Pleiotropic phenotype of transgenic Arabidopsis plants that produce the LOV domain of LOV KELCH PROTEIN2 (LKP2)

LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadi...

Full description

Saved in:
Bibliographic Details
Published inPlant Biotechnology Vol. 32; no. 4; pp. 273 - 280
Main Authors Takase, Tomoyuki, Miyazaki, Yuji, Yasuhara, Masahiro, Mitsui, Shunya, Kiyosue, Tomohiro
Format Journal Article
LanguageEnglish
Published Tokyo Japanese Society for Plant Cell and Molecular Biology 01.01.2015
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadian clock and photoperiodic flowering. Transgenic Arabidopsis plants that produce LOV, F, or a combination of LOV and F fused to green fluorescent protein (named GL, GF, and GLF, respectively) were produced using constructs containing the Cauliflower mosaic virus 35S promoter. Under continuous white light, the circadian rhythms of control and GF plants were similar, whereas those of GL and GLF plants were shorter. Under continuous red light, the hypocotyl lengths of control and GF seedlings were similar, whereas that of GL seedlings was longer. Late flowering and down-regulation of CONSTANS and FLOWERING LOCUS T were observed in GL and GLF plants compared to GF and control plants under long-day conditions. These results suggest that the previously reported pleiotropic phenotype of LKP2-overproducing plants, which show altered circadian rhythm, hypocotyl elongation, and photoperiodic flowering, is not only due to the promotion of ubiquitination and subsequent degradation of substrate proteins of the SCFLKP2 complex but may also be due to the functional disruption of regulatory proteins that interact with LKP2 LOV.
AbstractList LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadian clock and photoperiodic flowering. Transgenic Arabidopsis plants that produce LOV, F, or a combination of LOV and F fused to green fluorescent protein (named GL, GF, and GLF, respectively) were produced using constructs containing the Cauliflower mosaic virus 35S promoter. Under continuous white light, the circadian rhythms of control and GF plants were similar, whereas those of GL and GLF plants were shorter. Under continuous red light, the hypocotyl lengths of control and GF seedlings were similar, whereas that of GL seedlings was longer. Late flowering and down-regulation of CONSTANS and FLOWERING LOCUS T were observed in GL and GLF plants compared to GF and control plants under long-day conditions. These results suggest that the previously reported pleiotropic phenotype of LKP2-overproducing plants, which show altered circadian rhythm, hypocotyl elongation, and photoperiodic flowering, is not only due to the promotion of ubiquitination and subsequent degradation of substrate proteins of the SCFLKP2 complex but may also be due to the functional disruption of regulatory proteins that interact with LKP2 LOV.
Author Kiyosue, Tomohiro
Takase, Tomoyuki
Yasuhara, Masahiro
Miyazaki, Yuji
Mitsui, Shunya
Author_xml – sequence: 1
  fullname: Takase, Tomoyuki
  organization: Department of Life Science, Faculty of Science, Gakushuin University
– sequence: 2
  fullname: Miyazaki, Yuji
  organization: Department of Life Science, Faculty of Science, Gakushuin University
– sequence: 3
  fullname: Yasuhara, Masahiro
  organization: Gene Research Center, Kagawa University
– sequence: 4
  fullname: Mitsui, Shunya
  organization: Gene Research Center, Kagawa University
– sequence: 5
  fullname: Kiyosue, Tomohiro
  organization: Department of Life Science, Faculty of Science, Gakushuin University
BookMark eNqNkcFv2yAYxa2pk9Z2-x-QeukOyfiwsYl2iqJsrWot2dTtijD-nBA54AE55L8fTtoeuh12AT70fo8n3lV2YZ3FLLsBOuUc4NPQKxsb4yLqrXW92xynwKdUUNG8yS4hL6pJCVBcnM5sUnBB32VXIewoZRwou8zcusfEezcYTYYtWhePAxLXkeiVDRu06X7uVWNaNwQTyOnJQOJWRTJ41x40pgFJvfpFWrdXxo7wOD0s68UdWf9YPS7vvzFyWz-s2cf32dtO9QE_PO3X2c8vy8fF3aRefb1fzOuJ5jCLE8wbrWjRNgWwFkpQZckYbcqqapSuBNcosKJFh8BoR1ugoqQKRU5BC81LkV9nt2fflPH3AUOUexM09ik9ukOQUJV8NmOlYEl680q6cwdvU7qk4oxSAXw0nJ9V2rsQPHZSm6iicTZ9lOklUDlWIv-uRAKXp0qSx-dXHoM3e-WP_0l_P9O7ENUGX1jlo9E9_ovNmSzG5dnjRau3yku0-R_Iwrnl
CitedBy_id crossref_primary_10_1111_pce_14549
Cites_doi 10.1046/j.1365-313x.2000.00850.x
10.1105/tpc.109.072843
10.1105/tpc.3.7.667
10.1038/nature02090
10.1105/tpc.107.053033
10.1073/pnas.85.15.5536
10.1038/35068589
10.1046/j.1365-313X.1999.00464.x
10.1046/j.1365-313x.1998.00343.x
10.1016/j.pbi.2008.09.002
10.1016/S0092-8674(00)80842-9
10.1016/S0960-9822(02)00483-9
10.1038/nature02163
10.1105/tpc.13.12.2659
10.1073/pnas.76.4.1648
10.1016/S0092-8674(00)80841-7
10.1016/j.ab.2004.11.009
10.1111/j.1365-313X.2011.04618.x
10.1073/pnas.1415375111
10.1016/j.ab.2004.11.007
10.1021/bi0607857
10.1093/jxb/erh226
10.1105/tpc.016808
10.1242/dev.125.3.485
10.1126/science.1146994
10.1093/oxfordjournals.pcp.a028913
10.1242/dev.096651
10.1016/j.pbi.2010.07.002
10.1126/science.1110586
10.1038/nature06132
10.1101/sqb.2007.72.006
10.1093/pcp/pci086
10.1046/j.1365-313X.2003.01973.x
10.1371/journal.pbio.0060225
10.5511/plantbiotechnology.11.0105a
10.1105/tpc.105.033464
10.1007/978-94-011-1884-2
ContentType Journal Article
Copyright 2015 by Japanese Society for Plant Cell and Molecular Biology
Copyright Japan Science and Technology Agency 2015
Copyright_xml – notice: 2015 by Japanese Society for Plant Cell and Molecular Biology
– notice: Copyright Japan Science and Technology Agency 2015
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7U9
H94
DOI 10.5511/plantbiotechnology.15.0808b
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-6114
EndPage 280
ExternalDocumentID 3905864521
10_5511_plantbiotechnology_15_0808b
article_plantbiotechnology_32_4_32_15_0808b_article_char_en
GroupedDBID 123
29O
2WC
53G
ACIWK
ACPRK
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
E3Z
JSF
JSH
KQ8
M~E
OK1
RJT
RNS
RPM
RZJ
TR2
AAYXX
CITATION
HYE
MZR
OVT
TKC
ZZE
7QO
8FD
FR3
P64
7U9
H94
ID FETCH-LOGICAL-c519t-e3bca04db412d161a66220b677bac785ce8e704fe120f0d10860ae8301c8c5683
ISSN 1342-4580
IngestDate Fri Jul 11 10:03:05 EDT 2025
Mon Jun 30 07:51:01 EDT 2025
Thu Apr 24 23:01:09 EDT 2025
Tue Jul 01 03:31:08 EDT 2025
Thu Aug 17 20:24:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-e3bca04db412d161a66220b677bac785ce8e704fe120f0d10860ae8301c8c5683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/plantbiotechnology/32/4/32_15.0808b/_article/-char/en
PQID 1752008158
PQPubID 1976388
PageCount 8
ParticipantIDs proquest_miscellaneous_1765992682
proquest_journals_1752008158
crossref_citationtrail_10_5511_plantbiotechnology_15_0808b
crossref_primary_10_5511_plantbiotechnology_15_0808b
jstage_primary_article_plantbiotechnology_32_4_32_15_0808b_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 20150101
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Plant Biotechnology
PublicationYear 2015
Publisher Japanese Society for Plant Cell and Molecular Biology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society for Plant Cell and Molecular Biology
– name: Japan Science and Technology Agency
References Kim J, Geng R, Gallenstein RE, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140: 4060-4069
Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh T, Katayose Y, Nakamura S, Honkura R, Nishimiya S, et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37: 49-59
Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265
Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46: 686-698
Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329
Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570
Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340
Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, et al. (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622
Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18: 455-463
Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485-494
Takase T, Nishiyama Y, Tanihibashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67: 608-621
Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function produced in trans. Proc Natl Acad Sci USA 76: 1648-1652
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, et al. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270
Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306
Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536-5540
Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6: 325-330
Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13: 565-570
Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516-2530
Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360
Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487-490
Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV Kelch protein2) in Arabidopsis. J Exp Bot 55: 2015-2027
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA 111: 17672-17677
Kiyosue T, Wada M (2000) LKP1 (LOV Kelch protein 1): A factor involved in the regulation of flowering time in Arabidopsis. Plant J 23: 807-815
Zikihara K, Iwata T, Matsuoka D, Kandori H, Todo T, Tokutomi S (2006) Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45: 10828-10837
Okamoto K, Onai K, Ishiura M (2005b) RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem 340: 193-200
Demarsy E, Fankhauser C (2009) Higher Plants use LOV to perceive blue light. Curr Opin Plant Biol 12: 69-74
van der Krol AR, Chua NH (1991) The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3: 667-675
Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37: 471-483
Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht-Boston-London
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72: 353-363
Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6: e225
Miyazaki Y, Yoshizumi T, Takase T, Matsui M, Kiyosue T (2011) Overexpression of LOV KELCH PROTEIN2 enhances cell elongation and increases cell number and ploidy in the hypocotyl of Arabidopsis thaliana. Plant Biotechnol 28: 267-272
Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297
Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13: 2659-2670
Okamoto K, Onai K, Ezaki N, Ofuchi T, Ishiura M (2005a) An automated apparatus for the real-time monitoring of bioluminescence in plants. Anal Biochem 340: 187-192
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485-494
– reference: Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360
– reference: Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570
– reference: Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function produced in trans. Proc Natl Acad Sci USA 76: 1648-1652
– reference: Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46: 686-698
– reference: Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18: 455-463
– reference: Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782
– reference: Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297
– reference: Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13: 565-570
– reference: Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72: 353-363
– reference: Takase T, Nishiyama Y, Tanihibashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67: 608-621
– reference: Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37: 471-483
– reference: Zikihara K, Iwata T, Matsuoka D, Kandori H, Todo T, Tokutomi S (2006) Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45: 10828-10837
– reference: Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
– reference: Miyazaki Y, Yoshizumi T, Takase T, Matsui M, Kiyosue T (2011) Overexpression of LOV KELCH PROTEIN2 enhances cell elongation and increases cell number and ploidy in the hypocotyl of Arabidopsis thaliana. Plant Biotechnol 28: 267-272
– reference: Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265
– reference: Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306
– reference: Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht-Boston-London
– reference: Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6: e225
– reference: Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487-490
– reference: Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340
– reference: Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329
– reference: Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536-5540
– reference: Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV Kelch protein2) in Arabidopsis. J Exp Bot 55: 2015-2027
– reference: Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA 111: 17672-17677
– reference: Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, et al. (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622
– reference: Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516-2530
– reference: Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6: 325-330
– reference: Kiyosue T, Wada M (2000) LKP1 (LOV Kelch protein 1): A factor involved in the regulation of flowering time in Arabidopsis. Plant J 23: 807-815
– reference: van der Krol AR, Chua NH (1991) The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3: 667-675
– reference: Okamoto K, Onai K, Ishiura M (2005b) RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem 340: 193-200
– reference: Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh T, Katayose Y, Nakamura S, Honkura R, Nishimiya S, et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37: 49-59
– reference: Demarsy E, Fankhauser C (2009) Higher Plants use LOV to perceive blue light. Curr Opin Plant Biol 12: 69-74
– reference: Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, et al. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270
– reference: Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13: 2659-2670
– reference: Kim J, Geng R, Gallenstein RE, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140: 4060-4069
– reference: Okamoto K, Onai K, Ezaki N, Ofuchi T, Ishiura M (2005a) An automated apparatus for the real-time monitoring of bioluminescence in plants. Anal Biochem 340: 187-192
– ident: 13
  doi: 10.1046/j.1365-313x.2000.00850.x
– ident: 1
  doi: 10.1105/tpc.109.072843
– ident: 35
  doi: 10.1105/tpc.3.7.667
– ident: 7
  doi: 10.1038/nature02090
– ident: 10
  doi: 10.1105/tpc.107.053033
– ident: 34
  doi: 10.1073/pnas.85.15.5536
– ident: 8
  doi: 10.1038/35068589
– ident: 23
  doi: 10.1046/j.1365-313X.1999.00464.x
– ident: 3
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: 4
  doi: 10.1016/j.pbi.2008.09.002
– ident: 22
  doi: 10.1016/S0092-8674(00)80842-9
– ident: 2
  doi: 10.1016/S0960-9822(02)00483-9
– ident: 14
  doi: 10.1038/nature02163
– ident: 27
  doi: 10.1105/tpc.13.12.2659
– ident: 5
  doi: 10.1073/pnas.76.4.1648
– ident: 29
  doi: 10.1016/S0092-8674(00)80841-7
– ident: 24
  doi: 10.1016/j.ab.2004.11.009
– ident: 33
  doi: 10.1111/j.1365-313X.2011.04618.x
– ident: 31
  doi: 10.1073/pnas.1415375111
– ident: 25
  doi: 10.1016/j.ab.2004.11.007
– ident: 37
  doi: 10.1021/bi0607857
– ident: 36
  doi: 10.1093/jxb/erh226
– ident: 28
  doi: 10.1105/tpc.016808
– ident: 30
  doi: 10.1242/dev.125.3.485
– ident: 26
  doi: 10.1126/science.1146994
– ident: 16
  doi: 10.1093/oxfordjournals.pcp.a028913
– ident: 12
  doi: 10.1242/dev.096651
– ident: 20
  doi: 10.1016/j.pbi.2010.07.002
– ident: 6
  doi: 10.1126/science.1110586
– ident: 11
  doi: 10.1038/nature06132
– ident: 19
  doi: 10.1101/sqb.2007.72.006
– ident: 21
  doi: 10.1093/pcp/pci086
– ident: 32
  doi: 10.1046/j.1365-313X.2003.01973.x
– ident: 15
  doi: 10.1371/journal.pbio.0060225
– ident: 17
  doi: 10.5511/plantbiotechnology.11.0105a
– ident: 18
  doi: 10.1105/tpc.105.033464
– ident: 9
  doi: 10.1007/978-94-011-1884-2
SSID ssj0025102
Score 1.9903424
Snippet LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F),...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Arabidopsis
Cauliflower mosaic virus
circadian rhythm
Circadian rhythms
flowering time
hypocotyl elongation
LOV KELCH PROTEIN2 (LKP2)
Seedlings
Title Pleiotropic phenotype of transgenic Arabidopsis plants that produce the LOV domain of LOV KELCH PROTEIN2 (LKP2)
URI https://www.jstage.jst.go.jp/article/plantbiotechnology/32/4/32_15.0808b/_article/-char/en
https://www.proquest.com/docview/1752008158
https://www.proquest.com/docview/1765992682
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Plant Biotechnology, 2015/12/25, Vol.32(4), pp.273-280
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQAgeEJ-iMJARPICmlMSJ05S3aSoq29iG6ND2FDmOQ9N2ddUmD91fyZ_EXZyk2YfQ2EvUuD438f3q-_Cdj5APSbcLkjvxLJaI2PJin1uRcJnVc6VyEh64Psds5O8H_uDY2z3hJ63Wn0bUUp5FHXl-bV7JbbgKbcBXzJL9D87Wg0IDfAb-whU4DNcb8fhoqlKdLfQ8lVsYq6ULhyru-qMEAjJo316IKI31HA8emU-LqJdsJDIMzIqBrYXiuX_4ayvWZyItdEe82-vv7wyAPYfD_rcDVtT92DtildtgXP08DLcVpTqr_fPYc6gnK7OfA4J41nA1DMVEmDqOQ32mV_kkrdmdrsS5MBW0T_Nx3X4qljmeKG2yipZilC70miZb5gXFz1E-W4mm_8LhDf-FWXJdj1keN_WcOqpqw-RFk15ardNrP-jaCWEWXVMMpZTfzIx0WTSAZoiioZjoCxPTcXgH1OYgWkvEKgrgkqCswxfBcMLhwquDhQ4Pi8HukLsMDBesqbH3o97XAmXSRMFW73yfvC-f7fM_nuyCznRvDGbD76u6Q6EQDR-TR6UlQ7cNLJ-Qlpo9JQ8b51s-I7oBUFoDlOqErgFKGwClBqAUAUpLgMKNogBJagCKxHhXAJRWAKUfEZ6fnpPjr_3hzsAqK3xYEiyHzFJuJIXtxZHnsBhsD-H7jNmR3-1GQnYDLlWguraXKIfZiR1jVTBbqACEkgwk9wP3BdmY6Zl6SWjg2DFKLJEk0nMCsMOlk_SkwMO2XcFZm3yp5jCU5fH3WIVlGt6Am23i1cRzcwrMzch2DbNqonKpuI7IZaGHl4q47ovpl7DatclmxfCwXIOWISj_GMDk8KBN3tVfg4TAbT8xUzrHPj7v9ZgfsFe3e43X5MH6j7tJNrJFrt6AKp5Fbwt0_wWt--ea
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pleiotropic+phenotype+of+transgenic+Arabidopsis+plants+that+produce+the+LOV+domain+of+LOV+KELCH+PROTEIN2+%28LKP2%29&rft.jtitle=Plant+biotechnology+%28Tokyo%2C+Japan%29&rft.au=Takase%2C+Tomoyuki&rft.au=Miyazaki%2C+Yuji&rft.au=Yasuhara%2C+Masahiro&rft.au=Mitsui%2C+Shunya&rft.date=2015-01-01&rft.issn=1342-4580&rft.eissn=1347-6114&rft.volume=32&rft.issue=4&rft.spage=273&rft.epage=280&rft_id=info:doi/10.5511%2Fplantbiotechnology.15.0808b&rft.externalDBID=n%2Fa&rft.externalDocID=10_5511_plantbiotechnology_15_0808b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-4580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-4580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-4580&client=summon