ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection

Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two comp...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 7; no. 2; p. e01975
Main Authors Sharkey, Liam K. R., Edwards, Thomas A., O’Neill, Alex J.
Format Journal Article
LanguageEnglish
Published United States American Society of Microbiology 22.03.2016
American Society for Microbiology
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.01975-15

Cover

Loading…
Abstract Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro . To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. IMPORTANCE Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
AbstractList Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro . To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. IMPORTANCE Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. IMPORTANCE Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa(A), msr(A), optr(A), and vga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro . To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa (A), msr (A), optr (A), and vga (A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Author Sharkey, Liam K. R.
Edwards, Thomas A.
O’Neill, Alex J.
Author_xml – sequence: 1
  givenname: Liam K. R.
  surname: Sharkey
  fullname: Sharkey, Liam K. R.
  organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
– sequence: 2
  givenname: Thomas A.
  surname: Edwards
  fullname: Edwards, Thomas A.
  organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
– sequence: 3
  givenname: Alex J.
  surname: O’Neill
  fullname: O’Neill, Alex J.
  organization: Antimicrobial Research Centre, Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27006457$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQhS1UREvpkSvKkUuKJ47j5IK0XVG6UhGogrM1sSe7rpK42F4k_j1Ot60oEnPxyPPmmye91-xo9jMx9hb4OUDVfpgunD_n0ClZgnzBTiqQvFQS4GjpGygrqLpjdhbjLc8lBLSCv2LHleK8qaU6YZvVxbq8LL4Fn8jNsfhC1mGiYjUn1zufnCluKLqYcDZUpF3w--2uuHG9j37C8bBokvPzG_ZywDHS2cN7yn5cfvq-viqvv37erFfXpZHQpdL2A2-FIYt91UNH0Fcy-6pbjk1tRTMIRNXXIg_JwiBs1_KqwRZFQ9SgFadsc-Baj7f6LrgJw2_t0en7Dx-2GkP2PZLuhLQt7yrVyb42NUfBWzAo0RqFhiCzPh5Yd_t-ImtoTgHHZ9Dnk9nt9Nb_0tmuEo3KgPcPgOB_7ikmPbloaBxxJr-PGpSSjcipyCx99_etpyOPWWRBeRCY4GMMNDxJgOslbr3Ere_j1rAAxT964xIuUWSrbvzP1h9r9K6g
CitedBy_id crossref_primary_10_3390_microorganisms9030491
crossref_primary_10_1093_cid_ciy903
crossref_primary_10_1038_s41467_021_22016_3
crossref_primary_10_1038_s41579_022_00820_y
crossref_primary_10_1016_j_bbrc_2017_10_168
crossref_primary_10_1093_jac_dky088
crossref_primary_10_1111_cbdd_13311
crossref_primary_10_1128_microbiolspec_ARBA_0019_2017
crossref_primary_10_3390_antibiotics13121110
crossref_primary_10_1016_j_molcel_2022_06_034
crossref_primary_10_1016_j_pep_2023_106325
crossref_primary_10_3389_fmicb_2018_02063
crossref_primary_10_1128_msystems_00535_23
crossref_primary_10_1016_j_ecoenv_2021_112552
crossref_primary_10_1093_jac_dkab376
crossref_primary_10_1186_s13567_022_01111_3
crossref_primary_10_3390_microorganisms10061239
crossref_primary_10_3390_molecules23123195
crossref_primary_10_3390_antibiotics12071225
crossref_primary_10_1038_s42003_018_0064_0
crossref_primary_10_1016_j_tibs_2018_11_003
crossref_primary_10_3390_microorganisms10122316
crossref_primary_10_3389_fmicb_2018_02189
crossref_primary_10_1016_j_jgar_2023_10_014
crossref_primary_10_1073_pnas_1803313115
crossref_primary_10_1093_jac_dkz449
crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_296
crossref_primary_10_1016_j_chom_2024_05_015
crossref_primary_10_1038_s41586_020_2761_3
crossref_primary_10_3390_pathogens10030384
crossref_primary_10_1074_jbc_RA119_008477
crossref_primary_10_1080_1040841X_2020_1758626
crossref_primary_10_1080_14787210_2018_1456919
crossref_primary_10_1186_s12920_024_01948_x
crossref_primary_10_1128_AAC_00661_16
crossref_primary_10_1128_AAC_00330_21
crossref_primary_10_1098_rsob_190051
crossref_primary_10_3389_fmicb_2018_02576
crossref_primary_10_3390_ijerph19095506
crossref_primary_10_1073_pnas_2008577117
crossref_primary_10_3389_fcimb_2016_00098
crossref_primary_10_2147_IDR_S442105
crossref_primary_10_1002_jobm_202100201
crossref_primary_10_1016_j_ijantimicag_2019_08_019
crossref_primary_10_1016_j_mib_2017_02_005
crossref_primary_10_3389_fmicb_2022_855482
crossref_primary_10_1099_mic_0_000794
crossref_primary_10_3389_fmicb_2021_667096
crossref_primary_10_1016_j_resmic_2019_09_005
crossref_primary_10_1038_s41467_023_39553_8
crossref_primary_10_1146_annurev_biochem_062917_011942
crossref_primary_10_1016_j_jia_2023_11_042
crossref_primary_10_3390_antibiotics10111406
crossref_primary_10_1093_jac_dkab478
crossref_primary_10_1016_j_csbj_2021_05_012
crossref_primary_10_1093_nar_gkac497
crossref_primary_10_1128_AAC_00930_19
crossref_primary_10_1128_AAC_02241_19
crossref_primary_10_1093_nar_gkae556
crossref_primary_10_3390_antibiotics13040311
crossref_primary_10_1128_microbiolspec_ARBA_0010_2017
crossref_primary_10_3343_alm_2019_39_1_36
crossref_primary_10_1093_lambio_ovad097
crossref_primary_10_1111_1348_0421_12974
crossref_primary_10_1007_s13238_017_0502_7
crossref_primary_10_1039_D2MD00459C
crossref_primary_10_1016_j_eng_2020_12_015
crossref_primary_10_1093_nar_gkac934
crossref_primary_10_1128_mBio_00598_16
crossref_primary_10_3390_antibiotics12050880
crossref_primary_10_1093_jac_dkz309
crossref_primary_10_1186_s12866_018_1327_0
crossref_primary_10_3390_ijms21207799
crossref_primary_10_1093_evlett_qrad020
crossref_primary_10_1128_mBio_01731_21
crossref_primary_10_21307_PM_2020_59_1_005
crossref_primary_10_33073_pjm_2024_031
crossref_primary_10_3390_antibiotics10030290
crossref_primary_10_1099_mgen_0_001055
crossref_primary_10_1128_AAC_01184_21
crossref_primary_10_1007_s00253_023_12858_w
crossref_primary_10_3389_fmicb_2022_885092
crossref_primary_10_1038_s41467_022_28078_1
crossref_primary_10_1021_acs_chemrev_0c01226
crossref_primary_10_1038_nrmicro_2016_54
crossref_primary_10_3389_fmicb_2022_897905
crossref_primary_10_1016_j_plasmid_2018_05_001
crossref_primary_10_3389_fmicb_2018_01183
crossref_primary_10_3390_ph16091281
crossref_primary_10_1093_jac_dkac314
crossref_primary_10_1016_j_cub_2021_08_010
crossref_primary_10_3390_antibiotics11091215
crossref_primary_10_1073_pnas_1808535115
crossref_primary_10_1128_mBio_01615_20
crossref_primary_10_1111_bph_13936
crossref_primary_10_3389_fphar_2022_953982
crossref_primary_10_1007_s00203_024_03998_2
crossref_primary_10_1093_nar_gkae528
crossref_primary_10_1099_mic_0_001387
crossref_primary_10_3389_fvets_2022_850466
crossref_primary_10_1016_j_ijfoodmicro_2021_109320
crossref_primary_10_1021_acsinfecdis_7b00251
crossref_primary_10_1038_s41467_024_50627_z
crossref_primary_10_1038_s41564_022_01130_y
crossref_primary_10_1093_jac_dkaa405
crossref_primary_10_1093_nar_gkaa726
crossref_primary_10_1080_14787210_2021_1834851
crossref_primary_10_3390_microorganisms10112301
crossref_primary_10_1016_j_jmb_2018_12_013
crossref_primary_10_1073_pnas_1810555115
crossref_primary_10_1016_j_vetmic_2020_108645
crossref_primary_10_3390_microorganisms13010195
crossref_primary_10_1038_s41598_024_83395_3
crossref_primary_10_1016_j_jgar_2019_05_021
crossref_primary_10_3390_microorganisms8081155
crossref_primary_10_1093_jac_dkab297
crossref_primary_10_1093_jacamr_dlac088
crossref_primary_10_3389_fmicb_2018_01698
crossref_primary_10_1128_AAC_01216_19
crossref_primary_10_2147_IDR_S510024
crossref_primary_10_3390_ijms22105356
crossref_primary_10_3389_fmicb_2021_807398
crossref_primary_10_3389_fmicb_2017_02675
crossref_primary_10_3389_fcimb_2020_00239
crossref_primary_10_1111_1462_2920_15143
crossref_primary_10_3389_fmicb_2021_642541
crossref_primary_10_1016_j_ijantimicag_2020_105993
crossref_primary_10_1016_j_plasmid_2018_09_011
crossref_primary_10_26633_RPSP_2020_104
crossref_primary_10_1016_j_ijantimicag_2023_106824
crossref_primary_10_1128_AAC_00160_20
crossref_primary_10_3390_antibiotics11040443
crossref_primary_10_2174_0122113525302796240528080758
crossref_primary_10_3147_jsfp_58_48
crossref_primary_10_1007_s00253_022_12090_y
crossref_primary_10_1093_jac_dkaa236
crossref_primary_10_1016_j_isci_2022_105425
crossref_primary_10_4103_abr_abr_74_23
crossref_primary_10_1007_s12223_021_00910_z
crossref_primary_10_1016_j_diagmicrobio_2019_03_006
crossref_primary_10_1093_nar_gky050
crossref_primary_10_1038_s41598_022_19897_9
crossref_primary_10_1016_j_micpath_2020_104098
crossref_primary_10_1016_j_vetmic_2024_109992
crossref_primary_10_3390_antibiotics12030503
crossref_primary_10_1016_j_vetmic_2024_110103
crossref_primary_10_3389_fmicb_2018_01942
crossref_primary_10_1038_s41467_022_29274_9
crossref_primary_10_1093_jacamr_dlac061
crossref_primary_10_1002_pro_3589
crossref_primary_10_1021_acs_accounts_0c00894
crossref_primary_10_3390_antibiotics12121715
crossref_primary_10_1016_j_vetmic_2020_108934
crossref_primary_10_3389_fcimb_2022_997283
crossref_primary_10_3389_fmicb_2021_780954
crossref_primary_10_1073_pnas_1906748117
crossref_primary_10_1038_s41598_019_51918_y
crossref_primary_10_3389_fmicb_2016_00747
crossref_primary_10_1093_jac_dkab395
crossref_primary_10_1186_s12866_020_01970_w
crossref_primary_10_3389_fmicb_2018_01670
crossref_primary_10_1093_nar_gkac058
crossref_primary_10_2147_IDR_S251490
crossref_primary_10_1016_j_drup_2024_101147
crossref_primary_10_3390_molecules28227481
crossref_primary_10_1002_1873_3468_13984
crossref_primary_10_1089_mdr_2018_0259
crossref_primary_10_1016_j_plasmid_2018_06_002
crossref_primary_10_1128_CMR_00188_20
crossref_primary_10_1007_s12223_022_01012_0
crossref_primary_10_1016_j_idc_2020_08_004
crossref_primary_10_1016_j_vetmic_2025_110476
crossref_primary_10_1016_j_jgar_2022_10_015
crossref_primary_10_3389_fmicb_2024_1501373
crossref_primary_10_1111_1758_2229_70028
crossref_primary_10_1038_s41579_020_0386_z
crossref_primary_10_1016_j_scitotenv_2023_163948
crossref_primary_10_3389_fmicb_2021_637656
crossref_primary_10_1038_s41467_022_29493_0
crossref_primary_10_1089_omi_2020_0078
crossref_primary_10_1128_cmr_00161_23
crossref_primary_10_1073_pnas_2417525122
crossref_primary_10_1128_AAC_00809_19
crossref_primary_10_1186_s12884_023_05380_4
crossref_primary_10_1016_j_jgar_2025_02_005
crossref_primary_10_1016_j_micpath_2024_107076
crossref_primary_10_3389_fmicb_2020_01185
crossref_primary_10_3390_antibiotics11070857
crossref_primary_10_3389_fmicb_2018_02474
crossref_primary_10_1038_s41467_021_23753_1
crossref_primary_10_1089_mdr_2018_0028
Cites_doi 10.1128/iai.41.3.1112-1117.1983
10.1128/MMBR.00031-07
10.1093/jac/45.6.763
10.1016/j.mimet.2007.04.007
10.1038/nsmb.2765
10.1016/S0021-9258(18)47454-6
10.1016/j.bbrc.2004.01.044
10.1128/jb.178.11.3246-3251.1996
10.1128/AAC.49.3.973-980.2005
10.1016/S0923-2508(01)01194-9
10.1093/jac/dki378
10.1042/BST20051000
10.1111/j.1365-2958.2005.04971.x
10.1038/nsmb.2741
10.1128/mBio.00277-11
10.1073/pnas.1501775112
10.1093/jac/dkv116
10.1128/AAC.45.6.1900-1904.2001
10.1111/j.1365-2958.1995.tb02305.x
10.1016/j.pep.2005.01.016
10.1038/ncomms2470
10.1128/AAC.00131-06
10.1046/j.1365-2958.1997.d01-1865.x
10.1073/pnas.1117275109
10.1042/bse0500019
10.1111/j.1365-2958.1990.tb00696.x
10.1016/0378-1119(92)90488-B
10.1128/AAC.00915-08
10.1128/AAC.02797-13
10.1074/jbc.M800418200
10.1093/nar/gkt268
10.1093/molbev/mst197
10.1016/j.resmic.2012.12.003
10.1016/S0924-8579(03)00218-8
10.1046/j.1365-2958.2002.02832.x
10.1261/rna.692408
10.1038/nrmicro3380
10.1128/AAC.46.6.1845-1850.2002
10.1128/AAC.00259-13
10.1128/AAC.04468-14
10.1128/AAC.00799-06
10.1038/nsmb.2740
10.1111/j.1574-6968.1999.tb08830.x
10.1186/1475-2859-4-18
10.1128/JB.01423-12
10.1016/0006-2952(86)90090-0
ContentType Journal Article
Copyright Copyright © 2016 Sharkey et al.
Copyright © 2016 Sharkey et al. 2016 Sharkey et al.
Copyright_xml – notice: Copyright © 2016 Sharkey et al.
– notice: Copyright © 2016 Sharkey et al. 2016 Sharkey et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.01975-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ABC-F Proteins in Antibiotic Resistance
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_935d8092795b4c40a3081ca5adc7ace1
PMC4807367
27006457
10_1128_mBio_01975_15
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F016603/1
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c519t-dbf083cedab2b19e1b25331480a64d36f3aa7b432b1ed1f3d98026a8a36ee6ad3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:25:07 EDT 2025
Thu Aug 21 18:32:10 EDT 2025
Fri Jul 11 07:20:46 EDT 2025
Wed Feb 19 02:31:35 EST 2025
Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 01:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2016 Sharkey et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-dbf083cedab2b19e1b25331480a64d36f3aa7b432b1ed1f3d98026a8a36ee6ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Editor Gerard D. Wright, McMaster University
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.01975-15
PMID 27006457
PQID 1775631505
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_935d8092795b4c40a3081ca5adc7ace1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807367
proquest_miscellaneous_1775631505
pubmed_primary_27006457
crossref_primary_10_1128_mBio_01975_15
crossref_citationtrail_10_1128_mBio_01975_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-22
PublicationDateYYYYMMDD 2016-03-22
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2016
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
CLSI (e_1_3_2_37_2) 2012
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
Dorrian JM (e_1_3_2_7_2) 2009
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
Review on Antimicrobial Resistance (e_1_3_2_3_2) 2014
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
WHO (e_1_3_2_2_2) 2014
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
27143393 - MBio. 2016 May 03;7(3):null
References_xml – volume-title: Antimicrobial resistance: tackling a crisis for the future health and wealth of nations
  year: 2014
  ident: e_1_3_2_3_2
– ident: e_1_3_2_50_2
  doi: 10.1128/iai.41.3.1112-1117.1983
– ident: e_1_3_2_6_2
  doi: 10.1128/MMBR.00031-07
– ident: e_1_3_2_28_2
  doi: 10.1093/jac/45.6.763
– ident: e_1_3_2_41_2
  doi: 10.1016/j.mimet.2007.04.007
– ident: e_1_3_2_26_2
  doi: 10.1038/nsmb.2765
– ident: e_1_3_2_27_2
  doi: 10.1016/S0021-9258(18)47454-6
– ident: e_1_3_2_5_2
  doi: 10.1016/j.bbrc.2004.01.044
– ident: e_1_3_2_47_2
  doi: 10.1128/jb.178.11.3246-3251.1996
– ident: e_1_3_2_19_2
  doi: 10.1128/AAC.49.3.973-980.2005
– ident: e_1_3_2_35_2
  doi: 10.1016/S0923-2508(01)01194-9
– ident: e_1_3_2_8_2
  doi: 10.1093/jac/dki378
– ident: e_1_3_2_18_2
  doi: 10.1042/BST20051000
– ident: e_1_3_2_29_2
  doi: 10.1111/j.1365-2958.2005.04971.x
– start-page: 63
  volume-title: ABC transporters in microorganisms: research, innovation and value as targets against drug resistance
  year: 2009
  ident: e_1_3_2_7_2
– volume-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M07-A9
  year: 2012
  ident: e_1_3_2_37_2
– ident: e_1_3_2_34_2
  doi: 10.1038/nsmb.2741
– ident: e_1_3_2_39_2
  doi: 10.1128/mBio.00277-11
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.1501775112
– ident: e_1_3_2_12_2
  doi: 10.1093/jac/dkv116
– ident: e_1_3_2_45_2
  doi: 10.1128/AAC.45.6.1900-1904.2001
– ident: e_1_3_2_24_2
  doi: 10.1111/j.1365-2958.1995.tb02305.x
– ident: e_1_3_2_43_2
  doi: 10.1016/j.pep.2005.01.016
– ident: e_1_3_2_32_2
  doi: 10.1038/ncomms2470
– ident: e_1_3_2_30_2
  doi: 10.1128/AAC.00131-06
– ident: e_1_3_2_40_2
  doi: 10.1046/j.1365-2958.1997.d01-1865.x
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1117275109
– ident: e_1_3_2_36_2
  doi: 10.1042/bse0500019
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1365-2958.1990.tb00696.x
– ident: e_1_3_2_14_2
  doi: 10.1016/0378-1119(92)90488-B
– ident: e_1_3_2_13_2
  doi: 10.1128/AAC.00915-08
– ident: e_1_3_2_16_2
  doi: 10.1128/AAC.02797-13
– volume-title: Antimicrobial resistance: global report on surveillance 2014
  year: 2014
  ident: e_1_3_2_2_2
– ident: e_1_3_2_22_2
  doi: 10.1074/jbc.M800418200
– ident: e_1_3_2_42_2
  doi: 10.1093/nar/gkt268
– ident: e_1_3_2_48_2
  doi: 10.1093/molbev/mst197
– ident: e_1_3_2_20_2
  doi: 10.1016/j.resmic.2012.12.003
– ident: e_1_3_2_17_2
  doi: 10.1016/S0924-8579(03)00218-8
– ident: e_1_3_2_38_2
  doi: 10.1046/j.1365-2958.2002.02832.x
– ident: e_1_3_2_46_2
  doi: 10.1261/rna.692408
– ident: e_1_3_2_4_2
  doi: 10.1038/nrmicro3380
– ident: e_1_3_2_10_2
  doi: 10.1128/AAC.46.6.1845-1850.2002
– ident: e_1_3_2_15_2
  doi: 10.1128/AAC.00259-13
– ident: e_1_3_2_21_2
  doi: 10.1128/AAC.04468-14
– ident: e_1_3_2_9_2
  doi: 10.1128/AAC.00799-06
– ident: e_1_3_2_33_2
  doi: 10.1038/nsmb.2740
– ident: e_1_3_2_23_2
  doi: 10.1111/j.1574-6968.1999.tb08830.x
– ident: e_1_3_2_51_2
  doi: 10.1186/1475-2859-4-18
– ident: e_1_3_2_49_2
  doi: 10.1128/JB.01423-12
– ident: e_1_3_2_25_2
  doi: 10.1016/0006-2952(86)90090-0
– reference: 27143393 - MBio. 2016 May 03;7(3):null
SSID ssj0000331830
Score 2.525434
Snippet Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the...
ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e01975
SubjectTerms Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
ATP-Binding Cassette Transporters - metabolism
Drug Resistance, Bacterial
Gram-Positive Bacteria - drug effects
Microbial Sensitivity Tests
Protein Biosynthesis - drug effects
Ribosomes - drug effects
Ribosomes - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCuLJaNOkSXrcFRcVFBEFbyGv4oLbirse_PdO0u6yK4oXr02ahplp8n1k8g1Cxw5IhSgJwVZKh1mRelzkJsUlrJfOlyXJTMy2uONXT-zmOX-eKfUVcsIaeeDGcOcFzZ1Mi0zAEMyyVFPYxKzOtbNCWx-JD-x5M2QqrsE0xGo6EdXM5PmwN6jPAM-IHIcSuDObUNTq_wlgfs-TnNl4-qtopUWMSbeZ6Rpa8NU6WmpqSH5uoOtu7wL3k_ugtzCoRsltrL3hk24VboPU8FLy4EcBJYJ7k7YsT_IwMPWoHsK4941QA7hnEz31Lx8vrnBbHwFbwF1j7EwJAMp6p01mSOGJyQC8Ab9JNWeO8pJqLQyj0OgdKakrJDAuLTXl3nPt6BZarOrK76AEeBcxTHIHBIgZSbW0YF5Hy8JRqTXroNOJwZRtxcNDDYtXFUlEJlWwr4r2VSTvoJNp97dGNeO3jr1g_WmnIHYdH0AIqDYE1F8h0EFHE98p-DnCiYeufP0xUkSInFPAvPCh7caX00-FE3fOctFBYs7Lc3OZb6kGL1GAO1zDp1zs_sfk99AyYDAe0tqybB8tjt8__AHgnLE5jCH9BTJM_Hg
  priority: 102
  providerName: Directory of Open Access Journals
Title ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection
URI https://www.ncbi.nlm.nih.gov/pubmed/27006457
https://www.proquest.com/docview/1775631505
https://pubmed.ncbi.nlm.nih.gov/PMC4807367
https://doaj.org/article/935d8092795b4c40a3081ca5adc7ace1
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbQEBIv04ABHTAFCe0Jjzh2bOdhmtqJMiYVVRWV-mb5lq3SlkDTSezfc-ykHZ2KtJc8xCe2c44v3_HlOwh9cuBUiJIQbKV0mBWpx0VuUlzCeOl8WZLMxNMWP_j5lF3M8tk9pVCnwGaraxfiSU0X18d_ft-dQoc_aS_AyC83g3l9DFBF5DhcN38Kk5IIfXTUIf04KNPQeMOKSwYYB8OAXawYNx_msDFDRSL_bejz4SHKf2al4R7a7eBk0m_t_wI98dVL9KwNMHn3Cn3vD87wMBkHMoZ51SSjGJjDJ_0qXBWp4aNk4psAIcH2SRezJ5nMTd3UN5DvuGVxANvto-nw68-zc9wFT8AWQNkSO1MCurLeaZMZUnhiMkB24PykmjNHeUm1FoZRSPSOlNQVEtwxLTXl3nPt6Gu0U9WVf4sScMqIYZI78I6YkVRLawVIlIWjUmvWQ59XClO2YxYPAS6uVfQwMqmCflXUryJ5Dx2txX-1lBr_ExwE7a-FAhN2fFEvLlXXsVRBcyfTIhPQxJhlqaYAcqzOtYM6Wk966OPKdgp6TtgO0ZWvbxtFhMg5BUAMBb1pbbkuKmzHc5aLHhIbVt6oy2ZKNb-K7Nzhjj7l4uCxf_kOPQcQxsO5tix7j3aWi1v_AYDO0hzGBQJ4fpuRw9ic_wLu-v1q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABC-F+Proteins+Mediate+Antibiotic+Resistance+through+Ribosomal+Protection&rft.jtitle=mBio&rft.au=Sharkey%2C+Liam+K.+R.&rft.au=Edwards%2C+Thomas+A.&rft.au=O%E2%80%99Neill%2C+Alex+J.&rft.date=2016-03-22&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.01975-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_01975_15
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon