Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach

In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 5; pp. 821 - 837
Main Authors Chaari, L., Vincent, T., Forbes, F., Dojat, M., Ciuciu, P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2012.2225636

Cover

Loading…
Abstract In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
AbstractList In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the socalled region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
Author Vincent, T.
Chaari, L.
Ciuciu, P.
Dojat, M.
Forbes, F.
AuthorAffiliation 1 LNAO, Laboratoire de Neuroimagerie Assistée par Ordinateur CEA : DSV/I2BM/NEUROSPIN CEA Saclay - Bât 145 - 91191 Gif-sur-Yvette, FR
2 LJK, Laboratoire Jean Kuntzmann MISTIS - Centre de Recherche INRIA Grenoble-Rhône-Alpes CNRS - Institut National Polytechnique de Grenoble (INPG) Université Joseph Fourier - Grenoble I Université Pierre-Mendès-France (UPMF) 655 avenue de l'Europe 38330 Montbonnot-Saint-Martin, FR
3 GIN, Grenoble Institut des Neurosciences INSERM : U836 Université Joseph Fourier - Grenoble I CHU Grenoble CEA : DSV/IRTSV UJF - Site Santé La Tronche - BP 170 - 38042 Grenoble Cedex 9, FR
AuthorAffiliation_xml – name: 3 GIN, Grenoble Institut des Neurosciences INSERM : U836 Université Joseph Fourier - Grenoble I CHU Grenoble CEA : DSV/IRTSV UJF - Site Santé La Tronche - BP 170 - 38042 Grenoble Cedex 9, FR
– name: 2 LJK, Laboratoire Jean Kuntzmann MISTIS - Centre de Recherche INRIA Grenoble-Rhône-Alpes CNRS - Institut National Polytechnique de Grenoble (INPG) Université Joseph Fourier - Grenoble I Université Pierre-Mendès-France (UPMF) 655 avenue de l'Europe 38330 Montbonnot-Saint-Martin, FR
– name: 1 LNAO, Laboratoire de Neuroimagerie Assistée par Ordinateur CEA : DSV/I2BM/NEUROSPIN CEA Saclay - Bât 145 - 91191 Gif-sur-Yvette, FR
Author_xml – sequence: 1
  givenname: L.
  surname: Chaari
  fullname: Chaari, L.
  email: lotfi.chaari@inria.fr
  organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France
– sequence: 2
  givenname: T.
  surname: Vincent
  fullname: Vincent, T.
  email: thomas.vincent@inria.fr
  organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France
– sequence: 3
  givenname: F.
  surname: Forbes
  fullname: Forbes, F.
  organization: Mistis team, Inria Grenoble Rhone-Alpes, St. Ismier, France
– sequence: 4
  givenname: M.
  surname: Dojat
  fullname: Dojat, M.
  email: michel.dojat@ujf-grenoble.fr
  organization: INSERM, GIN & Univ. Joseph Fourier, Grenoble, France
– sequence: 5
  givenname: P.
  surname: Ciuciu
  fullname: Ciuciu, P.
  email: philippe.ciuciu@cea.fr
  organization: CEA/DSV/I2BM/Neurospin, CEA Saclay, Gif-sur-Yvette, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23096056$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-00753873$$DView record in HAL
BookMark eNp9kc1vEzEUxC1URNPCHQkJ-ciBDc8fu8lekEJJ26BUSFWLuFm287Yx3axT21mp_32dJq2gB0629X4zHnuOyEHnOyTkPYMhY1B_ubqYDTkwPuScl5WoXpEBK8txwUv5-4AMgI_GBUDFD8lRjH8AmCyhfkMOuYC6grIakNtTHRP94V2X6HdMaJPzXTGNya30dkt9Q6e9v8UF_Ra06-gkE71L9zTvpz12qbjEVqc8by4uZ_Q6uu6GavpLB_dooFs6Wa-D13b5lrxudBvx3X49Jten06uT82L-82x2MpkXtmR1KhreVCgQpDQajTV60eTU-ZQjL0aNtIZxidYYwYVAI5tGGwO1xdqUFgDFMfm6811vzAoXNocMulXrkN8U7pXXTv076dxS3fheSeAwBpENPu8Mli9k55O5cl3EsFIAo1KMR6JnGf-0vy_4uw3GpFYuWmxb3aHfRMWErCVALbbox7-jPZs_FZKBagfY4GMM2Cjr0uNH5qSuVQzUtnmVm1fb5tW--SyEF8In7_9IPuwkDhGf8UqIUo6ZeAAbBbp8
CODEN ITMID4
CitedBy_id crossref_primary_10_3389_fnins_2014_00067
crossref_primary_10_1016_j_neuroimage_2016_11_040
crossref_primary_10_1007_s11222_020_09935_9
crossref_primary_10_1109_TMI_2019_2942765
crossref_primary_10_3389_fninf_2014_00045
crossref_primary_10_3389_fnins_2015_00375
crossref_primary_10_1016_j_neuroimage_2021_117814
crossref_primary_10_3389_fnins_2019_00127
crossref_primary_10_1016_j_sigpro_2024_109410
crossref_primary_10_1080_07474946_2022_2043053
crossref_primary_10_1007_s10334_014_0436_5
crossref_primary_10_1016_j_neuroimage_2016_06_051
crossref_primary_10_1016_j_cviu_2015_11_010
crossref_primary_10_1016_j_media_2014_03_005
crossref_primary_10_1080_07474946_2018_1554899
crossref_primary_10_1016_j_neuroimage_2023_120224
crossref_primary_10_1109_TMI_2014_2352791
crossref_primary_10_1016_j_neuroimage_2013_01_067
crossref_primary_10_1111_anzs_12369
crossref_primary_10_1016_j_neucom_2019_12_068
crossref_primary_10_1109_JSTSP_2015_2416677
crossref_primary_10_1515_bmt_2016_0194
crossref_primary_10_1016_j_sigpro_2017_01_005
crossref_primary_10_3389_fnins_2015_00168
crossref_primary_10_1016_j_neuroimage_2013_05_100
crossref_primary_10_1016_j_neuroimage_2019_116081
crossref_primary_10_1109_TCI_2017_2700203
crossref_primary_10_1109_TGRS_2015_2497583
crossref_primary_10_1007_s10334_013_0401_8
crossref_primary_10_1109_TMI_2016_2544251
crossref_primary_10_1080_01621459_2017_1379404
crossref_primary_10_2174_1874347102012010011
crossref_primary_10_1080_10485252_2024_2426091
crossref_primary_10_1016_j_neuroimage_2014_04_052
crossref_primary_10_3389_fneur_2021_659081
Cites_doi 10.1016/j.neuroimage.2008.01.011
10.1186/1471-2202-8-91
10.1007/978-94-011-5014-9_12
10.1016/j.neuroimage.2003.11.029
10.1109/ICASSP.2009.4959613
10.1109/TMI.2010.2042064
10.1016/S1053-8119(01)91492-2
10.1016/j.neuroimage.2004.08.034
10.1109/TMI.2003.823065
10.1016/j.neuroimage.2011.08.031
10.1006/nimg.2001.0931
10.1016/S1053-8119(03)00071-5
10.1016/j.neuroimage.2008.10.065
10.1097/00004647-199701000-00009
10.1093/cercor/11.4.350
10.1006/nimg.1995.1007
10.1016/j.neuroimage.2008.02.017
10.1002/hbm.460010207
10.1073/pnas.87.24.9868
10.1006/nimg.2000.0630
10.1523/JNEUROSCI.16-13-04207.1996
10.1109/ISBI.2011.5872427
10.1016/j.neuroimage.2006.08.035
10.1109/TMI.2003.817759
10.1016/j.neuroimage.2003.09.052
10.1006/nimg.1998.0419
10.1016/j.neuroimage.2008.05.052
10.1006/nimg.2000.0728
10.1214/11-EJS619
10.1109/ISBI.2008.4541059
10.1109/TSP.2005.853303
10.1109/ISBI.2008.4541233
10.1016/j.neuroimage.2006.05.001
10.1016/j.neuroimage.2008.04.235
10.1109/42.897811
10.1016/j.neuroimage.2004.07.013
10.1109/TMI.2006.880682
10.1214/ss/1177011136
10.1016/S0031-3203(02)00027-4
10.1109/TMI.2004.831221
10.1002/mrm.1910340409
10.1002/hbm.20327
10.1073/pnas.0504136102
10.1109/42.819324
10.1214/12-BA703
10.1002/hbm.20210
10.1109/TPAMI.2003.1227985
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1109/TMI.2012.2225636
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 837
ExternalDocumentID PMC4020803
oai_HAL_inserm_00753873v1
23096056
10_1109_TMI_2012_2225636
6335481
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c519t-f2f6e3e044baebcbadf50944b960d7f4cb124ecbb3233eb4ffabb09ce9b5c00e3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:30:30 EDT 2025
Fri May 09 12:24:28 EDT 2025
Fri Jul 11 06:41:18 EDT 2025
Mon Jul 21 06:02:59 EDT 2025
Tue Jul 01 03:15:52 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Aug 26 16:42:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords brain imaging
functional MRI
fMRI
Biomedical signal detection-estimation
Variational approximation
Markov random field
Joint Detection-Estimation
Mean-field
EM algorithm
VEM
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-f2f6e3e044baebcbadf50944b960d7f4cb124ecbb3233eb4ffabb09ce9b5c00e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3639-0226
0000-0002-3590-0370
0000-0001-5374-962X
0000-0003-2747-6845
OpenAccessLink https://inserm.hal.science/inserm-00753873
PMID 23096056
PQID 1349400931
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4020803
crossref_citationtrail_10_1109_TMI_2012_2225636
ieee_primary_6335481
hal_primary_oai_HAL_inserm_00753873v1
proquest_miscellaneous_1349400931
crossref_primary_10_1109_TMI_2012_2225636
pubmed_primary_23096056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
makni (ref23) 2008; 41
ref12
ref15
ref14
ref52
ref10
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref42
ref41
ref44
ref43
beal (ref39) 2003
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref36
ref30
ref33
ref32
ref2
ref1
boynton (ref11) 1996; 16
ref38
gelman (ref40) 2004
risser (ref31) 2011; 65
ref24
ref26
ref25
ref20
ref22
ref21
carbonetto (ref47) 2012; 7
ref28
ref27
ref29
beal (ref37) 2003
tucholka (ref50) 2008
11212367 - IEEE Trans Med Imaging. 2000 Dec;19(12):1188-201
18538586 - Neuroimage. 2008 Aug 1;42(1):99-111
17133400 - Hum Brain Mapp. 2007 Apr;28(4):275-93
10695527 - IEEE Trans Med Imaging. 1999 Dec;18(12):1138-53
15050587 - Neuroimage. 2004 Apr;21(4):1639-51
18982630 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):399-406
18329292 - Neuroimage. 2008 May 1;40(4):1606-18
19084070 - Neuroimage. 2009 Mar;45(1 Suppl):S187-98
15338730 - IEEE Trans Med Imaging. 2004 Aug;23(8):959-67
8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21
17055746 - Neuroimage. 2007 Jan 1;34(1):220-34
22163061 - Electron J Stat. 2011 Jan 1;5:572-602
18603003 - Neuroimage. 2008 Oct 1;42(4):1381-96
18439839 - Neuroimage. 2008 Jul 1;41(3):941-69
17024841 - IEEE Trans Med Imaging. 2006 Oct;25(10):1380-91
14552578 - IEEE Trans Med Imaging. 2003 Oct;22(10):1235-51
14964566 - IEEE Trans Med Imaging. 2004 Feb;23(2):213-31
11278198 - Cereb Cortex. 2001 Apr;11(4):350-9
14980557 - Neuroimage. 2004 Feb;21(2):547-67
8978388 - J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72
20350840 - IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74
17300961 - Neuroimage. 2007 Apr 1;35(2):669-85
2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72
10988040 - Neuroimage. 2000 Oct;12(4):466-77
10191170 - Neuroimage. 1999 Apr;9(4):416-29
16281292 - Hum Brain Mapp. 2006 Aug;27(8):678-93
12880802 - Neuroimage. 2003 Jul;19(3):727-41
21884803 - Neuroimage. 2012 Jan 16;59(2):1348-68
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
17973998 - BMC Neurosci. 2007;8:91
15627578 - Neuroimage. 2005 Jan 15;24(2):350-62
11707093 - Neuroimage. 2001 Dec;14(6):1370-86
9343589 - Neuroimage. 1995 Mar;2(1):45-53
15501093 - Neuroimage. 2004;23 Suppl 1:S220-33
11305903 - Neuroimage. 2001 Apr;13(4):759-73
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
References_xml – ident: ref42
  doi: 10.1016/j.neuroimage.2008.01.011
– ident: ref43
  doi: 10.1186/1471-2202-8-91
– ident: ref36
  doi: 10.1007/978-94-011-5014-9_12
– ident: ref12
  doi: 10.1016/j.neuroimage.2003.11.029
– year: 2003
  ident: ref39
  publication-title: Variational algorithms for approximate Bayesian inference
– ident: ref49
  doi: 10.1109/ICASSP.2009.4959613
– ident: ref25
  doi: 10.1109/TMI.2010.2042064
– ident: ref17
  doi: 10.1016/S1053-8119(01)91492-2
– ident: ref35
  doi: 10.1016/j.neuroimage.2004.08.034
– ident: ref33
  doi: 10.1109/TMI.2003.823065
– ident: ref9
  doi: 10.1016/j.neuroimage.2011.08.031
– ident: ref32
  doi: 10.1006/nimg.2001.0931
– ident: ref27
  doi: 10.1016/S1053-8119(03)00071-5
– year: 2004
  ident: ref40
  publication-title: Bayesian Data Analysis
– ident: ref15
  doi: 10.1016/j.neuroimage.2008.10.065
– ident: ref5
  doi: 10.1097/00004647-199701000-00009
– ident: ref45
  doi: 10.1093/cercor/11.4.350
– ident: ref2
  doi: 10.1006/nimg.1995.1007
– volume: 41
  start-page: 941
  year: 2008
  ident: ref23
  article-title: A fully Bayesian approach to the parcel-based detectionestimation of brain activity in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.017
– ident: ref10
  doi: 10.1002/hbm.460010207
– ident: ref1
  doi: 10.1073/pnas.87.24.9868
– ident: ref6
  doi: 10.1006/nimg.2000.0630
– volume: 16
  start-page: 4207
  year: 1996
  ident: ref11
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– ident: ref14
  doi: 10.1109/ISBI.2011.5872427
– ident: ref28
  doi: 10.1016/j.neuroimage.2006.08.035
– ident: ref19
  doi: 10.1109/TMI.2003.817759
– ident: ref8
  doi: 10.1016/j.neuroimage.2003.09.052
– ident: ref16
  doi: 10.1006/nimg.1998.0419
– ident: ref29
  doi: 10.1016/j.neuroimage.2008.05.052
– ident: ref44
  doi: 10.1006/nimg.2000.0728
– ident: ref38
  doi: 10.1214/11-EJS619
– ident: ref51
  doi: 10.1109/ISBI.2008.4541059
– ident: ref22
  doi: 10.1109/TSP.2005.853303
– ident: ref13
  doi: 10.1109/ISBI.2008.4541233
– ident: ref48
  doi: 10.1016/j.neuroimage.2006.05.001
– ident: ref24
  doi: 10.1016/j.neuroimage.2008.04.235
– ident: ref18
  doi: 10.1109/42.897811
– start-page: 453
  year: 2003
  ident: ref37
  publication-title: Bayesian Statistics
– ident: ref7
  doi: 10.1016/j.neuroimage.2004.07.013
– ident: ref30
  doi: 10.1109/TMI.2006.880682
– ident: ref46
  doi: 10.1214/ss/1177011136
– ident: ref41
  doi: 10.1016/S0031-3203(02)00027-4
– ident: ref20
  doi: 10.1109/TMI.2004.831221
– ident: ref3
  doi: 10.1002/mrm.1910340409
– ident: ref34
  doi: 10.1002/hbm.20327
– year: 2008
  ident: ref50
  publication-title: Proc MICCAI'11
– ident: ref4
  doi: 10.1073/pnas.0504136102
– ident: ref21
  doi: 10.1109/42.819324
– volume: 7
  start-page: 73
  year: 2012
  ident: ref47
  article-title: Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies
  publication-title: Bayesian Anal
  doi: 10.1214/12-BA703
– volume: 65
  start-page: 325
  year: 2011
  ident: ref31
  article-title: Min-max extrapolation scheme for fast estimation of 3-D Potts field partition functions
  publication-title: Appl Joint Detection-Estimation of Brain Activity fMRI
– ident: ref26
  doi: 10.1002/hbm.20210
– ident: ref52
  doi: 10.1109/TPAMI.2003.1227985
– reference: 17300961 - Neuroimage. 2007 Apr 1;35(2):669-85
– reference: 10191170 - Neuroimage. 1999 Apr;9(4):416-29
– reference: 17973998 - BMC Neurosci. 2007;8:91
– reference: 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33
– reference: 11305903 - Neuroimage. 2001 Apr;13(4):759-73
– reference: 11707093 - Neuroimage. 2001 Dec;14(6):1370-86
– reference: 8753882 - J Neurosci. 1996 Jul 1;16(13):4207-21
– reference: 18439839 - Neuroimage. 2008 Jul 1;41(3):941-69
– reference: 17024841 - IEEE Trans Med Imaging. 2006 Oct;25(10):1380-91
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 10695527 - IEEE Trans Med Imaging. 1999 Dec;18(12):1138-53
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 14552578 - IEEE Trans Med Imaging. 2003 Oct;22(10):1235-51
– reference: 17133400 - Hum Brain Mapp. 2007 Apr;28(4):275-93
– reference: 21884803 - Neuroimage. 2012 Jan 16;59(2):1348-68
– reference: 8978388 - J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72
– reference: 16281292 - Hum Brain Mapp. 2006 Aug;27(8):678-93
– reference: 15627578 - Neuroimage. 2005 Jan 15;24(2):350-62
– reference: 18982630 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):399-406
– reference: 19084070 - Neuroimage. 2009 Mar;45(1 Suppl):S187-98
– reference: 2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72
– reference: 22163061 - Electron J Stat. 2011 Jan 1;5:572-602
– reference: 14980557 - Neuroimage. 2004 Feb;21(2):547-67
– reference: 15338730 - IEEE Trans Med Imaging. 2004 Aug;23(8):959-67
– reference: 12880802 - Neuroimage. 2003 Jul;19(3):727-41
– reference: 15050587 - Neuroimage. 2004 Apr;21(4):1639-51
– reference: 11278198 - Cereb Cortex. 2001 Apr;11(4):350-9
– reference: 18603003 - Neuroimage. 2008 Oct 1;42(4):1381-96
– reference: 10988040 - Neuroimage. 2000 Oct;12(4):466-77
– reference: 18329292 - Neuroimage. 2008 May 1;40(4):1606-18
– reference: 18538586 - Neuroimage. 2008 Aug 1;42(1):99-111
– reference: 11212367 - IEEE Trans Med Imaging. 2000 Dec;19(12):1188-201
– reference: 9343589 - Neuroimage. 1995 Mar;2(1):45-53
– reference: 17055746 - Neuroimage. 2007 Jan 1;34(1):220-34
– reference: 14964566 - IEEE Trans Med Imaging. 2004 Feb;23(2):213-31
– reference: 20350840 - IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74
SSID ssj0014509
Score 2.3503022
Snippet In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection...
In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Algorithms
Approximation methods
Bayes Theorem
Bayesian methods
Brain - blood supply
Brain - physiology
Brain Mapping - methods
Computational modeling
Computer Science
Computer Simulation
Data models
Databases, Factual
Engineering Sciences
Estimation
Expectation-maximization (EM) algorithm
functional magnetic resonance imaging (fMRI)
Hemodynamics
Hidden Markov models
Humans
joint detection-estimation
Joints
Life Sciences
Magnetic Resonance Imaging - methods
Markov Chains
Markov random field
Medical Imaging
Neurons and Cognition
Signal and Image Processing
Signal Processing, Computer-Assisted
variational approximation
Title Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach
URI https://ieeexplore.ieee.org/document/6335481
https://www.ncbi.nlm.nih.gov/pubmed/23096056
https://www.proquest.com/docview/1349400931
https://inserm.hal.science/inserm-00753873
https://pubmed.ncbi.nlm.nih.gov/PMC4020803
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAceLQ8wktGggMS2fXaTlIfF9jVtmI5oBb1FtnORF0tJIhme-DXM-M8tFtViFuk2FKSGTvfzHz-hrG33iJMlqaMJwZMrL1MYueljtHUPs2Em5iCUgPLr-niXJ9eJBd77MNwFgYAAvkMRnQZavlF7TeUKhunSiHAxlhnHwO39qzWUDHQSUvnkKQYK1LZlySFGZ8tT4jDJUcU26SKuhYh8EboTl2rt_5G-5fEhQxNVm7Dmzdpk1v_ofkDtuzfoKWfrEebxo38nxvijv_7ig_Z_Q6Q8mnrQY_YHlSH7N6WTOEhu7PsCvBHbD23Vw0_rVdVwz9DE3hcVTzDfaI9Asnrks-u6zUU_CM1n-BT37an4Hg9I25lHOh3eL9cfjvhgbHALf-OIXuXluTTTub8MTufz84-LeKuX0PsEQc2cSnLFBQIrZ0F550tSpLn0w4_dZGV2jsEE-CdU1IpcLosrXPCeDAu8UKAesIOqrqCZ4x7DVIoa60sUm1A2sJniXE6UVAgwM0iNu7tlvtOzJx6avzIQ1AjTI5Gz8noeWf0iL0fZvxqhTz-MfYdusIwjBS4F9Mv-arCXeFnTihLHWfqehKxI7LgMLAzXsTe9M6T42KlCoytoN5c5aQFqSmJhGOets40TO5dMmLZjpvtPMbunWp1GQTBKQdwLNTz2x_nBbsrQw8PYmm-ZAfN7w28QiTVuNdhCf0FQfcZNw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VIvE48Gh5mOciwQGpTpzdtV0fAyRKStwDSlFvq931WI0CNqJOD_x6ZvxSUlWImyXvSrZn1vvNzLffMPbeGYTJIsn9UQKJr5wIfeuE8tHULooDO0oySg2kp9HsTJ2ch-d77Kg_CwMANfkMBnRZ1_Kz0m0oVTaMpESAjbHObdz3w1FzWquvGaiwIXQI0owNItEVJYNkuEznxOISA4puIkl9ixB6I3invtVb-9GtC2JD1m1WbkKc14mTWzvR9CFLu3doCCjrwaayA_fnmrzj_77kI_aghaR83PjQY7YHxQG7vyVUeMDupG0J_pCtp-ay4iflqqj4F6hqJlfhT_BP0RyC5GXOJ1flGjL-idpP8LFrGlRwvJ4Qu9KvCXh4P0-_zXnNWeCGf8egvU1M8nErdP6EnU0ny88zv-3Y4DtEgpWfizwCCYFS1oB11mQ5CfQpi586i3PlLMIJcNZKISVYlefG2iBxkNjQBQHIp2y_KAt4zrhTIAJpjBFZpBIQJnNxmFgVSsgQ4sYeG3Z2066VM6euGj90HdYEiUajazK6bo3usY_9jF-NlMc_xn5AV-iHkQb3bLzQqwL_Cz814Sx5HMurkccOyYL9wNZ4HnvXOY_G5Uo1GFNAubnUpAapKI2EY541ztRP7lzSY_GOm-08xu6dYnVRS4JTFuA4kC9ufpy37O5smS70Yn769SW7J-qOHsTZfMX2q98beI24qrJv6uX0FwdVHIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+joint+detection-estimation+of+evoked+brain+activity+in+event-related+FMRI+using+a+variational+approach&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chaari%2C+Lotfi&rft.au=Vincent%2C+Thomas&rft.au=Forbes%2C+Florence&rft.au=Dojat%2C+Michel&rft.date=2013-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=32&rft.issue=5&rft.spage=821&rft.epage=837&rft_id=info:doi/10.1109%2FTMI.2012.2225636&rft_id=info%3Apmid%2F23096056&rft.externalDocID=PMC4020803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon