Estimation of latamoxef (moxalactam) dosage regimens against β-lactamase–producing Enterobacterales in dogs: a pharmacokinetic and pharmacodynamic analysis using Monte Carlo simulation

One of the most significant research areas in veterinary medicine is the search for carbapenem substitutes for the treatment of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-E). This study applied a pharmacokinetic/pharmacodynamic (PK/PD) strategy in validating optimal latamo...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 86; no. 8; pp. 841 - 846
Main Authors KUSUMOTO, Mizuki, NARITA, Haruka, MOTEGI, Tomoki, HARADA, Kazuki
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2024
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the most significant research areas in veterinary medicine is the search for carbapenem substitutes for the treatment of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-E). This study applied a pharmacokinetic/pharmacodynamic (PK/PD) strategy in validating optimal latamoxef (LMX) therapeutic regimens against canine ESBL-E infections. Five dogs were administered a bolus dose of 40 mg/kg LMX intravenously to measure serum drug concentrations and determine PK indices using the noncompartmental model. The highest minimum inhibitory concentration (MIC) with a probability of target attainment ≥90% was used to compute the PK/PD cutoff values for bacteriostatic (time for which the unbound drug concentration was above the MIC [fTAM] ≥ 40%) and bactericidal (fTAM ≥ 70%) effects when administered at 20, 30, 50, and 60 mg/kg, in addition to 40 mg/kg. The cumulative fraction of response (CFR) was determined using the MIC distribution of wild-type ESBL-E in companion animals. The PK/PD cutoff values can be increased by reducing the dosing interval rather than increasing the dose per time. Based on the calculated CFRs for ESBL-producing Escherichia coli and Klebsiella pneumoniae, all LMX regimens in this study and those administered at 30–60 mg/kg every 8 and 6 hr were found to be optimal (CFR ≥ 90%) for exerting bacteriostatic and bactericidal effects, respectively. However, the regimens of 50 and 60 mg/kg every 6 hr may merely exert bacteriostatic effects on ESBL-producing Enterobacter cloacae. Further clinical trials are required to confirm the clinical efficacy of LMX.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0916-7250
1347-7439
1347-7439
DOI:10.1292/jvms.24-0197