Pleiotropic phenotype of transgenic Arabidopsis plants that produce the LOV domain of LOV KELCH PROTEIN2 (LKP2)
LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadi...
Saved in:
Published in | Plant Biotechnology Vol. 32; no. 4; pp. 273 - 280 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japanese Society for Plant Cell and Molecular Biology
01.01.2015
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadian clock and photoperiodic flowering. Transgenic Arabidopsis plants that produce LOV, F, or a combination of LOV and F fused to green fluorescent protein (named GL, GF, and GLF, respectively) were produced using constructs containing the Cauliflower mosaic virus 35S promoter. Under continuous white light, the circadian rhythms of control and GF plants were similar, whereas those of GL and GLF plants were shorter. Under continuous red light, the hypocotyl lengths of control and GF seedlings were similar, whereas that of GL seedlings was longer. Late flowering and down-regulation of CONSTANS and FLOWERING LOCUS T were observed in GL and GLF plants compared to GF and control plants under long-day conditions. These results suggest that the previously reported pleiotropic phenotype of LKP2-overproducing plants, which show altered circadian rhythm, hypocotyl elongation, and photoperiodic flowering, is not only due to the promotion of ubiquitination and subsequent degradation of substrate proteins of the SCFLKP2 complex but may also be due to the functional disruption of regulatory proteins that interact with LKP2 LOV. |
---|---|
AbstractList | LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F), and Kelch repeats. LKP2 is postulated to be a component of an SCF complex and function in ubiquitination of proteins that control the circadian clock and photoperiodic flowering. Transgenic Arabidopsis plants that produce LOV, F, or a combination of LOV and F fused to green fluorescent protein (named GL, GF, and GLF, respectively) were produced using constructs containing the Cauliflower mosaic virus 35S promoter. Under continuous white light, the circadian rhythms of control and GF plants were similar, whereas those of GL and GLF plants were shorter. Under continuous red light, the hypocotyl lengths of control and GF seedlings were similar, whereas that of GL seedlings was longer. Late flowering and down-regulation of CONSTANS and FLOWERING LOCUS T were observed in GL and GLF plants compared to GF and control plants under long-day conditions. These results suggest that the previously reported pleiotropic phenotype of LKP2-overproducing plants, which show altered circadian rhythm, hypocotyl elongation, and photoperiodic flowering, is not only due to the promotion of ubiquitination and subsequent degradation of substrate proteins of the SCFLKP2 complex but may also be due to the functional disruption of regulatory proteins that interact with LKP2 LOV. |
Author | Kiyosue, Tomohiro Takase, Tomoyuki Yasuhara, Masahiro Miyazaki, Yuji Mitsui, Shunya |
Author_xml | – sequence: 1 fullname: Takase, Tomoyuki organization: Department of Life Science, Faculty of Science, Gakushuin University – sequence: 2 fullname: Miyazaki, Yuji organization: Department of Life Science, Faculty of Science, Gakushuin University – sequence: 3 fullname: Yasuhara, Masahiro organization: Gene Research Center, Kagawa University – sequence: 4 fullname: Mitsui, Shunya organization: Gene Research Center, Kagawa University – sequence: 5 fullname: Kiyosue, Tomohiro organization: Department of Life Science, Faculty of Science, Gakushuin University |
BookMark | eNqNkcFv2yAYxa2pk9Z2-x-QeukOyfiwsYl2iqJsrWot2dTtijD-nBA54AE55L8fTtoeuh12AT70fo8n3lV2YZ3FLLsBOuUc4NPQKxsb4yLqrXW92xynwKdUUNG8yS4hL6pJCVBcnM5sUnBB32VXIewoZRwou8zcusfEezcYTYYtWhePAxLXkeiVDRu06X7uVWNaNwQTyOnJQOJWRTJ41x40pgFJvfpFWrdXxo7wOD0s68UdWf9YPS7vvzFyWz-s2cf32dtO9QE_PO3X2c8vy8fF3aRefb1fzOuJ5jCLE8wbrWjRNgWwFkpQZckYbcqqapSuBNcosKJFh8BoR1ugoqQKRU5BC81LkV9nt2fflPH3AUOUexM09ik9ukOQUJV8NmOlYEl680q6cwdvU7qk4oxSAXw0nJ9V2rsQPHZSm6iicTZ9lOklUDlWIv-uRAKXp0qSx-dXHoM3e-WP_0l_P9O7ENUGX1jlo9E9_ovNmSzG5dnjRau3yku0-R_Iwrnl |
CitedBy_id | crossref_primary_10_1111_pce_14549 |
Cites_doi | 10.1046/j.1365-313x.2000.00850.x 10.1105/tpc.109.072843 10.1105/tpc.3.7.667 10.1038/nature02090 10.1105/tpc.107.053033 10.1073/pnas.85.15.5536 10.1038/35068589 10.1046/j.1365-313X.1999.00464.x 10.1046/j.1365-313x.1998.00343.x 10.1016/j.pbi.2008.09.002 10.1016/S0092-8674(00)80842-9 10.1016/S0960-9822(02)00483-9 10.1038/nature02163 10.1105/tpc.13.12.2659 10.1073/pnas.76.4.1648 10.1016/S0092-8674(00)80841-7 10.1016/j.ab.2004.11.009 10.1111/j.1365-313X.2011.04618.x 10.1073/pnas.1415375111 10.1016/j.ab.2004.11.007 10.1021/bi0607857 10.1093/jxb/erh226 10.1105/tpc.016808 10.1242/dev.125.3.485 10.1126/science.1146994 10.1093/oxfordjournals.pcp.a028913 10.1242/dev.096651 10.1016/j.pbi.2010.07.002 10.1126/science.1110586 10.1038/nature06132 10.1101/sqb.2007.72.006 10.1093/pcp/pci086 10.1046/j.1365-313X.2003.01973.x 10.1371/journal.pbio.0060225 10.5511/plantbiotechnology.11.0105a 10.1105/tpc.105.033464 10.1007/978-94-011-1884-2 |
ContentType | Journal Article |
Copyright | 2015 by Japanese Society for Plant Cell and Molecular Biology Copyright Japan Science and Technology Agency 2015 |
Copyright_xml | – notice: 2015 by Japanese Society for Plant Cell and Molecular Biology – notice: Copyright Japan Science and Technology Agency 2015 |
DBID | AAYXX CITATION 7QO 8FD FR3 P64 7U9 H94 |
DOI | 10.5511/plantbiotechnology.15.0808b |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-6114 |
EndPage | 280 |
ExternalDocumentID | 3905864521 10_5511_plantbiotechnology_15_0808b article_plantbiotechnology_32_4_32_15_0808b_article_char_en |
GroupedDBID | 123 29O 2WC 53G ACIWK ACPRK AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS E3Z JSF JSH KQ8 M~E OK1 RJT RNS RPM RZJ TR2 AAYXX CITATION HYE MZR OVT TKC ZZE 7QO 8FD FR3 P64 7U9 H94 |
ID | FETCH-LOGICAL-c519t-e3bca04db412d161a66220b677bac785ce8e704fe120f0d10860ae8301c8c5683 |
ISSN | 1342-4580 |
IngestDate | Fri Jul 11 10:03:05 EDT 2025 Mon Jun 30 07:51:01 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Tue Jul 01 03:31:08 EDT 2025 Thu Aug 17 20:24:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c519t-e3bca04db412d161a66220b677bac785ce8e704fe120f0d10860ae8301c8c5683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/plantbiotechnology/32/4/32_15.0808b/_article/-char/en |
PQID | 1752008158 |
PQPubID | 1976388 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1765992682 proquest_journals_1752008158 crossref_citationtrail_10_5511_plantbiotechnology_15_0808b crossref_primary_10_5511_plantbiotechnology_15_0808b jstage_primary_article_plantbiotechnology_32_4_32_15_0808b_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 20150101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Plant Biotechnology |
PublicationYear | 2015 |
Publisher | Japanese Society for Plant Cell and Molecular Biology Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society for Plant Cell and Molecular Biology – name: Japan Science and Technology Agency |
References | Kim J, Geng R, Gallenstein RE, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140: 4060-4069 Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh T, Katayose Y, Nakamura S, Honkura R, Nishimiya S, et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37: 49-59 Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265 Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46: 686-698 Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329 Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570 Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340 Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, et al. (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622 Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18: 455-463 Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485-494 Takase T, Nishiyama Y, Tanihibashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67: 608-621 Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function produced in trans. Proc Natl Acad Sci USA 76: 1648-1652 Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, et al. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270 Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306 Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536-5540 Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6: 325-330 Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13: 565-570 Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516-2530 Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360 Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487-490 Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV Kelch protein2) in Arabidopsis. J Exp Bot 55: 2015-2027 Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA 111: 17672-17677 Kiyosue T, Wada M (2000) LKP1 (LOV Kelch protein 1): A factor involved in the regulation of flowering time in Arabidopsis. Plant J 23: 807-815 Zikihara K, Iwata T, Matsuoka D, Kandori H, Todo T, Tokutomi S (2006) Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45: 10828-10837 Okamoto K, Onai K, Ishiura M (2005b) RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem 340: 193-200 Demarsy E, Fankhauser C (2009) Higher Plants use LOV to perceive blue light. Curr Opin Plant Biol 12: 69-74 van der Krol AR, Chua NH (1991) The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3: 667-675 Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37: 471-483 Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743 Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht-Boston-London Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72: 353-363 Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6: e225 Miyazaki Y, Yoshizumi T, Takase T, Matsui M, Kiyosue T (2011) Overexpression of LOV KELCH PROTEIN2 enhances cell elongation and increases cell number and ploidy in the hypocotyl of Arabidopsis thaliana. Plant Biotechnol 28: 267-272 Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782 Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297 Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13: 2659-2670 Okamoto K, Onai K, Ezaki N, Ofuchi T, Ishiura M (2005a) An automated apparatus for the real-time monitoring of bioluminescence in plants. Anal Biochem 340: 187-192 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485-494 – reference: Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360 – reference: Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570 – reference: Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function produced in trans. Proc Natl Acad Sci USA 76: 1648-1652 – reference: Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46: 686-698 – reference: Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18: 455-463 – reference: Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782 – reference: Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297 – reference: Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13: 565-570 – reference: Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72: 353-363 – reference: Takase T, Nishiyama Y, Tanihibashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67: 608-621 – reference: Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37: 471-483 – reference: Zikihara K, Iwata T, Matsuoka D, Kandori H, Todo T, Tokutomi S (2006) Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45: 10828-10837 – reference: Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743 – reference: Miyazaki Y, Yoshizumi T, Takase T, Matsui M, Kiyosue T (2011) Overexpression of LOV KELCH PROTEIN2 enhances cell elongation and increases cell number and ploidy in the hypocotyl of Arabidopsis thaliana. Plant Biotechnol 28: 267-272 – reference: Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265 – reference: Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306 – reference: Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht-Boston-London – reference: Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6: e225 – reference: Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487-490 – reference: Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340 – reference: Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329 – reference: Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536-5540 – reference: Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV Kelch protein2) in Arabidopsis. J Exp Bot 55: 2015-2027 – reference: Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA 111: 17672-17677 – reference: Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM, et al. (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622 – reference: Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516-2530 – reference: Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6: 325-330 – reference: Kiyosue T, Wada M (2000) LKP1 (LOV Kelch protein 1): A factor involved in the regulation of flowering time in Arabidopsis. Plant J 23: 807-815 – reference: van der Krol AR, Chua NH (1991) The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3: 667-675 – reference: Okamoto K, Onai K, Ishiura M (2005b) RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem 340: 193-200 – reference: Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh T, Katayose Y, Nakamura S, Honkura R, Nishimiya S, et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37: 49-59 – reference: Demarsy E, Fankhauser C (2009) Higher Plants use LOV to perceive blue light. Curr Opin Plant Biol 12: 69-74 – reference: Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, et al. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270 – reference: Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13: 2659-2670 – reference: Kim J, Geng R, Gallenstein RE, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140: 4060-4069 – reference: Okamoto K, Onai K, Ezaki N, Ofuchi T, Ishiura M (2005a) An automated apparatus for the real-time monitoring of bioluminescence in plants. Anal Biochem 340: 187-192 – ident: 13 doi: 10.1046/j.1365-313x.2000.00850.x – ident: 1 doi: 10.1105/tpc.109.072843 – ident: 35 doi: 10.1105/tpc.3.7.667 – ident: 7 doi: 10.1038/nature02090 – ident: 10 doi: 10.1105/tpc.107.053033 – ident: 34 doi: 10.1073/pnas.85.15.5536 – ident: 8 doi: 10.1038/35068589 – ident: 23 doi: 10.1046/j.1365-313X.1999.00464.x – ident: 3 doi: 10.1046/j.1365-313x.1998.00343.x – ident: 4 doi: 10.1016/j.pbi.2008.09.002 – ident: 22 doi: 10.1016/S0092-8674(00)80842-9 – ident: 2 doi: 10.1016/S0960-9822(02)00483-9 – ident: 14 doi: 10.1038/nature02163 – ident: 27 doi: 10.1105/tpc.13.12.2659 – ident: 5 doi: 10.1073/pnas.76.4.1648 – ident: 29 doi: 10.1016/S0092-8674(00)80841-7 – ident: 24 doi: 10.1016/j.ab.2004.11.009 – ident: 33 doi: 10.1111/j.1365-313X.2011.04618.x – ident: 31 doi: 10.1073/pnas.1415375111 – ident: 25 doi: 10.1016/j.ab.2004.11.007 – ident: 37 doi: 10.1021/bi0607857 – ident: 36 doi: 10.1093/jxb/erh226 – ident: 28 doi: 10.1105/tpc.016808 – ident: 30 doi: 10.1242/dev.125.3.485 – ident: 26 doi: 10.1126/science.1146994 – ident: 16 doi: 10.1093/oxfordjournals.pcp.a028913 – ident: 12 doi: 10.1242/dev.096651 – ident: 20 doi: 10.1016/j.pbi.2010.07.002 – ident: 6 doi: 10.1126/science.1110586 – ident: 11 doi: 10.1038/nature06132 – ident: 19 doi: 10.1101/sqb.2007.72.006 – ident: 21 doi: 10.1093/pcp/pci086 – ident: 32 doi: 10.1046/j.1365-313X.2003.01973.x – ident: 15 doi: 10.1371/journal.pbio.0060225 – ident: 17 doi: 10.5511/plantbiotechnology.11.0105a – ident: 18 doi: 10.1105/tpc.105.033464 – ident: 9 doi: 10.1007/978-94-011-1884-2 |
SSID | ssj0025102 |
Score | 1.9903424 |
Snippet | LOV KELCH PROTEIN2 (LKP2) is a blue-light receptor protein composed of three functional domains: a light, oxygen, or voltage (LOV) domain, an F-box motif (F),... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 273 |
SubjectTerms | Arabidopsis Cauliflower mosaic virus circadian rhythm Circadian rhythms flowering time hypocotyl elongation LOV KELCH PROTEIN2 (LKP2) Seedlings |
Title | Pleiotropic phenotype of transgenic Arabidopsis plants that produce the LOV domain of LOV KELCH PROTEIN2 (LKP2) |
URI | https://www.jstage.jst.go.jp/article/plantbiotechnology/32/4/32_15.0808b/_article/-char/en https://www.proquest.com/docview/1752008158 https://www.proquest.com/docview/1765992682 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Plant Biotechnology, 2015/12/25, Vol.32(4), pp.273-280 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQAgeEJ-iMJARPICmlMSJ05S3aSoq29iG6ND2FDmOQ9N2ddUmD91fyZ_EXZyk2YfQ2EvUuD438f3q-_Cdj5APSbcLkjvxLJaI2PJin1uRcJnVc6VyEh64Psds5O8H_uDY2z3hJ63Wn0bUUp5FHXl-bV7JbbgKbcBXzJL9D87Wg0IDfAb-whU4DNcb8fhoqlKdLfQ8lVsYq6ULhyru-qMEAjJo316IKI31HA8emU-LqJdsJDIMzIqBrYXiuX_4ayvWZyItdEe82-vv7wyAPYfD_rcDVtT92DtildtgXP08DLcVpTqr_fPYc6gnK7OfA4J41nA1DMVEmDqOQ32mV_kkrdmdrsS5MBW0T_Nx3X4qljmeKG2yipZilC70miZb5gXFz1E-W4mm_8LhDf-FWXJdj1keN_WcOqpqw-RFk15ardNrP-jaCWEWXVMMpZTfzIx0WTSAZoiioZjoCxPTcXgH1OYgWkvEKgrgkqCswxfBcMLhwquDhQ4Pi8HukLsMDBesqbH3o97XAmXSRMFW73yfvC-f7fM_nuyCznRvDGbD76u6Q6EQDR-TR6UlQ7cNLJ-Qlpo9JQ8b51s-I7oBUFoDlOqErgFKGwClBqAUAUpLgMKNogBJagCKxHhXAJRWAKUfEZ6fnpPjr_3hzsAqK3xYEiyHzFJuJIXtxZHnsBhsD-H7jNmR3-1GQnYDLlWguraXKIfZiR1jVTBbqACEkgwk9wP3BdmY6Zl6SWjg2DFKLJEk0nMCsMOlk_SkwMO2XcFZm3yp5jCU5fH3WIVlGt6Am23i1cRzcwrMzch2DbNqonKpuI7IZaGHl4q47ovpl7DatclmxfCwXIOWISj_GMDk8KBN3tVfg4TAbT8xUzrHPj7v9ZgfsFe3e43X5MH6j7tJNrJFrt6AKp5Fbwt0_wWt--ea |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pleiotropic+phenotype+of+transgenic+Arabidopsis+plants+that+produce+the+LOV+domain+of+LOV+KELCH+PROTEIN2+%28LKP2%29&rft.jtitle=Plant+biotechnology+%28Tokyo%2C+Japan%29&rft.au=Takase%2C+Tomoyuki&rft.au=Miyazaki%2C+Yuji&rft.au=Yasuhara%2C+Masahiro&rft.au=Mitsui%2C+Shunya&rft.date=2015-01-01&rft.issn=1342-4580&rft.eissn=1347-6114&rft.volume=32&rft.issue=4&rft.spage=273&rft.epage=280&rft_id=info:doi/10.5511%2Fplantbiotechnology.15.0808b&rft.externalDBID=n%2Fa&rft.externalDocID=10_5511_plantbiotechnology_15_0808b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-4580&client=summon |