Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir)...
Saved in:
Published in | mBio Vol. 9; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
06.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs
in vitro
and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC
50
) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC
50
. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same
in vitro
resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.
IMPORTANCE
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
in vitro
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
in vitro
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. |
---|---|
AbstractList | Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs
in vitro
and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC
50
) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC
50
. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same
in vitro
resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.
IMPORTANCE
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
in vitro
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
in vitro
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC 50 ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC 50 . The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC ) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. ABSTRACT Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. |
Author | Ray, Adrian S. Denison, Mark R. Clarke, Michael O. Mackman, Richard L. Graham, Rachel L. Sims, Amy C. Agostini, Maria L. Sheahan, Timothy P. Siegel, Dustin Jordan, Robert Andres, Erica L. Smith, Everett Clinton Cihlar, Tomas Baric, Ralph S. Feng, Joy Y. Case, James Brett Lu, Xiaotao |
Author_xml | – sequence: 1 givenname: Maria L. surname: Agostini fullname: Agostini, Maria L. organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA – sequence: 2 givenname: Erica L. surname: Andres fullname: Andres, Erica L. organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA – sequence: 3 givenname: Amy C. surname: Sims fullname: Sims, Amy C. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 4 givenname: Rachel L. surname: Graham fullname: Graham, Rachel L. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 5 givenname: Timothy P. surname: Sheahan fullname: Sheahan, Timothy P. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 6 givenname: Xiaotao surname: Lu fullname: Lu, Xiaotao organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA – sequence: 7 givenname: Everett Clinton surname: Smith fullname: Smith, Everett Clinton organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA, Department of Biology, the University of the South, Sewanee, Tennessee, USA – sequence: 8 givenname: James Brett surname: Case fullname: Case, James Brett organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA – sequence: 9 givenname: Joy Y. surname: Feng fullname: Feng, Joy Y. organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 10 givenname: Robert surname: Jordan fullname: Jordan, Robert organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 11 givenname: Adrian S. surname: Ray fullname: Ray, Adrian S. organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 12 givenname: Tomas surname: Cihlar fullname: Cihlar, Tomas organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 13 givenname: Dustin surname: Siegel fullname: Siegel, Dustin organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 14 givenname: Richard L. surname: Mackman fullname: Mackman, Richard L. organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 15 givenname: Michael O. surname: Clarke fullname: Clarke, Michael O. organization: Gilead Sciences, Inc., Foster City, California, USA – sequence: 16 givenname: Ralph S. surname: Baric fullname: Baric, Ralph S. organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 17 givenname: Mark R. surname: Denison fullname: Denison, Mark R. organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29511076$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURMvSI1fkYzmkeJw4G1-QyqqUlYqoKHC1nHi8dZXEW9up2J_Av8bJlooi4Ys_5pl3ZuT3ZXYwuAGz7DXQUwBWv-s_WHdKKWOQQ_0sO2LAab7kAAfTuYKcAROH2XEItzStooC6oC-yQyYSQ5fVUfZr5bwb1L31YyDXY2hxG21jOxt3JDoSb5CcDdGmuOrIV-w1hulCTi6uc74syrdkHchn1FZF1KTZzRk_ZvrKdbsevQpI1KDnwJV3znhU2g4bcv7Tedu4YWw7TNCr7LlRXcDjh32Rff94_m31Kb_8crFenV3mLQcRc1OwphWqAkUVo4Y1UAvBWmhBlwx5C2hAKFGx2ix5gdw0aU66LGsNWkGli0W23utqp27l1tte-Z10ysr5wfmNVD7a1JSEhgIYYXSpsCx5XZdlLUzD0VRQIIqk9X6vtR2bHnWLQ0yTPxF9Ghnsjdy4e8mTlBCTwMmDgHd3I4Yoe5v-oOvUgG4MkqUGKuBVVSb0zd-1Hov8-csE5Hug9S4Ej-YRASonu8jJLnK2i0xGWGTFP3xro4rWTa3a7j9ZvwFQDcT0 |
CitedBy_id | crossref_primary_10_3390_v12091006 crossref_primary_10_3390_jcm9061885 crossref_primary_10_1016_j_arcmed_2020_05_007 crossref_primary_10_1186_s44158_023_00114_6 crossref_primary_10_1080_01652176_2020_1845917 crossref_primary_10_1016_j_coviro_2020_05_010 crossref_primary_10_1016_j_phrs_2020_104899 crossref_primary_10_1080_08998280_2020_1780086 crossref_primary_10_3390_life10080146 crossref_primary_10_3389_fmed_2021_628370 crossref_primary_10_1016_j_csbj_2021_06_005 crossref_primary_10_1016_j_jiph_2021_04_011 crossref_primary_10_1016_j_arcmed_2020_05_001 crossref_primary_10_1002_sctm_20_0197 crossref_primary_10_3389_fmolb_2021_822218 crossref_primary_10_3390_v14081734 crossref_primary_10_3389_fcell_2020_00616 crossref_primary_10_1161_HYPERTENSIONAHA_120_15256 crossref_primary_10_1016_j_bpj_2021_07_026 crossref_primary_10_1371_journal_ppat_1009226 crossref_primary_10_1016_j_ijantimicag_2020_105950 crossref_primary_10_3390_v16101511 crossref_primary_10_1016_j_ijantimicag_2020_105951 crossref_primary_10_5812_iji_106243 crossref_primary_10_3389_fimmu_2020_01841 crossref_primary_10_3389_fphar_2023_1205238 crossref_primary_10_1002_hsr2_1144 crossref_primary_10_1016_j_bioorg_2021_104862 crossref_primary_10_2174_1874467214666210804152836 crossref_primary_10_1139_gen_2020_0130 crossref_primary_10_1016_j_rvsc_2021_02_009 crossref_primary_10_1080_1120009X_2020_1868237 crossref_primary_10_1016_j_jare_2020_03_005 crossref_primary_10_1016_S0140_6736_20_31042_4 crossref_primary_10_3389_fmicb_2020_02100 crossref_primary_10_3390_ph16081143 crossref_primary_10_3233_HAB_200429 crossref_primary_10_1039_D0MD00318B crossref_primary_10_1007_s42398_021_00204_7 crossref_primary_10_1007_s00705_020_04693_5 crossref_primary_10_1515_tjb_2020_0310 crossref_primary_10_1080_13543776_2021_1880568 crossref_primary_10_3390_v12091023 crossref_primary_10_1016_j_bcp_2021_114424 crossref_primary_10_54370_ordubtd_1015314 crossref_primary_10_1016_j_bbi_2020_04_046 crossref_primary_10_3390_nu13051550 crossref_primary_10_2174_0929867327666200721161840 crossref_primary_10_5582_ddt_2020_01015 crossref_primary_10_29328_journal_ijcv_1001036 crossref_primary_10_1080_03602532_2020_1845201 crossref_primary_10_1016_j_bmcl_2021_128052 