Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach
In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-bas...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 32; no. 5; pp. 821 - 837 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2013
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2012.2225636 |
Cover
Loading…
Abstract | In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. |
---|---|
AbstractList | In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the socalled region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. |
Author | Vincent, T. Chaari, L. Ciuciu, P. Dojat, M. Forbes, F. |
AuthorAffiliation | 1 LNAO, Laboratoire de Neuroimagerie Assistée par Ordinateur CEA : DSV/I2BM/NEUROSPIN CEA Saclay - Bât 145 - 91191 Gif-sur-Yvette, FR 2 LJK, Laboratoire Jean Kuntzmann MISTIS - Centre de Recherche INRIA Grenoble-Rhône-Alpes CNRS - Institut National Polytechnique de Grenoble (INPG) Université Joseph Fourier - Grenoble I Université Pierre-Mendès-France (UPMF) 655 avenue de l'Europe 38330 Montbonnot-Saint-Martin, FR 3 GIN, Grenoble Institut des Neurosciences INSERM : U836 Université Joseph Fourier - Grenoble I CHU Grenoble CEA : DSV/IRTSV UJF - Site Santé La Tronche - BP 170 - 38042 Grenoble Cedex 9, FR |
AuthorAffiliation_xml | – name: 3 GIN, Grenoble Institut des Neurosciences INSERM : U836 Université Joseph Fourier - Grenoble I CHU Grenoble CEA : DSV/IRTSV UJF - Site Santé La Tronche - BP 170 - 38042 Grenoble Cedex 9, FR – name: 2 LJK, Laboratoire Jean Kuntzmann MISTIS - Centre de Recherche INRIA Grenoble-Rhône-Alpes CNRS - Institut National Polytechnique de Grenoble (INPG) Université Joseph Fourier - Grenoble I Université Pierre-Mendès-France (UPMF) 655 avenue de l'Europe 38330 Montbonnot-Saint-Martin, FR – name: 1 LNAO, Laboratoire de Neuroimagerie Assistée par Ordinateur CEA : DSV/I2BM/NEUROSPIN CEA Saclay - Bât 145 - 91191 Gif-sur-Yvette, FR |
Author_xml | – sequence: 1 givenname: L. surname: Chaari fullname: Chaari, L. email: lotfi.chaari@inria.fr organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France – sequence: 2 givenname: T. surname: Vincent fullname: Vincent, T. email: thomas.vincent@inria.fr organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France – sequence: 3 givenname: F. surname: Forbes fullname: Forbes, F. organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France – sequence: 4 givenname: M. surname: Dojat fullname: Dojat, M. email: michel.dojat@ujf-grenoble.fr organization: INSERM, GIN & Univ. Joseph Fourier, Grenoble, France – sequence: 5 givenname: P. surname: Ciuciu fullname: Ciuciu, P. email: philippe.ciuciu@cea.fr organization: CEA/DSV/I2BM/Neurospin, CEA Saclay, Gif-sur-Yvette, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23096056$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00753873$$DView record in HAL |
BookMark | eNp9kc1vEzEUxC1URNPCHQkJ-ciBDc8fu8lekEJJ26BUSFWLuFm287Yx3axT21mp_32dJq2gB0629X4zHnuOyEHnOyTkPYMhY1B_ubqYDTkwPuScl5WoXpEBK8txwUv5-4AMgI_GBUDFD8lRjH8AmCyhfkMOuYC6grIakNtTHRP94V2X6HdMaJPzXTGNya30dkt9Q6e9v8UF_Ra06-gkE71L9zTvpz12qbjEVqc8by4uZ_Q6uu6GavpLB_dooFs6Wa-D13b5lrxudBvx3X49Jten06uT82L-82x2MpkXtmR1KhreVCgQpDQajTV60eTU-ZQjL0aNtIZxidYYwYVAI5tGGwO1xdqUFgDFMfm6811vzAoXNocMulXrkN8U7pXXTv076dxS3fheSeAwBpENPu8Mli9k55O5cl3EsFIAo1KMR6JnGf-0vy_4uw3GpFYuWmxb3aHfRMWErCVALbbox7-jPZs_FZKBagfY4GMM2Cjr0uNH5qSuVQzUtnmVm1fb5tW--SyEF8In7_9IPuwkDhGf8UqIUo6ZeAAbBbp8 |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_3389_fnins_2014_00067 crossref_primary_10_1016_j_neuroimage_2016_11_040 crossref_primary_10_1007_s11222_020_09935_9 crossref_primary_10_1109_TMI_2019_2942765 crossref_primary_10_3389_fninf_2014_00045 crossref_primary_10_3389_fnins_2015_00375 crossref_primary_10_1016_j_neuroimage_2021_117814 crossref_primary_10_3389_fnins_2019_00127 crossref_primary_10_1016_j_sigpro_2024_109410 crossref_primary_10_1080_07474946_2022_2043053 crossref_primary_10_1007_s10334_014_0436_5 crossref_primary_10_1016_j_neuroimage_2016_06_051 crossref_primary_10_1016_j_cviu_2015_11_010 crossref_primary_10_1016_j_media_2014_03_005 crossref_primary_10_1080_07474946_2018_1554899 crossref_primary_10_1016_j_neuroimage_2023_120224 crossref_primary_10_1109_TMI_2014_2352791 crossref_primary_10_1016_j_neuroimage_2013_01_067 crossref_primary_10_1111_anzs_12369 crossref_primary_10_1016_j_neucom_2019_12_068 crossref_primary_10_1109_JSTSP_2015_2416677 crossref_primary_10_1515_bmt_2016_0194 crossref_primary_10_1016_j_sigpro_2017_01_005 crossref_primary_10_3389_fnins_2015_00168 crossref_primary_10_1016_j_neuroimage_2013_05_100 crossref_primary_10_1016_j_neuroimage_2019_116081 crossref_primary_10_1109_TCI_2017_2700203 crossref_primary_10_1109_TGRS_2015_2497583 crossref_primary_10_1007_s10334_013_0401_8 crossref_primary_10_1109_TMI_2016_2544251 crossref_primary_10_1080_01621459_2017_1379404 crossref_primary_10_2174_1874347102012010011 crossref_primary_10_1080_10485252_2024_2426091 crossref_primary_10_1016_j_neuroimage_2014_04_052 crossref_primary_10_3389_fneur_2021_659081 |
Cites_doi | 10.1016/j.neuroimage.2008.01.011 10.1186/1471-2202-8-91 10.1007/978-94-011-5014-9_12 10.1016/j.neuroimage.2003.11.029 10.1109/ICASSP.2009.4959613 10.1109/TMI.2010.2042064 10.1016/S1053-8119(01)91492-2 10.1016/j.neuroimage.2004.08.034 10.1109/TMI.2003.823065 10.1016/j.neuroimage.2011.08.031 10.1006/nimg.2001.0931 10.1016/S1053-8119(03)00071-5 10.1016/j.neuroimage.2008.10.065 10.1097/00004647-199701000-00009 10.1093/cercor/11.4.350 10.1006/nimg.1995.1007 10.1016/j.neuroimage.2008.02.017 10.1002/hbm.460010207 10.1073/pnas.87.24.9868 10.1006/nimg.2000.0630 10.1523/JNEUROSCI.16-13-04207.1996 10.1109/ISBI.2011.5872427 10.1016/j.neuroimage.2006.08.035 10.1109/TMI.2003.817759 10.1016/j.neuroimage.2003.09.052 10.1006/nimg.1998.0419 10.1016/j.neuroimage.2008.05.052 10.1006/nimg.2000.0728 10.1214/11-EJS619 10.1109/ISBI.2008.4541059 10.1109/TSP.2005.853303 10.1109/ISBI.2008.4541233 10.1016/j.neuroimage.2006.05.001 10.1016/j.neuroimage.2008.04.235 10.1109/42.897811 10.1016/j.neuroimage.2004.07.013 10.1109/TMI.2006.880682 10.1214/ss/1177011136 10.1016/S0031-3203(02)00027-4 10.1109/TMI.2004.831221 10.1002/mrm.1910340409 10.1002/hbm.20327 10.1073/pnas.0504136102 10.1109/42.819324 10.1214/12-BA703 10.1002/hbm.20210 10.1109/TPAMI.2003.1227985 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1109/TMI.2012.2225636 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1558-254X |
EndPage | 837 |
ExternalDocumentID | PMC4020803 oai_HAL_inserm_00753873v1 23096056 10_1109_TMI_2012_2225636 6335481 |
Genre | orig-research Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c519t-f2f6e3e044baebcbadf50944b960d7f4cb124ecbb3233eb4ffabb09ce9b5c00e3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:30:30 EDT 2025 Fri May 09 12:24:28 EDT 2025 Fri Jul 11 06:41:18 EDT 2025 Mon Jul 21 06:02:59 EDT 2025 Tue Jul 01 03:15:52 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Aug 26 16:42:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | brain imaging functional MRI fMRI Biomedical signal detection-estimation Variational approximation Markov random field Joint Detection-Estimation Mean-field EM algorithm VEM |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-f2f6e3e044baebcbadf50944b960d7f4cb124ecbb3233eb4ffabb09ce9b5c00e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3639-0226 0000-0002-3590-0370 0000-0001-5374-962X 0000-0003-2747-6845 |
OpenAccessLink | https://inserm.hal.science/inserm-00753873 |
PMID | 23096056 |
PQID | 1349400931 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4020803 crossref_citationtrail_10_1109_TMI_2012_2225636 ieee_primary_6335481 hal_primary_oai_HAL_inserm_00753873v1 proquest_miscellaneous_1349400931 crossref_primary_10_1109_TMI_2012_2225636 pubmed_primary_23096056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 makni (ref23) 2008; 41 ref12 ref15 ref14 ref52 ref10 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref42 ref41 ref44 ref43 beal (ref39) 2003 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref36 ref30 ref33 ref32 ref2 ref1 boynton (ref11) 1996; 16 ref38 gelman (ref40) 2004 risser (ref31) 2011; 65 ref24 ref26 ref25 ref20 ref22 ref21 carbonetto (ref47) 2012; 7 ref28 ref27 ref29 beal (ref37) 2003 tucholka (ref50) 2008 11212367 - IEEE Trans Med Imaging. 2000 Dec;19(12):1188-201 18538586 - Neuroimage. 2008 Aug 1;42(1):99-111 17133400 - Hum Brain Mapp. 2007 Apr;28(4):275-93 10695527 - IEEE Trans Med Imaging. 1999 Dec;18(12):1138-53 15050587 - Neuroimage. 2004 Apr;21(4):1639-51 18982630 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):399-406 18329292 - Neuroimage. 2008 May 1;40(4):1606-18 19084070 - Neuroimage. 2009 Mar;45(1 Suppl):S187-98 15338730 - IEEE Trans Med Imaging. 2004 Aug;23(8):959-67 8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34 22163061 - Electron J Stat. 2011 Jan 1;5:572-602 18603003 - Neuroimage. 2008 Oct 1;42(4):1381-96 18439839 - Neuroimage. 2008 Jul 1;41(3):941-69 17024841 - IEEE Trans Med Imaging. 2006 Oct;25(10):1380-91 14552578 - IEEE Trans Med Imaging. 2003 Oct;22(10):1235-51 14964566 - IEEE Trans Med Imaging. 2004 Feb;23(2):213-31 11278198 - Cereb Cortex. 2001 Apr;11(4):350-9 14980557 - Neuroimage. 2004 Feb;21(2):547-67 8978388 - J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72 20350840 - IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74 17300961 - Neuroimage. 2007 Apr 1;35(2):669-85 2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72 10988040 - Neuroimage. 2000 Oct;12(4):466-77 10191170 - Neuroimage. 1999 Apr;9(4):416-29 16281292 - Hum Brain Mapp. 2006 Aug;27(8):678-93 12880802 - Neuroimage. 2003 Jul;19(3):727-41 21884803 - Neuroimage. 2012 Jan 16;59(2):1348-68 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 17973998 - BMC Neurosci. 2007;8:91 15627578 - Neuroimage. 2005 Jan 15;24(2):350-62 11707093 - Neuroimage. 2001 Dec;14(6):1370-86 9343589 - Neuroimage. 1995 Mar;2(1):45-53 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 11305903 - Neuroimage. 2001 Apr;13(4):759-73 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 |
References_xml | – ident: ref42 doi: 10.1016/j.neuroimage.2008.01.011 – ident: ref43 doi: 10.1186/1471-2202-8-91 – ident: ref36 doi: 10.1007/978-94-011-5014-9_12 – ident: ref12 doi: 10.1016/j.neuroimage.2003.11.029 – year: 2003 ident: ref39 publication-title: Variational algorithms for approximate Bayesian inference – ident: ref49 doi: 10.1109/ICASSP.2009.4959613 – ident: ref25 doi: 10.1109/TMI.2010.2042064 – ident: ref17 doi: 10.1016/S1053-8119(01)91492-2 – ident: ref35 doi: 10.1016/j.neuroimage.2004.08.034 – ident: ref33 doi: 10.1109/TMI.2003.823065 – ident: ref9 doi: 10.1016/j.neuroimage.2011.08.031 – ident: ref32 doi: 10.1006/nimg.2001.0931 – ident: ref27 doi: 10.1016/S1053-8119(03)00071-5 – year: 2004 ident: ref40 publication-title: Bayesian Data Analysis – ident: ref15 doi: 10.1016/j.neuroimage.2008.10.065 – ident: ref5 doi: 10.1097/00004647-199701000-00009 – ident: ref45 doi: 10.1093/cercor/11.4.350 – ident: ref2 doi: 10.1006/nimg.1995.1007 – volume: 41 start-page: 941 year: 2008 ident: ref23 article-title: A fully Bayesian approach to the parcel-based detectionestimation of brain activity in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.017 – ident: ref10 doi: 10.1002/hbm.460010207 – ident: ref1 doi: 10.1073/pnas.87.24.9868 – ident: ref6 doi: 10.1006/nimg.2000.0630 – volume: 16 start-page: 4207 year: 1996 ident: ref11 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-13-04207.1996 – ident: ref14 doi: 10.1109/ISBI.2011.5872427 – ident: ref28 doi: 10.1016/j.neuroimage.2006.08.035 – ident: ref19 doi: 10.1109/TMI.2003.817759 – ident: ref8 doi: 10.1016/j.neuroimage.2003.09.052 – ident: ref16 doi: 10.1006/nimg.1998.0419 – ident: ref29 doi: 10.1016/j.neuroimage.2008.05.052 – ident: ref44 doi: 10.1006/nimg.2000.0728 – ident: ref38 doi: 10.1214/11-EJS619 – ident: ref51 doi: 10.1109/ISBI.2008.4541059 – ident: ref22 doi: 10.1109/TSP.2005.853303 – ident: ref13 doi: 10.1109/ISBI.2008.4541233 – ident: ref48 doi: 10.1016/j.neuroimage.2006.05.001 – ident: ref24 doi: 10.1016/j.neuroimage.2008.04.235 – ident: ref18 doi: 10.1109/42.897811 – start-page: 453 year: 2003 ident: ref37 publication-title: Bayesian Statistics – ident: ref7 doi: 10.1016/j.neuroimage.2004.07.013 – ident: ref30 doi: 10.1109/TMI.2006.880682 – ident: ref46 doi: 10.1214/ss/1177011136 – ident: ref41 doi: 10.1016/S0031-3203(02)00027-4 – ident: ref20 doi: 10.1109/TMI.2004.831221 – ident: ref3 doi: 10.1002/mrm.1910340409 – ident: ref34 doi: 10.1002/hbm.20327 – year: 2008 ident: ref50 publication-title: Proc MICCAI'11 – ident: ref4 doi: 10.1073/pnas.0504136102 – ident: ref21 doi: 10.1109/42.819324 – volume: 7 start-page: 73 year: 2012 ident: ref47 article-title: Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies publication-title: Bayesian Anal doi: 10.1214/12-BA703 – volume: 65 start-page: 325 year: 2011 ident: ref31 article-title: Min-max extrapolation scheme for fast estimation of 3-D Potts field partition functions publication-title: Appl Joint Detection-Estimation of Brain Activity fMRI – ident: ref26 doi: 10.1002/hbm.20210 – ident: ref52 doi: 10.1109/TPAMI.2003.1227985 – reference: 17300961 - Neuroimage. 2007 Apr 1;35(2):669-85 – reference: 10191170 - Neuroimage. 1999 Apr;9(4):416-29 – reference: 17973998 - BMC Neurosci. 2007;8:91 – reference: 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 – reference: 11305903 - Neuroimage. 2001 Apr;13(4):759-73 – reference: 11707093 - Neuroimage. 2001 Dec;14(6):1370-86 – reference: 8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21 – reference: 18439839 - Neuroimage. 2008 Jul 1;41(3):941-69 – reference: 17024841 - IEEE Trans Med Imaging. 2006 Oct;25(10):1380-91 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 10695527 - IEEE Trans Med Imaging. 1999 Dec;18(12):1138-53 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 14552578 - IEEE Trans Med Imaging. 2003 Oct;22(10):1235-51 – reference: 17133400 - Hum Brain Mapp. 2007 Apr;28(4):275-93 – reference: 21884803 - Neuroimage. 2012 Jan 16;59(2):1348-68 – reference: 8978388 - J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72 – reference: 16281292 - Hum Brain Mapp. 2006 Aug;27(8):678-93 – reference: 15627578 - Neuroimage. 2005 Jan 15;24(2):350-62 – reference: 18982630 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):399-406 – reference: 19084070 - Neuroimage. 2009 Mar;45(1 Suppl):S187-98 – reference: 2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72 – reference: 22163061 - Electron J Stat. 2011 Jan 1;5:572-602 – reference: 14980557 - Neuroimage. 2004 Feb;21(2):547-67 – reference: 15338730 - IEEE Trans Med Imaging. 2004 Aug;23(8):959-67 – reference: 12880802 - Neuroimage. 2003 Jul;19(3):727-41 – reference: 15050587 - Neuroimage. 2004 Apr;21(4):1639-51 – reference: 11278198 - Cereb Cortex. 2001 Apr;11(4):350-9 – reference: 18603003 - Neuroimage. 2008 Oct 1;42(4):1381-96 – reference: 10988040 - Neuroimage. 2000 Oct;12(4):466-77 – reference: 18329292 - Neuroimage. 2008 May 1;40(4):1606-18 – reference: 18538586 - Neuroimage. 2008 Aug 1;42(1):99-111 – reference: 11212367 - IEEE Trans Med Imaging. 2000 Dec;19(12):1188-201 – reference: 9343589 - Neuroimage. 1995 Mar;2(1):45-53 – reference: 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34 – reference: 14964566 - IEEE Trans Med Imaging. 2004 Feb;23(2):213-31 – reference: 20350840 - IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74 |
SSID | ssj0014509 |
Score | 2.3503022 |
Snippet | In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection... In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the... |
SourceID | pubmedcentral hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 821 |
SubjectTerms | Algorithms Approximation methods Bayes Theorem Bayesian methods Brain - blood supply Brain - physiology Brain Mapping - methods Computational modeling Computer Science Computer Simulation Data models Databases, Factual Engineering Sciences Estimation Expectation-maximization (EM) algorithm functional magnetic resonance imaging (fMRI) Hemodynamics Hidden Markov models Humans joint detection-estimation Joints Life Sciences Magnetic Resonance Imaging - methods Markov Chains Markov random field Medical Imaging Neurons and Cognition Signal and Image Processing Signal Processing, Computer-Assisted variational approximation |
Title | Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach |
URI | https://ieeexplore.ieee.org/document/6335481 https://www.ncbi.nlm.nih.gov/pubmed/23096056 https://www.proquest.com/docview/1349400931 https://inserm.hal.science/inserm-00753873 https://pubmed.ncbi.nlm.nih.gov/PMC4020803 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAceLQ8wktGggMS2fXaTlIfF9jVtmI5oBb1FtnORF0tJIhme-DXM-M8tFtViFuk2FKSGTvfzHz-hrG33iJMlqaMJwZMrL1MYueljtHUPs2Em5iCUgPLr-niXJ9eJBd77MNwFgYAAvkMRnQZavlF7TeUKhunSiHAxlhnHwO39qzWUDHQSUvnkKQYK1LZlySFGZ8tT4jDJUcU26SKuhYh8EboTl2rt_5G-5fEhQxNVm7Dmzdpk1v_ofkDtuzfoKWfrEebxo38nxvijv_7ig_Z_Q6Q8mnrQY_YHlSH7N6WTOEhu7PsCvBHbD23Vw0_rVdVwz9DE3hcVTzDfaI9Asnrks-u6zUU_CM1n-BT37an4Hg9I25lHOh3eL9cfjvhgbHALf-OIXuXluTTTub8MTufz84-LeKuX0PsEQc2cSnLFBQIrZ0F550tSpLn0w4_dZGV2jsEE-CdU1IpcLosrXPCeDAu8UKAesIOqrqCZ4x7DVIoa60sUm1A2sJniXE6UVAgwM0iNu7tlvtOzJx6avzIQ1AjTI5Gz8noeWf0iL0fZvxqhTz-MfYdusIwjBS4F9Mv-arCXeFnTihLHWfqehKxI7LgMLAzXsTe9M6T42KlCoytoN5c5aQFqSmJhGOets40TO5dMmLZjpvtPMbunWp1GQTBKQdwLNTz2x_nBbsrQw8PYmm-ZAfN7w28QiTVuNdhCf0FQfcZNw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VIvE48Gh5mOciwQGpTpzdtV0fAyRKStwDSlFvq931WI0CNqJOD_x6ZvxSUlWImyXvSrZn1vvNzLffMPbeGYTJIsn9UQKJr5wIfeuE8tHULooDO0oySg2kp9HsTJ2ch-d77Kg_CwMANfkMBnRZ1_Kz0m0oVTaMpESAjbHObdz3w1FzWquvGaiwIXQI0owNItEVJYNkuEznxOISA4puIkl9ixB6I3invtVb-9GtC2JD1m1WbkKc14mTWzvR9CFLu3doCCjrwaayA_fnmrzj_77kI_aghaR83PjQY7YHxQG7vyVUeMDupG0J_pCtp-ay4iflqqj4F6hqJlfhT_BP0RyC5GXOJ1flGjL-idpP8LFrGlRwvJ4Qu9KvCXh4P0-_zXnNWeCGf8egvU1M8nErdP6EnU0ny88zv-3Y4DtEgpWfizwCCYFS1oB11mQ5CfQpi586i3PlLMIJcNZKISVYlefG2iBxkNjQBQHIp2y_KAt4zrhTIAJpjBFZpBIQJnNxmFgVSsgQ4sYeG3Z2066VM6euGj90HdYEiUajazK6bo3usY_9jF-NlMc_xn5AV-iHkQb3bLzQqwL_Cz814Sx5HMurkccOyYL9wNZ4HnvXOY_G5Uo1GFNAubnUpAapKI2EY541ztRP7lzSY_GOm-08xu6dYnVRS4JTFuA4kC9ufpy37O5smS70Yn769SW7J-qOHsTZfMX2q98beI24qrJv6uX0FwdVHIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+joint+detection-estimation+of+evoked+brain+activity+in+event-related+FMRI+using+a+variational+approach&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chaari%2C+Lotfi&rft.au=Vincent%2C+Thomas&rft.au=Forbes%2C+Florence&rft.au=Dojat%2C+Michel&rft.date=2013-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=32&rft.issue=5&rft.spage=821&rft.epage=837&rft_id=info:doi/10.1109%2FTMI.2012.2225636&rft_id=info%3Apmid%2F23096056&rft.externalDocID=PMC4020803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |