ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection
Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two comp...
Saved in:
Published in | mBio Vol. 7; no. 2; p. e01975 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Microbiology
22.03.2016
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.01975-15 |
Cover
Loading…
Abstract | Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an
in vitro
translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome
in vitro
. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.
IMPORTANCE
Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include
lsa
(A),
msr
(A),
optr
(A), and
vga
(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include
lsa
(A),
msr
(A),
optr
(A), and
vga
(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. |
---|---|
AbstractList | Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an
in vitro
translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome
in vitro
. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.
IMPORTANCE
Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include
lsa
(A),
msr
(A),
optr
(A), and
vga
(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include
lsa
(A),
msr
(A),
optr
(A), and
vga
(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. IMPORTANCE Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa(A), msr(A), optr(A), and vga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro . To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. |
Author | Sharkey, Liam K. R. Edwards, Thomas A. O’Neill, Alex J. |
Author_xml | – sequence: 1 givenname: Liam K. R. surname: Sharkey fullname: Sharkey, Liam K. R. organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom – sequence: 2 givenname: Thomas A. surname: Edwards fullname: Edwards, Thomas A. organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom – sequence: 3 givenname: Alex J. surname: O’Neill fullname: O’Neill, Alex J. organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27006457$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1UREvpkSvKkUuKJ47j5IK0XVG6UhGogrM1sSe7rpK42F4k_j1Ot60oEnPxyPPmmye91-xo9jMx9hb4OUDVfpgunD_n0ClZgnzBTiqQvFQS4GjpGygrqLpjdhbjLc8lBLSCv2LHleK8qaU6YZvVxbq8LL4Fn8jNsfhC1mGiYjUn1zufnCluKLqYcDZUpF3w--2uuHG9j37C8bBokvPzG_ZywDHS2cN7yn5cfvq-viqvv37erFfXpZHQpdL2A2-FIYt91UNH0Fcy-6pbjk1tRTMIRNXXIg_JwiBs1_KqwRZFQ9SgFadsc-Baj7f6LrgJw2_t0en7Dx-2GkP2PZLuhLQt7yrVyb42NUfBWzAo0RqFhiCzPh5Yd_t-ImtoTgHHZ9Dnk9nt9Nb_0tmuEo3KgPcPgOB_7ikmPbloaBxxJr-PGpSSjcipyCx99_etpyOPWWRBeRCY4GMMNDxJgOslbr3Ere_j1rAAxT964xIuUWSrbvzP1h9r9K6g |
CitedBy_id | crossref_primary_10_3390_microorganisms9030491 crossref_primary_10_1093_cid_ciy903 crossref_primary_10_1038_s41467_021_22016_3 crossref_primary_10_1038_s41579_022_00820_y crossref_primary_10_1016_j_bbrc_2017_10_168 crossref_primary_10_1093_jac_dky088 crossref_primary_10_1111_cbdd_13311 crossref_primary_10_1128_microbiolspec_ARBA_0019_2017 crossref_primary_10_3390_antibiotics13121110 crossref_primary_10_1016_j_molcel_2022_06_034 crossref_primary_10_1016_j_pep_2023_106325 crossref_primary_10_3389_fmicb_2018_02063 crossref_primary_10_1128_msystems_00535_23 crossref_primary_10_1016_j_ecoenv_2021_112552 crossref_primary_10_1093_jac_dkab376 crossref_primary_10_1186_s13567_022_01111_3 crossref_primary_10_3390_microorganisms10061239 crossref_primary_10_3390_molecules23123195 crossref_primary_10_3390_antibiotics12071225 crossref_primary_10_1038_s42003_018_0064_0 crossref_primary_10_1016_j_tibs_2018_11_003 crossref_primary_10_3390_microorganisms10122316 crossref_primary_10_3389_fmicb_2018_02189 crossref_primary_10_1016_j_jgar_2023_10_014 crossref_primary_10_1073_pnas_1803313115 crossref_primary_10_1093_jac_dkz449 crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_296 crossref_primary_10_1016_j_chom_2024_05_015 crossref_primary_10_1038_s41586_020_2761_3 crossref_primary_10_3390_pathogens10030384 crossref_primary_10_1074_jbc_RA119_008477 crossref_primary_10_1080_1040841X_2020_1758626 crossref_primary_10_1080_14787210_2018_1456919 crossref_primary_10_1186_s12920_024_01948_x crossref_primary_10_1128_AAC_00661_16 crossref_primary_10_1128_AAC_00330_21 crossref_primary_10_1098_rsob_190051 crossref_primary_10_3389_fmicb_2018_02576 crossref_primary_10_3390_ijerph19095506 crossref_primary_10_1073_pnas_2008577117 crossref_primary_10_3389_fcimb_2016_00098 crossref_primary_10_2147_IDR_S442105 crossref_primary_10_1002_jobm_202100201 crossref_primary_10_1016_j_ijantimicag_2019_08_019 crossref_primary_10_1016_j_mib_2017_02_005 crossref_primary_10_3389_fmicb_2022_855482 crossref_primary_10_1099_mic_0_000794 crossref_primary_10_3389_fmicb_2021_667096 crossref_primary_10_1016_j_resmic_2019_09_005 crossref_primary_10_1038_s41467_023_39553_8 crossref_primary_10_1146_annurev_biochem_062917_011942 crossref_primary_10_1016_j_jia_2023_11_042 crossref_primary_10_3390_antibiotics10111406 crossref_primary_10_1093_jac_dkab478 crossref_primary_10_1016_j_csbj_2021_05_012 crossref_primary_10_1093_nar_gkac497 crossref_primary_10_1128_AAC_00930_19 crossref_primary_10_1128_AAC_02241_19 crossref_primary_10_1093_nar_gkae556 crossref_primary_10_3390_antibiotics13040311 crossref_primary_10_1128_microbiolspec_ARBA_0010_2017 crossref_primary_10_3343_alm_2019_39_1_36 crossref_primary_10_1093_lambio_ovad097 crossref_primary_10_1111_1348_0421_12974 crossref_primary_10_1007_s13238_017_0502_7 crossref_primary_10_1039_D2MD00459C crossref_primary_10_1016_j_eng_2020_12_015 crossref_primary_10_1093_nar_gkac934 crossref_primary_10_1128_mBio_00598_16 crossref_primary_10_3390_antibiotics12050880 crossref_primary_10_1093_jac_dkz309 crossref_primary_10_1186_s12866_018_1327_0 crossref_primary_10_3390_ijms21207799 crossref_primary_10_1093_evlett_qrad020 crossref_primary_10_1128_mBio_01731_21 crossref_primary_10_21307_PM_2020_59_1_005 crossref_primary_10_33073_pjm_2024_031 crossref_primary_10_3390_antibiotics10030290 crossref_primary_10_1099_mgen_0_001055 crossref_primary_10_1128_AAC_01184_21 crossref_primary_10_1007_s00253_023_12858_w crossref_primary_10_3389_fmicb_2022_885092 crossref_primary_10_1038_s41467_022_28078_1 crossref_primary_10_1021_acs_chemrev_0c01226 crossref_primary_10_1038_nrmicro_2016_54 crossref_primary_10_3389_fmicb_2022_897905 crossref_primary_10_1016_j_plasmid_2018_05_001 crossref_primary_10_3389_fmicb_2018_01183 crossref_primary_10_3390_ph16091281 crossref_primary_10_1093_jac_dkac314 crossref_primary_10_1016_j_cub_2021_08_010 crossref_primary_10_3390_antibiotics11091215 crossref_primary_10_1073_pnas_1808535115 crossref_primary_10_1128_mBio_01615_20 crossref_primary_10_1111_bph_13936 crossref_primary_10_3389_fphar_2022_953982 crossref_primary_10_1007_s00203_024_03998_2 crossref_primary_10_1093_nar_gkae528 crossref_primary_10_1099_mic_0_001387 crossref_primary_10_3389_fvets_2022_850466 crossref_primary_10_1016_j_ijfoodmicro_2021_109320 crossref_primary_10_1021_acsinfecdis_7b00251 crossref_primary_10_1038_s41467_024_50627_z crossref_primary_10_1038_s41564_022_01130_y crossref_primary_10_1093_jac_dkaa405 crossref_primary_10_1093_nar_gkaa726 crossref_primary_10_1080_14787210_2021_1834851 crossref_primary_10_3390_microorganisms10112301 crossref_primary_10_1016_j_jmb_2018_12_013 crossref_primary_10_1073_pnas_1810555115 crossref_primary_10_1016_j_vetmic_2020_108645 crossref_primary_10_3390_microorganisms13010195 crossref_primary_10_1038_s41598_024_83395_3 crossref_primary_10_1016_j_jgar_2019_05_021 crossref_primary_10_3390_microorganisms8081155 crossref_primary_10_1093_jac_dkab297 crossref_primary_10_1093_jacamr_dlac088 crossref_primary_10_3389_fmicb_2018_01698 crossref_primary_10_1128_AAC_01216_19 crossref_primary_10_2147_IDR_S510024 crossref_primary_10_3390_ijms22105356 crossref_primary_10_3389_fmicb_2021_807398 crossref_primary_10_3389_fmicb_2017_02675 crossref_primary_10_3389_fcimb_2020_00239 crossref_primary_10_1111_1462_2920_15143 crossref_primary_10_3389_fmicb_2021_642541 crossref_primary_10_1016_j_ijantimicag_2020_105993 crossref_primary_10_1016_j_plasmid_2018_09_011 crossref_primary_10_26633_RPSP_2020_104 crossref_primary_10_1016_j_ijantimicag_2023_106824 crossref_primary_10_1128_AAC_00160_20 crossref_primary_10_3390_antibiotics11040443 crossref_primary_10_2174_0122113525302796240528080758 crossref_primary_10_3147_jsfp_58_48 crossref_primary_10_1007_s00253_022_12090_y crossref_primary_10_1093_jac_dkaa236 crossref_primary_10_1016_j_isci_2022_105425 crossref_primary_10_4103_abr_abr_74_23 crossref_primary_10_1007_s12223_021_00910_z crossref_primary_10_1016_j_diagmicrobio_2019_03_006 crossref_primary_10_1093_nar_gky050 crossref_primary_10_1038_s41598_022_19897_9 crossref_primary_10_1016_j_micpath_2020_104098 crossref_primary_10_1016_j_vetmic_2024_109992 crossref_primary_10_3390_antibiotics12030503 crossref_primary_10_1016_j_vetmic_2024_110103 crossref_primary_10_3389_fmicb_2018_01942 crossref_primary_10_1038_s41467_022_29274_9 crossref_primary_10_1093_jacamr_dlac061 crossref_primary_10_1002_pro_3589 crossref_primary_10_1021_acs_accounts_0c00894 crossref_primary_10_3390_antibiotics12121715 crossref_primary_10_1016_j_vetmic_2020_108934 crossref_primary_10_3389_fcimb_2022_997283 crossref_primary_10_3389_fmicb_2021_780954 crossref_primary_10_1073_pnas_1906748117 crossref_primary_10_1038_s41598_019_51918_y crossref_primary_10_3389_fmicb_2016_00747 crossref_primary_10_1093_jac_dkab395 crossref_primary_10_1186_s12866_020_01970_w crossref_primary_10_3389_fmicb_2018_01670 crossref_primary_10_1093_nar_gkac058 crossref_primary_10_2147_IDR_S251490 crossref_primary_10_1016_j_drup_2024_101147 crossref_primary_10_3390_molecules28227481 crossref_primary_10_1002_1873_3468_13984 crossref_primary_10_1089_mdr_2018_0259 crossref_primary_10_1016_j_plasmid_2018_06_002 crossref_primary_10_1128_CMR_00188_20 crossref_primary_10_1007_s12223_022_01012_0 crossref_primary_10_1016_j_idc_2020_08_004 crossref_primary_10_1016_j_vetmic_2025_110476 crossref_primary_10_1016_j_jgar_2022_10_015 crossref_primary_10_3389_fmicb_2024_1501373 crossref_primary_10_1111_1758_2229_70028 crossref_primary_10_1038_s41579_020_0386_z crossref_primary_10_1016_j_scitotenv_2023_163948 crossref_primary_10_3389_fmicb_2021_637656 crossref_primary_10_1038_s41467_022_29493_0 crossref_primary_10_1089_omi_2020_0078 crossref_primary_10_1128_cmr_00161_23 crossref_primary_10_1073_pnas_2417525122 crossref_primary_10_1128_AAC_00809_19 crossref_primary_10_1186_s12884_023_05380_4 crossref_primary_10_1016_j_jgar_2025_02_005 crossref_primary_10_1016_j_micpath_2024_107076 crossref_primary_10_3389_fmicb_2020_01185 crossref_primary_10_3390_antibiotics11070857 crossref_primary_10_3389_fmicb_2018_02474 crossref_primary_10_1038_s41467_021_23753_1 crossref_primary_10_1089_mdr_2018_0028 |
Cites_doi | 10.1128/iai.41.3.1112-1117.1983 10.1128/MMBR.00031-07 10.1093/jac/45.6.763 10.1016/j.mimet.2007.04.007 10.1038/nsmb.2765 10.1016/S0021-9258(18)47454-6 10.1016/j.bbrc.2004.01.044 10.1128/jb.178.11.3246-3251.1996 10.1128/AAC.49.3.973-980.2005 10.1016/S0923-2508(01)01194-9 10.1093/jac/dki378 10.1042/BST20051000 10.1111/j.1365-2958.2005.04971.x 10.1038/nsmb.2741 10.1128/mBio.00277-11 10.1073/pnas.1501775112 10.1093/jac/dkv116 10.1128/AAC.45.6.1900-1904.2001 10.1111/j.1365-2958.1995.tb02305.x 10.1016/j.pep.2005.01.016 10.1038/ncomms2470 10.1128/AAC.00131-06 10.1046/j.1365-2958.1997.d01-1865.x 10.1073/pnas.1117275109 10.1042/bse0500019 10.1111/j.1365-2958.1990.tb00696.x 10.1016/0378-1119(92)90488-B 10.1128/AAC.00915-08 10.1128/AAC.02797-13 10.1074/jbc.M800418200 10.1093/nar/gkt268 10.1093/molbev/mst197 10.1016/j.resmic.2012.12.003 10.1016/S0924-8579(03)00218-8 10.1046/j.1365-2958.2002.02832.x 10.1261/rna.692408 10.1038/nrmicro3380 10.1128/AAC.46.6.1845-1850.2002 10.1128/AAC.00259-13 10.1128/AAC.04468-14 10.1128/AAC.00799-06 10.1038/nsmb.2740 10.1111/j.1574-6968.1999.tb08830.x 10.1186/1475-2859-4-18 10.1128/JB.01423-12 10.1016/0006-2952(86)90090-0 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Sharkey et al. Copyright © 2016 Sharkey et al. 2016 Sharkey et al. |
Copyright_xml | – notice: Copyright © 2016 Sharkey et al. – notice: Copyright © 2016 Sharkey et al. 2016 Sharkey et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.01975-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ABC-F Proteins in Antibiotic Resistance |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_935d8092795b4c40a3081ca5adc7ace1 PMC4807367 27006457 10_1128_mBio_01975_15 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/F016603/1 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c519t-dbf083cedab2b19e1b25331480a64d36f3aa7b432b1ed1f3d98026a8a36ee6ad3 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:25:07 EDT 2025 Thu Aug 21 18:32:10 EDT 2025 Fri Jul 11 07:20:46 EDT 2025 Wed Feb 19 02:31:35 EST 2025 Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 01:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2016 Sharkey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-dbf083cedab2b19e1b25331480a64d36f3aa7b432b1ed1f3d98026a8a36ee6ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Editor Gerard D. Wright, McMaster University |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.01975-15 |
PMID | 27006457 |
PQID | 1775631505 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_935d8092795b4c40a3081ca5adc7ace1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807367 proquest_miscellaneous_1775631505 pubmed_primary_27006457 crossref_primary_10_1128_mBio_01975_15 crossref_citationtrail_10_1128_mBio_01975_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-22 |
PublicationDateYYYYMMDD | 2016-03-22 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2016 |
Publisher | American Society of Microbiology American Society for Microbiology |
Publisher_xml | – name: American Society of Microbiology – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 CLSI (e_1_3_2_37_2) 2012 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Dorrian JM (e_1_3_2_7_2) 2009 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 Review on Antimicrobial Resistance (e_1_3_2_3_2) 2014 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 WHO (e_1_3_2_2_2) 2014 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 27143393 - MBio. 2016 May 03;7(3):null |
References_xml | – volume-title: Antimicrobial resistance: tackling a crisis for the future health and wealth of nations year: 2014 ident: e_1_3_2_3_2 – ident: e_1_3_2_50_2 doi: 10.1128/iai.41.3.1112-1117.1983 – ident: e_1_3_2_6_2 doi: 10.1128/MMBR.00031-07 – ident: e_1_3_2_28_2 doi: 10.1093/jac/45.6.763 – ident: e_1_3_2_41_2 doi: 10.1016/j.mimet.2007.04.007 – ident: e_1_3_2_26_2 doi: 10.1038/nsmb.2765 – ident: e_1_3_2_27_2 doi: 10.1016/S0021-9258(18)47454-6 – ident: e_1_3_2_5_2 doi: 10.1016/j.bbrc.2004.01.044 – ident: e_1_3_2_47_2 doi: 10.1128/jb.178.11.3246-3251.1996 – ident: e_1_3_2_19_2 doi: 10.1128/AAC.49.3.973-980.2005 – ident: e_1_3_2_35_2 doi: 10.1016/S0923-2508(01)01194-9 – ident: e_1_3_2_8_2 doi: 10.1093/jac/dki378 – ident: e_1_3_2_18_2 doi: 10.1042/BST20051000 – ident: e_1_3_2_29_2 doi: 10.1111/j.1365-2958.2005.04971.x – start-page: 63 volume-title: ABC transporters in microorganisms: research, innovation and value as targets against drug resistance year: 2009 ident: e_1_3_2_7_2 – volume-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M07-A9 year: 2012 ident: e_1_3_2_37_2 – ident: e_1_3_2_34_2 doi: 10.1038/nsmb.2741 – ident: e_1_3_2_39_2 doi: 10.1128/mBio.00277-11 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.1501775112 – ident: e_1_3_2_12_2 doi: 10.1093/jac/dkv116 – ident: e_1_3_2_45_2 doi: 10.1128/AAC.45.6.1900-1904.2001 – ident: e_1_3_2_24_2 doi: 10.1111/j.1365-2958.1995.tb02305.x – ident: e_1_3_2_43_2 doi: 10.1016/j.pep.2005.01.016 – ident: e_1_3_2_32_2 doi: 10.1038/ncomms2470 – ident: e_1_3_2_30_2 doi: 10.1128/AAC.00131-06 – ident: e_1_3_2_40_2 doi: 10.1046/j.1365-2958.1997.d01-1865.x – ident: e_1_3_2_44_2 doi: 10.1073/pnas.1117275109 – ident: e_1_3_2_36_2 doi: 10.1042/bse0500019 – ident: e_1_3_2_11_2 doi: 10.1111/j.1365-2958.1990.tb00696.x – ident: e_1_3_2_14_2 doi: 10.1016/0378-1119(92)90488-B – ident: e_1_3_2_13_2 doi: 10.1128/AAC.00915-08 – ident: e_1_3_2_16_2 doi: 10.1128/AAC.02797-13 – volume-title: Antimicrobial resistance: global report on surveillance 2014 year: 2014 ident: e_1_3_2_2_2 – ident: e_1_3_2_22_2 doi: 10.1074/jbc.M800418200 – ident: e_1_3_2_42_2 doi: 10.1093/nar/gkt268 – ident: e_1_3_2_48_2 doi: 10.1093/molbev/mst197 – ident: e_1_3_2_20_2 doi: 10.1016/j.resmic.2012.12.003 – ident: e_1_3_2_17_2 doi: 10.1016/S0924-8579(03)00218-8 – ident: e_1_3_2_38_2 doi: 10.1046/j.1365-2958.2002.02832.x – ident: e_1_3_2_46_2 doi: 10.1261/rna.692408 – ident: e_1_3_2_4_2 doi: 10.1038/nrmicro3380 – ident: e_1_3_2_10_2 doi: 10.1128/AAC.46.6.1845-1850.2002 – ident: e_1_3_2_15_2 doi: 10.1128/AAC.00259-13 – ident: e_1_3_2_21_2 doi: 10.1128/AAC.04468-14 – ident: e_1_3_2_9_2 doi: 10.1128/AAC.00799-06 – ident: e_1_3_2_33_2 doi: 10.1038/nsmb.2740 – ident: e_1_3_2_23_2 doi: 10.1111/j.1574-6968.1999.tb08830.x – ident: e_1_3_2_51_2 doi: 10.1186/1475-2859-4-18 – ident: e_1_3_2_49_2 doi: 10.1128/JB.01423-12 – ident: e_1_3_2_25_2 doi: 10.1016/0006-2952(86)90090-0 – reference: 27143393 - MBio. 2016 May 03;7(3):null |
SSID | ssj0000331830 |
Score | 2.525434 |
Snippet | Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the... ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e01975 |
SubjectTerms | Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology ATP-Binding Cassette Transporters - metabolism Drug Resistance, Bacterial Gram-Positive Bacteria - drug effects Microbial Sensitivity Tests Protein Biosynthesis - drug effects Ribosomes - drug effects Ribosomes - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCuLJaNOkSXrcFRcVFBEFbyGv4oLbirse_PdO0u6yK4oXr02ahplp8n1k8g1Cxw5IhSgJwVZKh1mRelzkJsUlrJfOlyXJTMy2uONXT-zmOX-eKfUVcsIaeeDGcOcFzZ1Mi0zAEMyyVFPYxKzOtbNCWx-JD-x5M2QqrsE0xGo6EdXM5PmwN6jPAM-IHIcSuDObUNTq_wlgfs-TnNl4-qtopUWMSbeZ6Rpa8NU6WmpqSH5uoOtu7wL3k_ugtzCoRsltrL3hk24VboPU8FLy4EcBJYJ7k7YsT_IwMPWoHsK4941QA7hnEz31Lx8vrnBbHwFbwF1j7EwJAMp6p01mSOGJyQC8Ab9JNWeO8pJqLQyj0OgdKakrJDAuLTXl3nPt6BZarOrK76AEeBcxTHIHBIgZSbW0YF5Hy8JRqTXroNOJwZRtxcNDDYtXFUlEJlWwr4r2VSTvoJNp97dGNeO3jr1g_WmnIHYdH0AIqDYE1F8h0EFHE98p-DnCiYeufP0xUkSInFPAvPCh7caX00-FE3fOctFBYs7Lc3OZb6kGL1GAO1zDp1zs_sfk99AyYDAe0tqybB8tjt8__AHgnLE5jCH9BTJM_Hg priority: 102 providerName: Directory of Open Access Journals |
Title | ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27006457 https://www.proquest.com/docview/1775631505 https://pubmed.ncbi.nlm.nih.gov/PMC4807367 https://doaj.org/article/935d8092795b4c40a3081ca5adc7ace1 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbQEBIv04ABHTAFCe0Jjzh2bOdhmtqJMiYVVRWV-mb5lq3SlkDTSezfc-ykHZ2KtJc8xCe2c44v3_HlOwh9cuBUiJIQbKV0mBWpx0VuUlzCeOl8WZLMxNMWP_j5lF3M8tk9pVCnwGaraxfiSU0X18d_ft-dQoc_aS_AyC83g3l9DFBF5DhcN38Kk5IIfXTUIf04KNPQeMOKSwYYB8OAXawYNx_msDFDRSL_bejz4SHKf2al4R7a7eBk0m_t_wI98dVL9KwNMHn3Cn3vD87wMBkHMoZ51SSjGJjDJ_0qXBWp4aNk4psAIcH2SRezJ5nMTd3UN5DvuGVxANvto-nw68-zc9wFT8AWQNkSO1MCurLeaZMZUnhiMkB24PykmjNHeUm1FoZRSPSOlNQVEtwxLTXl3nPt6Gu0U9WVf4sScMqIYZI78I6YkVRLawVIlIWjUmvWQ59XClO2YxYPAS6uVfQwMqmCflXUryJ5Dx2txX-1lBr_ExwE7a-FAhN2fFEvLlXXsVRBcyfTIhPQxJhlqaYAcqzOtYM6Wk966OPKdgp6TtgO0ZWvbxtFhMg5BUAMBb1pbbkuKmzHc5aLHhIbVt6oy2ZKNb-K7Nzhjj7l4uCxf_kOPQcQxsO5tix7j3aWi1v_AYDO0hzGBQJ4fpuRw9ic_wLu-v1q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABC-F+Proteins+Mediate+Antibiotic+Resistance+through+Ribosomal+Protection&rft.jtitle=mBio&rft.au=Sharkey%2C+Liam+K.+R.&rft.au=Edwards%2C+Thomas+A.&rft.au=O%E2%80%99Neill%2C+Alex+J.&rft.date=2016-03-22&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.01975-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_01975_15 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |