Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease

Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir)...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 9; no. 2
Main Authors Agostini, Maria L., Andres, Erica L., Sims, Amy C., Graham, Rachel L., Sheahan, Timothy P., Lu, Xiaotao, Smith, Everett Clinton, Case, James Brett, Feng, Joy Y., Jordan, Robert, Ray, Adrian S., Cihlar, Tomas, Siegel, Dustin, Mackman, Richard L., Clarke, Michael O., Baric, Ralph S., Denison, Mark R.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 06.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC 50 ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC 50 . The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
AbstractList Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC 50 ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC 50 . The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC 50 ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC 50 . The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
ABSTRACT Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Author Ray, Adrian S.
Denison, Mark R.
Clarke, Michael O.
Mackman, Richard L.
Graham, Rachel L.
Sims, Amy C.
Agostini, Maria L.
Sheahan, Timothy P.
Siegel, Dustin
Jordan, Robert
Andres, Erica L.
Smith, Everett Clinton
Cihlar, Tomas
Baric, Ralph S.
Feng, Joy Y.
Case, James Brett
Lu, Xiaotao
Author_xml – sequence: 1
  givenname: Maria L.
  surname: Agostini
  fullname: Agostini, Maria L.
  organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– sequence: 2
  givenname: Erica L.
  surname: Andres
  fullname: Andres, Erica L.
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– sequence: 3
  givenname: Amy C.
  surname: Sims
  fullname: Sims, Amy C.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 4
  givenname: Rachel L.
  surname: Graham
  fullname: Graham, Rachel L.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 5
  givenname: Timothy P.
  surname: Sheahan
  fullname: Sheahan, Timothy P.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 6
  givenname: Xiaotao
  surname: Lu
  fullname: Lu, Xiaotao
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– sequence: 7
  givenname: Everett Clinton
  surname: Smith
  fullname: Smith, Everett Clinton
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA, Department of Biology, the University of the South, Sewanee, Tennessee, USA
– sequence: 8
  givenname: James Brett
  surname: Case
  fullname: Case, James Brett
  organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
– sequence: 9
  givenname: Joy Y.
  surname: Feng
  fullname: Feng, Joy Y.
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 10
  givenname: Robert
  surname: Jordan
  fullname: Jordan, Robert
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 11
  givenname: Adrian S.
  surname: Ray
  fullname: Ray, Adrian S.
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 12
  givenname: Tomas
  surname: Cihlar
  fullname: Cihlar, Tomas
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 13
  givenname: Dustin
  surname: Siegel
  fullname: Siegel, Dustin
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 14
  givenname: Richard L.
  surname: Mackman
  fullname: Mackman, Richard L.
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 15
  givenname: Michael O.
  surname: Clarke
  fullname: Clarke, Michael O.
  organization: Gilead Sciences, Inc., Foster City, California, USA
– sequence: 16
  givenname: Ralph S.
  surname: Baric
  fullname: Baric, Ralph S.
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 17
  givenname: Mark R.
  surname: Denison
  fullname: Denison, Mark R.
  organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29511076$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURMvSI1fkYzmkeJw4G1-QyqqUlYqoKHC1nHi8dZXEW9up2J_Av8bJlooi4Ys_5pl3ZuT3ZXYwuAGz7DXQUwBWv-s_WHdKKWOQQ_0sO2LAab7kAAfTuYKcAROH2XEItzStooC6oC-yQyYSQ5fVUfZr5bwb1L31YyDXY2hxG21jOxt3JDoSb5CcDdGmuOrIV-w1hulCTi6uc74syrdkHchn1FZF1KTZzRk_ZvrKdbsevQpI1KDnwJV3znhU2g4bcv7Tedu4YWw7TNCr7LlRXcDjh32Rff94_m31Kb_8crFenV3mLQcRc1OwphWqAkUVo4Y1UAvBWmhBlwx5C2hAKFGx2ix5gdw0aU66LGsNWkGli0W23utqp27l1tte-Z10ysr5wfmNVD7a1JSEhgIYYXSpsCx5XZdlLUzD0VRQIIqk9X6vtR2bHnWLQ0yTPxF9Ghnsjdy4e8mTlBCTwMmDgHd3I4Yoe5v-oOvUgG4MkqUGKuBVVSb0zd-1Hov8-csE5Hug9S4Ej-YRASonu8jJLnK2i0xGWGTFP3xro4rWTa3a7j9ZvwFQDcT0
CitedBy_id crossref_primary_10_3390_v12091006
crossref_primary_10_3390_jcm9061885
crossref_primary_10_1016_j_arcmed_2020_05_007
crossref_primary_10_1186_s44158_023_00114_6
crossref_primary_10_1080_01652176_2020_1845917
crossref_primary_10_1016_j_coviro_2020_05_010
crossref_primary_10_1016_j_phrs_2020_104899
crossref_primary_10_1080_08998280_2020_1780086
crossref_primary_10_3390_life10080146
crossref_primary_10_3389_fmed_2021_628370
crossref_primary_10_1016_j_csbj_2021_06_005
crossref_primary_10_1016_j_jiph_2021_04_011
crossref_primary_10_1016_j_arcmed_2020_05_001
crossref_primary_10_1002_sctm_20_0197
crossref_primary_10_3389_fmolb_2021_822218
crossref_primary_10_3390_v14081734
crossref_primary_10_3389_fcell_2020_00616
crossref_primary_10_1161_HYPERTENSIONAHA_120_15256
crossref_primary_10_1016_j_bpj_2021_07_026
crossref_primary_10_1371_journal_ppat_1009226
crossref_primary_10_1016_j_ijantimicag_2020_105950
crossref_primary_10_3390_v16101511
crossref_primary_10_1016_j_ijantimicag_2020_105951
crossref_primary_10_5812_iji_106243
crossref_primary_10_3389_fimmu_2020_01841
crossref_primary_10_3389_fphar_2023_1205238
crossref_primary_10_1002_hsr2_1144
crossref_primary_10_1016_j_bioorg_2021_104862
crossref_primary_10_2174_1874467214666210804152836
crossref_primary_10_1139_gen_2020_0130
crossref_primary_10_1016_j_rvsc_2021_02_009
crossref_primary_10_1080_1120009X_2020_1868237
crossref_primary_10_1016_j_jare_2020_03_005
crossref_primary_10_1016_S0140_6736_20_31042_4
crossref_primary_10_3389_fmicb_2020_02100
crossref_primary_10_3390_ph16081143
crossref_primary_10_3233_HAB_200429
crossref_primary_10_1039_D0MD00318B
crossref_primary_10_1007_s42398_021_00204_7
crossref_primary_10_1007_s00705_020_04693_5
crossref_primary_10_1515_tjb_2020_0310
crossref_primary_10_1080_13543776_2021_1880568
crossref_primary_10_3390_v12091023
crossref_primary_10_1016_j_bcp_2021_114424
crossref_primary_10_54370_ordubtd_1015314
crossref_primary_10_1016_j_bbi_2020_04_046
crossref_primary_10_3390_nu13051550
crossref_primary_10_2174_0929867327666200721161840
crossref_primary_10_5582_ddt_2020_01015
crossref_primary_10_29328_journal_ijcv_1001036
crossref_primary_10_1080_03602532_2020_1845201
crossref_primary_10_1016_j_bmcl_2021_128052
crossref_primary_10_1002_slct_202103301
crossref_primary_10_1016_j_ajem_2024_09_001
crossref_primary_10_3389_fphar_2020_615211
crossref_primary_10_1016_j_envpol_2024_124845
crossref_primary_10_1016_j_bioorg_2024_107977
crossref_primary_10_3389_fphar_2020_572870
crossref_primary_10_1080_07391102_2022_2112616
crossref_primary_10_3389_fpubh_2020_00365
crossref_primary_10_1016_j_ejmech_2020_112687
crossref_primary_10_1016_j_isci_2021_103120
crossref_primary_10_1016_j_jiph_2021_04_007
crossref_primary_10_1016_j_drudis_2020_08_002
crossref_primary_10_3389_fphar_2020_582025
crossref_primary_10_3390_genes14020407
crossref_primary_10_1002_jmv_25707
crossref_primary_10_1093_abt_tbaa007
crossref_primary_10_1080_07391102_2020_1772111
crossref_primary_10_1016_j_eclinm_2020_100547
crossref_primary_10_1134_S1068162021040130
crossref_primary_10_1016_j_mayocp_2020_04_027
crossref_primary_10_2174_1381612826666200707121636
crossref_primary_10_1016_j_biopha_2021_112162
crossref_primary_10_1016_j_carbpol_2021_118011
crossref_primary_10_1080_14756366_2024_2301772
crossref_primary_10_1177_1098612X231183250
crossref_primary_10_1016_j_virusres_2022_198882
crossref_primary_10_1111_tbed_13907
crossref_primary_10_4103_ijmm_IJMM_20_54
crossref_primary_10_1021_acs_bioconjchem_0c00323
crossref_primary_10_1074_jbc_H120_013397
crossref_primary_10_11603_1681_2727_2020_1_11091
crossref_primary_10_1080_17460441_2023_2192921
crossref_primary_10_5582_bst_2020_01020
crossref_primary_10_1016_j_bj_2022_08_002
crossref_primary_10_1016_j_imu_2020_100384
crossref_primary_10_3389_fmicb_2022_1111930
crossref_primary_10_1177_1753466620926853
crossref_primary_10_1007_s10668_020_01002_7
crossref_primary_10_3389_fmicb_2022_926929
crossref_primary_10_1177_2515690X211003727
crossref_primary_10_4187_respcare_09153
crossref_primary_10_1016_j_ijantimicag_2020_105923
crossref_primary_10_1016_j_jphotobiol_2022_112447
crossref_primary_10_3390_microorganisms9051094
crossref_primary_10_1002_mco2_26
crossref_primary_10_1016_j_jiph_2021_05_009
crossref_primary_10_1128_mSystems_00233_21
crossref_primary_10_1016_j_antiviral_2019_04_006
crossref_primary_10_1001_jamapediatrics_2020_2422
crossref_primary_10_3390_life12030363
crossref_primary_10_1002_cpt_2145
crossref_primary_10_3390_ijms242216392
crossref_primary_10_1016_j_ijantimicag_2020_105933
crossref_primary_10_4103_joacp_JOACP_461_20
crossref_primary_10_1177_24725552211008854
crossref_primary_10_30699_mmlj17_4_1_19
crossref_primary_10_4103_ijnpnd_ijnpnd_90_20
crossref_primary_10_1016_j_intimp_2020_107228
crossref_primary_10_1073_pnas_2001046117
crossref_primary_10_1016_j_lfs_2020_118205
crossref_primary_10_1002_cmdc_202200399
crossref_primary_10_1080_1120009X_2022_2121091
crossref_primary_10_2174_1573413717666211117150153
crossref_primary_10_1515_revac_2023_0060
crossref_primary_10_3390_v12070705
crossref_primary_10_3390_v15102101
crossref_primary_10_1039_D0RA05265E
crossref_primary_10_3390_ijms221910188
crossref_primary_10_1016_j_jmii_2020_03_034
crossref_primary_10_3390_jcm10235473
crossref_primary_10_1002_jmv_27256
crossref_primary_10_2174_1874357902014010016
crossref_primary_10_1016_j_jiph_2021_02_006
crossref_primary_10_3390_ph14060520
crossref_primary_10_1016_S0140_6736_20_31022_9
crossref_primary_10_3390_ijms23073711
crossref_primary_10_2217_fvl_2021_0233
crossref_primary_10_3389_fendo_2020_583006
crossref_primary_10_1089_jir_2020_0188
crossref_primary_10_1515_cclm_2020_0612
crossref_primary_10_1136_bmj_m1610
crossref_primary_10_3390_jcm10153276
crossref_primary_10_1016_j_biopha_2022_113977
crossref_primary_10_1016_j_jpba_2022_114646
crossref_primary_10_1002_bio_4274
crossref_primary_10_1038_s41565_020_0732_3
crossref_primary_10_1128_AAC_01117_21
crossref_primary_10_1016_j_jviromet_2021_114283
crossref_primary_10_3390_microorganisms11082096
crossref_primary_10_2174_1871526522666220425103031
crossref_primary_10_1007_s40495_020_00229_2
crossref_primary_10_1080_17512433_2020_1805315
crossref_primary_10_2147_HIV_S300055
crossref_primary_10_1007_s11356_020_12200_1
crossref_primary_10_1016_j_anpede_2020_02_002
crossref_primary_10_1089_vbz_2020_2678
crossref_primary_10_1016_j_anpedi_2020_02_001
crossref_primary_10_1016_j_jtbi_2023_111449
crossref_primary_10_1038_s41467_023_38867_x
crossref_primary_10_1016_j_sjbs_2020_11_078
crossref_primary_10_1021_acs_chemrev_0c00644
crossref_primary_10_3390_biomedicines9080996
crossref_primary_10_1111_cts_12975
crossref_primary_10_1177_10892532211016167
crossref_primary_10_1111_bcp_14718
crossref_primary_10_2174_1389557521666210412161157
crossref_primary_10_1093_ve_veae006
crossref_primary_10_3390_ph14060503
crossref_primary_10_1007_s40290_021_00397_6
crossref_primary_10_12677_ACM_2023_1361291
crossref_primary_10_2174_0929867331666230717154101
crossref_primary_10_1042_BCJ20210199
crossref_primary_10_2217_fmb_2020_0147
crossref_primary_10_3390_biology12081070
crossref_primary_10_1042_BCJ20210198
crossref_primary_10_1093_nar_gkae1195
crossref_primary_10_1042_BCJ20210197
crossref_primary_10_1007_s10668_021_01224_3
crossref_primary_10_1002_ange_202014991
crossref_primary_10_1080_14787210_2021_1864327
crossref_primary_10_1074_jbc_AC120_015720
crossref_primary_10_1016_j_mayocp_2021_01_023
crossref_primary_10_1016_j_antiviral_2024_106034
crossref_primary_10_3390_v14081790
crossref_primary_10_1002_ccr3_5961
crossref_primary_10_1002_jmv_27285
crossref_primary_10_2147_DDDT_S293216
crossref_primary_10_1016_j_eng_2021_08_020
crossref_primary_10_1038_s41467_020_20542_0
crossref_primary_10_1128_mBio_03149_20
crossref_primary_10_1080_14787210_2021_1823832
crossref_primary_10_1155_2022_9209618
crossref_primary_10_2174_1570180819666220929151127
crossref_primary_10_1039_D0MO00057D
crossref_primary_10_1177_0972063420983113
crossref_primary_10_1111_bph_15072
crossref_primary_10_1183_13993003_00048_2021
crossref_primary_10_1016_j_ijbiomac_2021_03_112
crossref_primary_10_1016_j_biopha_2021_111232
crossref_primary_10_1007_s00705_024_06043_1
crossref_primary_10_1016_j_ijpx_2021_100073
crossref_primary_10_1016_j_phrs_2020_104859
crossref_primary_10_1007_s12272_021_01331_9
crossref_primary_10_1016_j_virusres_2020_198089
crossref_primary_10_1016_j_crviro_2022_100019
crossref_primary_10_1074_jbc_REV120_013746
crossref_primary_10_1002_jcph_1822
crossref_primary_10_1016_j_ejmech_2021_113862
crossref_primary_10_1098_rsos_210082
crossref_primary_10_1016_j_bcp_2020_114169
crossref_primary_10_1016_j_jcv_2022_105323
crossref_primary_10_1016_j_jpha_2020_12_001
crossref_primary_10_4252_wjsc_v12_i8_731
crossref_primary_10_1038_s41586_022_04482_x
crossref_primary_10_1080_21505594_2021_1871823
crossref_primary_10_1039_D0RA05159D
crossref_primary_10_1080_07391102_2020_1781694
crossref_primary_10_1080_07391102_2021_2025147
crossref_primary_10_1007_s13205_024_04143_y
crossref_primary_10_1002_iub_2380
crossref_primary_10_1111_jcpt_13199
crossref_primary_10_1128_cmr_00119_23
crossref_primary_10_3390_cells11020302
crossref_primary_10_17816_RFD101316
crossref_primary_10_3390_microorganisms8101468
crossref_primary_10_1177_0897190021997001
crossref_primary_10_3390_v14020172
crossref_primary_10_1016_j_apsb_2021_08_027
crossref_primary_10_1016_j_tmaid_2020_101615
crossref_primary_10_1080_14787210_2021_1866545
crossref_primary_10_1007_s12011_021_02893_x
crossref_primary_10_1093_nar_gkab1303
crossref_primary_10_3390_biom12111680
crossref_primary_10_3390_v13060963
crossref_primary_10_3390_molecules25235695
crossref_primary_10_1016_j_biopha_2023_116055
crossref_primary_10_1007_s10787_022_01129_1
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1016_j_taap_2021_115783
crossref_primary_10_3389_fmicb_2021_647693
crossref_primary_10_1016_j_bcp_2020_114184
crossref_primary_10_1099_jgv_0_001920
crossref_primary_10_1134_S1019331622040256
crossref_primary_10_18231_j_ctppc_2022_016
crossref_primary_10_1038_s41427_020_00275_8
crossref_primary_10_37489_0235_2990_2023_68_5_6_69_76
crossref_primary_10_3390_pharmaceutics13081181
crossref_primary_10_1007_s12015_020_09994_5
crossref_primary_10_1051_e3sconf_202130802013
crossref_primary_10_1186_s13027_020_00302_x
crossref_primary_10_3390_pharmaceutics13081299
crossref_primary_10_1002_rmv_2143
crossref_primary_10_1016_j_ejmech_2021_113157
crossref_primary_10_2174_1389201024666230302113110
crossref_primary_10_1002_jmv_27768
crossref_primary_10_3390_antiox10060881
crossref_primary_10_1016_j_ijantimicag_2020_106119
crossref_primary_10_1002_rai2_12065
crossref_primary_10_1038_s41598_021_83203_2
crossref_primary_10_5501_wjv_v9_i3_27
crossref_primary_10_1016_j_scitotenv_2020_138861
crossref_primary_10_3390_ijerph17218155
crossref_primary_10_1128_aac_00969_24
crossref_primary_10_1002_rmv_2133
crossref_primary_10_1080_13543776_2021_1861248
crossref_primary_10_1016_j_coviro_2021_03_010
crossref_primary_10_1080_07391102_2021_1965027
crossref_primary_10_1002_rmv_2136
crossref_primary_10_1002_advs_202203499
crossref_primary_10_1016_j_ahj_2020_04_025
crossref_primary_10_1016_j_virol_2020_07_015
crossref_primary_10_3389_fimmu_2021_663586
crossref_primary_10_1016_j_antiviral_2022_105247
crossref_primary_10_1038_s41467_019_10280_3
crossref_primary_10_1016_j_isci_2021_102857
crossref_primary_10_18231_j_ijogr_2021_003
crossref_primary_10_1080_22221751_2021_1885998
crossref_primary_10_1016_j_clim_2020_108448
crossref_primary_10_1111_bph_15418
crossref_primary_10_3389_fmicb_2024_1450060
crossref_primary_10_1039_D4OB00929K
crossref_primary_10_1016_j_bbrc_2020_11_043
crossref_primary_10_1002_rmv_2168
crossref_primary_10_3390_microorganisms10071294
crossref_primary_10_1038_s41597_021_00799_w
crossref_primary_10_1128_CMR_00162_20
crossref_primary_10_1016_j_conctc_2020_100663
crossref_primary_10_3390_pharmaceutics12111002
crossref_primary_10_3390_v13112228
crossref_primary_10_3389_fmolb_2021_645216
crossref_primary_10_1111_bph_15204
crossref_primary_10_1016_j_mjafi_2020_07_003
crossref_primary_10_1016_j_pharmthera_2020_107587
crossref_primary_10_2174_1389557521666210308144302
crossref_primary_10_2174_2589977513666210611155426
crossref_primary_10_1177_00469580211055630
crossref_primary_10_1080_07391102_2020_1767691
crossref_primary_10_1093_jpids_piaa099
crossref_primary_10_1080_07391102_2020_1767210
crossref_primary_10_3389_fimmu_2021_652446
crossref_primary_10_3390_cells9051267
crossref_primary_10_1016_j_immuni_2020_05_002
crossref_primary_10_1186_s13054_021_03662_x
crossref_primary_10_4254_wjh_v13_i12_1850
crossref_primary_10_12688_f1000research_24963_1
crossref_primary_10_7759_cureus_10480
crossref_primary_10_1074_jbc_RA120_013679
crossref_primary_10_1128_mbio_01060_23
crossref_primary_10_3892_ijmm_2020_4555
crossref_primary_10_1038_s41467_021_21992_w
crossref_primary_10_1007_s41061_023_00432_x
crossref_primary_10_1292_jvms_20_0313
crossref_primary_10_1002_jmv_26470
crossref_primary_10_3389_fphar_2020_01091
crossref_primary_10_1002_rmv_2187
crossref_primary_10_1515_dmpt_2020_0173
crossref_primary_10_3892_mmr_2021_12498
crossref_primary_10_1016_j_str_2020_11_001
crossref_primary_10_3389_fmicb_2019_01813
crossref_primary_10_1016_j_pbiomolbio_2022_10_001
crossref_primary_10_1002_med_21763
crossref_primary_10_1128_JVI_01622_20
crossref_primary_10_1134_S107042802105002X
crossref_primary_10_1093_cid_ciaa587
crossref_primary_10_1016_j_coviro_2021_04_014
crossref_primary_10_1016_j_heliyon_2020_e05528
crossref_primary_10_1038_s41586_020_2423_5
crossref_primary_10_2139_ssrn_3914634
crossref_primary_10_2174_2666958702101010117
crossref_primary_10_1159_000518440
crossref_primary_10_1007_s00210_024_03137_0
crossref_primary_10_3390_microorganisms10101949
crossref_primary_10_1016_j_virol_2020_08_011
crossref_primary_10_1007_s40199_024_00524_z
crossref_primary_10_1177_2040206620976786
crossref_primary_10_3390_cells11040656
crossref_primary_10_1002_pro_3909
crossref_primary_10_23736_S2724_542X_22_02869_3
crossref_primary_10_1099_acmi_0_000133
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1021_acs_jmedchem_0c01140
crossref_primary_10_1093_jpids_piaa045
crossref_primary_10_3390_ijms222312638
crossref_primary_10_4103_ajim_ajim_3_21
crossref_primary_10_1016_j_nmni_2020_100679
crossref_primary_10_18772_26180197_2020_v2nSIa2
crossref_primary_10_3390_biom11070919
crossref_primary_10_4103_ijmr_IJMR_1132_20
crossref_primary_10_1016_j_biopha_2021_111642
crossref_primary_10_1002_jmv_26264
crossref_primary_10_3892_etm_2020_8692
crossref_primary_10_1097_MJT_0000000000001543
crossref_primary_10_1016_j_antiviral_2022_105451
crossref_primary_10_1208_s12248_020_00532_2
crossref_primary_10_3390_v14050991
crossref_primary_10_1016_j_celrep_2020_108352
crossref_primary_10_1080_07391102_2021_1930162
crossref_primary_10_1128_AAC_01101_20
crossref_primary_10_7759_cureus_11132
crossref_primary_10_1016_j_revmed_2020_05_003
crossref_primary_10_47430_ujmr_2162_002
crossref_primary_10_1016_j_tmaid_2019_06_012
crossref_primary_10_2174_2666796701999201005211854
crossref_primary_10_22207_JPAM_14_SPL1_36
crossref_primary_10_3390_vaccines13010017
crossref_primary_10_1007_s13205_020_02619_1
crossref_primary_10_1128_JVI_01348_19
crossref_primary_10_1042_BCJ20210200
crossref_primary_10_1038_s41573_023_00692_8
crossref_primary_10_3389_fgene_2021_693916
crossref_primary_10_1080_17460441_2019_1581171
crossref_primary_10_3389_fvets_2022_1002488
crossref_primary_10_1002_phar_2429
crossref_primary_10_1016_j_mayocpiqo_2020_07_004
crossref_primary_10_15252_emmm_202013105
crossref_primary_10_1080_08998280_2021_1885289
crossref_primary_10_1016_j_scitotenv_2022_159048
crossref_primary_10_1016_j_jbc_2021_101529
crossref_primary_10_1016_j_amjms_2020_06_013
crossref_primary_10_1128_jvi_01303_24
crossref_primary_10_1007_s00228_023_03486_4
crossref_primary_10_1016_j_ijantimicag_2020_106191
crossref_primary_10_18231_j_ijpp_2020_013
crossref_primary_10_1016_j_drudis_2022_02_012
crossref_primary_10_1016_j_ejphar_2021_173926
crossref_primary_10_1073_pnas_1922083117
crossref_primary_10_1016_j_ejphar_2020_173664
crossref_primary_10_3390_pathogens9060426
crossref_primary_10_1016_j_jiph_2020_12_023
crossref_primary_10_1186_s11658_022_00341_9
crossref_primary_10_3390_jpm11060475
crossref_primary_10_1002_jmv_26610
crossref_primary_10_1007_s00210_021_02169_0
crossref_primary_10_1039_D0CS00763C
crossref_primary_10_3390_nano10091645
crossref_primary_10_3390_ijms222011143
crossref_primary_10_1016_j_immuni_2020_03_007
crossref_primary_10_3390_microorganisms8121872
crossref_primary_10_3390_ph15020256
crossref_primary_10_1038_s41598_022_21034_5
crossref_primary_10_1002_anie_202014991
crossref_primary_10_3390_ijerph18041626
crossref_primary_10_2147_RMHP_S261357
crossref_primary_10_30895_2312_7821_2020_8_3_160_162
crossref_primary_10_61186_rabms_9_3_143
crossref_primary_10_1002_cbic_202000047
crossref_primary_10_1016_j_bcp_2022_115279
crossref_primary_10_1371_journal_ppat_1009292
crossref_primary_10_1093_nar_gkae153
crossref_primary_10_3390_v14030563
crossref_primary_10_1021_acs_jcim_0c00821
crossref_primary_10_1186_s43556_020_00017_w
crossref_primary_10_1126_science_abi9310
crossref_primary_10_1080_22221751_2021_1899770
crossref_primary_10_1016_j_jmgm_2021_107851
crossref_primary_10_15789_2220_7619_CEC_1473
crossref_primary_10_34172_PS_2020_80
crossref_primary_10_37489_0235_2990_2024_69_3_4_21_30
crossref_primary_10_1016_j_jbc_2021_101518
crossref_primary_10_1021_acscentsci_0c00489
crossref_primary_10_1002_minf_202000096
crossref_primary_10_1159_000509086
crossref_primary_10_1021_acs_jproteome_0c00526
crossref_primary_10_1093_eurheartj_ehab697
crossref_primary_10_1080_07328303_2023_2189473
crossref_primary_10_1016_j_drup_2020_100719
crossref_primary_10_1016_j_mcp_2024_101973
crossref_primary_10_1128_jvi_01708_24
crossref_primary_10_1002_jmv_25788
crossref_primary_10_3390_ijms22115434
crossref_primary_10_1007_s13337_020_00580_4
crossref_primary_10_1016_j_bioorg_2020_104490
crossref_primary_10_1039_D0RA03774E
crossref_primary_10_3390_microorganisms8111840
crossref_primary_10_1016_j_micpath_2021_104908
crossref_primary_10_17826_cumj_517406
crossref_primary_10_3390_v14030519
crossref_primary_10_1016_j_onehlt_2020_100128
crossref_primary_10_3390_v12040372
crossref_primary_10_1007_s43440_020_00155_6
crossref_primary_10_3390_v11040326
crossref_primary_10_1007_s12291_020_00953_y
crossref_primary_10_3390_microorganisms8060850
crossref_primary_10_3390_jcm9082399
crossref_primary_10_1111_tid_13629
crossref_primary_10_1002_adfm_202107826
crossref_primary_10_1007_s00228_020_03020_w
crossref_primary_10_1039_D0CB00197J
crossref_primary_10_1128_jvi_00907_22
crossref_primary_10_3390_ijerph19148845
crossref_primary_10_1002_jmv_25798
crossref_primary_10_1007_s11356_021_16715_z
crossref_primary_10_1016_j_biopha_2020_110668
crossref_primary_10_46332_aemj_805416
crossref_primary_10_4103_bbrj_bbrj_161_21
crossref_primary_10_3390_molecules28020795
crossref_primary_10_2174_1389557520666201113105940
crossref_primary_10_1016_j_ab_2021_114118
crossref_primary_10_3947_ic_2020_52_3_369
crossref_primary_10_1016_j_drup_2020_100721
crossref_primary_10_3390_v14112429
crossref_primary_10_5005_jp_journals_10082_02241
crossref_primary_10_1007_s10930_020_09933_w
crossref_primary_10_1186_s13020_020_00353_7
crossref_primary_10_1080_17512433_2020_1803740
crossref_primary_10_1007_s40615_021_01193_3
crossref_primary_10_1016_j_mayocp_2020_02_003
crossref_primary_10_1093_cvr_cvab343
crossref_primary_10_1016_j_jaip_2021_06_045
crossref_primary_10_3389_fphar_2021_632677
crossref_primary_10_1016_j_jpha_2021_03_012
crossref_primary_10_1039_D0RA05821A
crossref_primary_10_4103_2455_1732_331787
crossref_primary_10_1016_j_cmrp_2020_05_013
crossref_primary_10_3389_fmicb_2022_933983
crossref_primary_10_3390_v13040560
crossref_primary_10_3389_fimmu_2022_1015355
crossref_primary_10_3390_pharmaceutics13091400
crossref_primary_10_1016_j_drup_2020_100733
crossref_primary_10_1111_evo_14107
crossref_primary_10_1038_s41467_021_26760_4
crossref_primary_10_3389_fphar_2020_585331
crossref_primary_10_1039_D0CP05948J
crossref_primary_10_3389_ti_2022_10369
crossref_primary_10_1002_ardp_202400307
crossref_primary_10_1021_acs_biochem_1c00292
crossref_primary_10_1007_s00044_020_02625_1
crossref_primary_10_15212_bioi_2024_0055
crossref_primary_10_29333_ejgm_8258
crossref_primary_10_3390_immuno1010004
crossref_primary_10_1016_j_ijantimicag_2022_106542
crossref_primary_10_1016_j_cbi_2022_110097
crossref_primary_10_1016_j_jchromb_2021_122641
crossref_primary_10_2147_IJGM_S263666
crossref_primary_10_3390_immuno2020022
crossref_primary_10_1007_s13205_021_02905_6
crossref_primary_10_1016_j_crphar_2021_100072
crossref_primary_10_1016_j_nano_2019_03_004
crossref_primary_10_1016_j_matpr_2021_03_066
crossref_primary_10_1177_13596535221097495
crossref_primary_10_1021_acsinfecdis_2c00204
crossref_primary_10_1021_acs_jmedchem_0c01929
crossref_primary_10_1186_s12967_020_02344_6
crossref_primary_10_1016_j_ejphar_2020_173372
crossref_primary_10_1016_j_meegid_2020_104583
crossref_primary_10_1016_j_apsb_2021_03_028
crossref_primary_10_1016_j_ijbiomac_2020_09_204
crossref_primary_10_1016_j_virusres_2020_198167
crossref_primary_10_1146_annurev_micro_110520_023212
crossref_primary_10_1038_s41598_021_03814_7
crossref_primary_10_1016_j_virs_2023_06_010
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_3923_ajsr_2021_13_23
crossref_primary_10_1128_spectrum_02448_22
crossref_primary_10_1016_j_metop_2021_100121
crossref_primary_10_1126_sciadv_abc7112
crossref_primary_10_1002_psp4_12584
crossref_primary_10_1021_acs_jmedchem_0c00606
crossref_primary_10_3390_pathogens11030368
crossref_primary_10_3389_fphar_2022_864798
crossref_primary_10_1016_j_cell_2020_05_034
crossref_primary_10_1016_j_ctcp_2020_101214
crossref_primary_10_1007_s00203_021_02527_9
crossref_primary_10_1007_s00508_020_01734_6
crossref_primary_10_3390_v17020168
crossref_primary_10_1016_j_dsx_2020_05_018
crossref_primary_10_2174_0109298673294251240229070740
crossref_primary_10_3390_pathogens9050320
crossref_primary_10_1007_s41061_021_00335_9
crossref_primary_10_3389_fphar_2021_626510
crossref_primary_10_3390_v10120721
crossref_primary_10_1016_j_cegh_2020_07_011
crossref_primary_10_2174_0115748855255004231001182927
crossref_primary_10_2174_1871526521666210301143441
crossref_primary_10_1021_acsptsci_1c00022
crossref_primary_10_1039_D2CP05883A
crossref_primary_10_1016_j_antiviral_2018_12_015
crossref_primary_10_3390_pathogens9050331
crossref_primary_10_12968_indn_2020_4_6
crossref_primary_10_2174_1574888X18666221221123505
crossref_primary_10_1016_j_cegh_2020_07_006
crossref_primary_10_1007_s40588_024_00229_6
crossref_primary_10_1128_mBio_03492_20
crossref_primary_10_1016_j_biocel_2021_106114
crossref_primary_10_1038_s41598_022_23342_2
crossref_primary_10_1126_sciadv_abe0751
crossref_primary_10_4236_pp_2020_116009
crossref_primary_10_12688_f1000research_109586_1
crossref_primary_10_1007_s44179_022_00019_9
crossref_primary_10_1016_j_csbj_2022_08_056
crossref_primary_10_2217_fmb_2021_0019
crossref_primary_10_1186_s42269_022_00861_6
crossref_primary_10_1128_aac_00198_22
crossref_primary_10_3389_fphar_2020_00791
crossref_primary_10_1002_bmc_5238
crossref_primary_10_5937_mp72_33371
crossref_primary_10_3390_pathogens10091076
crossref_primary_10_1111_apt_15779
crossref_primary_10_1021_acs_biochem_2c00341
crossref_primary_10_1111_imr_12897
crossref_primary_10_1016_j_heliyon_2021_e06035
crossref_primary_10_1590_0001_3765202020200466
crossref_primary_10_1016_j_biopha_2021_112276
crossref_primary_10_1016_j_jinf_2020_02_010
crossref_primary_10_2174_1874467213666201204154239
crossref_primary_10_3390_foods10051005
crossref_primary_10_37871_jbres1146
crossref_primary_10_1016_S1131_3587_20_30033_9
crossref_primary_10_1038_s41597_021_00848_4
crossref_primary_10_29252_hrjbaq_5_3_180
crossref_primary_10_3390_children10050810
crossref_primary_10_1080_07391102_2020_1777903
crossref_primary_10_3851_IMP3362
crossref_primary_10_1002_chem_202403390
crossref_primary_10_1002_phar_2403
crossref_primary_10_3389_fimmu_2020_01991
crossref_primary_10_36106_gjra_7801316
crossref_primary_10_1080_07391102_2020_1824816
crossref_primary_10_37489_0235_2990_2022_67_7_8_45_50
crossref_primary_10_1016_j_bmcl_2020_126983
crossref_primary_10_1080_07391102_2021_1871956
crossref_primary_10_37489_2588_0519_2020_S4_99_102
crossref_primary_10_1080_07391102_2021_1970024
crossref_primary_10_1080_07391102_2020_1821785
crossref_primary_10_1016_j_sjbs_2021_08_100
crossref_primary_10_3390_ijms21103622
crossref_primary_10_1126_scitranslmed_abb5883
crossref_primary_10_1016_j_ijbiomac_2020_05_184
crossref_primary_10_1007_s10389_021_01530_0
crossref_primary_10_1016_j_micpath_2020_104241
crossref_primary_10_3389_fmicb_2020_01186
crossref_primary_10_1038_s41409_018_0386_z
crossref_primary_10_1016_j_ajp_2022_103101
crossref_primary_10_1016_j_celrep_2020_107940
crossref_primary_10_1016_j_ejphar_2020_173328
crossref_primary_10_1016_j_ejphar_2020_173326
crossref_primary_10_1016_j_ejphar_2020_173568
crossref_primary_10_2174_1566524021666210803154250
crossref_primary_10_1021_acs_jmedchem_0c00626
crossref_primary_10_3389_fvets_2020_584673
crossref_primary_10_1016_j_scitotenv_2020_138277
crossref_primary_10_5811_westjem_2020_5_47658
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1038_s41401_020_0438_y
crossref_primary_10_1007_s11596_023_2797_3
crossref_primary_10_1186_s13578_022_00899_z
crossref_primary_10_3390_v15040947
crossref_primary_10_1016_j_ejmech_2020_112527
crossref_primary_10_22159_ijap_2025v17i2_53121
crossref_primary_10_1016_j_ympev_2020_107017
crossref_primary_10_1016_j_jbc_2024_107514
crossref_primary_10_1111_ajt_15982
crossref_primary_10_1016_j_micpath_2020_104277
crossref_primary_10_1016_j_coviro_2022_101279
crossref_primary_10_2174_1568026620999200413145654
crossref_primary_10_7759_cureus_36247
crossref_primary_10_1016_j_phrs_2020_104929
crossref_primary_10_1089_dna_2020_5703
crossref_primary_10_1080_07391102_2020_1844804
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_1016_j_cmi_2020_05_019
crossref_primary_10_1093_nar_gkac1207
crossref_primary_10_1002_ptr_7172
crossref_primary_10_2147_DDDT_S320320
crossref_primary_10_2174_1574885518666230124123054
crossref_primary_10_32345_2664_4738_2_2021_13
crossref_primary_10_1002_mco2_186
crossref_primary_10_1080_21645515_2020_1794685
crossref_primary_10_1126_scitranslmed_abm3410
crossref_primary_10_3390_biomedicines8100376
crossref_primary_10_3389_fimmu_2020_570927
crossref_primary_10_1128_mBio_02707_20
crossref_primary_10_2174_2589977513666210315094752
crossref_primary_10_1016_j_ijbiomac_2021_10_216
crossref_primary_10_1080_14787210_2021_1863146
crossref_primary_10_5812_archcid_103537
crossref_primary_10_1016_j_coviro_2021_05_005
crossref_primary_10_1038_s41418_021_00900_1
crossref_primary_10_3389_fviro_2022_956113
crossref_primary_10_3390_v15122295
crossref_primary_10_1016_j_phrs_2022_106201
crossref_primary_10_1038_s41594_022_00734_6
crossref_primary_10_1016_j_intimp_2024_112465
crossref_primary_10_1021_acs_jpclett_0c00571
crossref_primary_10_1016_j_cell_2020_07_033
crossref_primary_10_1039_D0CC02834G
crossref_primary_10_1002_jmv_28246
crossref_primary_10_4103_ACCJ_ACCJ_3_20
crossref_primary_10_1093_nar_gkab320
crossref_primary_10_37978_pjsm_v1i4_300
crossref_primary_10_3892_ijmm_2020_4608
crossref_primary_10_3390_molecules26010039
crossref_primary_10_3233_PRM_200026
crossref_primary_10_1016_j_compbiolchem_2020_107408
crossref_primary_10_3390_jcm11175066
crossref_primary_10_1016_j_coviro_2019_04_002
crossref_primary_10_1111_lam_13637
crossref_primary_10_1128_JVI_01819_20
crossref_primary_10_1177_1708538120941635
crossref_primary_10_37489_2588_0527_2021_1_38_41
crossref_primary_10_1056_NEJMoa2007764
crossref_primary_10_1016_j_phymed_2020_153440
crossref_primary_10_1134_S0036024423030299
crossref_primary_10_1093_jac_dkab189
crossref_primary_10_1038_s41598_023_29517_9
crossref_primary_10_1128_aac_00222_22
crossref_primary_10_1016_j_drudis_2020_10_018
crossref_primary_10_1007_s11739_020_02569_9
crossref_primary_10_1093_bib_bbaa209
crossref_primary_10_3389_fimmu_2022_844749
crossref_primary_10_1208_s12249_020_01679_z
crossref_primary_10_1128_mbio_00110_24
crossref_primary_10_3748_wjg_v26_i46_7272
crossref_primary_10_1128_mSphere_00317_20
crossref_primary_10_1016_j_isci_2020_102021
crossref_primary_10_1007_s41061_020_00318_2
crossref_primary_10_1071_MA21013
crossref_primary_10_1093_cid_ciaa1474
crossref_primary_10_4103_ijot_ijot_54_21
crossref_primary_10_3390_cells10020206
crossref_primary_10_1038_s41598_020_66440_9
crossref_primary_10_1111_sji_12998
crossref_primary_10_1007_s11356_021_16096_3
crossref_primary_10_1055_s_0040_1715865
crossref_primary_10_1080_1061186X_2021_2013852
crossref_primary_10_3390_ijms21072657
crossref_primary_10_1038_s41467_018_08015_x
crossref_primary_10_1093_ofid_ofaa105
crossref_primary_10_1007_s11739_020_02510_0
crossref_primary_10_1021_acs_jcim_0c01010
crossref_primary_10_1590_1807_3107bor_2020_vol34_0041
crossref_primary_10_7554_eLife_70968
crossref_primary_10_4155_fmc_2020_0147
crossref_primary_10_1098_rsfs_2020_0081
crossref_primary_10_1016_j_ejps_2020_105522
crossref_primary_10_1016_j_clim_2020_108409
crossref_primary_10_1016_j_str_2024_08_005
crossref_primary_10_1016_j_cmi_2020_04_031
crossref_primary_10_2147_DDDT_S354841
crossref_primary_10_2147_JIR_S267280
crossref_primary_10_2174_0929867327666200513075430
crossref_primary_10_1016_j_bcp_2020_114296
crossref_primary_10_1038_s41580_021_00432_z
crossref_primary_10_1371_journal_ppat_1009929
crossref_primary_10_1007_s11356_021_16809_8
crossref_primary_10_1016_j_cmi_2020_04_023
crossref_primary_10_1080_03602532_2020_1803907
crossref_primary_10_1016_j_jiph_2022_11_022
crossref_primary_10_1080_14767058_2021_1903426
crossref_primary_10_3389_fphar_2020_01224
crossref_primary_10_1007_s12192_020_01155_4
crossref_primary_10_3389_fmicb_2022_843587
crossref_primary_10_1016_j_chemosphere_2021_129968
crossref_primary_10_3389_fmicb_2020_01105
crossref_primary_10_1177_25151355221144845
crossref_primary_10_1021_acs_jcim_0c01277
crossref_primary_10_1631_jzus_B2000083
crossref_primary_10_1016_j_antiviral_2022_105501
crossref_primary_10_1042_BSR20231395
crossref_primary_10_3390_jcm9061917
crossref_primary_10_1016_j_biopha_2021_111599
crossref_primary_10_1128_AAC_01814_20
crossref_primary_10_3390_ijms21113812
crossref_primary_10_3389_fchem_2020_627340
crossref_primary_10_1007_s00894_022_05137_4
crossref_primary_10_1016_j_yjmcc_2020_12_009
crossref_primary_10_1371_journal_pntd_0010220
crossref_primary_10_1002_bies_202000240
crossref_primary_10_1186_s40779_020_00240_0
crossref_primary_10_1515_dmdi_2020_0173
crossref_primary_10_1016_j_biopha_2020_111035
crossref_primary_10_1016_j_antiviral_2021_105078
crossref_primary_10_1016_j_jcyt_2020_04_100
crossref_primary_10_3390_molecules29235564
crossref_primary_10_2174_1574886316666210728110330
crossref_primary_10_1016_j_bbrc_2020_03_034
crossref_primary_10_1016_j_ejphar_2020_173705
crossref_primary_10_1111_nyas_14958
crossref_primary_10_1111_nyas_14957
crossref_primary_10_1016_j_ijbiomac_2021_10_172
crossref_primary_10_1080_07391102_2020_1802345
crossref_primary_10_1007_s13337_021_00654_x
crossref_primary_10_1016_S0140_6736_20_32021_3
crossref_primary_10_2217_fvl_2020_0369
crossref_primary_10_1021_acs_jpcb_0c07312
crossref_primary_10_1515_hsz_2022_0323
crossref_primary_10_20996_1819_6446_2020_06_08
crossref_primary_10_1007_s00203_021_02183_z
crossref_primary_10_1021_acscentsci_0c00984
crossref_primary_10_1093_jac_dkaa152
crossref_primary_10_1038_s41598_024_59957_w
crossref_primary_10_1016_j_jbc_2022_102169
crossref_primary_10_1073_pnas_2012294117
crossref_primary_10_1002_2211_5463_13392
crossref_primary_10_3390_life11030197
crossref_primary_10_1007_s11655_021_3512_5
crossref_primary_10_1016_j_cellin_2022_100046
crossref_primary_10_1016_j_biopha_2021_111330
crossref_primary_10_1016_j_jacbts_2021_01_002
crossref_primary_10_1097_MOT_0000000000000888
crossref_primary_10_1021_acsinfecdis_1c00131
crossref_primary_10_3389_fmolb_2020_00215
crossref_primary_10_1177_2472555220979579
crossref_primary_10_1097_MCC_0000000000000858
crossref_primary_10_1186_s40779_020_00251_x
crossref_primary_10_1038_s41598_021_93145_4
crossref_primary_10_3390_ph15091067
crossref_primary_10_1111_febs_15815
crossref_primary_10_7759_cureus_22328
crossref_primary_10_1093_ofid_ofab217
crossref_primary_10_1007_s40279_020_01288_7
crossref_primary_10_1016_j_biopha_2021_111313
crossref_primary_10_1177_13596535221082773
crossref_primary_10_1002_phar_2398
crossref_primary_10_1002_asia_201900841
crossref_primary_10_1002_phar_2394
crossref_primary_10_1099_jgv_0_001453
crossref_primary_10_1002_masy_202000336
crossref_primary_10_1093_mrcr_rxab032
crossref_primary_10_3390_mps5010005
crossref_primary_10_1016_j_antiviral_2021_105081
crossref_primary_10_1021_acs_jmedchem_2c01229
crossref_primary_10_1016_j_cellin_2022_100029
crossref_primary_10_3389_fmed_2020_606429
crossref_primary_10_2174_2666796701999200925204309
crossref_primary_10_1371_journal_pcbi_1008785
crossref_primary_10_3390_antibiotics12091436
crossref_primary_10_1007_s00705_020_04768_3
crossref_primary_10_1016_j_cytogfr_2020_06_001
crossref_primary_10_2147_DDDT_S475005
crossref_primary_10_1016_j_antiviral_2021_105033
crossref_primary_10_1073_pnas_2102516118
crossref_primary_10_1002_cnl2_46
crossref_primary_10_3390_ijms22010386
crossref_primary_10_1016_j_clinthera_2018_06_016
crossref_primary_10_1016_j_antiviral_2022_105329
crossref_primary_10_1039_D0RA05434H
crossref_primary_10_1093_nar_gkab1279
crossref_primary_10_1186_s13063_021_05538_5
crossref_primary_10_5005_jp_journals_10070_6126
crossref_primary_10_1016_j_gendis_2020_07_001
crossref_primary_10_1016_j_jddst_2024_106196
crossref_primary_10_3390_jcm9072084
crossref_primary_10_2174_2666796701999201026203911
crossref_primary_10_1097_CNQ_0000000000000346
crossref_primary_10_1126_scitranslmed_abo0718
crossref_primary_10_1016_j_apsb_2020_04_006
crossref_primary_10_1128_mbio_01587_23
crossref_primary_10_1128_JVI_00023_19
crossref_primary_10_1021_acs_chemrev_0c00967
crossref_primary_10_2147_RRTM_S274673
crossref_primary_10_1007_s43440_020_00152_9
crossref_primary_10_1136_bmjopen_2020_039159
crossref_primary_10_3390_v14050861
crossref_primary_10_3390_antiox9070636
crossref_primary_10_1016_j_arcmed_2020_09_005
crossref_primary_10_1038_s41467_021_21903_z
crossref_primary_10_3390_v15051167
crossref_primary_10_1080_01652176_2024_2305731
crossref_primary_10_1111_resp_14106
crossref_primary_10_1016_j_ijpharm_2022_122357
crossref_primary_10_4081_mrm_2020_708
crossref_primary_10_1039_D1ME00088H
crossref_primary_10_18231_j_ijmr_2021_002
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_3390_jcm9041131
crossref_primary_10_1021_acsmedchemlett_0c00316
crossref_primary_10_4236_pp_2021_121003
crossref_primary_10_3389_fphar_2020_01196
crossref_primary_10_1016_j_crmeth_2022_100170
crossref_primary_10_1039_D0NJ02656E
crossref_primary_10_3390_scipharm88020029
crossref_primary_10_1128_spectrum_03954_23
crossref_primary_10_4103_jgid_jgid_86_20
crossref_primary_10_1016_j_antiviral_2020_104786
crossref_primary_10_3390_biom11020196
crossref_primary_10_3389_fcimb_2021_827151
crossref_primary_10_1016_j_glmedi_2023_100041
crossref_primary_10_1016_j_jmb_2020_11_024
crossref_primary_10_3389_fcimb_2021_700502
crossref_primary_10_1007_s12250_021_00362_2
crossref_primary_10_1016_j_dnarep_2024_103773
crossref_primary_10_1016_j_jbc_2022_101923
crossref_primary_10_1128_JVI_00711_19
crossref_primary_10_3390_pathogens10060636
crossref_primary_10_1016_j_ejmech_2022_114239
crossref_primary_10_3390_pathogens10091150
crossref_primary_10_1016_j_antiviral_2019_104541
crossref_primary_10_1016_j_jchemneu_2020_101874
crossref_primary_10_1080_20009666_2021_1874093
crossref_primary_10_1080_07391102_2021_1955743
crossref_primary_10_1016_j_molcel_2021_01_035
crossref_primary_10_3357_AMHP_5928_2021
crossref_primary_10_2147_IDR_S264882
crossref_primary_10_3389_fmed_2020_00480
crossref_primary_10_2147_DDDT_S261154
crossref_primary_10_3389_fmed_2024_1390164
crossref_primary_10_1016_j_antiviral_2020_104793
crossref_primary_10_3390_v14061186
crossref_primary_10_1590_pboci_2020_137
crossref_primary_10_1016_j_ijantimicag_2020_106080
crossref_primary_10_3389_fmolb_2020_636738
crossref_primary_10_1016_j_heliyon_2023_e13285
crossref_primary_10_1039_D1NJ00160D
crossref_primary_10_1038_s41467_024_52071_5
crossref_primary_10_1016_j_jiph_2020_07_004
crossref_primary_10_2217_fmb_2021_0116
crossref_primary_10_1007_s13770_021_00348_x
crossref_primary_10_1007_s44231_022_00021_4
crossref_primary_10_3390_microorganisms8070991
crossref_primary_10_1001_jamanetworkopen_2021_14741
crossref_primary_10_18231_j_ijca_2021_097
crossref_primary_10_3389_fmed_2024_1287836
crossref_primary_10_1111_joim_13091
crossref_primary_10_1542_peds_2020_1701
crossref_primary_10_3390_org5020006
crossref_primary_10_1016_j_jsps_2020_08_015
crossref_primary_10_1093_jpids_piaa115
crossref_primary_10_3389_fimmu_2020_616595
crossref_primary_10_1002_prp2_674
crossref_primary_10_3390_su12093603
crossref_primary_10_1089_adt_2020_996
crossref_primary_10_1007_s11739_020_02383_3
crossref_primary_10_3390_v13071369
crossref_primary_10_1016_j_jiph_2020_07_010
crossref_primary_10_3390_ijms21082839
crossref_primary_10_1128_AAC_00399_20
crossref_primary_10_1016_j_scitotenv_2020_138914
crossref_primary_10_1007_s40472_020_00304_z
crossref_primary_10_3389_fimmu_2020_552909
crossref_primary_10_1371_journal_ppat_1011231
crossref_primary_10_1016_j_ijbiomac_2020_09_098
crossref_primary_10_1039_D1MD00131K
crossref_primary_10_2174_2666796704666230403101610
crossref_primary_10_1016_j_celrep_2021_109450
crossref_primary_10_2174_1568026620999200517043137
crossref_primary_10_3390_ph16101378
crossref_primary_10_3390_v14061137
crossref_primary_10_1021_acscentsci_0c01242
crossref_primary_10_3389_fphar_2020_00950
crossref_primary_10_1016_j_lfs_2020_117765
crossref_primary_10_1007_s11033_021_06630_4
crossref_primary_10_17343_sdutfd_903374
crossref_primary_10_4081_idr_2020_8543
crossref_primary_10_1038_s41586_020_2368_8
crossref_primary_10_3389_fphar_2020_563478
crossref_primary_10_1002_cbf_3591
crossref_primary_10_1016_j_ejphar_2020_173748
crossref_primary_10_1007_s40121_020_00318_1
crossref_primary_10_1039_D1CE00175B
crossref_primary_10_2174_1389201023666220507003726
crossref_primary_10_1039_D3RA06479D
crossref_primary_10_3390_molecules27092918
crossref_primary_10_1080_14787210_2019_1635009
crossref_primary_10_33882_jida_15_27489
crossref_primary_10_7759_cureus_43671
crossref_primary_10_1016_j_molcel_2020_07_027
crossref_primary_10_3390_tropicalmed5030112
crossref_primary_10_2478_abmj_2020_0003
crossref_primary_10_1016_j_ijbiomac_2021_01_076
crossref_primary_10_3389_fmicb_2020_02098
crossref_primary_10_2147_IJN_S315705
crossref_primary_10_1038_s41467_019_13940_6
crossref_primary_10_3390_cells10061412
crossref_primary_10_2147_TCRM_S262936
crossref_primary_10_1073_pnas_2106379119
crossref_primary_10_1089_mab_2023_0010
crossref_primary_10_1080_07391102_2019_1696705
crossref_primary_10_3390_covid2120126
crossref_primary_10_1016_j_isci_2020_101992
crossref_primary_10_1074_jbc_AC120_013056
crossref_primary_10_1038_s41467_020_19684_y
crossref_primary_10_1007_s12035_020_02074_2
crossref_primary_10_1084_jem_20200537
crossref_primary_10_3390_molecules25102343
crossref_primary_10_3389_fmicb_2020_587944
crossref_primary_10_1038_s41418_021_00909_6
crossref_primary_10_1055_a_1288_4078
crossref_primary_10_1016_j_jiph_2022_09_007
crossref_primary_10_7326_M20_5831
crossref_primary_10_1038_s41598_023_47511_z
crossref_primary_10_1007_s11845_021_02820_y
crossref_primary_10_1016_j_rmed_2020_106192
crossref_primary_10_1039_D0CS01118E
crossref_primary_10_1002_cbic_202000595
crossref_primary_10_4331_wjbc_v14_i4_72
Cites_doi 10.1128/AAC.00649-13
10.1128/CMR.00102-15
10.1093/nar/25.22.4532
10.1128/JVI.00080-16
10.1093/nar/gkg916
10.1128/AAC.01184-07
10.1038/nrd.2015.37
10.1016/S0021-9258(19)68420-6
10.1128/JVI.02346-12
10.1038/nature13027
10.1007/978-1-4939-2438-7_1
10.1038/nm.3985
10.1371/journal.ppat.1000896
10.1056/NEJMsr1408795
10.1128/JVI.76.21.11065-11078.2002
10.1073/pnas.0508200103
10.1073/pnas.1311542110
10.1073/pnas.70.4.1174
10.1371/journal.ppat.0010011
10.1128/CMR.00023-07
10.1016/j.jiph.2016.04.002
10.1177/095632020601700506
10.1073/pnas.1517719113
10.1128/JVI.02520-12
10.1128/JVI.01296-07
10.1128/CMR.00102-14
10.1073/pnas.1718806115
10.1128/JVI.79.24.15511-15524.2005
10.1371/journal.pmed.0030343
10.1371/journal.ppat.1003565
10.1016/j.antiviral.2013.11.006
10.1126/science.271.5253.1282
10.1038/nature17180
10.1097/00002030-199807000-00006
10.1073/pnas.1232294100
10.1056/NEJMoa030781
10.1073/pnas.1111650108
10.1126/scitranslmed.aal3653
10.1016/j.bmcl.2012.02.105
10.1073/pnas.1405889111
10.1128/JVI.02154-08
10.1074/jbc.M305041200
10.1128/mBio.00271-13
10.1128/AAC.01598-05
10.1073/pnas.0700518104
10.1016/j.antiviral.2013.08.016
10.1073/pnas.1735582100
10.1073/pnas.1323705111
10.1056/NEJMoa1211721
10.1046/j.1440-1843.2003.00518.x
10.1093/infdis/jiv564
10.1038/nprot.2011.330
10.1038/srep43395
10.1038/82191
10.1128/mBio.00047-14
10.3390/v7102868
ContentType Journal Article
Contributor Enjuanes, Luis
Gallagher, Tom
Contributor_xml – sequence: 1
  givenname: Tom
  surname: Gallagher
  fullname: Gallagher, Tom
– sequence: 2
  givenname: Luis
  surname: Enjuanes
  fullname: Enjuanes, Luis
Copyright Copyright © 2018 Agostini et al.
Copyright © 2018 Agostini et al. 2018 Agostini et al.
Copyright_xml – notice: Copyright © 2018 Agostini et al.
– notice: Copyright © 2018 Agostini et al. 2018 Agostini et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.00221-18
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Coronavirus Inhibition by Remdesivir (GS-5734)
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_1b011f9fd4ae445884489fb5ef613ee9
PMC5844999
29511076
10_1128_mBio_00221_18
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI112541
– fundername: NIAID NIH HHS
  grantid: T32 AI089554
– fundername: NIAID NIH HHS
  grantid: R01 AI132178
– fundername: NIAID NIH HHS
  grantid: R01 AI108197
– fundername: NIDDK NIH HHS
  grantid: P30 DK065988
– fundername: NIAID NIH HHS
  grantid: U19 AI109680
– fundername: ;
  grantid: BOUCHE15RO
– fundername: ;
  grantid: 5U19AI109680
– fundername: ;
  grantid: 5T32AI089554
– fundername: ;
  grantid: R01AI108197
– fundername: ;
  grantid: P30DK065988
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c519t-f32bc9a61a0a20f2b18992c1c1d42e5c1ef19a9628f753e5fb0760748d1da16d3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:29:51 EDT 2025
Thu Aug 21 18:17:49 EDT 2025
Fri Jul 11 00:28:27 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Tue Jul 01 01:52:36 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords antiviral resistance
nucleoside analogs
antiviral agents
SARS-CoV
coronavirus
pandemic
RNA polymerases
Language English
License Copyright © 2018 Agostini et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-f32bc9a61a0a20f2b18992c1c1d42e5c1ef19a9628f753e5fb0760748d1da16d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.L.A. and E.L.A. contributed equally to this article.
This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Tom Gallagher, Loyola University Medical Center; Luis Enjuanes, Centro Nacional de Biotecnologia, CNB-CSIC.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00221-18
PMID 29511076
PQID 2011615664
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1b011f9fd4ae445884489fb5ef613ee9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5844999
proquest_miscellaneous_2011615664
pubmed_primary_29511076
crossref_primary_10_1128_mBio_00221_18
crossref_citationtrail_10_1128_mBio_00221_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180306
PublicationDateYYYYMMDD 2018-03-06
PublicationDate_xml – month: 3
  year: 2018
  text: 20180306
  day: 6
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Fulcher LM (e_1_3_3_57_2) 2004; 107
Te HS (e_1_3_3_44_2) 2007; 3
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_42_2
  doi: 10.1128/AAC.00649-13
– ident: e_1_3_3_16_2
  doi: 10.1128/CMR.00102-15
– volume: 3
  start-page: 218
  year: 2007
  ident: e_1_3_3_44_2
  article-title: Mechanism of action of ribavirin in the treatment of chronic hepatitis C
  publication-title: Gastroenterol Hepatol
– ident: e_1_3_3_49_2
  doi: 10.1093/nar/25.22.4532
– ident: e_1_3_3_33_2
  doi: 10.1128/JVI.00080-16
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/gkg916
– ident: e_1_3_3_29_2
  doi: 10.1128/AAC.01184-07
– ident: e_1_3_3_8_2
  doi: 10.1038/nrd.2015.37
– ident: e_1_3_3_46_2
  doi: 10.1016/S0021-9258(19)68420-6
– ident: e_1_3_3_43_2
  doi: 10.1128/JVI.02346-12
– ident: e_1_3_3_26_2
  doi: 10.1038/nature13027
– ident: e_1_3_3_31_2
  doi: 10.1007/978-1-4939-2438-7_1
– ident: e_1_3_3_12_2
  doi: 10.1038/nm.3985
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.ppat.1000896
– ident: e_1_3_3_10_2
  doi: 10.1056/NEJMsr1408795
– ident: e_1_3_3_55_2
  doi: 10.1128/JVI.76.21.11065-11078.2002
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0508200103
– ident: e_1_3_3_58_2
  doi: 10.1073/pnas.1311542110
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.70.4.1174
– ident: e_1_3_3_53_2
  doi: 10.1371/journal.ppat.0010011
– ident: e_1_3_3_6_2
  doi: 10.1128/CMR.00023-07
– ident: e_1_3_3_20_2
  doi: 10.1016/j.jiph.2016.04.002
– ident: e_1_3_3_21_2
  doi: 10.1177/095632020601700506
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.1517719113
– ident: e_1_3_3_56_2
  doi: 10.1128/JVI.02520-12
– ident: e_1_3_3_18_2
  doi: 10.1128/JVI.01296-07
– ident: e_1_3_3_9_2
  doi: 10.1128/CMR.00102-14
– ident: e_1_3_3_51_2
  doi: 10.1073/pnas.1718806115
– ident: e_1_3_3_30_2
  doi: 10.1128/JVI.79.24.15511-15524.2005
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.pmed.0030343
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.ppat.1003565
– ident: e_1_3_3_22_2
  doi: 10.1016/j.antiviral.2013.11.006
– ident: e_1_3_3_48_2
  doi: 10.1126/science.271.5253.1282
– ident: e_1_3_3_28_2
  doi: 10.1038/nature17180
– ident: e_1_3_3_38_2
  doi: 10.1097/00002030-199807000-00006
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1232294100
– ident: e_1_3_3_2_2
  doi: 10.1056/NEJMoa030781
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1111650108
– ident: e_1_3_3_24_2
  doi: 10.1126/scitranslmed.aal3653
– ident: e_1_3_3_25_2
  doi: 10.1016/j.bmcl.2012.02.105
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1405889111
– ident: e_1_3_3_54_2
  doi: 10.1128/JVI.02154-08
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.M305041200
– ident: e_1_3_3_39_2
  doi: 10.1128/mBio.00271-13
– ident: e_1_3_3_41_2
  doi: 10.1128/AAC.01598-05
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.0700518104
– ident: e_1_3_3_7_2
  doi: 10.1016/j.antiviral.2013.08.016
– ident: e_1_3_3_59_2
  doi: 10.1073/pnas.1735582100
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.1323705111
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJMoa1211721
– ident: e_1_3_3_4_2
  doi: 10.1046/j.1440-1843.2003.00518.x
– ident: e_1_3_3_52_2
  doi: 10.1093/infdis/jiv564
– ident: e_1_3_3_32_2
  doi: 10.1038/nprot.2011.330
– ident: e_1_3_3_27_2
  doi: 10.1038/srep43395
– ident: e_1_3_3_40_2
  doi: 10.1038/82191
– ident: e_1_3_3_13_2
  doi: 10.1128/mBio.00047-14
– ident: e_1_3_3_15_2
  doi: 10.3390/v7102868
– volume: 107
  start-page: 183
  year: 2004
  ident: e_1_3_3_57_2
  article-title: Well-differentiated human airway epithelial cell cultures
  publication-title: Methods Mol Med
SSID ssj0000331830
Score 2.6650555
Snippet Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated...
ABSTRACT Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Alanine - analogs & derivatives
Alanine - pharmacology
Animals
antiviral agents
Antiviral Agents - pharmacology
antiviral resistance
coronavirus
Coronavirus - drug effects
Coronavirus - enzymology
Exoribonucleases - chemistry
Exoribonucleases - genetics
Exoribonucleases - metabolism
Mice
Mutation - genetics
nucleoside analogs
Ribonucleotides - pharmacology
RNA polymerases
SARS Virus - drug effects
SARS Virus - genetics
SARS-CoV
Virus Replication - drug effects
Virus Replication - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflu_iCCiYLgmTdL28e648xRODs-Tewv5mHALd61sd8X9E_yvnaS7y64ovvjYZtqGzKTzm2TyG0JeNUH7YMuaIbYGJr3UzGqvGNjaQ-XRR-dDYSef9PG5_HihLjZKfaWcsJEeeBy4Xe7QAmMbg7Qg87FK2bTRKYjoiADy0T30eRvBVP4HV8lWyxWppmh2r_cnfVo9EZylAh8bTihz9f8JYP6eJ7nheI7ukNtLxEj3xp7eJTegu0dujjUkF_fJz4PEQWC_T6bzgZ7Nh5ymkjNeF3TWU8R3dK9LJSLw1fQzXAcY0gV98_6MqbqSb-mHgZ7kgh0QqFvkJ75m6dP-apHWrAagtgu54RSBdpyOiff08Ec_nbi-S5TIKPSAnB8dfjk4Zsv6CsyjCmYsVsL51mpuSyvKKBzH4Et47nmQApTnEHlrWy2aiEENqOjSNl4tm8CD5TpUD8lO13fwmFApXB2lcpWKlbQquDpI7TRIr2toyqog71YDbvySfDzVwLgyOQgRjUn6MVk_hjcFeb0W_zaybvxNcD9pby2UyLLzDTQhszQh8y8TKsjLle4NTq60Y2I76OeDSehIpwhXFuTRaAvrTwnEphg764LUW1ay1Zftlm5ymQm8EfSlQPPJ_-j8U3ILe5mPSZb6GdmZTefwHHHSzL3IU-IXrDUTRQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
URI https://www.ncbi.nlm.nih.gov/pubmed/29511076
https://www.proquest.com/docview/2011615664
https://pubmed.ncbi.nlm.nih.gov/PMC5844999
https://doaj.org/article/1b011f9fd4ae445884489fb5ef613ee9
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3bbtQwELWgCIkXRLkG2spICIFEaJw4TvKAUFv1AtKiirJo3yJfxrDSNoFkFzWf0L9m7GQXtmpfIiUe25FnbJ_x5Qwhr3IjtJFRFiK2hpBrLkIpdBqCzDQkGudofyls9EWcjPnnSTr5Ryk0NGB7rWvn4kmNm9n7i9_dR-zwH_oLMPnu-f60dgsjMQtZfpvcwUkpc310NCB9PygnznijJcvm1VyOExixBvpCYm2C8jz-14HPq2co_5uUjh6Q-wOapHu9-jfJLagekrt9fMnuEbk8cPwE8s-0WbT0bNH6Iyz-NGxH5zVF7Ef3Khc-AoumX-HcQOte6JvjszDNEv6WfmrpyAfzAENV53N899Kn9axz61ktUFkZn3CKINw2_aF8enhRN1NVV44uGYUek_HR4beDk3CIvRBqVM88tEmsdCEFk5GMIxsrho5ZrJlmhseQagaWFbIQcW7R4YHUKrfFl_HcMCOZMMkTslHVFTwjlMcqszxVSWoTLlOjMsOFEsC1yCCPkoC8WzZ4qQdichcfY1Z6ByXOS6eq0quqZHlAXq_Ef_WMHDcJ7jvtrYQckbb_UDc_yqFflkzhAGcLa7gE7m_t8rywKgWLOAegCMjLpe5L7HhuN0VWUC_a0iEn4bxfHpCnvS2sqlraUkCyNStZ-5f1lGr605N7IyB0TujzG8t8Qe5h1f5eZCS2yMa8WcA2AqO52vELCvg8nrAdb_5_Ab2zDtw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+Susceptibility+to+the+Antiviral+Remdesivir+%28GS-5734%29+Is+Mediated+by+the+Viral+Polymerase+and+the+Proofreading+Exoribonuclease&rft.jtitle=mBio&rft.au=Agostini%2C+Maria+L&rft.au=Andres%2C+Erica+L&rft.au=Sims%2C+Amy+C&rft.au=Graham%2C+Rachel+L&rft.date=2018-03-06&rft.eissn=2150-7511&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.00221-18&rft_id=info%3Apmid%2F29511076&rft.externalDocID=29511076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon