Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum

Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce l...

Full description

Saved in:
Bibliographic Details
Published inPhytochemistry (Oxford) Vol. 184; p. 112645
Main Authors Cowan, Max F., Blomstedt, Cecilia K., Møller, Birger Lindberg, Henry, Robert J., Gleadow, Roslyn M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3−) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum. [Display omitted] •All Sorghum species contain the cyanogenic glucoside dhurrin and can be toxic.•Morphological and biochemical changes were mapped over time in wild and cultivated species.•Contrary to expectations, concentrations were much lower in the wild relatives.•Dhurrin is unlikely to be effective in herbivore defence in the wild relatives.•The function of dhurrin appears to be different in wild and domesticated species.
AbstractList Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO₃⁻) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO ) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3−) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum. [Display omitted] •All Sorghum species contain the cyanogenic glucoside dhurrin and can be toxic.•Morphological and biochemical changes were mapped over time in wild and cultivated species.•Contrary to expectations, concentrations were much lower in the wild relatives.•Dhurrin is unlikely to be effective in herbivore defence in the wild relatives.•The function of dhurrin appears to be different in wild and domesticated species.
ArticleNumber 112645
Author Henry, Robert J.
Blomstedt, Cecilia K.
Møller, Birger Lindberg
Cowan, Max F.
Gleadow, Roslyn M.
Author_xml – sequence: 1
  givenname: Max F.
  surname: Cowan
  fullname: Cowan, Max F.
  organization: School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
– sequence: 2
  givenname: Cecilia K.
  surname: Blomstedt
  fullname: Blomstedt, Cecilia K.
  organization: School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
– sequence: 3
  givenname: Birger Lindberg
  surname: Møller
  fullname: Møller, Birger Lindberg
  organization: Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
– sequence: 4
  givenname: Robert J.
  surname: Henry
  fullname: Henry, Robert J.
  organization: Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
– sequence: 5
  givenname: Roslyn M.
  orcidid: 0000-0003-4756-0411
  surname: Gleadow
  fullname: Gleadow, Roslyn M.
  email: ros.gleadow@monash.edu
  organization: School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33482417$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFVwAv2WTwTxw7SCxGFX9SJTbA1nLsmxmPEjvYTqvZ8OykTemCTVlZtr5zdH2_C3QWYgCE3lCypYQ2747b6XAq0R5g3DLCllfKmlo8QxuqJK-4JOQMbQjhtGprxs7RRc5HQogQTfMCnXNeK1ZTuUG_f5rkTfExYB_wlKKb7f0t9tieTIh7CN7i_TDbmL2DjN2cfNhjMGk44WkwoWAHNzDEaYRQ3uMdtnGclta8ttz6wWETHHZxhFy8NQUczjHtD_P4Ej3vzZDh1cN5iX58-vj96kt1_e3z16vddWUFbUsFom9sx2jb1qLrOBUdc8QJqYyitDdOCk6tI50hnZVOdcDbntfQG0EFN5TzS_R27V1--GtextCjzxaGZXyIc9ZMUEqlYoo9jdaKMCmVUAv6-gGduxGcnpIfTTrpv-tdALkCNsWcE_SPCCX6TqQ-6keR-k6kXkUuyQ__JK0v955KMn74j_xuzcOy1RsPSWfrIVhwPoEt2kX_ZMcfUuzBpg
CitedBy_id crossref_primary_10_1007_s00425_022_03831_4
crossref_primary_10_3390_agronomy12040878
crossref_primary_10_1016_j_plaphy_2023_02_031
crossref_primary_10_1016_j_jplph_2021_153393
crossref_primary_10_1039_D3NP00028A
crossref_primary_10_1007_s10658_022_02473_2
crossref_primary_10_1111_plb_70009
crossref_primary_10_3390_genes13010140
crossref_primary_10_1016_j_phytochem_2022_113483
crossref_primary_10_1007_s00425_021_03774_2
crossref_primary_10_7831_ras_11_0_259
crossref_primary_10_3389_fmicb_2023_1128057
crossref_primary_10_1111_plb_13447
crossref_primary_10_3390_plants13162291
crossref_primary_10_1016_j_microc_2024_110065
crossref_primary_10_1002_tpg2_20123
crossref_primary_10_1016_j_jbc_2024_107602
Cites_doi 10.2135/cropsci2002.1357
10.1111/j.1365-2745.2009.01512.x
10.1016/j.tplants.2013.01.001
10.1093/jxb/eru526
10.1046/j.1440-1703.2002.00491.x
10.1038/nrg3605
10.1016/j.jplph.2017.05.026
10.1046/j.1365-3040.1998.00258.x
10.1007/s00122-009-1145-8
10.1007/BF00010754
10.1007/s00468-006-0090-2
10.1023/A:1018420504439
10.1023/A:1016298100201
10.1111/nph.12935
10.1038/ncomms6110
10.1098/rstb.2016.0034
10.1111/j.1467-7652.2011.00646.x
10.1016/j.phytochem.2008.02.019
10.1016/j.plaphy.2013.09.001
10.1007/s10886-008-9540-1
10.1111/j.1469-8137.2012.04253.x
10.1016/j.envexpbot.2019.103884
10.1146/annurev-arplant-042916-040856
10.1073/pnas.81.10.3059
10.1186/s12864-016-3360-4
10.1371/journal.pone.0135722
10.1111/j.1744-7348.2009.00348.x
10.1007/s00425-012-1651-9
10.1111/1365-2435.12935
10.1093/aob/mcm192
10.1016/j.baae.2018.05.012
10.1104/pp.33.5.339
10.1111/gcb.13380
10.3732/ajb.1200482
10.1111/j.1365-2745.2010.01693.x
10.1038/s41477-019-0563-0
10.1016/j.jplph.2005.01.010
10.1016/j.pbi.2010.01.009
10.1002/pld3.38
10.3390/insects9020051
10.1007/s00606-007-0571-9
10.1163/156854112X627291
10.1016/0031-9422(94)00878-W
10.1093/pcp/pcv153
10.1146/annurev-arplant-050213-040027
10.1071/SB9910591
10.1111/1365-2435.12706
10.1111/ddi.13166
10.1111/pce.12209
10.1186/s12864-019-5734-x
10.1093/treephys/20.9.591
10.4141/cjps78-090
10.3835/plantgenome2014.09.0048
10.1086/407484
10.1111/j.1365-2435.2010.01803.x
10.1016/S0031-9422(97)00425-1
10.2135/cropsci2012.09.0520
10.1111/j.2041-210X.2011.00155.x
10.1093/aob/mcs212
10.1093/pcp/pct054
10.1104/pp.88.2.473
10.1016/j.fcr.2015.10.010
10.1042/BJ20150390
10.1007/BF00376940
10.3389/fpls.2017.00220
10.1111/nph.14173
10.1126/science.1062249
10.1038/nature07723
10.2135/cropsci1987.0011183X002700020012x
10.1111/tpj.13923
10.2134/agronj1970.00021962006200030025x
10.1016/j.cropro.2019.05.002
10.1038/hdy.1987.122
10.1104/pp.107.112045
10.1104/pp.90.4.1552
10.1371/journal.pone.0005450
10.1590/S1415-47572000000100035
10.1042/BST0331502
10.1371/journal.pone.0079192
10.1093/aob/mcm133
10.1071/BT9950619
10.1086/417659
10.1104/pp.86.3.711
10.1093/aob/mcz010
10.1016/S0031-9422(00)81740-9
10.1146/annurev-ento-010814-020601
10.1080/01904167.2019.1659321
10.1104/pp.105.065904
10.1038/nbt.3535
10.1104/pp.107.109512
10.1071/BT9820347
10.1071/FP17227
10.3389/fpls.2016.01925
10.1104/pp.000687
10.3389/fpls.2014.00320
10.1034/j.1399-3054.2002.1150110.x
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.phytochem.2020.112645
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1873-3700
ExternalDocumentID 33482417
10_1016_j_phytochem_2020_112645
S0031942220312607
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATCM
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D0L
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMS
HMT
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LW9
LX3
M2Z
M34
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCB
SCC
SCU
SDF
SDG
SDP
SES
SEW
SOC
SPC
SPCBC
SPT
SSA
SSK
SSP
SSU
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
Y6R
YK3
ZKB
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c519t-e5f6cb219945bb315b2d0d578a811fad7531cd0ba0bc7d8be39f34efa5153a133
IEDL.DBID .~1
ISSN 0031-9422
1873-3700
IngestDate Mon Jul 21 11:05:50 EDT 2025
Fri Jul 11 15:52:37 EDT 2025
Wed Feb 19 02:28:52 EST 2025
Tue Jul 01 03:32:26 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Fri Feb 23 02:41:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dhurrin
Cyanogenesis
Sorghum bicolor
Nitrate
Secondary metabolite
Seedling development
S. macrospermum
S. brachypodum
Poaceae
Crop wild relatives
Cyanogenic glucosides
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-e5f6cb219945bb315b2d0d578a811fad7531cd0ba0bc7d8be39f34efa5153a133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4756-0411
OpenAccessLink https://zenodo.org/record/8291432
PMID 33482417
PQID 2480277858
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2511178282
proquest_miscellaneous_2480277858
pubmed_primary_33482417
crossref_primary_10_1016_j_phytochem_2020_112645
crossref_citationtrail_10_1016_j_phytochem_2020_112645
elsevier_sciencedirect_doi_10_1016_j_phytochem_2020_112645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Phytochemistry (Oxford)
PublicationTitleAlternate Phytochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Nie, Xiao (bib104) 2013; 8
Moore, Johnson (bib62) 2017; 7
Evans, McCormick, Morishige, Olson, Weers, Hilley, Klein, Rooney, Mullet (bib23) 2013; 8
Chen, Gols, Benrey (bib13) 2015; 60
Züst, Agrawal (bib106) 2017; 68
Mithen, Lewis, Heaney, Fenwick (bib60) 1987; 26
Levin (bib48) 1973; 48
Worland, Robinson, Jordan, Schmidt, Godwin (bib99) 2017; 216
Kumari, Goyal, Kumar, Sohu (bib45) 2020; 1–16
Jørgensen, Bak, Busk, Sørensen, Olsen, Puonti-Kaerlas, Møller (bib42) 2005; 139
Djian-Caporalino, Mateille, Bailly-Bechet, Marteu, Fazari, Bautheac, Raptopoulo, Van Duong, Tavoillot, Martiny, Goillon, Castagnone-Sereno (bib20) 2019; 122
Chaudhary (bib12) 2013
Tian, Tooker, Peiffer, Chung, Felton (bib90) 2012; 236
Morant, Bjarnholt, Kragh, Kjaergaard, Jørgensen, Paquette, Piotrowski, Imberty, Olsen, Møller, Bak (bib63) 2008; 147
Neilson, Edwards, Blomstedt, Berger, Møller, Gleadow (bib68) 2015; 66
Pičmanová, Neilson, Motawia, Olsen, Agerbirk, Gray, Flitsch, Meier, Silvestro, Jorgensen, Sanchez-Perez, Moller, Bjarnholt (bib75) 2015; 469
Bradbury, Duputie, Deletre, Roullier, Narvaez-Trujillo, Manu-Aduening, Emshwiller, McKey (bib7) 2013; 100
Mahmoodzadeh (bib54) 2010; 25
Gleadow, Møller (bib28) 2014; 65
Gebauer, Rehder, Wollenweber (bib24) 1988; 75
Bredeson, Lyons, Prochnik, Wu, Ha, Edsinger-Gonzales, Grimwood, Schmutz, Rabbi, Egesi, Nauluvula, Lebot, Ndunguru, Mkamilo, Bart, Setter, Gleadow, Kulakow, Ferguson, Rounsley, Rokhsar (bib8) 2016; 34
Stuart (bib88) 2002
Webber, Woodrow (bib95) 2009; 97
Selmar, Kleinwächter (bib82) 2013; 54
Herms, Mattson (bib39) 1992; 67
Du, Bokanga, Møller, Halkier (bib21) 1995; 39
Gleadow, Woodrow (bib31) 2000; 20
Hauser (bib37) 2014; 5
Maag, Erb, Bernal, Wolfender, Turlings, Glauser (bib53) 2015; 10
Tattersall, Bak, Jones, Olsen, Nielsen, Hansen, Høj, Møller (bib89) 2001; 293
Nahrstedt (bib65) 1988
Reynolds, Keeping, Meyer (bib78) 2009; 155
Busk, Møller (bib11) 2002; 129
Nielsen, Stuart, Pičmanová, Rasmussen, Olsen, Harholt, Møller, Bjarnholt (bib70) 2016; 17
O'Donnell, Møller, Neale, Hamill, Blomstedt, Gleadow (bib71) 2013; 73
Meyer, Purugganan (bib58) 2013; 14
Halkier, Møller (bib35) 1989; 90
Loyd, Gray (bib51) 1970; 62
Nassar (bib66) 2000; 23
Whitehead, Poveda (bib96) 2019
Wiedemuth, Muller, Kahlau, Amme, Mock, Grzam, Hell, Egle, Beschow, Humbeck (bib98) 2005; 162
Myrans, Diaz, Khoury, Carver, Henry, Gleadow (bib64) 2020; 26
Kamala, Singh, Bramel, Rao (bib43) 2002; 42
Rosenthal, Dirzo (bib79) 1997; 11
Cooper, Brenton, Flinn, Jenkins, Shu, Flowers, Luo, Wang, Xia, Barry, Daum, Lipzen, Yoshinaga, Schmutz, Saski, Vermerris, Kresovich (bib14) 2019; 20
Miller, Gleadow, Cavagnaro (bib59) 2014; 37
Zagrobelny, Bak, Møller (bib102) 2008; 69
Bjarnholt, Neilson, Crocoll, Jorgensen, Motawia, Olsen, Dixon, Edwards, Møller (bib3) 2018; 94
Brown, Cavagnaro, Gleadow, Miller (bib9) 2016; 22
Blomstedt, Rosati, Møller, Gleadow (bib6) 2018; 45
Yip, Yang (bib101) 1988; 88
Till (bib91) 1987; 59
Holman, Obour, Mengel (bib40) 2019; 42
Gleadow, Rowan (bib30) 1982; 30
Neilson, Goodger, Woodrow, Møller (bib69) 2013; 18
Endara, Coley (bib22) 2011; 25
Lazarides, Hacker, Andrew (bib47) 1991; 4
McCall, Fordyce (bib55) 2010; 98
Zagrobelny, de Castro, Møller, Bak (bib103) 2018; 9
Gepts (bib25) 2004; 24
Paine, Marthews, Vogt, Purves, Rees, Hector, Turnbull (bib72) 2012; 3
Lanning, Ponnaiya, Crumpton (bib46) 1958; 33
Rasmann, Agrawal (bib77) 2008; 146
Dillon, Lawrence, Henry, Price (bib18) 2007; 268
(bib76) 2018
Selmar, Lieberei, Biehl (bib83) 1988; 86
Zidenga, Siritunga, Sayre (bib105) 2017; 8
Meldau, Erb, Baldwin (bib56) 2012; 110
Shlichta, Cuny, Hernandez-Cumplido, Traine, Benrey (bib85) 2018; 31
Ballhorn, Kautz, Heil, Hegeman (bib1) 2009
Schmidt, Cho, Olsen, Yang, Møller, Jørgensen (bib81) 2018; 2
Simpson, Wade, Rees, Osborne, Hartley (bib86) 2017; 31
Dillon, Shapter, Henry, Cordeiro, Izquierdo, Lee (bib19) 2007; 100
Dahler, McConchie, Turnbull (bib17) 1995; 43
Gleadow, Ottman, Kimball, Wall, Pinter, LaMorte, Leavitt (bib29) 2016; 185
Lux, Luxova, Hattori, Inanaga, Sugimoto (bib52) 2002; 115
Sharma, Reddy, Mukesh, Venkateswaran, Bu, G, Rt, Hash, Sharma (bib84) 2005; 46
Gleadow, Woodrow (bib32) 2002; 28
Lieberei (bib49) 2007; 100
Hayes, Burow, Brown, Thurber, Xin, Burke (bib38) 2015; 8
Ballhorn, Schiwy, Jensen, Heil (bib2) 2008; 34
Jones (bib41) 1998; 47
Meyer, DuVal, Jensen (bib57) 2012; 196
Gorz, Haskins, Morris, Johnson (bib34) 1987; 27
Burke, Chen, Burow, Mechref, Rosenow, Payton, Xin, Hayes (bib10) 2013; 53
Møller (bib61) 2010; 13
Cowan, Blomstedt, Norton, Henry, Møller, Gleadow (bib15) 2020; 169
Gleadow, Foley, Woodrow (bib27) 1998; 21
Kumar, Milstein, Brami, Elbaum, Elbaum (bib44) 2017; 213
Wu, Guo, Mu, Wang, Li, Wu, Tian, Wang, Bai, Perumal, Trick, Bean, Dweikat, Tuinstra, Morris, Tesso, Yu, Li (bib100) 2019; 5
Gleadow, Bjarnholt, Jørgensen, Fox, Miller (bib26) 2012; vol. 1
Vollbrecht, Sigmon (bib93) 2005; 33
Goodger, Gleadow, Woodrow (bib33) 2006; 20
Satish, Srinivas, Madhusudhana, Padmaja, Nagaraja Reddy, Murali Mohan, Seetharama (bib80) 2009; 119
Hartley, DeGabriel (bib36) 2016; 30
Wang, Feng, Xiao, Xia, Zhou, Li, Zhang, Wang, Møller, Zhang, Luo, Xiao, Liu, Yang, Chen, Rabinowicz, Chen, Zhang, Ceballos, Lou, Zou, Carvalho, Zeng, Xia, Sun, Fu, Wang, Lu, Ruan, Zhou, Wu, Liu, Kannangara, Jørgensen, Neale, Bonde, Heinz, Zhu, Wang, Zhang, Pan, Wen, Ma, Li, Hu, Liao, Hu, Zhang, Pei, Guo, Guo, Zhang, Zhang, Ye, Ou, Ma, Liu, Tallon, Galens, Ott, Huang, Xue, An, Yao, Lu, Fregene, López-Lavalle, Wu, You, Chen, Hu, Wu, Zhong, Ling, Chen, Wang, Liu, Liu, Li, Peng (bib94) 2014; 5
Nassar, Fichtner (bib67) 1978; 58
Turcotte, Turley, Johnson (bib92) 2014; 204
Lindig-Cisneros, Dirzo, Espinosa-García (bib50) 2002; 17
Paterson, Bowers, Bruggmann, Dubchak, Grimwood, Gundlach, Haberer, Hellsten, Mitros, Poliakov, Schmutz, Spannagl, Tang, Wang, Wicker, Bharti, Chapman, Feltus, Gowik, Grigoriev, Lyons, Maher, Martis, Narechania, Otillar, Penning, Salamov, Wang, Zhang, Carpita, Freeling, Gingle, Hash, Keller, Klein, Kresovich, McCann, Ming, Peterson, Mehboob ur, Ware, Westhoff, Mayer, Messing, Rokhsar (bib73) 2009; 457
Blomstedt, O'Donnell, Bjarnholt, Neale, Hamill, Møller, Gleadow (bib5) 2016; 57
Curto, Dallavalle, De Nicola, Lazzeri (bib16) 2012; 14
Stams, Lutke Schipholt (bib87) 1990; 125
Whitehead, Turcotte, Poveda (bib97) 2017; 372
Blomstedt, Gleadow, O'Donnell, Naur, Jensen, Laursen, Olsen, Stuart, Hamill, Møller, Neale (bib4) 2012; 10
Peiser, Wang, Hoffman, Yang, Liu, Walsh (bib74) 1984; 81
Chaudhary (10.1016/j.phytochem.2020.112645_bib12) 2013
Neilson (10.1016/j.phytochem.2020.112645_bib69) 2013; 18
Webber (10.1016/j.phytochem.2020.112645_bib95) 2009; 97
Yip (10.1016/j.phytochem.2020.112645_bib101) 1988; 88
Vollbrecht (10.1016/j.phytochem.2020.112645_bib93) 2005; 33
Whitehead (10.1016/j.phytochem.2020.112645_bib96) 2019
Morant (10.1016/j.phytochem.2020.112645_bib63) 2008; 147
Chen (10.1016/j.phytochem.2020.112645_bib13) 2015; 60
Gleadow (10.1016/j.phytochem.2020.112645_bib26) 2012; vol. 1
Hayes (10.1016/j.phytochem.2020.112645_bib38) 2015; 8
Simpson (10.1016/j.phytochem.2020.112645_bib86) 2017; 31
Züst (10.1016/j.phytochem.2020.112645_bib106) 2017; 68
Gepts (10.1016/j.phytochem.2020.112645_bib25) 2004; 24
Cowan (10.1016/j.phytochem.2020.112645_bib15) 2020; 169
Pičmanová (10.1016/j.phytochem.2020.112645_bib75) 2015; 469
Lieberei (10.1016/j.phytochem.2020.112645_bib49) 2007; 100
Stams (10.1016/j.phytochem.2020.112645_bib87) 1990; 125
Halkier (10.1016/j.phytochem.2020.112645_bib35) 1989; 90
Gleadow (10.1016/j.phytochem.2020.112645_bib31) 2000; 20
Lanning (10.1016/j.phytochem.2020.112645_bib46) 1958; 33
Schmidt (10.1016/j.phytochem.2020.112645_bib81) 2018; 2
Paine (10.1016/j.phytochem.2020.112645_bib72) 2012; 3
Till (10.1016/j.phytochem.2020.112645_bib91) 1987; 59
Endara (10.1016/j.phytochem.2020.112645_bib22) 2011; 25
Whitehead (10.1016/j.phytochem.2020.112645_bib97) 2017; 372
Zhao (10.1016/j.phytochem.2020.112645_bib104) 2013; 8
Bjarnholt (10.1016/j.phytochem.2020.112645_bib3) 2018; 94
Kumar (10.1016/j.phytochem.2020.112645_bib44) 2017; 213
Goodger (10.1016/j.phytochem.2020.112645_bib33) 2006; 20
Meyer (10.1016/j.phytochem.2020.112645_bib58) 2013; 14
Maag (10.1016/j.phytochem.2020.112645_bib53) 2015; 10
Gleadow (10.1016/j.phytochem.2020.112645_bib29) 2016; 185
Djian-Caporalino (10.1016/j.phytochem.2020.112645_bib20) 2019; 122
Satish (10.1016/j.phytochem.2020.112645_bib80) 2009; 119
Kamala (10.1016/j.phytochem.2020.112645_bib43) 2002; 42
Nassar (10.1016/j.phytochem.2020.112645_bib67) 1978; 58
Curto (10.1016/j.phytochem.2020.112645_bib16) 2012; 14
Paterson (10.1016/j.phytochem.2020.112645_bib73) 2009; 457
Gleadow (10.1016/j.phytochem.2020.112645_bib30) 1982; 30
Gebauer (10.1016/j.phytochem.2020.112645_bib24) 1988; 75
Kumari (10.1016/j.phytochem.2020.112645_bib45) 2020; 1–16
Selmar (10.1016/j.phytochem.2020.112645_bib82) 2013; 54
Jørgensen (10.1016/j.phytochem.2020.112645_bib42) 2005; 139
Myrans (10.1016/j.phytochem.2020.112645_bib64) 2020; 26
Du (10.1016/j.phytochem.2020.112645_bib21) 1995; 39
Evans (10.1016/j.phytochem.2020.112645_bib23) 2013; 8
Gleadow (10.1016/j.phytochem.2020.112645_bib32) 2002; 28
Brown (10.1016/j.phytochem.2020.112645_bib9) 2016; 22
Wiedemuth (10.1016/j.phytochem.2020.112645_bib98) 2005; 162
Stuart (10.1016/j.phytochem.2020.112645_bib88) 2002
Burke (10.1016/j.phytochem.2020.112645_bib10) 2013; 53
Gleadow (10.1016/j.phytochem.2020.112645_bib28) 2014; 65
Selmar (10.1016/j.phytochem.2020.112645_bib83) 1988; 86
Hauser (10.1016/j.phytochem.2020.112645_bib37) 2014; 5
Miller (10.1016/j.phytochem.2020.112645_bib59) 2014; 37
Tattersall (10.1016/j.phytochem.2020.112645_bib89) 2001; 293
Gleadow (10.1016/j.phytochem.2020.112645_bib27) 1998; 21
Worland (10.1016/j.phytochem.2020.112645_bib99) 2017; 216
Jones (10.1016/j.phytochem.2020.112645_bib41) 1998; 47
Dahler (10.1016/j.phytochem.2020.112645_bib17) 1995; 43
Mithen (10.1016/j.phytochem.2020.112645_bib60) 1987; 26
Neilson (10.1016/j.phytochem.2020.112645_bib68) 2015; 66
Hartley (10.1016/j.phytochem.2020.112645_bib36) 2016; 30
Zagrobelny (10.1016/j.phytochem.2020.112645_bib102) 2008; 69
Zagrobelny (10.1016/j.phytochem.2020.112645_bib103) 2018; 9
Blomstedt (10.1016/j.phytochem.2020.112645_bib4) 2012; 10
Reynolds (10.1016/j.phytochem.2020.112645_bib78) 2009; 155
Dillon (10.1016/j.phytochem.2020.112645_bib19) 2007; 100
Turcotte (10.1016/j.phytochem.2020.112645_bib92) 2014; 204
Meldau (10.1016/j.phytochem.2020.112645_bib56) 2012; 110
O'Donnell (10.1016/j.phytochem.2020.112645_bib71) 2013; 73
Blomstedt (10.1016/j.phytochem.2020.112645_bib6) 2018; 45
Cooper (10.1016/j.phytochem.2020.112645_bib14) 2019; 20
Moore (10.1016/j.phytochem.2020.112645_bib62) 2017; 7
Herms (10.1016/j.phytochem.2020.112645_bib39) 1992; 67
Meyer (10.1016/j.phytochem.2020.112645_bib57) 2012; 196
Tian (10.1016/j.phytochem.2020.112645_bib90) 2012; 236
Lux (10.1016/j.phytochem.2020.112645_bib52) 2002; 115
Lazarides (10.1016/j.phytochem.2020.112645_bib47) 1991; 4
Loyd (10.1016/j.phytochem.2020.112645_bib51) 1970; 62
Ballhorn (10.1016/j.phytochem.2020.112645_bib2) 2008; 34
Zidenga (10.1016/j.phytochem.2020.112645_bib105) 2017; 8
Blomstedt (10.1016/j.phytochem.2020.112645_bib5) 2016; 57
Nassar (10.1016/j.phytochem.2020.112645_bib66) 2000; 23
Dillon (10.1016/j.phytochem.2020.112645_bib18) 2007; 268
Holman (10.1016/j.phytochem.2020.112645_bib40) 2019; 42
Ballhorn (10.1016/j.phytochem.2020.112645_bib1) 2009
Gorz (10.1016/j.phytochem.2020.112645_bib34) 1987; 27
Rosenthal (10.1016/j.phytochem.2020.112645_bib79) 1997; 11
Bredeson (10.1016/j.phytochem.2020.112645_bib8) 2016; 34
Nahrstedt (10.1016/j.phytochem.2020.112645_bib65) 1988
Peiser (10.1016/j.phytochem.2020.112645_bib74) 1984; 81
Møller (10.1016/j.phytochem.2020.112645_bib61) 2010; 13
Shlichta (10.1016/j.phytochem.2020.112645_bib85) 2018; 31
Busk (10.1016/j.phytochem.2020.112645_bib11) 2002; 129
Sharma (10.1016/j.phytochem.2020.112645_bib84) 2005; 46
Rasmann (10.1016/j.phytochem.2020.112645_bib77) 2008; 146
(10.1016/j.phytochem.2020.112645_bib76) 2018
Levin (10.1016/j.phytochem.2020.112645_bib48) 1973; 48
McCall (10.1016/j.phytochem.2020.112645_bib55) 2010; 98
Lindig-Cisneros (10.1016/j.phytochem.2020.112645_bib50) 2002; 17
Nielsen (10.1016/j.phytochem.2020.112645_bib70) 2016; 17
Bradbury (10.1016/j.phytochem.2020.112645_bib7) 2013; 100
Wu (10.1016/j.phytochem.2020.112645_bib100) 2019; 5
Wang (10.1016/j.phytochem.2020.112645_bib94) 2014; 5
Mahmoodzadeh (10.1016/j.phytochem.2020.112645_bib54) 2010; 25
References_xml – volume: 98
  start-page: 985
  year: 2010
  end-page: 992
  ident: bib55
  article-title: Can optimal defence theory be used to predict the distribution of plant chemical defences?
  publication-title: J. Ecol.
– volume: 8
  start-page: 220
  year: 2017
  ident: bib105
  article-title: Cyanogen metabolism in cassava roots: impact on protein synthesis and root development
  publication-title: Front. Plant Sci.
– volume: 155
  start-page: 171
  year: 2009
  end-page: 186
  ident: bib78
  article-title: Silicon‐augmented resistance of plants to herbivorous insects: a review
  publication-title: Ann. Appl. Biol.
– volume: 115
  start-page: 87
  year: 2002
  end-page: 92
  ident: bib52
  article-title: Silicification in sorghum (
  publication-title: Physiol. Plantarum
– volume: 59
  start-page: 265
  year: 1987
  end-page: 271
  ident: bib91
  article-title: Variability of expression of cyanogenesis in white clover (
  publication-title: Heredity
– volume: 162
  start-page: 1226
  year: 2005
  end-page: 1236
  ident: bib98
  article-title: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism
  publication-title: J. Plant Physiol.
– volume: 469
  start-page: 375
  year: 2015
  end-page: 389
  ident: bib75
  article-title: A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species
  publication-title: Biochem. J.
– year: 2019
  ident: bib96
  article-title: Resource allocation trade-offs and the loss of chemical defences during apple domestication
  publication-title: Ann. Bot.
– volume: 60
  start-page: 35
  year: 2015
  end-page: 58
  ident: bib13
  article-title: Crop domestication and its impact on naturally selected trophic interactions
  publication-title: Annu. Rev. Entomol.
– volume: 66
  start-page: 1817
  year: 2015
  end-page: 1832
  ident: bib68
  article-title: Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C
  publication-title: J. Exp. Bot.
– volume: 69
  start-page: 1457
  year: 2008
  end-page: 1468
  ident: bib102
  article-title: Cyanogenesis in plants and arthropods
  publication-title: Phytochemistry
– volume: 75
  start-page: 371
  year: 1988
  end-page: 385
  ident: bib24
  article-title: Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe
  publication-title: Oecologia
– volume: 24
  start-page: 1
  year: 2004
  end-page: 41
  ident: bib25
  article-title: Crop domestication as a long‐term selection experiment
  publication-title: Plant Breed. Rev.
– volume: 2
  year: 2018
  ident: bib81
  article-title: Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava
  publication-title: Plant Direct
– volume: 146
  start-page: 875
  year: 2008
  end-page: 880
  ident: bib77
  article-title: In defense of roots: a research agenda for studying plant resistance to belowground herbivory
  publication-title: Plant Physiol.
– volume: 33
  start-page: 1502
  year: 2005
  end-page: 1506
  ident: bib93
  article-title: Amazing grass: developmental genetics of maize domestication
  publication-title: Biochem. Soc. Trans.
– volume: 147
  start-page: 1072
  year: 2008
  end-page: 1091
  ident: bib63
  article-title: The β-glucosidases responsible for bioactivation of hydroxynitrile glucosides in
  publication-title: Plant Physiol.
– volume: 33
  start-page: 339
  year: 1958
  end-page: 343
  ident: bib46
  article-title: The chemical nature of silica in plants
  publication-title: Plant Physiol.
– volume: 34
  start-page: 1298
  year: 2008
  end-page: 1301
  ident: bib2
  article-title: Quantitative variability of direct chemical defense in primary and secondary leaves of lima bean (
  publication-title: J. Chem. Ecol.
– volume: 30
  start-page: 1311
  year: 2016
  end-page: 1322
  ident: bib36
  article-title: The ecology of herbivore-induced silicon defences in grasses
  publication-title: Funct. Ecol.
– volume: 185
  start-page: 97
  year: 2016
  end-page: 102
  ident: bib29
  article-title: Drought-induced changes in nitrogen partitioning between cyanide and nitrate in leaves and stems of sorghum grown at elevated CO
  publication-title: Field Crop. Res.
– volume: 88
  start-page: 473
  year: 1988
  end-page: 476
  ident: bib101
  article-title: Cyanide metabolism in relation to ethylene production in plant tissues
  publication-title: Plant Physiol.
– volume: 26
  start-page: 1969
  year: 1987
  end-page: 1973
  ident: bib60
  article-title: Glucosinolates of wild and cultivated
  publication-title: Phytochemistry
– volume: 25
  start-page: 389
  year: 2011
  end-page: 398
  ident: bib22
  article-title: The resource availability hypothesis revisited: a meta-analysis
  publication-title: Funct. Ecol.
– volume: 119
  start-page: 1425
  year: 2009
  end-page: 1439
  ident: bib80
  article-title: Identification of quantitative trait loci for resistance to shoot fly in sorghum [
  publication-title: Theor. Appl. Genet.
– volume: 129
  start-page: 1222
  year: 2002
  end-page: 1231
  ident: bib11
  article-title: Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants
  publication-title: Plant Physiol.
– volume: 139
  start-page: 363
  year: 2005
  end-page: 374
  ident: bib42
  article-title: Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology
  publication-title: Plant Physiol.
– volume: 100
  start-page: 857
  year: 2013
  end-page: 866
  ident: bib7
  article-title: Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (
  publication-title: Am. J. Bot.
– volume: 457
  start-page: 551
  year: 2009
  end-page: 556
  ident: bib73
  article-title: The
  publication-title: Nature
– volume: 54
  start-page: 817
  year: 2013
  end-page: 826
  ident: bib82
  article-title: Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products
  publication-title: Plant Cell Physiol.
– volume: 13
  start-page: 338
  year: 2010
  end-page: 347
  ident: bib61
  article-title: Functional diversifications of cyanogenic glucosides
  publication-title: Curr. Opin. Plant Biol.
– volume: 196
  start-page: 29
  year: 2012
  end-page: 48
  ident: bib57
  article-title: Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops
  publication-title: New Phytol.
– volume: 81
  start-page: 3059
  year: 1984
  end-page: 3063
  ident: bib74
  article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2002
  ident: bib88
  article-title: The Forage Book: a Comprehensive Guide Guide to Forage Management
– volume: 18
  start-page: 250
  year: 2013
  end-page: 258
  ident: bib69
  article-title: Plant chemical defense: at what cost?
  publication-title: Trends Plant Sci.
– volume: 28
  start-page: 1301
  year: 2002
  end-page: 1313
  ident: bib32
  article-title: Constraints on effectiveness of cyanogenic glycosides in herbivore defense
  publication-title: J. Chem. Ecol.
– volume: 39
  start-page: 323
  year: 1995
  end-page: 326
  ident: bib21
  article-title: The biosynthesis of cyanogenic glucosides in roots of cassava
  publication-title: Phytochemistry
– volume: 17
  start-page: 1021
  year: 2016
  ident: bib70
  article-title: Dhurrin metabolism in the developing grain of
  publication-title: BMC Genom.
– year: 2018
  ident: bib76
  article-title: R: A Language and Environment for Statistical Computing
– year: 2009
  ident: bib1
  article-title: Cyanogenesis of wild lima bean (
  publication-title: PloS One
– volume: 31
  start-page: 10
  year: 2018
  end-page: 20
  ident: bib85
  article-title: Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants
  publication-title: Basic Appl. Ecol.
– volume: 20
  start-page: 591
  year: 2000
  end-page: 598
  ident: bib31
  article-title: Temporal and spatial variation in cyanogenic glycosides in
  publication-title: Tree Physiol.
– start-page: 572784
  year: 2013
  ident: bib12
  article-title: Plant domestication and resistance to herbivory
  publication-title: Int. J. Plant Genom.
– volume: 31
  start-page: 2108
  year: 2017
  end-page: 2117
  ident: bib86
  article-title: Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals
  publication-title: Funct. Ecol.
– volume: 17
  start-page: 315
  year: 2002
  end-page: 321
  ident: bib50
  article-title: Effects of domestication and agronomic selection on phytoalexin antifungal defense in
  publication-title: Ecol. Res.
– volume: 23
  start-page: 201
  year: 2000
  end-page: 212
  ident: bib66
  article-title: Wild cassava,
  publication-title: Genet. Mol. Biol.
– volume: 48
  start-page: 3
  year: 1973
  end-page: 15
  ident: bib48
  article-title: The role of trichomes in plant defense
  publication-title: Q. Rev. Biol.
– volume: 34
  start-page: 562
  year: 2016
  ident: bib8
  article-title: Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity
  publication-title: Nat. Biotechnol.
– volume: 53
  start-page: 1056
  year: 2013
  end-page: 1065
  ident: bib10
  article-title: Leaf dhurrin content is a quantitative measure of the level of pre- and postflowering drought tolerance in sorghum
  publication-title: Crop Sci.
– volume: 57
  start-page: 373
  year: 2016
  end-page: 386
  ident: bib5
  article-title: Metabolic consequences of knocking out
  publication-title: Plant Cell Physiol.
– volume: 169
  start-page: 103884
  year: 2020
  ident: bib15
  article-title: Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum
  publication-title: Environ. Exp. Bot.
– volume: 20
  start-page: 757
  year: 2006
  end-page: 765
  ident: bib33
  article-title: Growth cost and ontogenetic expression patterns of defence in cyanogenic
  publication-title: Trees (Berl.)
– volume: 27
  year: 1987
  ident: bib34
  article-title: Identification of chromosomes that condition dhurrin content in sorghum seedlings
  publication-title: Crop Sci.
– volume: 26
  start-page: 1727
  year: 2020
  end-page: 1740
  ident: bib64
  article-title: Modelled distributions and conservation priorities of wild sorghums (
  publication-title: Divers. Distrib.
– volume: 20
  start-page: 420
  year: 2019
  ident: bib14
  article-title: A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism
  publication-title: BMC Genom.
– volume: 372
  start-page: 9
  year: 2017
  ident: bib97
  article-title: Domestication impacts on plant - herbivore interactions: a meta-analysis
  publication-title: Phil. Trans. Biol. Sci.
– volume: 42
  start-page: 2794
  year: 2019
  end-page: 2804
  ident: bib40
  article-title: Nitrogen application effects on forage sorghum production and nitrate concentration
  publication-title: J. Plant Nutr.
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  ident: bib39
  article-title: The dilemma of plants - to grow or defend
  publication-title: QRB (Q. Rev. Biol.)
– volume: 43
  start-page: 619
  year: 1995
  end-page: 628
  ident: bib17
  article-title: Quantification of cyanogenic glycosides in seedlings of three
  publication-title: Aust. J. Bot.
– volume: 100
  start-page: 975
  year: 2007
  end-page: 989
  ident: bib19
  article-title: Domestication to crop improvement: genetic resources for
  publication-title: Ann. Bot.
– volume: 22
  start-page: 3461
  year: 2016
  end-page: 3473
  ident: bib9
  article-title: Interactions between temperature and drought stress on yield and nutritional quality of cassava (Manihot esculenta Cranz)
  publication-title: Global Change Biol.
– volume: 5
  year: 2014
  ident: bib37
  article-title: Molecular basis of natural variation and environmental control of trichome patterning
  publication-title: Front. Plant Sci.
– volume: 110
  start-page: 1503
  year: 2012
  end-page: 1514
  ident: bib56
  article-title: Defence on demand: mechanisms behind optimal defence patterns
  publication-title: Ann. Bot.
– volume: 14
  start-page: 840
  year: 2013
  ident: bib58
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: 5110
  year: 2014
  ident: bib94
  article-title: Cassava genome from a wild ancestor to cultivated varieties
  publication-title: Nat. Commun.
– volume: 122
  start-page: 142
  year: 2019
  end-page: 150
  ident: bib20
  article-title: Evaluating sorghums as green manure against root-knot nematodes
  publication-title: Crop Protect.
– volume: 47
  start-page: 155
  year: 1998
  end-page: 162
  ident: bib41
  article-title: Why are so many food plants cyanogenic?
  publication-title: Phytochemistry
– volume: 4
  start-page: 591
  year: 1991
  end-page: 635
  ident: bib47
  article-title: Taxonomy, cytology and ecology of indigenous Australian sorghums (
  publication-title: Aust. Syst. Bot.
– volume: 94
  start-page: 1109
  year: 2018
  end-page: 1125
  ident: bib3
  article-title: Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum
  publication-title: Plant J.
– volume: 213
  start-page: 791
  year: 2017
  end-page: 798
  ident: bib44
  article-title: Mechanism of silica deposition in sorghum silica cells
  publication-title: New Phytol.
– volume: 62
  start-page: 394
  year: 1970
  end-page: 397
  ident: bib51
  article-title: Amount and distribution of hydrocyanic acid potential during life cycle of plants of three sorghum cultivars
  publication-title: Agron. J.
– volume: 30
  start-page: 347
  year: 1982
  end-page: 357
  ident: bib30
  article-title: Invasion by
  publication-title: Aust. J. Bot.
– volume: 100
  start-page: 1125
  year: 2007
  end-page: 1142
  ident: bib49
  article-title: South American leaf blight of the rubber tree (
  publication-title: Ann. Bot.
– volume: 8
  year: 2013
  ident: bib23
  article-title: Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes
  publication-title: PloS One
– volume: 3
  start-page: 245
  year: 2012
  end-page: 256
  ident: bib72
  article-title: How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists
  publication-title: Methods Ecol. Evol.
– volume: 14
  start-page: 759
  year: 2012
  end-page: 769
  ident: bib16
  article-title: Evaluation of the activity of dhurrin and sorghum towards
  publication-title: Nematology
– volume: 8
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib38
  article-title: Natural variation in synthesis and catabolism genes influences dhurrin content in
  publication-title: Plant Genome
– start-page: 131
  year: 1988
  end-page: 150
  ident: bib65
  article-title: Cyanogenesis and the role of cyanogenic compounds in insects
  publication-title: Cyanide Compounds in Biology: Cyanide Compounds in Biology
– volume: 293
  start-page: 1826
  year: 2001
  end-page: 1828
  ident: bib89
  article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis
  publication-title: Science
– volume: 68
  start-page: 513
  year: 2017
  end-page: 534
  ident: bib106
  article-title: Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis
  publication-title: Annu. Rev. Plant Biol.
– volume: 216
  start-page: 118
  year: 2017
  end-page: 124
  ident: bib99
  article-title: Post-anthesis nitrate uptake is critical to yield and grain protein content in
  publication-title: J. Plant Physiol.
– volume: 268
  start-page: 29
  year: 2007
  end-page: 43
  ident: bib18
  article-title: resolved as a distinct genus based on combined
  publication-title: Plant Systemat. Evol.
– volume: 21
  start-page: 12
  year: 1998
  end-page: 22
  ident: bib27
  article-title: Enhanced CO
  publication-title: Muell. Plant Cell Environ.
– volume: 46
  start-page: 36
  year: 2005
  end-page: 43
  ident: bib84
  article-title: Host plant resistance to insects in sorghum: present status and need for future research
  publication-title: J. SAT Agric. Res.
– volume: 58
  start-page: 577
  year: 1978
  end-page: 578
  ident: bib67
  article-title: Hydrocyanic acid content in some wild
  publication-title: Can. J. Plant Sci.
– volume: 45
  start-page: 705
  year: 2018
  end-page: 718
  ident: bib6
  article-title: Counting the costs: nitrogen partitioning in
  publication-title: Funct. Plant Biol.
– volume: 90
  start-page: 1552
  year: 1989
  end-page: 1559
  ident: bib35
  article-title: Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of
  publication-title: Plant Physiol.
– volume: 10
  year: 2015
  ident: bib53
  article-title: Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors
  publication-title: PloS One
– volume: 86
  start-page: 711
  year: 1988
  end-page: 716
  ident: bib83
  article-title: Mobilization and utilization of cyanogenic glycosides: the linustatin pathway
  publication-title: Plant Physiol.
– volume: 125
  start-page: 143
  year: 1990
  end-page: 145
  ident: bib87
  article-title: Nitrate accumulation in leaves of vegetation of a forested ecosystem receiving high amounts of atmospheric ammonium sulfate
  publication-title: Plant Soil
– volume: 42
  start-page: 1357
  year: 2002
  end-page: 1360
  ident: bib43
  article-title: Sources of resistance to downy mildew in wild and weedy sorghums
  publication-title: Crop Sci.
– volume: 7
  year: 2017
  ident: bib62
  article-title: Get Tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses
  publication-title: Front. Plant Sci.
– volume: 204
  start-page: 671
  year: 2014
  end-page: 681
  ident: bib92
  article-title: The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events
  publication-title: New Phytol.
– volume: vol. 1
  start-page: 283
  year: 2012
  end-page: 310
  ident: bib26
  publication-title: Detection, Identification and Quantitative Measurement of Cyanogenic Glycosides. Research Methods in Plant Science
– volume: 37
  start-page: 929
  year: 2014
  end-page: 942
  ident: bib59
  article-title: Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum?
  publication-title: Plant Cell Environ.
– volume: 1–16
  year: 2020
  ident: bib45
  article-title: Morphophysiological and biochemical attributes influence intra-genotypic preference of shoot fly [
  publication-title: Protoplasma
– volume: 25
  start-page: 227
  year: 2010
  end-page: 237
  ident: bib54
  article-title: Allelopathic plants 23.
  publication-title: Allelopathy J.
– volume: 8
  year: 2013
  ident: bib104
  article-title: Over-expression of a tobacco nitrate reductase gene in wheat (
  publication-title: PloS One
– volume: 5
  start-page: 1229
  year: 2019
  end-page: 1236
  ident: bib100
  article-title: Allelochemicals targeted to balance competing selections in African agroecosystems
  publication-title: Nat. plants
– volume: 9
  start-page: 51
  year: 2018
  ident: bib103
  article-title: Cyanogenesis in arthropods: from chemical warfare to nuptial gifts
  publication-title: Insects
– volume: 73
  start-page: 83
  year: 2013
  end-page: 92
  ident: bib71
  article-title: Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum
  publication-title: Plant Physiol. Biochem.
– volume: 65
  start-page: 155
  year: 2014
  end-page: 185
  ident: bib28
  article-title: Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity
  publication-title: Annu. Rev. Plant Biol.
– volume: 10
  start-page: 54
  year: 2012
  end-page: 66
  ident: bib4
  article-title: A combined biochemical screen and TILLING approach identifies mutations in
  publication-title: Plant Biotechnol. J.
– volume: 11
  start-page: 337
  year: 1997
  end-page: 355
  ident: bib79
  article-title: Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives
  publication-title: Evol. Ecol.
– volume: 97
  start-page: 761
  year: 2009
  end-page: 771
  ident: bib95
  article-title: Chemical and physical plant defence across multiple ontogenetic stages in a tropical rain forest understorey tree
  publication-title: J. Ecol.
– volume: 236
  start-page: 1053
  year: 2012
  end-page: 1066
  ident: bib90
  article-title: Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (
  publication-title: Planta
– volume: 42
  start-page: 1357
  year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib43
  article-title: Sources of resistance to downy mildew in wild and weedy sorghums
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2002.1357
– volume: 97
  start-page: 761
  year: 2009
  ident: 10.1016/j.phytochem.2020.112645_bib95
  article-title: Chemical and physical plant defence across multiple ontogenetic stages in a tropical rain forest understorey tree
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2009.01512.x
– volume: 18
  start-page: 250
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib69
  article-title: Plant chemical defense: at what cost?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.01.001
– volume: 66
  start-page: 1817
  year: 2015
  ident: 10.1016/j.phytochem.2020.112645_bib68
  article-title: Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru526
– volume: 17
  start-page: 315
  year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib50
  article-title: Effects of domestication and agronomic selection on phytoalexin antifungal defense in Phaseolus beans
  publication-title: Ecol. Res.
  doi: 10.1046/j.1440-1703.2002.00491.x
– volume: 14
  start-page: 840
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib58
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3605
– volume: 216
  start-page: 118
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib99
  article-title: Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.05.026
– volume: 21
  start-page: 12
  year: 1998
  ident: 10.1016/j.phytochem.2020.112645_bib27
  article-title: Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F
  publication-title: Muell. Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1998.00258.x
– volume: 119
  start-page: 1425
  year: 2009
  ident: 10.1016/j.phytochem.2020.112645_bib80
  article-title: Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-009-1145-8
– volume: 125
  start-page: 143
  year: 1990
  ident: 10.1016/j.phytochem.2020.112645_bib87
  article-title: Nitrate accumulation in leaves of vegetation of a forested ecosystem receiving high amounts of atmospheric ammonium sulfate
  publication-title: Plant Soil
  doi: 10.1007/BF00010754
– volume: 20
  start-page: 757
  year: 2006
  ident: 10.1016/j.phytochem.2020.112645_bib33
  article-title: Growth cost and ontogenetic expression patterns of defence in cyanogenic Eucalyptus spp
  publication-title: Trees (Berl.)
  doi: 10.1007/s00468-006-0090-2
– volume: 11
  start-page: 337
  year: 1997
  ident: 10.1016/j.phytochem.2020.112645_bib79
  article-title: Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives
  publication-title: Evol. Ecol.
  doi: 10.1023/A:1018420504439
– volume: 28
  start-page: 1301
  year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib32
  article-title: Constraints on effectiveness of cyanogenic glycosides in herbivore defense
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1016298100201
– volume: 204
  start-page: 671
  year: 2014
  ident: 10.1016/j.phytochem.2020.112645_bib92
  article-title: The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events
  publication-title: New Phytol.
  doi: 10.1111/nph.12935
– volume: 5
  start-page: 5110
  year: 2014
  ident: 10.1016/j.phytochem.2020.112645_bib94
  article-title: Cassava genome from a wild ancestor to cultivated varieties
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6110
– volume: 372
  start-page: 9
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib97
  article-title: Domestication impacts on plant - herbivore interactions: a meta-analysis
  publication-title: Phil. Trans. Biol. Sci.
  doi: 10.1098/rstb.2016.0034
– volume: vol. 1
  start-page: 283
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib26
– volume: 10
  start-page: 54
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib4
  article-title: A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00646.x
– volume: 69
  start-page: 1457
  year: 2008
  ident: 10.1016/j.phytochem.2020.112645_bib102
  article-title: Cyanogenesis in plants and arthropods
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2008.02.019
– volume: 73
  start-page: 83
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib71
  article-title: Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.09.001
– volume: 34
  start-page: 1298
  year: 2008
  ident: 10.1016/j.phytochem.2020.112645_bib2
  article-title: Quantitative variability of direct chemical defense in primary and secondary leaves of lima bean (Phaseolus lunatus) and consequences for a natural herbivore
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-008-9540-1
– volume: 196
  start-page: 29
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib57
  article-title: Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04253.x
– volume: 169
  start-page: 103884
  year: 2020
  ident: 10.1016/j.phytochem.2020.112645_bib15
  article-title: Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.103884
– volume: 68
  start-page: 513
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib106
  article-title: Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042916-040856
– volume: 81
  start-page: 3059
  year: 1984
  ident: 10.1016/j.phytochem.2020.112645_bib74
  article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.10.3059
– volume: 17
  start-page: 1021
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib70
  article-title: Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data
  publication-title: BMC Genom.
  doi: 10.1186/s12864-016-3360-4
– volume: 10
  year: 2015
  ident: 10.1016/j.phytochem.2020.112645_bib53
  article-title: Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors
  publication-title: PloS One
  doi: 10.1371/journal.pone.0135722
– volume: 25
  start-page: 227
  year: 2010
  ident: 10.1016/j.phytochem.2020.112645_bib54
  article-title: Allelopathic plants 23. Cynodon dactylon (L.) pers
  publication-title: Allelopathy J.
– volume: 155
  start-page: 171
  year: 2009
  ident: 10.1016/j.phytochem.2020.112645_bib78
  article-title: Silicon‐augmented resistance of plants to herbivorous insects: a review
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2009.00348.x
– volume: 236
  start-page: 1053
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib90
  article-title: Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum)
  publication-title: Planta
  doi: 10.1007/s00425-012-1651-9
– volume: 31
  start-page: 2108
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib86
  article-title: Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12935
– volume: 100
  start-page: 975
  year: 2007
  ident: 10.1016/j.phytochem.2020.112645_bib19
  article-title: Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae)
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm192
– volume: 31
  start-page: 10
  year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib85
  article-title: Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2018.05.012
– volume: 24
  start-page: 1
  year: 2004
  ident: 10.1016/j.phytochem.2020.112645_bib25
  article-title: Crop domestication as a long‐term selection experiment
  publication-title: Plant Breed. Rev.
– volume: 33
  start-page: 339
  year: 1958
  ident: 10.1016/j.phytochem.2020.112645_bib46
  article-title: The chemical nature of silica in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.33.5.339
– volume: 22
  start-page: 3461
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib9
  article-title: Interactions between temperature and drought stress on yield and nutritional quality of cassava (Manihot esculenta Cranz)
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.13380
– volume: 100
  start-page: 857
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib7
  article-title: Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae)
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1200482
– volume: 98
  start-page: 985
  year: 2010
  ident: 10.1016/j.phytochem.2020.112645_bib55
  article-title: Can optimal defence theory be used to predict the distribution of plant chemical defences?
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2010.01693.x
– volume: 5
  start-page: 1229
  year: 2019
  ident: 10.1016/j.phytochem.2020.112645_bib100
  article-title: Allelochemicals targeted to balance competing selections in African agroecosystems
  publication-title: Nat. plants
  doi: 10.1038/s41477-019-0563-0
– volume: 162
  start-page: 1226
  year: 2005
  ident: 10.1016/j.phytochem.2020.112645_bib98
  article-title: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2005.01.010
– volume: 13
  start-page: 338
  year: 2010
  ident: 10.1016/j.phytochem.2020.112645_bib61
  article-title: Functional diversifications of cyanogenic glucosides
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2010.01.009
– volume: 2
  year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib81
  article-title: Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava
  publication-title: Plant Direct
  doi: 10.1002/pld3.38
– volume: 9
  start-page: 51
  year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib103
  article-title: Cyanogenesis in arthropods: from chemical warfare to nuptial gifts
  publication-title: Insects
  doi: 10.3390/insects9020051
– volume: 268
  start-page: 29
  year: 2007
  ident: 10.1016/j.phytochem.2020.112645_bib18
  article-title: Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses
  publication-title: Plant Systemat. Evol.
  doi: 10.1007/s00606-007-0571-9
– volume: 14
  start-page: 759
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib16
  article-title: Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita
  publication-title: Nematology
  doi: 10.1163/156854112X627291
– volume: 39
  start-page: 323
  year: 1995
  ident: 10.1016/j.phytochem.2020.112645_bib21
  article-title: The biosynthesis of cyanogenic glucosides in roots of cassava
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(94)00878-W
– volume: 57
  start-page: 373
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib5
  article-title: Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L.) Moench
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv153
– volume: 65
  start-page: 155
  year: 2014
  ident: 10.1016/j.phytochem.2020.112645_bib28
  article-title: Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050213-040027
– volume: 4
  start-page: 591
  year: 1991
  ident: 10.1016/j.phytochem.2020.112645_bib47
  article-title: Taxonomy, cytology and ecology of indigenous Australian sorghums (sorghum Moench: andropogoneae: poaceae)
  publication-title: Aust. Syst. Bot.
  doi: 10.1071/SB9910591
– volume: 30
  start-page: 1311
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib36
  article-title: The ecology of herbivore-induced silicon defences in grasses
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12706
– volume: 1–16
  year: 2020
  ident: 10.1016/j.phytochem.2020.112645_bib45
  article-title: Morphophysiological and biochemical attributes influence intra-genotypic preference of shoot fly [Atherigona soccata (Rondani)] among sorghum genotypes
  publication-title: Protoplasma
– volume: 26
  start-page: 1727
  year: 2020
  ident: 10.1016/j.phytochem.2020.112645_bib64
  article-title: Modelled distributions and conservation priorities of wild sorghums (Sorghum Moench)
  publication-title: Divers. Distrib.
  doi: 10.1111/ddi.13166
– volume: 37
  start-page: 929
  year: 2014
  ident: 10.1016/j.phytochem.2020.112645_bib59
  article-title: Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum?
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12209
– volume: 20
  start-page: 420
  year: 2019
  ident: 10.1016/j.phytochem.2020.112645_bib14
  article-title: A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism
  publication-title: BMC Genom.
  doi: 10.1186/s12864-019-5734-x
– volume: 20
  start-page: 591
  year: 2000
  ident: 10.1016/j.phytochem.2020.112645_bib31
  article-title: Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/20.9.591
– volume: 46
  start-page: 36
  year: 2005
  ident: 10.1016/j.phytochem.2020.112645_bib84
  article-title: Host plant resistance to insects in sorghum: present status and need for future research
  publication-title: J. SAT Agric. Res.
– volume: 58
  start-page: 577
  year: 1978
  ident: 10.1016/j.phytochem.2020.112645_bib67
  article-title: Hydrocyanic acid content in some wild Manihot (cassava) species
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps78-090
– year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib76
– start-page: 572784
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib12
  article-title: Plant domestication and resistance to herbivory
  publication-title: Int. J. Plant Genom.
– volume: 8
  start-page: 1
  year: 2015
  ident: 10.1016/j.phytochem.2020.112645_bib38
  article-title: Natural variation in synthesis and catabolism genes influences dhurrin content in Sorghum
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2014.09.0048
– volume: 48
  start-page: 3
  year: 1973
  ident: 10.1016/j.phytochem.2020.112645_bib48
  article-title: The role of trichomes in plant defense
  publication-title: Q. Rev. Biol.
  doi: 10.1086/407484
– volume: 25
  start-page: 389
  year: 2011
  ident: 10.1016/j.phytochem.2020.112645_bib22
  article-title: The resource availability hypothesis revisited: a meta-analysis
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2010.01803.x
– volume: 47
  start-page: 155
  year: 1998
  ident: 10.1016/j.phytochem.2020.112645_bib41
  article-title: Why are so many food plants cyanogenic?
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(97)00425-1
– volume: 8
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib104
  article-title: Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying
  publication-title: PloS One
– year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib88
– volume: 53
  start-page: 1056
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib10
  article-title: Leaf dhurrin content is a quantitative measure of the level of pre- and postflowering drought tolerance in sorghum
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2012.09.0520
– volume: 3
  start-page: 245
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib72
  article-title: How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00155.x
– start-page: 131
  year: 1988
  ident: 10.1016/j.phytochem.2020.112645_bib65
  article-title: Cyanogenesis and the role of cyanogenic compounds in insects
– volume: 110
  start-page: 1503
  year: 2012
  ident: 10.1016/j.phytochem.2020.112645_bib56
  article-title: Defence on demand: mechanisms behind optimal defence patterns
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs212
– volume: 54
  start-page: 817
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib82
  article-title: Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct054
– volume: 88
  start-page: 473
  year: 1988
  ident: 10.1016/j.phytochem.2020.112645_bib101
  article-title: Cyanide metabolism in relation to ethylene production in plant tissues
  publication-title: Plant Physiol.
  doi: 10.1104/pp.88.2.473
– volume: 185
  start-page: 97
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib29
  article-title: Drought-induced changes in nitrogen partitioning between cyanide and nitrate in leaves and stems of sorghum grown at elevated CO2 are age dependent
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2015.10.010
– volume: 469
  start-page: 375
  year: 2015
  ident: 10.1016/j.phytochem.2020.112645_bib75
  article-title: A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150390
– volume: 75
  start-page: 371
  year: 1988
  ident: 10.1016/j.phytochem.2020.112645_bib24
  article-title: Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe
  publication-title: Oecologia
  doi: 10.1007/BF00376940
– volume: 8
  start-page: 220
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib105
  article-title: Cyanogen metabolism in cassava roots: impact on protein synthesis and root development
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00220
– volume: 213
  start-page: 791
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib44
  article-title: Mechanism of silica deposition in sorghum silica cells
  publication-title: New Phytol.
  doi: 10.1111/nph.14173
– volume: 293
  start-page: 1826
  year: 2001
  ident: 10.1016/j.phytochem.2020.112645_bib89
  article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis
  publication-title: Science
  doi: 10.1126/science.1062249
– volume: 457
  start-page: 551
  year: 2009
  ident: 10.1016/j.phytochem.2020.112645_bib73
  article-title: The Sorghum bicolor genome and the diversification of grasses
  publication-title: Nature
  doi: 10.1038/nature07723
– volume: 27
  year: 1987
  ident: 10.1016/j.phytochem.2020.112645_bib34
  article-title: Identification of chromosomes that condition dhurrin content in sorghum seedlings
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1987.0011183X002700020012x
– volume: 94
  start-page: 1109
  year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib3
  article-title: Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum
  publication-title: Plant J.
  doi: 10.1111/tpj.13923
– volume: 62
  start-page: 394
  year: 1970
  ident: 10.1016/j.phytochem.2020.112645_bib51
  article-title: Amount and distribution of hydrocyanic acid potential during life cycle of plants of three sorghum cultivars
  publication-title: Agron. J.
  doi: 10.2134/agronj1970.00021962006200030025x
– volume: 122
  start-page: 142
  year: 2019
  ident: 10.1016/j.phytochem.2020.112645_bib20
  article-title: Evaluating sorghums as green manure against root-knot nematodes
  publication-title: Crop Protect.
  doi: 10.1016/j.cropro.2019.05.002
– volume: 59
  start-page: 265
  year: 1987
  ident: 10.1016/j.phytochem.2020.112645_bib91
  article-title: Variability of expression of cyanogenesis in white clover (Trifolium repens L.)
  publication-title: Heredity
  doi: 10.1038/hdy.1987.122
– volume: 146
  start-page: 875
  year: 2008
  ident: 10.1016/j.phytochem.2020.112645_bib77
  article-title: In defense of roots: a research agenda for studying plant resistance to belowground herbivory
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.112045
– volume: 90
  start-page: 1552
  year: 1989
  ident: 10.1016/j.phytochem.2020.112645_bib35
  article-title: Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved
  publication-title: Plant Physiol.
  doi: 10.1104/pp.90.4.1552
– year: 2009
  ident: 10.1016/j.phytochem.2020.112645_bib1
  article-title: Cyanogenesis of wild lima bean (Phaseolus lunatus L.) Is an efficient direct defence in nature
  publication-title: PloS One
  doi: 10.1371/journal.pone.0005450
– volume: 23
  start-page: 201
  year: 2000
  ident: 10.1016/j.phytochem.2020.112645_bib66
  article-title: Wild cassava, Manihot spp.: biology and potentialities for genetic improvement
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572000000100035
– volume: 33
  start-page: 1502
  year: 2005
  ident: 10.1016/j.phytochem.2020.112645_bib93
  article-title: Amazing grass: developmental genetics of maize domestication
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0331502
– volume: 8
  year: 2013
  ident: 10.1016/j.phytochem.2020.112645_bib23
  article-title: Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0079192
– volume: 100
  start-page: 1125
  year: 2007
  ident: 10.1016/j.phytochem.2020.112645_bib49
  article-title: South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm133
– volume: 43
  start-page: 619
  year: 1995
  ident: 10.1016/j.phytochem.2020.112645_bib17
  article-title: Quantification of cyanogenic glycosides in seedlings of three macadamia (proteaceae) species
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT9950619
– volume: 67
  start-page: 283
  year: 1992
  ident: 10.1016/j.phytochem.2020.112645_bib39
  article-title: The dilemma of plants - to grow or defend
  publication-title: QRB (Q. Rev. Biol.)
  doi: 10.1086/417659
– volume: 86
  start-page: 711
  year: 1988
  ident: 10.1016/j.phytochem.2020.112645_bib83
  article-title: Mobilization and utilization of cyanogenic glycosides: the linustatin pathway
  publication-title: Plant Physiol.
  doi: 10.1104/pp.86.3.711
– year: 2019
  ident: 10.1016/j.phytochem.2020.112645_bib96
  article-title: Resource allocation trade-offs and the loss of chemical defences during apple domestication
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcz010
– volume: 26
  start-page: 1969
  year: 1987
  ident: 10.1016/j.phytochem.2020.112645_bib60
  article-title: Glucosinolates of wild and cultivated Brassica species
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)81740-9
– volume: 60
  start-page: 35
  year: 2015
  ident: 10.1016/j.phytochem.2020.112645_bib13
  article-title: Crop domestication and its impact on naturally selected trophic interactions
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-010814-020601
– volume: 42
  start-page: 2794
  year: 2019
  ident: 10.1016/j.phytochem.2020.112645_bib40
  article-title: Nitrogen application effects on forage sorghum production and nitrate concentration
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2019.1659321
– volume: 139
  start-page: 363
  year: 2005
  ident: 10.1016/j.phytochem.2020.112645_bib42
  article-title: Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.065904
– volume: 34
  start-page: 562
  year: 2016
  ident: 10.1016/j.phytochem.2020.112645_bib8
  article-title: Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3535
– volume: 147
  start-page: 1072
  year: 2008
  ident: 10.1016/j.phytochem.2020.112645_bib63
  article-title: The β-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.109512
– volume: 30
  start-page: 347
  year: 1982
  ident: 10.1016/j.phytochem.2020.112645_bib30
  article-title: Invasion by Pittosporum undulatum of the forests of central victoria. III. Effects of temperature and light on growth and drought resistance
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT9820347
– volume: 45
  start-page: 705
  year: 2018
  ident: 10.1016/j.phytochem.2020.112645_bib6
  article-title: Counting the costs: nitrogen partitioning in Sorghum mutants
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP17227
– volume: 7
  year: 2017
  ident: 10.1016/j.phytochem.2020.112645_bib62
  article-title: Get Tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01925
– volume: 129
  start-page: 1222
  year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib11
  article-title: Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.000687
– volume: 5
  year: 2014
  ident: 10.1016/j.phytochem.2020.112645_bib37
  article-title: Molecular basis of natural variation and environmental control of trichome patterning
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00320
– volume: 115
  start-page: 87
  year: 2002
  ident: 10.1016/j.phytochem.2020.112645_bib52
  article-title: Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance
  publication-title: Physiol. Plantarum
  doi: 10.1034/j.1399-3054.2002.1150110.x
SSID ssj0005566
Score 2.4467223
Snippet Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112645
SubjectTerms climate change
Crop wild relatives
crops
Cyanogenesis
Cyanogenic glucosides
developmental stages
Dhurrin
domestication
Edible Grain
genetic variation
germination
Glucosides
Glycosides
leaves
metabolism
Nitrate
Nitrates
Nitriles
nitrogen
plant biochemistry
plant development
plant morphology
plasticity
Poaceae
roots
S. brachypodum
S. macrospermum
Secondary metabolite
Seedling development
Sorghum
Sorghum bicolor
spatial distribution
tissues
total nitrogen
toxicity
wild relatives
Title Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum
URI https://dx.doi.org/10.1016/j.phytochem.2020.112645
https://www.ncbi.nlm.nih.gov/pubmed/33482417
https://www.proquest.com/docview/2480277858
https://www.proquest.com/docview/2511178282
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQcOCCYHkVWGQkroHGeTncClrUpYID4nWz_ISgklS0PXDhtzMTJ91FWpYDpyiJnTieif3Z_r4xIQfSyojDrSCXURrEiYkDLlUeqChzTDMHnSbOd1xcpv2b-Pw-uZ8jp60WBmmVTdvv2_S6tW6uHDW1eTQqCtT4gvvgDAYcAZWjojyOM_Tyw7e_aB6JX6-ERAGm_sDxgi-Z4MZUKElnXk6DuqZ_91CfIdC6JzpbIcsNhKQ9X8pVMmfLH2TxpAKY97pG3m5h9FtXNy1KOvIBXfGsclS_yrICjyk09VT1wtgx9UpFajHUMR0Noaqp-UMlOqY9qmebFeJTAF0bKktDTfWMMTqQU2XouHp5eJw-r5Obs1_Xp_2g2WQh0ADeJoFNXKoVwxDBiVJRmChmugb-Y8nD0EkDw5lQm66SXaUzw5WNchfF1kkAQpGEEe4GmS-r0m6h_Dt0TvLc2JTFKktzG8E7Uik5YAgYCHdI2las0E0EctwIYyhaqtmTmFlEoEWEt0iHdGcZRz4Ix9dZjlvLiQ_-JKCr-DrzfmtrAX8bLqHI0lbTsWAxx0VvnvD_pAEMGwLw4qxDNr2jzEqNumfATNn2d4q3Q5YYMmtq_tAumZ-8TO1PgEYTtVf7_h5Z6P0e9C_xOLi6G7wDdF8S6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoVGovCPqAbXkYiWtg47wcbhSBFgp7WhA3y08IYpPVPg5c-O3MxMkCUgsHTlESO3Fmxvbn-JsZQnallRGHW0EuozSIExMHXKo8UFHmmGYOJk3833HRT3uX8dl1cr1AjlpfGKRVNmO_H9Pr0bq5st9Ic39UFOjjC-aDfzDgCKg8-0SWYui-mMZg7_EFzyPxG5ZQKsDir0he8ClTzEyFPunM-9OgY9O_p6j_QdB6KjpZIcsNhqSHvpmrZMGW38jnPxXgvIfv5PEKlr-1vGlR0pGP6IpnlaP6QZYVmEyhqeeqF8ZOqHdVpBZjHdPRPciammcu0QE9pHqerRCfAvDaUFkaaqohBulAUpWhk2p8czsb_iCXJ8eDo17QZFkINKC3aWATl2rFMEZwolQUJoqZroGOLHkYOmlgPRNq01Wyq3RmuLJR7qLYOglIKJKwxP1JFsuqtOvo_x06J3lubMpilaW5jeAdqZQcQASshDskbQUrdBOCHDNh3IuWa3Yn5hoRqBHhNdIh3XnFkY_C8X6Vg1Zz4pVBCZgr3q-80-paQHfDPRRZ2mo2ESzmuOvNE_5GGQCxISAvzjpkzRvKvNXo-AygKfv1keZtky-9wcW5OD_t__1NvjKk2dRkog2yOB3P7CbgpKnaqvvBE_y9EtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variation+in+production+of+cyanogenic+glucosides+during+early+plant+development%3A+A+comparison+of+wild+and+domesticated+sorghum&rft.jtitle=Phytochemistry+%28Oxford%29&rft.au=Cowan%2C+Max+F&rft.au=Blomstedt%2C+Cecilia+K&rft.au=M%C3%B8ller%2C+Birger+Lindberg&rft.au=Henry%2C+Robert+J&rft.date=2021-04-01&rft.eissn=1873-3700&rft.volume=184&rft.spage=112645&rft_id=info:doi/10.1016%2Fj.phytochem.2020.112645&rft_id=info%3Apmid%2F33482417&rft.externalDocID=33482417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9422&client=summon