crossref_primary_10_1002_slct_202103301 crossref_primary_10_1016_j_ajem_2024_09_001 crossref_primary_10_3389_fphar_2020_615211 crossref_primary_10_1016_j_envpol_2024_124845 crossref_primary_10_1016_j_bioorg_2024_107977 crossref_primary_10_3389_fphar_2020_572870 crossref_primary_10_1080_07391102_2022_2112616 crossref_primary_10_3389_fpubh_2020_00365 crossref_primary_10_1016_j_ejmech_2020_112687 crossref_primary_10_1016_j_isci_2021_103120 crossref_primary_10_1016_j_jiph_2021_04_007 crossref_primary_10_1016_j_drudis_2020_08_002 crossref_primary_10_3389_fphar_2020_582025 crossref_primary_10_3390_genes14020407 crossref_primary_10_1002_jmv_25707 crossref_primary_10_1093_abt_tbaa007 crossref_primary_10_1080_07391102_2020_1772111 crossref_primary_10_1016_j_eclinm_2020_100547 crossref_primary_10_1134_S1068162021040130 crossref_primary_10_1016_j_mayocp_2020_04_027 crossref_primary_10_2174_1381612826666200707121636 crossref_primary_10_1016_j_biopha_2021_112162 crossref_primary_10_1016_j_carbpol_2021_118011 crossref_primary_10_1080_14756366_2024_2301772 crossref_primary_10_1177_1098612X231183250 crossref_primary_10_1016_j_virusres_2022_198882 crossref_primary_10_1111_tbed_13907 crossref_primary_10_4103_ijmm_IJMM_20_54 crossref_primary_10_1021_acs_bioconjchem_0c00323 crossref_primary_10_1074_jbc_H120_013397 crossref_primary_10_11603_1681_2727_2020_1_11091 crossref_primary_10_1080_17460441_2023_2192921 crossref_primary_10_5582_bst_2020_01020 crossref_primary_10_1016_j_bj_2022_08_002 crossref_primary_10_1016_j_imu_2020_100384 crossref_primary_10_3389_fmicb_2022_1111930 crossref_primary_10_1177_1753466620926853 crossref_primary_10_1007_s10668_020_01002_7 crossref_primary_10_3389_fmicb_2022_926929 crossref_primary_10_1177_2515690X211003727 crossref_primary_10_4187_respcare_09153 crossref_primary_10_1016_j_ijantimicag_2020_105923 crossref_primary_10_1016_j_jphotobiol_2022_112447 crossref_primary_10_3390_microorganisms9051094 crossref_primary_10_1002_mco2_26 crossref_primary_10_1016_j_jiph_2021_05_009 crossref_primary_10_1128_mSystems_00233_21 crossref_primary_10_1016_j_antiviral_2019_04_006 crossref_primary_10_1001_jamapediatrics_2020_2422 crossref_primary_10_3390_life12030363 crossref_primary_10_1002_cpt_2145 crossref_primary_10_3390_ijms242216392 crossref_primary_10_1016_j_ijantimicag_2020_105933 crossref_primary_10_4103_joacp_JOACP_461_20 crossref_primary_10_1177_24725552211008854 crossref_primary_10_30699_mmlj17_4_1_19 crossref_primary_10_4103_ijnpnd_ijnpnd_90_20 crossref_primary_10_1016_j_intimp_2020_107228 crossref_primary_10_1073_pnas_2001046117 crossref_primary_10_1016_j_lfs_2020_118205 crossref_primary_10_1002_cmdc_202200399 crossref_primary_10_1080_1120009X_2022_2121091 crossref_primary_10_2174_1573413717666211117150153 crossref_primary_10_1515_revac_2023_0060 crossref_primary_10_3390_v12070705 crossref_primary_10_3390_v15102101 crossref_primary_10_1039_D0RA05265E crossref_primary_10_3390_ijms221910188 crossref_primary_10_1016_j_jmii_2020_03_034 crossref_primary_10_3390_jcm10235473 crossref_primary_10_1002_jmv_27256 crossref_primary_10_2174_1874357902014010016 crossref_primary_10_1016_j_jiph_2021_02_006 crossref_primary_10_3390_ph14060520 crossref_primary_10_1016_S0140_6736_20_31022_9 crossref_primary_10_3390_ijms23073711 crossref_primary_10_2217_fvl_2021_0233 crossref_primary_10_3389_fendo_2020_583006 crossref_primary_10_1089_jir_2020_0188 crossref_primary_10_1515_cclm_2020_0612 crossref_primary_10_1136_bmj_m1610 crossref_primary_10_3390_jcm10153276 crossref_primary_10_1016_j_biopha_2022_113977 crossref_primary_10_1016_j_jpba_2022_114646 crossref_primary_10_1002_bio_4274 crossref_primary_10_1038_s41565_020_0732_3 crossref_primary_10_1128_AAC_01117_21 crossref_primary_10_1016_j_jviromet_2021_114283 crossref_primary_10_3390_microorganisms11082096 crossref_primary_10_2174_1871526522666220425103031 crossref_primary_10_1007_s40495_020_00229_2 crossref_primary_10_1080_17512433_2020_1805315 crossref_primary_10_2147_HIV_S300055 crossref_primary_10_1007_s11356_020_12200_1 crossref_primary_10_1016_j_anpede_2020_02_002 crossref_primary_10_1089_vbz_2020_2678 crossref_primary_10_1016_j_anpedi_2020_02_001 crossref_primary_10_1016_j_jtbi_2023_111449 crossref_primary_10_1038_s41467_023_38867_x crossref_primary_10_1016_j_sjbs_2020_11_078 crossref_primary_10_1021_acs_chemrev_0c00644 crossref_primary_10_3390_biomedicines9080996 crossref_primary_10_1111_cts_12975 crossref_primary_10_1177_10892532211016167 crossref_primary_10_1111_bcp_14718 crossref_primary_10_2174_1389557521666210412161157 crossref_primary_10_1093_ve_veae006 crossref_primary_10_3390_ph14060503 crossref_primary_10_1007_s40290_021_00397_6 crossref_primary_10_12677_ACM_2023_1361291 crossref_primary_10_2174_0929867331666230717154101 crossref_primary_10_1042_BCJ20210199 crossref_primary_10_2217_fmb_2020_0147 crossref_primary_10_3390_biology12081070 crossref_primary_10_1042_BCJ20210198 crossref_primary_10_1093_nar_gkae1195 crossref_primary_10_1042_BCJ20210197 crossref_primary_10_1007_s10668_021_01224_3 crossref_primary_10_1002_ange_202014991 crossref_primary_10_1080_14787210_2021_1864327 crossref_primary_10_1074_jbc_AC120_015720 crossref_primary_10_1016_j_mayocp_2021_01_023 crossref_primary_10_1016_j_antiviral_2024_106034 crossref_primary_10_3390_v14081790 crossref_primary_10_1002_ccr3_5961 crossref_primary_10_1002_jmv_27285 crossref_primary_10_2147_DDDT_S293216 crossref_primary_10_1016_j_eng_2021_08_020 crossref_primary_10_1038_s41467_020_20542_0 crossref_primary_10_1128_mBio_03149_20 crossref_primary_10_1080_14787210_2021_1823832 crossref_primary_10_1155_2022_9209618 crossref_primary_10_2174_1570180819666220929151127 crossref_primary_10_1039_D0MO00057D crossref_primary_10_1177_0972063420983113 crossref_primary_10_1111_bph_15072 crossref_primary_10_1183_13993003_00048_2021 crossref_primary_10_1016_j_ijbiomac_2021_03_112 crossref_primary_10_1016_j_biopha_2021_111232 crossref_primary_10_1007_s00705_024_06043_1 crossref_primary_10_1016_j_ijpx_2021_100073 crossref_primary_10_1016_j_phrs_2020_104859 crossref_primary_10_1007_s12272_021_01331_9 crossref_primary_10_1016_j_virusres_2020_198089 crossref_primary_10_1016_j_crviro_2022_100019 crossref_primary_10_1074_jbc_REV120_013746 crossref_primary_10_1002_jcph_1822 crossref_primary_10_1016_j_ejmech_2021_113862 crossref_primary_10_1098_rsos_210082 crossref_primary_10_1016_j_bcp_2020_114169 crossref_primary_10_1016_j_jcv_2022_105323 crossref_primary_10_1016_j_jpha_2020_12_001 crossref_primary_10_4252_wjsc_v12_i8_731 crossref_primary_10_1038_s41586_022_04482_x crossref_primary_10_1080_21505594_2021_1871823 crossref_primary_10_1039_D0RA05159D crossref_primary_10_1080_07391102_2020_1781694 crossref_primary_10_1080_07391102_2021_2025147 crossref_primary_10_1007_s13205_024_04143_y crossref_primary_10_1002_iub_2380 crossref_primary_10_1111_jcpt_13199 crossref_primary_10_1128_cmr_00119_23 crossref_primary_10_3390_cells11020302 crossref_primary_10_17816_RFD101316 crossref_primary_10_3390_microorganisms8101468 crossref_primary_10_1177_0897190021997001 crossref_primary_10_3390_v14020172 crossref_primary_10_1016_j_apsb_2021_08_027 crossref_primary_10_1016_j_tmaid_2020_101615 crossref_primary_10_1080_14787210_2021_1866545 crossref_primary_10_1007_s12011_021_02893_x crossref_primary_10_1093_nar_gkab1303 crossref_primary_10_3390_biom12111680 crossref_primary_10_3390_v13060963 crossref_primary_10_3390_molecules25235695 crossref_primary_10_1016_j_biopha_2023_116055 crossref_primary_10_1007_s10787_022_01129_1 crossref_primary_10_1246_bcsj_20220179 crossref_primary_10_1016_j_taap_2021_115783 crossref_primary_10_3389_fmicb_2021_647693 crossref_primary_10_1016_j_bcp_2020_114184 crossref_primary_10_1099_jgv_0_001920 crossref_primary_10_1134_S1019331622040256 crossref_primary_10_18231_j_ctppc_2022_016 crossref_primary_10_1038_s41427_020_00275_8 crossref_primary_10_37489_0235_2990_2023_68_5_6_69_76 crossref_primary_10_3390_pharmaceutics13081181 crossref_primary_10_1007_s12015_020_09994_5 crossref_primary_10_1051_e3sconf_202130802013 crossref_primary_10_1186_s13027_020_00302_x crossref_primary_10_3390_pharmaceutics13081299 crossref_primary_10_1002_rmv_2143 crossref_primary_10_1016_j_ejmech_2021_113157 crossref_primary_10_2174_1389201024666230302113110 crossref_primary_10_1002_jmv_27768 crossref_primary_10_3390_antiox10060881 crossref_primary_10_1016_j_ijantimicag_2020_106119 crossref_primary_10_1002_rai2_12065 crossref_primary_10_1038_s41598_021_83203_2 crossref_primary_10_5501_wjv_v9_i3_27 crossref_primary_10_1016_j_scitotenv_2020_138861 crossref_primary_10_3390_ijerph17218155 crossref_primary_10_1128_aac_00969_24 crossref_primary_10_1002_rmv_2133 crossref_primary_10_1080_13543776_2021_1861248 crossref_primary_10_1016_j_coviro_2021_03_010 crossref_primary_10_1080_07391102_2021_1965027 crossref_primary_10_1002_rmv_2136 crossref_primary_10_1002_advs_202203499 crossref_primary_10_1016_j_ahj_2020_04_025 crossref_primary_10_1016_j_virol_2020_07_015 crossref_primary_10_3389_fimmu_2021_663586 crossref_primary_10_1016_j_antiviral_2022_105247 crossref_primary_10_1038_s41467_019_10280_3 crossref_primary_10_1016_j_isci_2021_102857 crossref_primary_10_18231_j_ijogr_2021_003 crossref_primary_10_1080_22221751_2021_1885998 crossref_primary_10_1016_j_clim_2020_108448 crossref_primary_10_1111_bph_15418 crossref_primary_10_3389_fmicb_2024_1450060 crossref_primary_10_1039_D4OB00929K crossref_primary_10_1016_j_bbrc_2020_11_043 crossref_primary_10_1002_rmv_2168 crossref_primary_10_3390_microorganisms10071294 crossref_primary_10_1038_s41597_021_00799_w crossref_primary_10_1128_CMR_00162_20 crossref_primary_10_1016_j_conctc_2020_100663 crossref_primary_10_3390_pharmaceutics12111002 crossref_primary_10_3390_v13112228 crossref_primary_10_3389_fmolb_2021_645216 crossref_primary_10_1111_bph_15204 crossref_primary_10_1016_j_mjafi_2020_07_003 crossref_primary_10_1016_j_pharmthera_2020_107587 crossref_primary_10_2174_1389557521666210308144302 crossref_primary_10_2174_2589977513666210611155426 crossref_primary_10_1177_00469580211055630 crossref_primary_10_1080_07391102_2020_1767691 crossref_primary_10_1093_jpids_piaa099 crossref_primary_10_1080_07391102_2020_1767210 crossref_primary_10_3389_fimmu_2021_652446 crossref_primary_10_3390_cells9051267 crossref_primary_10_1016_j_immuni_2020_05_002 crossref_primary_10_1186_s13054_021_03662_x crossref_primary_10_4254_wjh_v13_i12_1850 crossref_primary_10_12688_f1000research_24963_1 crossref_primary_10_7759_cureus_10480 crossref_primary_10_1074_jbc_RA120_013679 crossref_primary_10_1128_mbio_01060_23 crossref_primary_10_3892_ijmm_2020_4555 crossref_primary_10_1038_s41467_021_21992_w crossref_primary_10_1007_s41061_023_00432_x crossref_primary_10_1292_jvms_20_0313 crossref_primary_10_1002_jmv_26470 crossref_primary_10_3389_fphar_2020_01091 crossref_primary_10_1002_rmv_2187 crossref_primary_10_1515_dmpt_2020_0173 crossref_primary_10_3892_mmr_2021_12498 crossref_primary_10_1016_j_str_2020_11_001 crossref_primary_10_3389_fmicb_2019_01813 crossref_primary_10_1016_j_pbiomolbio_2022_10_001 crossref_primary_10_1002_med_21763 crossref_primary_10_1128_JVI_01622_20 crossref_primary_10_1134_S107042802105002X crossref_primary_10_1093_cid_ciaa587 crossref_primary_10_1016_j_coviro_2021_04_014 crossref_primary_10_1016_j_heliyon_2020_e05528 crossref_primary_10_1038_s41586_020_2423_5 crossref_primary_10_2139_ssrn_3914634 crossref_primary_10_2174_2666958702101010117 crossref_primary_10_1159_000518440 crossref_primary_10_1007_s00210_024_03137_0 crossref_primary_10_3390_microorganisms10101949 crossref_primary_10_1016_j_virol_2020_08_011 crossref_primary_10_1007_s40199_024_00524_z crossref_primary_10_1177_2040206620976786 crossref_primary_10_3390_cells11040656 crossref_primary_10_1002_pro_3909 crossref_primary_10_23736_S2724_542X_22_02869_3 crossref_primary_10_1099_acmi_0_000133 crossref_primary_10_1016_j_apsb_2021_06_016 crossref_primary_10_1021_acs_jmedchem_0c01140 crossref_primary_10_1093_jpids_piaa045 crossref_primary_10_3390_ijms222312638 crossref_primary_10_4103_ajim_ajim_3_21 crossref_primary_10_1016_j_nmni_2020_100679 crossref_primary_10_18772_26180197_2020_v2nSIa2 crossref_primary_10_3390_biom11070919 crossref_primary_10_4103_ijmr_IJMR_1132_20 crossref_primary_10_1016_j_biopha_2021_111642 crossref_primary_10_1002_jmv_26264 crossref_primary_10_3892_etm_2020_8692 crossref_primary_10_1097_MJT_0000000000001543 crossref_primary_10_1016_j_antiviral_2022_105451 crossref_primary_10_1208_s12248_020_00532_2 crossref_primary_10_3390_v14050991 crossref_primary_10_1016_j_celrep_2020_108352 crossref_primary_10_1080_07391102_2021_1930162 crossref_primary_10_1128_AAC_01101_20 crossref_primary_10_7759_cureus_11132 crossref_primary_10_1016_j_revmed_2020_05_003 crossref_primary_10_47430_ujmr_2162_002 crossref_primary_10_1016_j_tmaid_2019_06_012 crossref_primary_10_2174_2666796701999201005211854 crossref_primary_10_22207_JPAM_14_SPL1_36 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_1007_s13205_020_02619_1 crossref_primary_10_1128_JVI_01348_19 crossref_primary_10_1042_BCJ20210200 crossref_primary_10_1038_s41573_023_00692_8 crossref_primary_10_3389_fgene_2021_693916 crossref_primary_10_1080_17460441_2019_1581171 crossref_primary_10_3389_fvets_2022_1002488 crossref_primary_10_1002_phar_2429 crossref_primary_10_1016_j_mayocpiqo_2020_07_004 crossref_primary_10_15252_emmm_202013105 crossref_primary_10_1080_08998280_2021_1885289 crossref_primary_10_1016_j_scitotenv_2022_159048 crossref_primary_10_1016_j_jbc_2021_101529 crossref_primary_10_1016_j_amjms_2020_06_013 crossref_primary_10_1128_jvi_01303_24 crossref_primary_10_1007_s00228_023_03486_4 crossref_primary_10_1016_j_ijantimicag_2020_106191 crossref_primary_10_18231_j_ijpp_2020_013 crossref_primary_10_1016_j_drudis_2022_02_012 crossref_primary_10_1016_j_ejphar_2021_173926 crossref_primary_10_1073_pnas_1922083117 crossref_primary_10_1016_j_ejphar_2020_173664 crossref_primary_10_3390_pathogens9060426 crossref_primary_10_1016_j_jiph_2020_12_023 crossref_primary_10_1186_s11658_022_00341_9 crossref_primary_10_3390_jpm11060475 crossref_primary_10_1002_jmv_26610 crossref_primary_10_1007_s00210_021_02169_0 crossref_primary_10_1039_D0CS00763C crossref_primary_10_3390_nano10091645 crossref_primary_10_3390_ijms222011143 crossref_primary_10_1016_j_immuni_2020_03_007 crossref_primary_10_3390_microorganisms8121872 crossref_primary_10_3390_ph15020256 crossref_primary_10_1038_s41598_022_21034_5 crossref_primary_10_1002_anie_202014991 crossref_primary_10_3390_ijerph18041626 crossref_primary_10_2147_RMHP_S261357 crossref_primary_10_30895_2312_7821_2020_8_3_160_162 crossref_primary_10_61186_rabms_9_3_143 crossref_primary_10_1002_cbic_202000047 crossref_primary_10_1016_j_bcp_2022_115279 crossref_primary_10_1371_journal_ppat_1009292 crossref_primary_10_1093_nar_gkae153 crossref_primary_10_3390_v14030563 crossref_primary_10_1021_acs_jcim_0c00821 crossref_primary_10_1186_s43556_020_00017_w crossref_primary_10_1126_science_abi9310 crossref_primary_10_1080_22221751_2021_1899770 crossref_primary_10_1016_j_jmgm_2021_107851 crossref_primary_10_15789_2220_7619_CEC_1473 crossref_primary_10_34172_PS_2020_80 crossref_primary_10_37489_0235_2990_2024_69_3_4_21_30 crossref_primary_10_1016_j_jbc_2021_101518 crossref_primary_10_1021_acscentsci_0c00489 crossref_primary_10_1002_minf_202000096 crossref_primary_10_1159_000509086 crossref_primary_10_1021_acs_jproteome_0c00526 crossref_primary_10_1093_eurheartj_ehab697 crossref_primary_10_1080_07328303_2023_2189473 crossref_primary_10_1016_j_drup_2020_100719 crossref_primary_10_1016_j_mcp_2024_101973 crossref_primary_10_1128_jvi_01708_24 crossref_primary_10_1002_jmv_25788 crossref_primary_10_3390_ijms22115434 crossref_primary_10_1007_s13337_020_00580_4 crossref_primary_10_1016_j_bioorg_2020_104490 crossref_primary_10_1039_D0RA03774E crossref_primary_10_3390_microorganisms8111840 crossref_primary_10_1016_j_micpath_2021_104908 crossref_primary_10_17826_cumj_517406 crossref_primary_10_3390_v14030519 crossref_primary_10_1016_j_onehlt_2020_100128 crossref_primary_10_3390_v12040372 crossref_primary_10_1007_s43440_020_00155_6 crossref_primary_10_3390_v11040326 crossref_primary_10_1007_s12291_020_00953_y crossref_primary_10_3390_microorganisms8060850 crossref_primary_10_3390_jcm9082399 crossref_primary_10_1111_tid_13629 crossref_primary_10_1002_adfm_202107826 crossref_primary_10_1007_s00228_020_03020_w crossref_primary_10_1039_D0CB00197J crossref_primary_10_1128_jvi_00907_22 crossref_primary_10_3390_ijerph19148845 crossref_primary_10_1002_jmv_25798 crossref_primary_10_1007_s11356_021_16715_z crossref_primary_10_1016_j_biopha_2020_110668 crossref_primary_10_46332_aemj_805416 crossref_primary_10_4103_bbrj_bbrj_161_21 crossref_primary_10_3390_molecules28020795 crossref_primary_10_2174_1389557520666201113105940 crossref_primary_10_1016_j_ab_2021_114118 crossref_primary_10_3947_ic_2020_52_3_369 crossref_primary_10_1016_j_drup_2020_100721 crossref_primary_10_3390_v14112429 crossref_primary_10_5005_jp_journals_10082_02241 crossref_primary_10_1007_s10930_020_09933_w crossref_primary_10_1186_s13020_020_00353_7 crossref_primary_10_1080_17512433_2020_1803740 crossref_primary_10_1007_s40615_021_01193_3 crossref_primary_10_1016_j_mayocp_2020_02_003 crossref_primary_10_1093_cvr_cvab343 crossref_primary_10_1016_j_jaip_2021_06_045 crossref_primary_10_3389_fphar_2021_632677 crossref_primary_10_1016_j_jpha_2021_03_012 crossref_primary_10_1039_D0RA05821A crossref_primary_10_4103_2455_1732_331787 crossref_primary_10_1016_j_cmrp_2020_05_013 crossref_primary_10_3389_fmicb_2022_933983 crossref_primary_10_3390_v13040560 crossref_primary_10_3389_fimmu_2022_1015355 crossref_primary_10_3390_pharmaceutics13091400 crossref_primary_10_1016_j_drup_2020_100733 crossref_primary_10_1111_evo_14107 crossref_primary_10_1038_s41467_021_26760_4 crossref_primary_10_3389_fphar_2020_585331 crossref_primary_10_1039_D0CP05948J crossref_primary_10_3389_ti_2022_10369 crossref_primary_10_1002_ardp_202400307 crossref_primary_10_1021_acs_biochem_1c00292 crossref_primary_10_1007_s00044_020_02625_1 crossref_primary_10_15212_bioi_2024_0055 crossref_primary_10_29333_ejgm_8258 crossref_primary_10_3390_immuno1010004 crossref_primary_10_1016_j_ijantimicag_2022_106542 crossref_primary_10_1016_j_cbi_2022_110097 crossref_primary_10_1016_j_jchromb_2021_122641 crossref_primary_10_2147_IJGM_S263666 crossref_primary_10_3390_immuno2020022 crossref_primary_10_1007_s13205_021_02905_6 crossref_primary_10_1016_j_crphar_2021_100072 crossref_primary_10_1016_j_nano_2019_03_004 crossref_primary_10_1016_j_matpr_2021_03_066 crossref_primary_10_1177_13596535221097495 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1021_acs_jmedchem_0c01929 crossref_primary_10_1186_s12967_020_02344_6 crossref_primary_10_1016_j_ejphar_2020_173372 crossref_primary_10_1016_j_meegid_2020_104583 crossref_primary_10_1016_j_apsb_2021_03_028 crossref_primary_10_1016_j_ijbiomac_2020_09_204 crossref_primary_10_1016_j_virusres_2020_198167 crossref_primary_10_1146_annurev_micro_110520_023212 crossref_primary_10_1038_s41598_021_03814_7 crossref_primary_10_1016_j_virs_2023_06_010 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_3923_ajsr_2021_13_23 crossref_primary_10_1128_spectrum_02448_22 crossref_primary_10_1016_j_metop_2021_100121 crossref_primary_10_1126_sciadv_abc7112 crossref_primary_10_1002_psp4_12584 crossref_primary_10_1021_acs_jmedchem_0c00606 crossref_primary_10_3390_pathogens11030368 crossref_primary_10_3389_fphar_2022_864798 crossref_primary_10_1016_j_cell_2020_05_034 crossref_primary_10_1016_j_ctcp_2020_101214 crossref_primary_10_1007_s00203_021_02527_9 crossref_primary_10_1007_s00508_020_01734_6 crossref_primary_10_3390_v17020168 crossref_primary_10_1016_j_dsx_2020_05_018 crossref_primary_10_2174_0109298673294251240229070740 crossref_primary_10_3390_pathogens9050320 crossref_primary_10_1007_s41061_021_00335_9 crossref_primary_10_3389_fphar_2021_626510 crossref_primary_10_3390_v10120721 crossref_primary_10_1016_j_cegh_2020_07_011 crossref_primary_10_2174_0115748855255004231001182927 crossref_primary_10_2174_1871526521666210301143441 crossref_primary_10_1021_acsptsci_1c00022 crossref_primary_10_1039_D2CP05883A crossref_primary_10_1016_j_antiviral_2018_12_015 crossref_primary_10_3390_pathogens9050331 crossref_primary_10_12968_indn_2020_4_6 crossref_primary_10_2174_1574888X18666221221123505 crossref_primary_10_1016_j_cegh_2020_07_006 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1128_mBio_03492_20 crossref_primary_10_1016_j_biocel_2021_106114 crossref_primary_10_1038_s41598_022_23342_2 crossref_primary_10_1126_sciadv_abe0751 crossref_primary_10_4236_pp_2020_116009 crossref_primary_10_12688_f1000research_109586_1 crossref_primary_10_1007_s44179_022_00019_9 crossref_primary_10_1016_j_csbj_2022_08_056 crossref_primary_10_2217_fmb_2021_0019 crossref_primary_10_1186_s42269_022_00861_6 crossref_primary_10_1128_aac_00198_22 crossref_primary_10_3389_fphar_2020_00791 crossref_primary_10_1002_bmc_5238 crossref_primary_10_5937_mp72_33371 crossref_primary_10_3390_pathogens10091076 crossref_primary_10_1111_apt_15779 crossref_primary_10_1021_acs_biochem_2c00341 crossref_primary_10_1111_imr_12897 crossref_primary_10_1016_j_heliyon_2021_e06035 crossref_primary_10_1590_0001_3765202020200466 crossref_primary_10_1016_j_biopha_2021_112276 crossref_primary_10_1016_j_jinf_2020_02_010 crossref_primary_10_2174_1874467213666201204154239 crossref_primary_10_3390_foods10051005 crossref_primary_10_37871_jbres1146 crossref_primary_10_1016_S1131_3587_20_30033_9 crossref_primary_10_1038_s41597_021_00848_4 crossref_primary_10_29252_hrjbaq_5_3_180 crossref_primary_10_3390_children10050810 crossref_primary_10_1080_07391102_2020_1777903 crossref_primary_10_3851_IMP3362 crossref_primary_10_1002_chem_202403390 crossref_primary_10_1002_phar_2403 crossref_primary_10_3389_fimmu_2020_01991 crossref_primary_10_36106_gjra_7801316 crossref_primary_10_1080_07391102_2020_1824816 crossref_primary_10_37489_0235_2990_2022_67_7_8_45_50 crossref_primary_10_1016_j_bmcl_2020_126983 crossref_primary_10_1080_07391102_2021_1871956 crossref_primary_10_37489_2588_0519_2020_S4_99_102 crossref_primary_10_1080_07391102_2021_1970024 crossref_primary_10_1080_07391102_2020_1821785 crossref_primary_10_1016_j_sjbs_2021_08_100 crossref_primary_10_3390_ijms21103622 crossref_primary_10_1126_scitranslmed_abb5883 crossref_primary_10_1016_j_ijbiomac_2020_05_184 crossref_primary_10_1007_s10389_021_01530_0 crossref_primary_10_1016_j_micpath_2020_104241 crossref_primary_10_3389_fmicb_2020_01186 crossref_primary_10_1038_s41409_018_0386_z crossref_primary_10_1016_j_ajp_2022_103101 crossref_primary_10_1016_j_celrep_2020_107940 crossref_primary_10_1016_j_ejphar_2020_173328 crossref_primary_10_1016_j_ejphar_2020_173326 crossref_primary_10_1016_j_ejphar_2020_173568 crossref_primary_10_2174_1566524021666210803154250 crossref_primary_10_1021_acs_jmedchem_0c00626 crossref_primary_10_3389_fvets_2020_584673 crossref_primary_10_1016_j_scitotenv_2020_138277 crossref_primary_10_5811_westjem_2020_5_47658 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1038_s41401_020_0438_y crossref_primary_10_1007_s11596_023_2797_3 crossref_primary_10_1186_s13578_022_00899_z crossref_primary_10_3390_v15040947 crossref_primary_10_1016_j_ejmech_2020_112527 crossref_primary_10_22159_ijap_2025v17i2_53121 crossref_primary_10_1016_j_ympev_2020_107017 crossref_primary_10_1016_j_jbc_2024_107514 crossref_primary_10_1111_ajt_15982 crossref_primary_10_1016_j_micpath_2020_104277 crossref_primary_10_1016_j_coviro_2022_101279 crossref_primary_10_2174_1568026620999200413145654 crossref_primary_10_7759_cureus_36247 crossref_primary_10_1016_j_phrs_2020_104929 crossref_primary_10_1089_dna_2020_5703 crossref_primary_10_1080_07391102_2020_1844804 crossref_primary_10_1186_s12929_022_00847_6 crossref_primary_10_1016_j_cmi_2020_05_019 crossref_primary_10_1093_nar_gkac1207 crossref_primary_10_1002_ptr_7172 crossref_primary_10_2147_DDDT_S320320 crossref_primary_10_2174_1574885518666230124123054 crossref_primary_10_32345_2664_4738_2_2021_13 crossref_primary_10_1002_mco2_186 crossref_primary_10_1080_21645515_2020_1794685 crossref_primary_10_1126_scitranslmed_abm3410 crossref_primary_10_3390_biomedicines8100376 crossref_primary_10_3389_fimmu_2020_570927 crossref_primary_10_1128_mBio_02707_20 crossref_primary_10_2174_2589977513666210315094752 crossref_primary_10_1016_j_ijbiomac_2021_10_216 crossref_primary_10_1080_14787210_2021_1863146 crossref_primary_10_5812_archcid_103537 crossref_primary_10_1016_j_coviro_2021_05_005 crossref_primary_10_1038_s41418_021_00900_1 crossref_primary_10_3389_fviro_2022_956113 crossref_primary_10_3390_v15122295 crossref_primary_10_1016_j_phrs_2022_106201 crossref_primary_10_1038_s41594_022_00734_6 crossref_primary_10_1016_j_intimp_2024_112465 crossref_primary_10_1021_acs_jpclett_0c00571 crossref_primary_10_1016_j_cell_2020_07_033 crossref_primary_10_1039_D0CC02834G crossref_primary_10_1002_jmv_28246 crossref_primary_10_4103_ACCJ_ACCJ_3_20 crossref_primary_10_1093_nar_gkab320 crossref_primary_10_37978_pjsm_v1i4_300 crossref_primary_10_3892_ijmm_2020_4608 crossref_primary_10_3390_molecules26010039 crossref_primary_10_3233_PRM_200026 crossref_primary_10_1016_j_compbiolchem_2020_107408 crossref_primary_10_3390_jcm11175066 crossref_primary_10_1016_j_coviro_2019_04_002 crossref_primary_10_1111_lam_13637 crossref_primary_10_1128_JVI_01819_20 crossref_primary_10_1177_1708538120941635 crossref_primary_10_37489_2588_0527_2021_1_38_41 crossref_primary_10_1056_NEJMoa2007764 crossref_primary_10_1016_j_phymed_2020_153440 crossref_primary_10_1134_S0036024423030299 crossref_primary_10_1093_jac_dkab189 crossref_primary_10_1038_s41598_023_29517_9 crossref_primary_10_1128_aac_00222_22 crossref_primary_10_1016_j_drudis_2020_10_018 crossref_primary_10_1007_s11739_020_02569_9 crossref_primary_10_1093_bib_bbaa209 crossref_primary_10_3389_fimmu_2022_844749 crossref_primary_10_1208_s12249_020_01679_z crossref_primary_10_1128_mbio_00110_24 crossref_primary_10_3748_wjg_v26_i46_7272 crossref_primary_10_1128_mSphere_00317_20 crossref_primary_10_1016_j_isci_2020_102021 crossref_primary_10_1007_s41061_020_00318_2 crossref_primary_10_1071_MA21013 crossref_primary_10_1093_cid_ciaa1474 crossref_primary_10_4103_ijot_ijot_54_21 crossref_primary_10_3390_cells10020206 crossref_primary_10_1038_s41598_020_66440_9 crossref_primary_10_1111_sji_12998 crossref_primary_10_1007_s11356_021_16096_3 crossref_primary_10_1055_s_0040_1715865 crossref_primary_10_1080_1061186X_2021_2013852 crossref_primary_10_3390_ijms21072657 crossref_primary_10_1038_s41467_018_08015_x crossref_primary_10_1093_ofid_ofaa105 crossref_primary_10_1007_s11739_020_02510_0 crossref_primary_10_1021_acs_jcim_0c01010 crossref_primary_10_1590_1807_3107bor_2020_vol34_0041 crossref_primary_10_7554_eLife_70968 crossref_primary_10_4155_fmc_2020_0147 crossref_primary_10_1098_rsfs_2020_0081 crossref_primary_10_1016_j_ejps_2020_105522 crossref_primary_10_1016_j_clim_2020_108409 crossref_primary_10_1016_j_str_2024_08_005 crossref_primary_10_1016_j_cmi_2020_04_031 crossref_primary_10_2147_DDDT_S354841 crossref_primary_10_2147_JIR_S267280 crossref_primary_10_2174_0929867327666200513075430 crossref_primary_10_1016_j_bcp_2020_114296 crossref_primary_10_1038_s41580_021_00432_z crossref_primary_10_1371_journal_ppat_1009929 crossref_primary_10_1007_s11356_021_16809_8 crossref_primary_10_1016_j_cmi_2020_04_023 crossref_primary_10_1080_03602532_2020_1803907 crossref_primary_10_1016_j_jiph_2022_11_022 crossref_primary_10_1080_14767058_2021_1903426 crossref_primary_10_3389_fphar_2020_01224 crossref_primary_10_1007_s12192_020_01155_4 crossref_primary_10_3389_fmicb_2022_843587 crossref_primary_10_1016_j_chemosphere_2021_129968 crossref_primary_10_3389_fmicb_2020_01105 crossref_primary_10_1177_25151355221144845 crossref_primary_10_1021_acs_jcim_0c01277 crossref_primary_10_1631_jzus_B2000083 crossref_primary_10_1016_j_antiviral_2022_105501 crossref_primary_10_1042_BSR20231395 crossref_primary_10_3390_jcm9061917 crossref_primary_10_1016_j_biopha_2021_111599 crossref_primary_10_1128_AAC_01814_20 crossref_primary_10_3390_ijms21113812 crossref_primary_10_3389_fchem_2020_627340 crossref_primary_10_1007_s00894_022_05137_4 crossref_primary_10_1016_j_yjmcc_2020_12_009 crossref_primary_10_1371_journal_pntd_0010220 crossref_primary_10_1002_bies_202000240 crossref_primary_10_1186_s40779_020_00240_0 crossref_primary_10_1515_dmdi_2020_0173 crossref_primary_10_1016_j_biopha_2020_111035 crossref_primary_10_1016_j_antiviral_2021_105078 crossref_primary_10_1016_j_jcyt_2020_04_100 crossref_primary_10_3390_molecules29235564 crossref_primary_10_2174_1574886316666210728110330 crossref_primary_10_1016_j_bbrc_2020_03_034 crossref_primary_10_1016_j_ejphar_2020_173705 crossref_primary_10_1111_nyas_14958 crossref_primary_10_1111_nyas_14957 crossref_primary_10_1016_j_ijbiomac_2021_10_172 crossref_primary_10_1080_07391102_2020_1802345 crossref_primary_10_1007_s13337_021_00654_x crossref_primary_10_1016_S0140_6736_20_32021_3 crossref_primary_10_2217_fvl_2020_0369 crossref_primary_10_1021_acs_jpcb_0c07312 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_20996_1819_6446_2020_06_08 crossref_primary_10_1007_s00203_021_02183_z crossref_primary_10_1021_acscentsci_0c00984 crossref_primary_10_1093_jac_dkaa152 crossref_primary_10_1038_s41598_024_59957_w crossref_primary_10_1016_j_jbc_2022_102169 crossref_primary_10_1073_pnas_2012294117 crossref_primary_10_1002_2211_5463_13392 crossref_primary_10_3390_life11030197 crossref_primary_10_1007_s11655_021_3512_5 crossref_primary_10_1016_j_cellin_2022_100046 crossref_primary_10_1016_j_biopha_2021_111330 crossref_primary_10_1016_j_jacbts_2021_01_002 crossref_primary_10_1097_MOT_0000000000000888 crossref_primary_10_1021_acsinfecdis_1c00131 crossref_primary_10_3389_fmolb_2020_00215 crossref_primary_10_1177_2472555220979579 crossref_primary_10_1097_MCC_0000000000000858 crossref_primary_10_1186_s40779_020_00251_x crossref_primary_10_1038_s41598_021_93145_4 crossref_primary_10_3390_ph15091067 crossref_primary_10_1111_febs_15815 crossref_primary_10_7759_cureus_22328 crossref_primary_10_1093_ofid_ofab217 crossref_primary_10_1007_s40279_020_01288_7 crossref_primary_10_1016_j_biopha_2021_111313 crossref_primary_10_1177_13596535221082773 crossref_primary_10_1002_phar_2398 crossref_primary_10_1002_asia_201900841 crossref_primary_10_1002_phar_2394 crossref_primary_10_1099_jgv_0_001453 crossref_primary_10_1002_masy_202000336 crossref_primary_10_1093_mrcr_rxab032 crossref_primary_10_3390_mps5010005 crossref_primary_10_1016_j_antiviral_2021_105081 crossref_primary_10_1021_acs_jmedchem_2c01229 crossref_primary_10_1016_j_cellin_2022_100029 crossref_primary_10_3389_fmed_2020_606429 crossref_primary_10_2174_2666796701999200925204309 crossref_primary_10_1371_journal_pcbi_1008785 crossref_primary_10_3390_antibiotics12091436 crossref_primary_10_1007_s00705_020_04768_3 crossref_primary_10_1016_j_cytogfr_2020_06_001 crossref_primary_10_2147_DDDT_S475005 crossref_primary_10_1016_j_antiviral_2021_105033 crossref_primary_10_1073_pnas_2102516118 crossref_primary_10_1002_cnl2_46 crossref_primary_10_3390_ijms22010386 crossref_primary_10_1016_j_clinthera_2018_06_016 crossref_primary_10_1016_j_antiviral_2022_105329 crossref_primary_10_1039_D0RA05434H crossref_primary_10_1093_nar_gkab1279 crossref_primary_10_1186_s13063_021_05538_5 crossref_primary_10_5005_jp_journals_10070_6126 crossref_primary_10_1016_j_gendis_2020_07_001 crossref_primary_10_1016_j_jddst_2024_106196 crossref_primary_10_3390_jcm9072084 crossref_primary_10_2174_2666796701999201026203911 crossref_primary_10_1097_CNQ_0000000000000346 crossref_primary_10_1126_scitranslmed_abo0718 crossref_primary_10_1016_j_apsb_2020_04_006 crossref_primary_10_1128_mbio_01587_23 crossref_primary_10_1128_JVI_00023_19 crossref_primary_10_1021_acs_chemrev_0c00967 crossref_primary_10_2147_RRTM_S274673 crossref_primary_10_1007_s43440_020_00152_9 crossref_primary_10_1136_bmjopen_2020_039159 crossref_primary_10_3390_v14050861 crossref_primary_10_3390_antiox9070636 crossref_primary_10_1016_j_arcmed_2020_09_005 crossref_primary_10_1038_s41467_021_21903_z crossref_primary_10_3390_v15051167 crossref_primary_10_1080_01652176_2024_2305731 crossref_primary_10_1111_resp_14106 crossref_primary_10_1016_j_ijpharm_2022_122357 crossref_primary_10_4081_mrm_2020_708 crossref_primary_10_1039_D1ME00088H crossref_primary_10_18231_j_ijmr_2021_002 crossref_primary_10_1074_jbc_REV120_013930 crossref_primary_10_3390_jcm9041131 crossref_primary_10_1021_acsmedchemlett_0c00316 crossref_primary_10_4236_pp_2021_121003 crossref_primary_10_3389_fphar_2020_01196 crossref_primary_10_1016_j_crmeth_2022_100170 crossref_primary_10_1039_D0NJ02656E crossref_primary_10_3390_scipharm88020029 crossref_primary_10_1128_spectrum_03954_23 crossref_primary_10_4103_jgid_jgid_86_20 crossref_primary_10_1016_j_antiviral_2020_104786 crossref_primary_10_3390_biom11020196 crossref_primary_10_3389_fcimb_2021_827151 crossref_primary_10_1016_j_glmedi_2023_100041 crossref_primary_10_1016_j_jmb_2020_11_024 crossref_primary_10_3389_fcimb_2021_700502 crossref_primary_10_1007_s12250_021_00362_2 crossref_primary_10_1016_j_dnarep_2024_103773 crossref_primary_10_1016_j_jbc_2022_101923 crossref_primary_10_1128_JVI_00711_19 crossref_primary_10_3390_pathogens10060636 crossref_primary_10_1016_j_ejmech_2022_114239 crossref_primary_10_3390_pathogens10091150 crossref_primary_10_1016_j_antiviral_2019_104541 crossref_primary_10_1016_j_jchemneu_2020_101874 crossref_primary_10_1080_20009666_2021_1874093 crossref_primary_10_1080_07391102_2021_1955743 crossref_primary_10_1016_j_molcel_2021_01_035 crossref_primary_10_3357_AMHP_5928_2021 crossref_primary_10_2147_IDR_S264882 crossref_primary_10_3389_fmed_2020_00480 crossref_primary_10_2147_DDDT_S261154 crossref_primary_10_3389_fmed_2024_1390164 crossref_primary_10_1016_j_antiviral_2020_104793 crossref_primary_10_3390_v14061186 crossref_primary_10_1590_pboci_2020_137 crossref_primary_10_1016_j_ijantimicag_2020_106080 crossref_primary_10_3389_fmolb_2020_636738 crossref_primary_10_1016_j_heliyon_2023_e13285 crossref_primary_10_1039_D1NJ00160D crossref_primary_10_1038_s41467_024_52071_5 crossref_primary_10_1016_j_jiph_2020_07_004 crossref_primary_10_2217_fmb_2021_0116 crossref_primary_10_1007_s13770_021_00348_x crossref_primary_10_1007_s44231_022_00021_4 crossref_primary_10_3390_microorganisms8070991 crossref_primary_10_1001_jamanetworkopen_2021_14741 crossref_primary_10_18231_j_ijca_2021_097 crossref_primary_10_3389_fmed_2024_1287836 crossref_primary_10_1111_joim_13091 crossref_primary_10_1542_peds_2020_1701 crossref_primary_10_3390_org5020006 crossref_primary_10_1016_j_jsps_2020_08_015 crossref_primary_10_1093_jpids_piaa115 crossref_primary_10_3389_fimmu_2020_616595 crossref_primary_10_1002_prp2_674 crossref_primary_10_3390_su12093603 crossref_primary_10_1089_adt_2020_996 crossref_primary_10_1007_s11739_020_02383_3 crossref_primary_10_3390_v13071369 crossref_primary_10_1016_j_jiph_2020_07_010 crossref_primary_10_3390_ijms21082839 crossref_primary_10_1128_AAC_00399_20 crossref_primary_10_1016_j_scitotenv_2020_138914 crossref_primary_10_1007_s40472_020_00304_z crossref_primary_10_3389_fimmu_2020_552909 crossref_primary_10_1371_journal_ppat_1011231 crossref_primary_10_1016_j_ijbiomac_2020_09_098 crossref_primary_10_1039_D1MD00131K crossref_primary_10_2174_2666796704666230403101610 crossref_primary_10_1016_j_celrep_2021_109450 crossref_primary_10_2174_1568026620999200517043137 crossref_primary_10_3390_ph16101378 crossref_primary_10_3390_v14061137 crossref_primary_10_1021_acscentsci_0c01242 crossref_primary_10_3389_fphar_2020_00950 crossref_primary_10_1016_j_lfs_2020_117765 crossref_primary_10_1007_s11033_021_06630_4 crossref_primary_10_17343_sdutfd_903374 crossref_primary_10_4081_idr_2020_8543 crossref_primary_10_1038_s41586_020_2368_8 crossref_primary_10_3389_fphar_2020_563478 crossref_primary_10_1002_cbf_3591 crossref_primary_10_1016_j_ejphar_2020_173748 crossref_primary_10_1007_s40121_020_00318_1 crossref_primary_10_1039_D1CE00175B crossref_primary_10_2174_1389201023666220507003726 crossref_primary_10_1039_D3RA06479D crossref_primary_10_3390_molecules27092918 crossref_primary_10_1080_14787210_2019_1635009 crossref_primary_10_33882_jida_15_27489 crossref_primary_10_7759_cureus_43671 crossref_primary_10_1016_j_molcel_2020_07_027 crossref_primary_10_3390_tropicalmed5030112 crossref_primary_10_2478_abmj_2020_0003 crossref_primary_10_1016_j_ijbiomac_2021_01_076 crossref_primary_10_3389_fmicb_2020_02098 crossref_primary_10_2147_IJN_S315705 crossref_primary_10_1038_s41467_019_13940_6 crossref_primary_10_3390_cells10061412 crossref_primary_10_2147_TCRM_S262936 crossref_primary_10_1073_pnas_2106379119 crossref_primary_10_1089_mab_2023_0010 crossref_primary_10_1080_07391102_2019_1696705 crossref_primary_10_3390_covid2120126 crossref_primary_10_1016_j_isci_2020_101992 crossref_primary_10_1074_jbc_AC120_013056 crossref_primary_10_1038_s41467_020_19684_y crossref_primary_10_1007_s12035_020_02074_2 crossref_primary_10_1084_jem_20200537 crossref_primary_10_3390_molecules25102343 crossref_primary_10_3389_fmicb_2020_587944 crossref_primary_10_1038_s41418_021_00909_6 crossref_primary_10_1055_a_1288_4078 crossref_primary_10_1016_j_jiph_2022_09_007 crossref_primary_10_7326_M20_5831 crossref_primary_10_1038_s41598_023_47511_z crossref_primary_10_1007_s11845_021_02820_y crossref_primary_10_1016_j_rmed_2020_106192 crossref_primary_10_1039_D0CS01118E crossref_primary_10_1002_cbic_202000595 crossref_primary_10_4331_wjbc_v14_i4_72 |
Cites_doi | 10.1128/AAC.00649-13 10.1128/CMR.00102-15 10.1093/nar/25.22.4532 10.1128/JVI.00080-16 10.1093/nar/gkg916 10.1128/AAC.01184-07 10.1038/nrd.2015.37 10.1016/S0021-9258(19)68420-6 10.1128/JVI.02346-12 10.1038/nature13027 10.1007/978-1-4939-2438-7_1 10.1038/nm.3985 10.1371/journal.ppat.1000896 10.1056/NEJMsr1408795 10.1128/JVI.76.21.11065-11078.2002 10.1073/pnas.0508200103 10.1073/pnas.1311542110 10.1073/pnas.70.4.1174 10.1371/journal.ppat.0010011 10.1128/CMR.00023-07 10.1016/j.jiph.2016.04.002 10.1177/095632020601700506 10.1073/pnas.1517719113 10.1128/JVI.02520-12 10.1128/JVI.01296-07 10.1128/CMR.00102-14 10.1073/pnas.1718806115 10.1128/JVI.79.24.15511-15524.2005 10.1371/journal.pmed.0030343 10.1371/journal.ppat.1003565 10.1016/j.antiviral.2013.11.006 10.1126/science.271.5253.1282 10.1038/nature17180 10.1097/00002030-199807000-00006 10.1073/pnas.1232294100 10.1056/NEJMoa030781 10.1073/pnas.1111650108 10.1126/scitranslmed.aal3653 10.1016/j.bmcl.2012.02.105 10.1073/pnas.1405889111 10.1128/JVI.02154-08 10.1074/jbc.M305041200 10.1128/mBio.00271-13 10.1128/AAC.01598-05 10.1073/pnas.0700518104 10.1016/j.antiviral.2013.08.016 10.1073/pnas.1735582100 10.1073/pnas.1323705111 10.1056/NEJMoa1211721 10.1046/j.1440-1843.2003.00518.x 10.1093/infdis/jiv564 10.1038/nprot.2011.330 10.1038/srep43395 10.1038/82191 10.1128/mBio.00047-14 10.3390/v7102868 |
ContentType | Journal Article |
Contributor | Enjuanes, Luis Gallagher, Tom |
Contributor_xml | – sequence: 1 givenname: Tom surname: Gallagher fullname: Gallagher, Tom – sequence: 2 givenname: Luis surname: Enjuanes fullname: Enjuanes, Luis |
Copyright | Copyright © 2018 Agostini et al. Copyright © 2018 Agostini et al. 2018 Agostini et al. |
Copyright_xml | – notice: Copyright © 2018 Agostini et al. – notice: Copyright © 2018 Agostini et al. 2018 Agostini et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.00221-18 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Coronavirus Inhibition by Remdesivir (GS-5734) |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_1b011f9fd4ae445884489fb5ef613ee9 PMC5844999 29511076 10_1128_mBio_00221_18 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI112541 – fundername: NIAID NIH HHS grantid: T32 AI089554 – fundername: NIAID NIH HHS grantid: R01 AI132178 – fundername: NIAID NIH HHS grantid: R01 AI108197 – fundername: NIDDK NIH HHS grantid: P30 DK065988 – fundername: NIAID NIH HHS grantid: U19 AI109680 – fundername: ; grantid: BOUCHE15RO – fundername: ; grantid: 5U19AI109680 – fundername: ; grantid: 5T32AI089554 – fundername: ; grantid: R01AI108197 – fundername: ; grantid: P30DK065988 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c519t-f32bc9a61a0a20f2b18992c1c1d42e5c1ef19a9628f753e5fb0760748d1da16d3 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Thu Aug 21 18:17:49 EDT 2025 Fri Jul 11 00:28:27 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Tue Jul 01 01:52:36 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | antiviral resistance nucleoside analogs antiviral agents SARS-CoV coronavirus pandemic RNA polymerases |
Language | English |
License | Copyright © 2018 Agostini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-f32bc9a61a0a20f2b18992c1c1d42e5c1ef19a9628f753e5fb0760748d1da16d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M.L.A. and E.L.A. contributed equally to this article. This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Tom Gallagher, Loyola University Medical Center; Luis Enjuanes, Centro Nacional de Biotecnologia, CNB-CSIC. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00221-18 |
PMID | 29511076 |
PQID | 2011615664 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b011f9fd4ae445884489fb5ef613ee9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5844999 proquest_miscellaneous_2011615664 pubmed_primary_29511076 crossref_primary_10_1128_mBio_00221_18 crossref_citationtrail_10_1128_mBio_00221_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180306 |
PublicationDateYYYYMMDD | 2018-03-06 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180306 day: 6 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Fulcher LM (e_1_3_3_57_2) 2004; 107 Te HS (e_1_3_3_44_2) 2007; 3 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_42_2 doi: 10.1128/AAC.00649-13 – ident: e_1_3_3_16_2 doi: 10.1128/CMR.00102-15 – volume: 3 start-page: 218 year: 2007 ident: e_1_3_3_44_2 article-title: Mechanism of action of ribavirin in the treatment of chronic hepatitis C publication-title: Gastroenterol Hepatol – ident: e_1_3_3_49_2 doi: 10.1093/nar/25.22.4532 – ident: e_1_3_3_33_2 doi: 10.1128/JVI.00080-16 – ident: e_1_3_3_34_2 doi: 10.1093/nar/gkg916 – ident: e_1_3_3_29_2 doi: 10.1128/AAC.01184-07 – ident: e_1_3_3_8_2 doi: 10.1038/nrd.2015.37 – ident: e_1_3_3_46_2 doi: 10.1016/S0021-9258(19)68420-6 – ident: e_1_3_3_43_2 doi: 10.1128/JVI.02346-12 – ident: e_1_3_3_26_2 doi: 10.1038/nature13027 – ident: e_1_3_3_31_2 doi: 10.1007/978-1-4939-2438-7_1 – ident: e_1_3_3_12_2 doi: 10.1038/nm.3985 – ident: e_1_3_3_19_2 doi: 10.1371/journal.ppat.1000896 – ident: e_1_3_3_10_2 doi: 10.1056/NEJMsr1408795 – ident: e_1_3_3_55_2 doi: 10.1128/JVI.76.21.11065-11078.2002 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0508200103 – ident: e_1_3_3_58_2 doi: 10.1073/pnas.1311542110 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.70.4.1174 – ident: e_1_3_3_53_2 doi: 10.1371/journal.ppat.0010011 – ident: e_1_3_3_6_2 doi: 10.1128/CMR.00023-07 – ident: e_1_3_3_20_2 doi: 10.1016/j.jiph.2016.04.002 – ident: e_1_3_3_21_2 doi: 10.1177/095632020601700506 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.1517719113 – ident: e_1_3_3_56_2 doi: 10.1128/JVI.02520-12 – ident: e_1_3_3_18_2 doi: 10.1128/JVI.01296-07 – ident: e_1_3_3_9_2 doi: 10.1128/CMR.00102-14 – ident: e_1_3_3_51_2 doi: 10.1073/pnas.1718806115 – ident: e_1_3_3_30_2 doi: 10.1128/JVI.79.24.15511-15524.2005 – ident: e_1_3_3_5_2 doi: 10.1371/journal.pmed.0030343 – ident: e_1_3_3_23_2 doi: 10.1371/journal.ppat.1003565 – ident: e_1_3_3_22_2 doi: 10.1016/j.antiviral.2013.11.006 – ident: e_1_3_3_48_2 doi: 10.1126/science.271.5253.1282 – ident: e_1_3_3_28_2 doi: 10.1038/nature17180 – ident: e_1_3_3_38_2 doi: 10.1097/00002030-199807000-00006 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.1232294100 – ident: e_1_3_3_2_2 doi: 10.1056/NEJMoa030781 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1111650108 – ident: e_1_3_3_24_2 doi: 10.1126/scitranslmed.aal3653 – ident: e_1_3_3_25_2 doi: 10.1016/j.bmcl.2012.02.105 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1405889111 – ident: e_1_3_3_54_2 doi: 10.1128/JVI.02154-08 – ident: e_1_3_3_36_2 doi: 10.1074/jbc.M305041200 – ident: e_1_3_3_39_2 doi: 10.1128/mBio.00271-13 – ident: e_1_3_3_41_2 doi: 10.1128/AAC.01598-05 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.0700518104 – ident: e_1_3_3_7_2 doi: 10.1016/j.antiviral.2013.08.016 – ident: e_1_3_3_59_2 doi: 10.1073/pnas.1735582100 – ident: e_1_3_3_50_2 doi: 10.1073/pnas.1323705111 – ident: e_1_3_3_3_2 doi: 10.1056/NEJMoa1211721 – ident: e_1_3_3_4_2 doi: 10.1046/j.1440-1843.2003.00518.x – ident: e_1_3_3_52_2 doi: 10.1093/infdis/jiv564 – ident: e_1_3_3_32_2 doi: 10.1038/nprot.2011.330 – ident: e_1_3_3_27_2 doi: 10.1038/srep43395 – ident: e_1_3_3_40_2 doi: 10.1038/82191 – ident: e_1_3_3_13_2 doi: 10.1128/mBio.00047-14 – ident: e_1_3_3_15_2 doi: 10.3390/v7102868 – volume: 107 start-page: 183 year: 2004 ident: e_1_3_3_57_2 article-title: Well-differentiated human airway epithelial cell cultures publication-title: Methods Mol Med |
SSID | ssj0000331830 |
Score | 2.6650555 |
Snippet | Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated... ABSTRACT Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Alanine - analogs & derivatives Alanine - pharmacology Animals antiviral agents Antiviral Agents - pharmacology antiviral resistance coronavirus Coronavirus - drug effects Coronavirus - enzymology Exoribonucleases - chemistry Exoribonucleases - genetics Exoribonucleases - metabolism Mice Mutation - genetics nucleoside analogs Ribonucleotides - pharmacology RNA polymerases SARS Virus - drug effects SARS Virus - genetics SARS-CoV Virus Replication - drug effects Virus Replication - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflu_iCCiYLgmTdL28e648xRODs-Tewv5mHALd61sd8X9E_yvnaS7y64ovvjYZtqGzKTzm2TyG0JeNUH7YMuaIbYGJr3UzGqvGNjaQ-XRR-dDYSef9PG5_HihLjZKfaWcsJEeeBy4Xe7QAmMbg7Qg87FK2bTRKYjoiADy0T30eRvBVP4HV8lWyxWppmh2r_cnfVo9EZylAh8bTihz9f8JYP6eJ7nheI7ukNtLxEj3xp7eJTegu0dujjUkF_fJz4PEQWC_T6bzgZ7Nh5ymkjNeF3TWU8R3dK9LJSLw1fQzXAcY0gV98_6MqbqSb-mHgZ7kgh0QqFvkJ75m6dP-apHWrAagtgu54RSBdpyOiff08Ec_nbi-S5TIKPSAnB8dfjk4Zsv6CsyjCmYsVsL51mpuSyvKKBzH4Et47nmQApTnEHlrWy2aiEENqOjSNl4tm8CD5TpUD8lO13fwmFApXB2lcpWKlbQquDpI7TRIr2toyqog71YDbvySfDzVwLgyOQgRjUn6MVk_hjcFeb0W_zaybvxNcD9pby2UyLLzDTQhszQh8y8TKsjLle4NTq60Y2I76OeDSehIpwhXFuTRaAvrTwnEphg764LUW1ay1Zftlm5ymQm8EfSlQPPJ_-j8U3ILe5mPSZb6GdmZTefwHHHSzL3IU-IXrDUTRQ priority: 102 providerName: Directory of Open Access Journals |
Title | Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29511076 https://www.proquest.com/docview/2011615664 https://pubmed.ncbi.nlm.nih.gov/PMC5844999 https://doaj.org/article/1b011f9fd4ae445884489fb5ef613ee9 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3bbtQwELWgCIkXRLkG2spICIFEaJw4TvKAUFv1AtKiirJo3yJfxrDSNoFkFzWf0L9m7GQXtmpfIiUe25FnbJ_x5Qwhr3IjtJFRFiK2hpBrLkIpdBqCzDQkGudofyls9EWcjPnnSTr5Ryk0NGB7rWvn4kmNm9n7i9_dR-zwH_oLMPnu-f60dgsjMQtZfpvcwUkpc310NCB9PygnznijJcvm1VyOExixBvpCYm2C8jz-14HPq2co_5uUjh6Q-wOapHu9-jfJLagekrt9fMnuEbk8cPwE8s-0WbT0bNH6Iyz-NGxH5zVF7Ef3Khc-AoumX-HcQOte6JvjszDNEv6WfmrpyAfzAENV53N899Kn9axz61ktUFkZn3CKINw2_aF8enhRN1NVV44uGYUek_HR4beDk3CIvRBqVM88tEmsdCEFk5GMIxsrho5ZrJlmhseQagaWFbIQcW7R4YHUKrfFl_HcMCOZMMkTslHVFTwjlMcqszxVSWoTLlOjMsOFEsC1yCCPkoC8WzZ4qQdichcfY1Z6ByXOS6eq0quqZHlAXq_Ef_WMHDcJ7jvtrYQckbb_UDc_yqFflkzhAGcLa7gE7m_t8rywKgWLOAegCMjLpe5L7HhuN0VWUC_a0iEn4bxfHpCnvS2sqlraUkCyNStZ-5f1lGr605N7IyB0TujzG8t8Qe5h1f5eZCS2yMa8WcA2AqO52vELCvg8nrAdb_5_Ab2zDtw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+Susceptibility+to+the+Antiviral+Remdesivir+%28GS-5734%29+Is+Mediated+by+the+Viral+Polymerase+and+the+Proofreading+Exoribonuclease&rft.jtitle=mBio&rft.au=Agostini%2C+Maria+L&rft.au=Andres%2C+Erica+L&rft.au=Sims%2C+Amy+C&rft.au=Graham%2C+Rachel+L&rft.date=2018-03-06&rft.eissn=2150-7511&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.00221-18&rft_id=info%3Apmid%2F29511076&rft.externalDocID=29511076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |