Comparing AI and Manual Segmentation of Prostate MRI: Towards AI-Driven 3D-Model-Guided Prostatectomy

Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 9; p. 1141
Main Authors Boellaard, Thierry N., van Erck, Roy, van der Graaf, Sophia H., de Boer, Lisanne, van der Poel, Henk G., Mertens, Laura S., van Leeuwen, Pim J., Dashtbozorg, Behdad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15091141

Cover

Loading…
Abstract Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. Methods: This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. Results: For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15–30 min. Conclusions: The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.
AbstractList Background : Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. Methods : This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. Results : For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15–30 min. Conclusions : The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.
Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. Methods: This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. Results: For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15–30 min. Conclusions: The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.
: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. : This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. : For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15-30 min. : The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.
Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. Methods: This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. Results: For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15-30 min. Conclusions: The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes. Manual expert radiologist segmentation of the prostate and tumor in prostate MRI to create 3D models is labor-intensive and prone to inter-observer variability, highlighting the need for automated segmentation methods. Methods: This study evaluates the performance of the prostate and tumor segmentation using a commercially available AI tool without (fully automated) and with manual adjustment (AI-assisted) compared to manual segmentations on 120 patients, using several metrics, including Dice Coefficient and Hausdorff distance. Tumor detection rates were assessed with recall and precision. Results: For the prostate, both the fully automated AI model and AI-assisted model achieved a mean Dice score of 0.88, while AI-assisted had a lower Hausdorff distance (7.22 mm) compared to the fully automated (7.40 mm). For tumor segmentations, the Dice scores were 0.53 and 0.62, with Hausdorff distances of 9.53 mm and 6.62 mm obtained for fully automated AI and AI-assisted methods, respectively. The fully automated AI method had a recall of 0.74 and a precision of 0.76 in tumor detection, while the AI-assisted method achieved 0.95 recall and 0.94 precision. Fully automated segmentation required less than 1 min, while adjustments for the AI-assisted segmentation took an additional 81 s, and manual segmentation took approximately 15-30 min. Conclusions: The fully automated AI model shows promising results, offering high tumor detection rates and acceptable segmentation metrics. The AI-assisted strategy improved the relevant metrics with minimal additional time investment. Therefore, the AI-assisted segmentation method is promising for allowing 3D-model-guided surgery for all patients undergoing RARP.
Audience Academic
Author van Leeuwen, Pim J.
van der Graaf, Sophia H.
Dashtbozorg, Behdad
Mertens, Laura S.
Boellaard, Thierry N.
van der Poel, Henk G.
van Erck, Roy
de Boer, Lisanne
AuthorAffiliation 4 Image-Guided Surgery, Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
3 Department of Urology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
5 Department of Urology, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
1 Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
2 Technical Medicine, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
AuthorAffiliation_xml – name: 1 Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
– name: 2 Technical Medicine, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
– name: 3 Department of Urology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
– name: 4 Image-Guided Surgery, Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
– name: 5 Department of Urology, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Thierry N.
  orcidid: 0009-0006-5837-0145
  surname: Boellaard
  fullname: Boellaard, Thierry N.
– sequence: 2
  givenname: Roy
  surname: van Erck
  fullname: van Erck, Roy
– sequence: 3
  givenname: Sophia H.
  orcidid: 0009-0000-1459-3239
  surname: van der Graaf
  fullname: van der Graaf, Sophia H.
– sequence: 4
  givenname: Lisanne
  surname: de Boer
  fullname: de Boer, Lisanne
– sequence: 5
  givenname: Henk G.
  orcidid: 0000-0002-8772-1120
  surname: van der Poel
  fullname: van der Poel, Henk G.
– sequence: 6
  givenname: Laura S.
  orcidid: 0000-0003-3317-6427
  surname: Mertens
  fullname: Mertens, Laura S.
– sequence: 7
  givenname: Pim J.
  orcidid: 0000-0002-9598-5345
  surname: van Leeuwen
  fullname: van Leeuwen, Pim J.
– sequence: 8
  givenname: Behdad
  orcidid: 0000-0003-4443-1614
  surname: Dashtbozorg
  fullname: Dashtbozorg, Behdad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40361959$$D View this record in MEDLINE/PubMed
BookMark eNptkltv0zAUxy00xEbZJ0BCkXjhJcPXJOYFVR2MSqtAMJ6tU1-Cq8QuTjK0b4-7jmpFsx9sHf_O_1x8XqKTEINF6DXBF4xJ_N54aEMcRq8HIrAkhJNn6IziWpSck-bk0f0UnQ_DBuclCWuoeIFOOWYVkUKeIbuI_RaSD20xXxYQTLGCMEFX_LBtb8MIo4-hiK74lnI0GG2x-r78UNzEP5DMkH3Ky-RvbSjYZbmKxnbl1eSNNQdej7G_e4WeO-gGe_5wztDPz59uFl_K669Xy8X8utSCyLHUoKE2RGhdMVivsbWsgrrWWmrOsLQaN9RICdJVTSW44JJgRnNZUrPaNZzN0HKvayJs1Db5HtKdiuDVvSGmVkHKPeusEphWjDpmuaHccblmO3EnKNU1aXICM_Rxr7Wd1r01OjcjQXckevwS_C_VxltFcudJxVhWePegkOLvyQ6j6v2gbddBsHEaVE6dSYqxaDL69j90E6cUcq_uKSKpyH92oFrIFfjgYg6sd6Jq3jBZc0IwydTFE1TexvZe5zFyPtuPHN48rvRQ4r8pyQDbAzp_6pCsOyAEq904qifGkf0FAxHRjA
Cites_doi 10.1007/s00330-022-08978-y
10.1117/1.JMI.3.4.046002
10.3322/caac.21834
10.1111/bju.16595
10.2307/1932409
10.1016/S1470-2045(24)00220-1
10.3390/diagnostics10110951
10.3390/s21082709
10.1007/s11701-022-01443-4
10.1097/RLI.0000000000000780
10.1186/s13244-021-01010-9
10.1080/07038992.1998.10874685
10.1007/s00330-022-09239-8
10.1002/mp.16374
10.1016/j.eururo.2024.03.027
10.1148/ryai.230138
10.1016/j.ejrad.2019.108716
10.1002/pros.24528
10.1214/aos/1013699998
10.3390/life13030830
10.1007/s00330-022-08712-8
10.1007/s00345-022-04038-8
10.1186/s40644-023-00527-0
10.1016/j.ejrad.2021.109894
10.1016/j.radonc.2015.04.012
10.3390/biomedicines11123309
10.1016/j.euo.2024.11.001
10.1097/00000478-198812000-00001
10.1002/mp.14517
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics15091141
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_502632f3e4d24f49b3082df522c718c6
PMC12071633
A839741101
40361959
10_3390_diagnostics15091141
Genre Journal Article
GeographicLocations Netherlands
Germany
GeographicLocations_xml – name: Netherlands
– name: Germany
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
PMFND
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c519t-caca7d15cc63abb0ee36a77cc9c4309ec082d99a9f6865454910320919c37f843
IEDL.DBID BENPR
ISSN 2075-4418
IngestDate Wed Aug 27 01:11:24 EDT 2025
Thu Aug 21 18:30:14 EDT 2025
Fri May 16 01:38:02 EDT 2025
Mon Jun 30 07:51:08 EDT 2025
Thu May 22 02:18:06 EDT 2025
Tue Jun 10 20:51:28 EDT 2025
Sun May 18 01:30:26 EDT 2025
Sun Jul 06 05:06:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords magnetic resonance imaging (MRI)
prostate segmentation
prostatic neoplasms
three-dimensional images
tumor segmentation
prostatectomy
artificial intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-caca7d15cc63abb0ee36a77cc9c4309ec082d99a9f6865454910320919c37f843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8772-1120
0000-0003-3317-6427
0009-0006-5837-0145
0009-0000-1459-3239
0000-0003-4443-1614
0000-0002-9598-5345
OpenAccessLink https://www.proquest.com/docview/3203192540?pq-origsite=%requestingapplication%
PMID 40361959
PQID 3203192540
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_502632f3e4d24f49b3082df522c718c6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12071633
proquest_miscellaneous_3203920058
proquest_journals_3203192540
gale_infotracmisc_A839741101
gale_infotracacademiconefile_A839741101
pubmed_primary_40361959
crossref_primary_10_3390_diagnostics15091141
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Oerther (ref_16) 2023; 83
Veerman (ref_4) 2023; 17
Bleker (ref_8) 2022; 32
Engesser (ref_5) 2024; 135
ref_11
Jiang (ref_25) 2023; 50
Dice (ref_28) 1945; 26
Thimansson (ref_17) 2023; 33
Shahedi (ref_7) 2016; 3
Cornford (ref_2) 2024; 86
Saha (ref_10) 2024; 25
Labus (ref_15) 2023; 33
Benjamini (ref_18) 2001; 29
Chen (ref_27) 2020; 47
Bray (ref_1) 2024; 74
Winkel (ref_12) 2021; 56
ref_24
Steenbergen (ref_19) 2015; 115
Fassia (ref_21) 2024; 6
Hu (ref_13) 2023; 23
ref_3
Youn (ref_14) 2021; 142
McNeal (ref_20) 1988; 12
Becker (ref_23) 2019; 121
ref_26
ref_9
Beauchemin (ref_29) 1998; 24
Checcucci (ref_6) 2022; 40
Montagne (ref_22) 2021; 12
References_xml – volume: 33
  start-page: 64
  year: 2023
  ident: ref_15
  article-title: A concurrent, deep learning–based computer-aided detection system for prostate multiparametric MRI: A performance study involving experienced and less-experienced radiologists
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08978-y
– volume: 3
  start-page: 046002
  year: 2016
  ident: ref_7
  article-title: Postediting prostate magnetic resonance imaging segmentation consistency and operator time using manual and computer-assisted segmentation: Multiobserver study
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.4.046002
– volume: 74
  start-page: 229
  year: 2024
  ident: ref_1
  article-title: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21834
– volume: 135
  start-page: 657
  year: 2024
  ident: ref_5
  article-title: 3D-printed model for resection of positive surgical margins in robot-assisted prostatectomy
  publication-title: BJU Int.
  doi: 10.1111/bju.16595
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_28
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 25
  start-page: 879
  year: 2024
  ident: ref_10
  article-title: Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(24)00220-1
– ident: ref_11
  doi: 10.3390/diagnostics10110951
– ident: ref_26
  doi: 10.3390/s21082709
– volume: 17
  start-page: 509
  year: 2023
  ident: ref_4
  article-title: Development and clinical applicability of MRI-based 3D prostate models in the planning of nerve-sparing robot-assisted radical prostatectomy
  publication-title: J. Robot. Surg.
  doi: 10.1007/s11701-022-01443-4
– volume: 56
  start-page: 605
  year: 2021
  ident: ref_12
  article-title: A novel deep learning based computer-aided diagnosis system improves the accuracy and efficiency of radiologists in reading biparametric magnetic resonance images of the prostate: Results of a multireader, multicase study
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0000000000000780
– volume: 12
  start-page: 71
  year: 2021
  ident: ref_22
  article-title: Challenge of prostate MRI segmentation on T2-weighted images: Inter-observer variability and impact of prostate morphology
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-01010-9
– volume: 24
  start-page: 3
  year: 1998
  ident: ref_29
  article-title: On the Hausdorff distance used for the evaluation of segmentation results
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1998.10874685
– volume: 33
  start-page: 2519
  year: 2023
  ident: ref_17
  article-title: Deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-09239-8
– volume: 50
  start-page: 5489
  year: 2023
  ident: ref_25
  article-title: Prostate cancer segmentation from MRI by a multistream fusion encoder
  publication-title: Med. Phys.
  doi: 10.1002/mp.16374
– volume: 86
  start-page: 148
  year: 2024
  ident: ref_2
  article-title: EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer—2024 update. Part I: Screening, diagnosis, and local treatment with curative intent
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2024.03.027
– volume: 6
  start-page: e230138
  year: 2024
  ident: ref_21
  article-title: Deep learning prostate MRI segmentation accuracy and robustness: A systematic review
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.230138
– volume: 121
  start-page: 108716
  year: 2019
  ident: ref_23
  article-title: Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.108716
– volume: 83
  start-page: 871
  year: 2023
  ident: ref_16
  article-title: Prediction of upgrade to clinically significant prostate cancer in patients under active surveillance: Performance of a fully automated AI-algorithm for lesion detection and classification
  publication-title: Prostate
  doi: 10.1002/pros.24528
– volume: 29
  start-page: 1165
  year: 2001
  ident: ref_18
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013699998
– ident: ref_3
  doi: 10.3390/life13030830
– volume: 32
  start-page: 6526
  year: 2022
  ident: ref_8
  article-title: A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08712-8
– volume: 40
  start-page: 2221
  year: 2022
  ident: ref_6
  article-title: The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy
  publication-title: World J. Urol.
  doi: 10.1007/s00345-022-04038-8
– volume: 23
  start-page: 6
  year: 2023
  ident: ref_13
  article-title: Automated deep-learning system in the assessment of MRI-visible prostate cancer: Comparison of advanced zoomed diffusion-weighted imaging and conventional technique
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00527-0
– volume: 142
  start-page: 109894
  year: 2021
  ident: ref_14
  article-title: Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109894
– volume: 115
  start-page: 186
  year: 2015
  ident: ref_19
  article-title: Prostate tumor delineation using multiparametric magnetic resonance imaging: Inter-observer variability and pathology validation
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2015.04.012
– ident: ref_24
  doi: 10.3390/biomedicines11123309
– ident: ref_9
  doi: 10.1016/j.euo.2024.11.001
– volume: 12
  start-page: 897
  year: 1988
  ident: ref_20
  article-title: Zonal distribution of prostatic adenocarcinoma: Correlation with histologic pattern and direction of spread
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/00000478-198812000-00001
– volume: 47
  start-page: 6421
  year: 2020
  ident: ref_27
  article-title: Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet
  publication-title: Med. Phys.
  doi: 10.1002/mp.14517
SSID ssj0000913825
Score 2.2900138
Snippet Background: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical...
: Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve surgical outcomes....
Background : Robot-assisted radical prostatectomy (RARP) is a common treatment option for prostate cancer. A 3D model for surgical guidance can improve...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1141
SubjectTerms Accuracy
Algorithms
artificial intelligence
Automation
Biopsy
Comparative studies
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Performance evaluation
Prostate cancer
prostatectomy
prostatic neoplasms
Software
Surgery
Three dimensional imaging
three-dimensional images
tumor segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9wwDLYmHtBeprEB68ZQJiHxQkTbpLnL3g4YA6Sbpg0k3qLUTTak0Zvg7oF_Pzstp6uGtJe9NqnU2I79uXE-A-xZiokUhjlTLWqpVa2kLWMlQ2ka5QMh2HTDe_rFnF3pi-vqeqXVF9eEdfTAneAOq5wZxaMKuil11LZmfpUmEmxAcquYyLYp5q0kU8kHW-bWqzqaIUV5_WHTVa4x93HBQbLQxSAUJcb-v_3ySmAaFk2uRKHTl_Cih49i0n32BjwL7StYn_YH5K8hdWnw_K9OTM6Fbxsx9Uw6Kr6HH7f9NaNWzKL4yrc9CGeK6bfzj-IyFc_e0zvy5I79n1Anktuk_ZKfFzdNaJbzcT67fdiEq9NPl8dnsu-kIJEQ2lyiRz9qigrRKF_XeQjK-NEI0aJWuQ3IMrXW22jGhjCVtsyzR1KyqEZxrNUWrLWzNrwBQWIlkKC0r_OoDQarS5-TX4hY1ZVHk8HBo1Dd744ww1GiwTpwT-gggyMW_HIqs12nB2QDrrcB9y8byGCf1eZ4T5JueLXpagF9MbNbuQmhQEJO5H0y2BnMpL2Ew-FHxbt-L987EgT5KUqk8ww-LIf5Ta5Pa8Ns0c2x_INunMF2ZyfLJWkCCUzhk8F4YEGDNQ9H2pufiem7KAkBGqXe_g8pvYPnJTcvTkdhO7A2v1uE94So5vVu2jx_AAOUG4M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9KBfFF_Da1ygqCL64m2c3mVhA5rbUVIqI96FvY7Me10CZ6vQP73zuzyR0NVl9vd7nszOzMb5Kd3wC80BgTMQxTppo1XIpGcJ2HgvtcOWE8IthY4V19VQcz-eW4ON6CdVfUQYAX16Z21E9qtjh7_fvX5Xs88O8o48SU_Y3rL6URrXFG8S-jQvYbGJpK6uVQDXg_umZNlHtFzz70r7WjCBWJ_P9211fi1fgu5ZXgtH8Hbg-okk17M7gLW769Bzer4bv5fYjNGwy9wmPTQ2ZaxypDXKTsh5-fD9VHLesC-0ZFIAg_WfX98C07indqL3AN31uQW2Rij1P3tDP-eXXqvNvMt8vu_PIBzPY_HX084EODBW4RuC25NdaULiusVcI0Teq9UKYsrdVWilR7i_jAaW10UBOFUEtqot9DKWkryjCR4iFst13rHwNDsSJ2ENI0aZDKei1zk6K7CLZoCmNVAq_WQq1_9jwaNeYfpIP6Gh0k8IEEv5lKJNjxh24xr4czVRcpkc0H4aXLZZC6IeodFxBRWoy49J8vSW01GQ_qhnYbKw7wiYn0qp4iOERAhU4pgd3RTDxidjy8Vny9ttAaBYHuC_PrNIHnm2FaSdfWWt-t-jma3ttNEnjU28lmSxKxAzH7JDAZWdBoz-OR9vQkEoBnOQJDJcTO_5_rCdzKqVtx_Pa1C9vLxco_RQi1bJ7FY_EHTlsZlA
  priority: 102
  providerName: Scholars Portal
Title Comparing AI and Manual Segmentation of Prostate MRI: Towards AI-Driven 3D-Model-Guided Prostatectomy
URI https://www.ncbi.nlm.nih.gov/pubmed/40361959
https://www.proquest.com/docview/3203192540
https://www.proquest.com/docview/3203920058
https://pubmed.ncbi.nlm.nih.gov/PMC12071633
https://doaj.org/article/502632f3e4d24f49b3082df522c718c6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZakKpeKuiLtBS5UqVeapHETjbupVoKFCoFIQoSN8vxgyKVhO7jwL_vjOMNRK162UPsaGOPZ-bzePwNIR8k-ERww7hTzRomeMOZzH3BXF5arh0g2HDDuz4pjy7E98viMgbc5jGtcmUTg6G2ncEY-S7P8b4NbGfSL7e_GVaNwtPVWELjMVkHE1zBCl_fOzg5PRuiLMh6CXugnm6Iw_5-1_YZbMiBnKGzzEQ2ckmBuf9v-_zAQY2TJx94o8MN8izCSDrt5b5JHrn2OXlSx4PyFyRUa9AYs6PTY6pbS2uN5KP0h7u6ideNWtp5eoq3PgBv0vrs-DM9D0m0c3iH7c_QDlK-z7Bc2i_2bXltnR36m0V3c_eSXBwenH89YrGiAjOA1BbMaKMnNiuMKblumtQ5XurJxBhpBE-lMwAIrJRa-rIqAVsJiXx7MEvS8ImvBH9F1tqudVuEwrQCWOBCN6kXpXFS5DoF--BN0RTalAn5tJpUddsTZyjYcKAM1D9kkJA9nPihK7Jehwfd7EpFJVJFiuzynjthc-GFbJBrx3qAkAZcLP7nRxSbQt0E2eBowxUD-GJkuVJTQIOAoMAKJWR71BN0yoybV4JXUafn6n4FJuT90IxvYp5a67pl30dioK5KyOt-nQxDEgAWkMonIdVoBY3GPG5pr38Gxu8sByRYcv7m_9_1ljzNsTxxOOzaJmuL2dK9A8y0aHaiYuyEmAP81qL6A25PFyo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4EChgJxIWoSexk10gIbdmWXdqsqrKVenMdx2kr0aTsQ6h_it_ITF40AnHrde1kY8945hvb8w3AG4k-Ed0wRap-4gqecFcGWejaIEq5tohgywzveBqNj8TX4_B4DX41uTB0rbKxiaWhTgtDe-RbPKB8GwxnvE-XP1yqGkWnq00JjUot9uzVTwzZFh8nI5Tv2yDY3Zl9Hrt1VQHXIFpZukYb3U_90JiI6yTxrOWR7veNkUZwT1qDTjGVUsssGkSIL4Qkzjl0q9LwfjYQHN97C9ZxfJ7Xg_XtnenBYburQyybGHNV9EacS28rrW7MEeeyT87ZF37HBZaVAv72B9ccYvey5jXvt3sP7tawlQ0rPbsPazZ_ALfj-mD-IZTVITTtEbLhhOk8ZbEmslP2zZ5e1OlNOSsydkBZJohvWXw4-cBm5aXdBT7jjuZkdxkfuVSe7bv7ZXWe2rTtb5bFxdUjOLqRuX4MvbzI7VNgOK0ITrjQiZeJyFgpAu2hPcpMmITaRA68byZVXVZEHQoDHJKB-ocMHNimiW-7Est2-UMxP1X1olWhR2z2GbciDUQmZELcPmmGkNWgS6f_fEdiU2QLUDY02jKlAb-YWLXUENEnIja0eg5sdnriGjbd5kbwqrYhC_VH4x143TbTk3QvLrfFquojaWNw4MCTSk_aIQkEJ0Qd5MCgo0GdMXdb8vOzkmHcDxB5Rpw_-_93vYI741m8r_Yn073nsBFQaeTyoG0Tesv5yr5AvLZMXtaLhMHJTa_L39NWUbo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXyTMcBIIF6ImsROUiMh1NGVldGqGpu0t-DYzpi0JaMfQvvX-Ou4yxeLQLzttXbS2Gff_c6--x3AK4k2Ec0weap-6gqeclcGWejaIDJcWUSwZYb3dBbtH4vPJ-HJBvxqcmEorLLRiaWiNoWmM_I-DyjfBt0Zr5_VYRHz0fjD5Q-XKkjRTWtTTqNaIgf26ie6b8v3kxHK-nUQjPeOPu67dYUBVyNyWblaaRUbP9Q64ipNPWt5pOJYa6kF96TVaCCNlEpm0SBCrCEk8c-hiZWax9lAcHzvLdiMKX20B5u7e7P5YXvCQ4yb6H9VVEecS69vqug54l_2yVD7wu-Yw7JqwN-24Zpx7AZuXrOE47twp4awbFituXuwYfP7sDWtL-kfQFkpQtF5IRtOmMoNmyoiPmVf7elFneqUsyJjc8o4QazLpoeTd-yoDOBd4jPuaEE6mPGRS6Xazt1P6zNjTdtfr4qLq4dwfCNz_Qh6eZHbJ8BwWhGocKFSLxORtlIEykPdlOkwDZWOHHjbTGpyWZF2JOjskAySf8jAgV2a-LYrMW6XPxSL06TewEnoEbN9xq0wgciETInnx2QIXzWad_rPNyS2hPQCyoZGW6Y34BcTw1YyRCSK6A01oAM7nZ64n3W3uRF8UuuTZfJn9Tvwsm2mJylGLrfFuuoj6ZBw4MDjap20QxIIVIhGyIFBZwV1xtxtyc--l2zjfoAoNOJ8-__f9QK2cD8mXyazg6dwO6AqyeWd2w70Vou1fYbQbZU-r_cIg283vS1_A65KVfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+AI+and+Manual+Segmentation+of+Prostate+MRI%3A+Towards+AI-Driven+3D-Model-Guided+Prostatectomy&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Boellaard%2C+Thierry+N&rft.au=van+Erck+Roy&rft.au=van+der+Graaf+Sophia+H.&rft.au=de+Boer+Lisanne&rft.date=2025-04-30&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=15&rft.issue=9&rft.spage=1141&rft_id=info:doi/10.3390%2Fdiagnostics15091141&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon