeIY8CHacDCijUlOSYMbTGg6et0LJlw8mRtXsZWr7MLZ8HB06cXY_UwRslPThs5Zvt7LXOZD9UCW8uQw-edI_J0vj3iS6x2nAfrqnkczIP7jZ60b1cplE6IHTswZGT7t_nlU0-jVzj_r93fQxXRqfH42z8fvLxAVyliQyabLVD2F-vNviQcNE6f-TU_xe7BARz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NAyFe-B4EBhjEw3hI1XzYacQTMEqBUU0Tk_qAFDnxmVbrkqppBeWv585pog2BhHizFDtyfF8_O3c_A7zI41wxj51fWCn92OSFnyYSfcQopfgQYD_i2uHPYzU6jT9O5GQHXrW1MA0_RHfgxpbh_DUb-MLYC0ZeLqY9RjO0X78SqzBl4vzDk_AC464KWwpmFavJllaI03i6oZeCUZOP-CekeRm4usgzvAlf2zk3CSdnvfUq7xU_f6Nz_M-PugU3tohUvG5U6DbsYHkHrr6pCDVu7sL6hDyJmKO2Yroxy2oxrfJZQdBd6NKIb7oWdjY_r4Veoihc9eASjcjpsfiuf4h6UxLCrGe1IEVFcXD0fhi8dENdjjxftoViVQnL-fPUmCNf9IH34HT47svbkb-9qsEvmLfJl7pA5jbUiSO0UwpTkwRI7oMJ5sPAakJO2oaJ7aNNTcg0YlpGNonJy0kauAe7ZVXiAxAEWIzR0pBvyONAq3RA4YSaIblljKzx4Hkrs2zRMHJk7U6Gli9zy-fBnpNm1yN14EaGHuy34s221lpnYT-SCW8tIw-edY_JzvjniS6xWnMfrqjkUzIP7jdq0b2clC8dEDb24MAJ9-_zysbHI9d4-O9dn8K148NhdvRh_OkRXKd5DJpUtX3YXS3X-JhA0Sp_4pT_F6bWAyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+leaf+hydrophobicity+and+gas+films+are+conferred+by+a+wax+synthesis+gene+%28LGF1%29+and+contribute+to+flood+tolerance&rft.jtitle=The+New+phytologist&rft.au=Kurokawa%2C+Yusuke&rft.au=Nagai%2C+Keisuke&rft.au=Phung%2C+Danh+Huan&rft.au=Shimazaki%2C+Kousuke&rft.date=2018-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=218&rft.issue=4&rft.spage=1558&rft.epage=1569&rft_id=info:doi/10.1111%2Fnph.15070&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |