Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content
Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14...
Saved in:
Published in | Plant and soil Vol. 423; no. 1/2; pp. 429 - 442 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.02.2018
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. |
---|---|
AbstractList | AimsRhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content.MethodsWe tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots.ResultsDry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition.ConclusionRoot growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. AIMS: Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. METHODS: We tested how drought affects exudate distribution in the rhizosphere by coupling ¹⁴CO₂ labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. RESULTS: Dry and wet plants allocated similar amounts of ¹⁴C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. CONCLUSION: Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling .sup.14CO.sub.2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of .sup.14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14 CO 2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14 C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation. |
Audience | Academic |
Author | Kuzyakov, Yakov Kaestner, Anders Zarebanadkouki, Mohsen Carminati, Andrea Holz, Maire |
Author_xml | – sequence: 1 givenname: Maire surname: Holz fullname: Holz, Maire – sequence: 2 givenname: Mohsen surname: Zarebanadkouki fullname: Zarebanadkouki, Mohsen – sequence: 3 givenname: Anders surname: Kaestner fullname: Kaestner, Anders – sequence: 4 givenname: Yakov surname: Kuzyakov fullname: Kuzyakov, Yakov – sequence: 5 givenname: Andrea surname: Carminati fullname: Carminati, Andrea |
BookMark | eNp9kU1r3DAQhkVJoZu0P6CHgqCXXpzq29YxhH5BoFBa6KUIrT3e1eKVtiOZkPz6ynUJJYegg9DwPCON3nNyFlMEQl5zdskZa99nzjlTDeNtI7UQjXpGNly3stFMmjOyYUyKhrX25wtynvOBLWduNuTXt324TwOcUg4lpEjnOADSAdO82xcaMu1TLJimCQa6vaOYUqE7TLdlT9EXoD4OFJce-bQHBHpbi_hXglhekuejnzK8-rdfkB8fP3y__tzcfP305frqpuk1t6XZjkYa3QlQfTeO1myF7izrpBdcSxi9AmksdKO0faX8YKVSVm3lIKFKYOUFebf2PWH6PUMu7hhyD9PkI6Q5O8G0rA214RV9-wg9pBljfZ3jtm2ZFZ3VlbpcqZ2fwIU4poK-r2uAY6jDwRhq_UqLReFqEdpV6DHljDC6PhS__GgVw-Q4c0tObs3J1ZzckpNT1eSPzBOGo8e7Jx2xOrmycQf43xBPSG9W6ZBLwodbhDFaVFb-ASEXsIc |
CitedBy_id | crossref_primary_10_1016_j_still_2020_104819 crossref_primary_10_1111_nph_18157 crossref_primary_10_1016_j_apsoil_2023_105201 crossref_primary_10_1016_j_rhisph_2020_100266 crossref_primary_10_1007_s11104_021_04963_4 crossref_primary_10_1016_j_earscirev_2020_103501 crossref_primary_10_1007_s10661_023_12253_y crossref_primary_10_2136_vzj2019_02_0021 crossref_primary_10_1063_5_0131778 crossref_primary_10_1007_s11104_020_04469_5 crossref_primary_10_1093_insilicoplants_diab028 crossref_primary_10_3390_agronomy9090485 crossref_primary_10_1016_j_scienta_2023_112597 crossref_primary_10_1007_s11104_019_03939_9 crossref_primary_10_1016_j_apsoil_2025_105870 crossref_primary_10_1038_s41467_022_28448_9 crossref_primary_10_1016_j_catena_2022_106904 crossref_primary_10_1111_pce_13708 crossref_primary_10_1016_j_agrformet_2019_03_019 crossref_primary_10_1016_j_rhisph_2020_100198 crossref_primary_10_1007_s11104_022_05306_7 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1007_s11104_024_06840_2 crossref_primary_10_3389_fagro_2020_00008 crossref_primary_10_1016_j_ejsobi_2023_103515 crossref_primary_10_1007_s11104_023_06078_4 crossref_primary_10_1111_nph_19638 crossref_primary_10_3389_fpls_2021_753812 crossref_primary_10_1093_femsec_fiz080 crossref_primary_10_3389_ffgc_2023_1152142 crossref_primary_10_1016_j_catena_2021_105328 crossref_primary_10_1016_j_ecolind_2024_113005 crossref_primary_10_1021_acs_est_3c01816 crossref_primary_10_1016_j_geoderma_2023_116576 crossref_primary_10_1016_j_jenvman_2022_115751 crossref_primary_10_1007_s11104_024_06576_z crossref_primary_10_1016_j_plaphy_2023_108290 crossref_primary_10_1016_j_rhisph_2022_100561 crossref_primary_10_1007_s10533_022_00963_3 crossref_primary_10_1111_pce_13712 crossref_primary_10_1111_pce_14413 crossref_primary_10_1007_s10343_024_01013_8 crossref_primary_10_1016_j_catena_2025_108724 crossref_primary_10_1071_FP18200 crossref_primary_10_3389_fpls_2021_691651 crossref_primary_10_1016_j_apsoil_2025_106041 crossref_primary_10_1107_S2059798318017503 crossref_primary_10_1016_j_scitotenv_2023_168370 crossref_primary_10_1007_s11104_022_05437_x crossref_primary_10_1016_j_soilbio_2019_05_011 crossref_primary_10_1007_s11104_019_04234_3 crossref_primary_10_1016_j_apsoil_2023_104960 crossref_primary_10_1093_treephys_tpad118 crossref_primary_10_1007_s11368_022_03291_z crossref_primary_10_1016_j_soilbio_2020_107895 crossref_primary_10_1016_j_earscirev_2022_104214 crossref_primary_10_1016_j_soilbio_2020_107852 crossref_primary_10_1016_j_jplph_2022_153829 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_1016_j_soilbio_2023_109212 crossref_primary_10_1111_tpj_14852 crossref_primary_10_1007_s11104_022_05636_6 crossref_primary_10_1016_j_fcr_2024_109430 crossref_primary_10_1016_j_rhisph_2024_100922 crossref_primary_10_3389_fagro_2021_622367 crossref_primary_10_1016_j_scitotenv_2024_174858 crossref_primary_10_1111_nph_18409 |
Cites_doi | 10.1007/BF00009191 10.2136/sssaj2005.0113 10.1007/s11104-009-9925-0 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 10.1007/s11104-013-1874-y 10.1093/jxb/erh276 10.1016/j.soilbio.2015.07.021 10.1093/jxb/erm065 10.1111/j.1469-8137.2004.01130.x 10.1007/s11104-016-3090-z 10.1016/j.soilbio.2014.06.017 10.1007/s11104-010-0283-8 10.1111/j.1574-6941.2010.00860.x 10.1007/BF00012241 10.1016/j.geoderma.2005.03.002 10.1007/s11104-014-2059-z 10.1016/j.soilbio.2005.05.021 10.1104/pp.103.032045 10.1007/s11104-015-2668-1 10.1111/gcb.12475 10.1016/j.soilbio.2012.06.004 10.1016/S0038-0717(97)00050-3 10.1023/A:1004213728734 10.1016/j.nima.2011.08.022 10.1111/j.1469-8137.1995.tb01823.x 10.1111/nph.12569 10.1046/j.1365-3040.1999.00512.x 10.1051/agro:2003011 10.1016/j.soilbio.2014.11.014 10.1016/0038-0717(77)90021-9 10.1002/2013WR014756 10.1007/BF02184316 10.1039/tf9615701200 10.1046/j.1469-8137.2000.00595.x 10.1002/jpln.200900271 10.1023/A:1004736021965 10.1016/j.soilbio.2009.10.019 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1023/A:1025515708093 10.1093/aob/mcs262 10.1007/BF00010488 10.1002/jpln.201100300 10.1016/j.soilbio.2013.03.027 10.1111/nph.12235 10.1104/pp.103.032045.cesses 10.2136/vzj2015.04.0060 10.1111/j.1399-3054.1997.tb03445.x 10.1093/aob/mcx127 10.2136/vzj2011.0196 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 Springer International Publishing AG, part of Springer Nature 2017 COPYRIGHT 2018 Springer Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: Springer International Publishing AG, part of Springer Nature 2017 – notice: COPYRIGHT 2018 Springer – notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-017-3522-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 442 |
ExternalDocumentID | A529770145 10_1007_s11104_017_3522_4 26652110 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: CA 921/3-1; KU 1184/33-1 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Evangelisches Studienwerk Villigst funderid: http://dx.doi.org/10.13039/501100003088 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM CAG COF EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c519t-bf636582e4c8ff96b2589083a2153efa4e369e8f39c582ad934494b3d3e82ee93 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 06:34:05 EDT 2025 Fri Aug 08 08:40:49 EDT 2025 Tue Jun 10 20:17:24 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Tue Jul 01 01:47:01 EDT 2025 Fri Feb 21 02:33:36 EST 2025 Thu Jun 19 23:02:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Neutron radiography Rhizosphere extension Root exudates Mucilage Convection–diffusion model C imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-bf636582e4c8ff96b2589083a2153efa4e369e8f39c582ad934494b3d3e82ee93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://link.springer.com/content/pdf/10.1007/s11104-017-3522-4.pdf |
PQID | 1977092895 |
PQPubID | 54098 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2053908561 proquest_journals_1977092895 gale_infotracacademiconefile_A529770145 crossref_citationtrail_10_1007_s11104_017_3522_4 crossref_primary_10_1007_s11104_017_3522_4 springer_journals_10_1007_s11104_017_3522_4 jstor_primary_26652110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2018 |
Publisher | Springer Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer International Publishing – name: Springer Nature B.V |
References | Hafner, Wiesenberg, Stolnikova (CR15) 2014; 380 Kuzyakov, Shevtzova, Pustovoytov (CR28) 2006; 131 Nguyen (CR33) 2003; 23 Gunina, Kuzyakov (CR14) 2015; 90 Jones, Nguyen, Finlay (CR22) 2009; 321 Kuzyakov, Raskatov, Kaupenjohann (CR27) 2003; 254 Reid, Mexal (CR40) 1977; 9 Carminati, Vetterlein (CR3) 2013; 112 Darrah (CR9) 1991; 133 CR30 Meharg, Killham (CR31) 1995; 170 Iijima, Griffiths, Bengough (CR20) 2000; 145 Farrar, Hawes, Jones, Lindow (CR12) 2003; 84 Zarebanadkouki, Ahmed, Carminati (CR48) 2016; 398 Schweinsberg-Mickan, Jörgensen, Müller (CR42) 2012; 175 Soille (CR44) 2003 CR5 CR47 Kuzyakov, Xu (CR26) 2013; 198 North, Nobel (CR34) 1997; 191 Hamilton, Frank (CR17) 2001; 82 Kroener, Zarebanadkouki, Kaestner, Carmintati (CR25) 2014; 50 Canarini, Dijkstra (CR2) 2015; 81 Carminati, Moradi, Vetterlein (CR4) 2010; 332 Dennis, Miller, Hirsch (CR10) 2010; 72 Jones, Hodge, Kuzyakov (CR21) 2004; 163 Raynaud (CR39) 2010; 42 CR19 Sanaullah, Chabbi, Rumpel, Kuzyakov (CR41) 2012; 55 Kaestner, Kühne, Frei, Lehmann (CR23) 2015; 659 Chen, Senbayran, Blagodatsky (CR7) 2013; 20 Toal, Yeomans, Killham, Meharg (CR45) 2000; 222 Young (CR46) 1995; 130 Birouste, Zamora-ledezma, Bossard (CR1) 2014; 374 Preece, Penuelas (CR38) 2016; 409 Chaboud (CR6) 1983; 73 Personeni, Nguyen, Marchal, Pages (CR37) 2007; 58 Millingtion, Quirk (CR32) 1961; 57 Pausch, Kuzyakov (CR36) 2011; 174 Darrah (CR8) 1991; 138 Herman, Johnson, Jaeger (CR18) 2006; 70 Landi, Valori, Ascher (CR29) 2006; 38 Sharp, Poroyko, Hejlek (CR43) 2004; 55 Palta, Gregory (CR35) 1997; 29 Dilkes, Jones, Farrar (CR11) 2004; 134 Haichar, Santaella, Heulin (CR16) 2014; 77 Zhu, Cheng (CR49) 2013; 63 Fuchslueger, Bahn, Fritz (CR13) 2013; 201 Kim, Silk, Cheer (CR24) 1999; 22 M Zarebanadkouki (3522_CR48) 2016; 398 IM Young (3522_CR46) 1995; 130 Y Kuzyakov (3522_CR27) 2003; 254 C Preece (3522_CR38) 2016; 409 Y Kuzyakov (3522_CR28) 2006; 131 DL Jones (3522_CR21) 2004; 163 Z Haichar (3522_CR16) 2014; 77 Y Kuzyakov (3522_CR26) 2013; 198 RE Sharp (3522_CR43) 2004; 55 A Carminati (3522_CR3) 2013; 112 M Sanaullah (3522_CR41) 2012; 55 RJ Millingtion (3522_CR32) 1961; 57 L Fuchslueger (3522_CR13) 2013; 201 M Iijima (3522_CR20) 2000; 145 N Dilkes (3522_CR11) 2004; 134 E Kroener (3522_CR25) 2014; 50 3522_CR19 B Zhu (3522_CR49) 2013; 63 C Nguyen (3522_CR33) 2003; 23 R Chen (3522_CR7) 2013; 20 DJ Herman (3522_CR18) 2006; 70 PG Dennis (3522_CR10) 2010; 72 A Canarini (3522_CR2) 2015; 81 CPP Reid (3522_CR40) 1977; 9 S Hafner (3522_CR15) 2014; 380 J Pausch (3522_CR36) 2011; 174 P Soille (3522_CR44) 2003 3522_CR47 3522_CR5 PR Darrah (3522_CR9) 1991; 133 M Birouste (3522_CR1) 2014; 374 TK Kim (3522_CR24) 1999; 22 A Gunina (3522_CR14) 2015; 90 DL Jones (3522_CR22) 2009; 321 A Carminati (3522_CR4) 2010; 332 GB North (3522_CR34) 1997; 191 E Personeni (3522_CR37) 2007; 58 J Farrar (3522_CR12) 2003; 84 AA Meharg (3522_CR31) 1995; 170 JA Palta (3522_CR35) 1997; 29 MS Schweinsberg-Mickan (3522_CR42) 2012; 175 EW Hamilton (3522_CR17) 2001; 82 A Chaboud (3522_CR6) 1983; 73 PR Darrah (3522_CR8) 1991; 138 L Landi (3522_CR29) 2006; 38 3522_CR30 ME Toal (3522_CR45) 2000; 222 X Raynaud (3522_CR39) 2010; 42 A Kaestner (3522_CR23) 2015; 659 |
References_xml | – volume: 133 start-page: 187 year: 1991 end-page: 199 ident: CR9 article-title: Models of the rhizosphere - I. Microbial population dynamics around a root releasing soluble and insoluble carbon publication-title: Plant Soil doi: 10.1007/BF00009191 – volume: 70 start-page: 1504 year: 2006 ident: CR18 article-title: Root influence on nitrogen mineralization and nitrification in rhizosphere soil publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0113 – volume: 321 start-page: 5 year: 2009 end-page: 33 ident: CR22 article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface publication-title: Plant Soil doi: 10.1007/s11104-009-9925-0 – volume: 84 start-page: 827 year: 2003 end-page: 837 ident: CR12 article-title: How roots control the flux of carbon to the rhizosphere publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 – volume: 374 start-page: 299 year: 2014 end-page: 313 ident: CR1 article-title: Measurement of fine root tissue density : a comparison of three methods reveals the potential of root dry matter content publication-title: Plant Soil doi: 10.1007/s11104-013-1874-y – volume: 55 start-page: 2343 year: 2004 end-page: 2351 ident: CR43 article-title: Root growth maintenance during water deficits: physiology to functional genomics publication-title: J Exp Bot doi: 10.1093/jxb/erh276 – volume: 90 start-page: 87 year: 2015 end-page: 100 ident: CR14 article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.07.021 – volume: 58 start-page: 2091 year: 2007 end-page: 2099 ident: CR37 article-title: Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments publication-title: J Exp Bot doi: 10.1093/jxb/erm065 – volume: 163 start-page: 459 year: 2004 end-page: 480 ident: CR21 article-title: Plant and mycorrhizal regulation of rhizodeposition publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01130.x – volume: 409 start-page: 1 year: 2016 end-page: 17 ident: CR38 article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience publication-title: Plant Soil doi: 10.1007/s11104-016-3090-z – volume: 77 start-page: 69 year: 2014 end-page: 80 ident: CR16 article-title: Root exudates mediated interactions belowground publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.06.017 – ident: CR19 – volume: 332 start-page: 163 year: 2010 end-page: 176 ident: CR4 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 72 start-page: 313 year: 2010 end-page: 327 ident: CR10 article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00860.x – volume: 138 start-page: 147 year: 1991 end-page: 158 ident: CR8 article-title: Models of the rhizosphere - II. A quasi three-dimensional simulation of the microbial population dynamics around a growing root releasing soluble exudates publication-title: Plant Soil doi: 10.1007/BF00012241 – volume: 131 start-page: 45 year: 2006 end-page: 58 ident: CR28 article-title: Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.002 – volume: 380 start-page: 101 year: 2014 end-page: 115 ident: CR15 article-title: Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization publication-title: Plant Soil doi: 10.1007/s11104-014-2059-z – ident: CR5 – volume: 38 start-page: 509 year: 2006 end-page: 516 ident: CR29 article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.05.021 – volume: 134 start-page: 706 year: 2004 end-page: 715 ident: CR11 article-title: Temporal dynamics of carbon partitioning and rhizodeposition in wheat publication-title: Plant Physiol doi: 10.1104/pp.103.032045 – volume: 398 start-page: 267 year: 2016 end-page: 280 ident: CR48 article-title: Hydraulic conductivity of the root-soil interface of lupin in sandy soil after drying and rewetting publication-title: Plant Soil doi: 10.1007/s11104-015-2668-1 – volume: 20 start-page: 2356 year: 2013 end-page: 2367 ident: CR7 article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories publication-title: Glob Chang Biol doi: 10.1111/gcb.12475 – volume: 55 start-page: 132 year: 2012 end-page: 139 ident: CR41 article-title: Soil Biology & Biochemistry C pulse labeling publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.06.004 – volume: 29 start-page: 1395 year: 1997 end-page: 1403 ident: CR35 article-title: Drought effects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00050-3 – ident: CR47 – volume: 191 start-page: 249 year: 1997 end-page: 258 ident: CR34 article-title: Drought-induced changes in soil contact and hydraulic conductivity for roots of with and without rhizosheaths publication-title: Plant Soil doi: 10.1023/A:1004213728734 – volume: 659 start-page: 387 year: 2015 end-page: 393 ident: CR23 article-title: The ICON beamline — a facility for cold neutron imaging at SINQ publication-title: Nucl Instrum Methods Phys doi: 10.1016/j.nima.2011.08.022 – volume: 130 start-page: 135 year: 1995 end-page: 139 ident: CR46 article-title: Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum Aestivum L. cv. Wembley) publication-title: New Phytol doi: 10.1111/j.1469-8137.1995.tb01823.x – ident: CR30 – volume: 201 start-page: 916 year: 2013 end-page: 927 ident: CR13 article-title: Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow publication-title: New Phytol doi: 10.1111/nph.12569 – volume: 22 start-page: 1527 year: 1999 end-page: 1538 ident: CR24 article-title: A mathematical model for pH patterns in the rhizospheres publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00512.x – volume: 23 start-page: 375 year: 2003 end-page: 396 ident: CR33 article-title: Rhizodeposition of organic C by plants : mechanisms and controls publication-title: Agronomie doi: 10.1051/agro:2003011 – volume: 81 start-page: 195 year: 2015 end-page: 203 ident: CR2 article-title: Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.014 – volume: 9 start-page: 417 year: 1977 end-page: 421 ident: CR40 article-title: Water stress effects on root exudation by lodgepole pine publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(77)90021-9 – volume: 50 start-page: 6479 year: 2014 end-page: 6495 ident: CR25 article-title: Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils publication-title: Water Resour Res doi: 10.1002/2013WR014756 – volume: 73 start-page: 395 year: 1983 end-page: 402 ident: CR6 article-title: Isolation, purification and chemical composition of maize root cap slime publication-title: Plant Soil doi: 10.1007/BF02184316 – volume: 57 start-page: 1200 year: 1961 end-page: 1207 ident: CR32 article-title: Permeability of porous solids publication-title: Trans Faraday Soc doi: 10.1039/tf9615701200 – volume: 145 start-page: 477 year: 2000 end-page: 482 ident: CR20 article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand publication-title: New Phytol doi: 10.1046/j.1469-8137.2000.00595.x – volume: 174 start-page: 12 year: 2011 end-page: 19 ident: CR36 article-title: Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200900271 – volume: 222 start-page: 263 year: 2000 end-page: 281 ident: CR45 article-title: A review of rhizosphere carbon flow modelling publication-title: Plant Soil doi: 10.1023/A:1004736021965 – volume: 42 start-page: 210 year: 2010 end-page: 219 ident: CR39 article-title: Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.019 – volume: 82 start-page: 2397 year: 2001 end-page: 2402 ident: CR17 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – volume: 254 start-page: 317 year: 2003 end-page: 327 ident: CR27 article-title: Turnover and distribution of root exudates of Zea Mays publication-title: Plant Soil doi: 10.1023/A:1025515708093 – volume: 112 start-page: 277 year: 2013 end-page: 290 ident: CR3 article-title: Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources publication-title: Ann Bot doi: 10.1093/aob/mcs262 – volume: 170 start-page: 345 year: 1995 end-page: 349 ident: CR31 article-title: Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms publication-title: Plant Soil doi: 10.1007/BF00010488 – volume: 175 start-page: 750 year: 2012 end-page: 760 ident: CR42 article-title: Rhizodeposition : Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100300 – year: 2003 ident: CR44 publication-title: Morphological image analysis: principles and applications – volume: 63 start-page: 89 year: 2013 end-page: 96 ident: CR49 article-title: Impacts of drying - wetting cycles on rhizosphere respiration and soil organic matter decomposition publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.03.027 – volume: 198 start-page: 656 year: 2013 end-page: 669 ident: CR26 article-title: Tansley review competition between roots and microorganisms for nitrogen : mechanisms and ecological relevance publication-title: New Phytol doi: 10.1111/nph.12235 – volume: 174 start-page: 12 year: 2011 ident: 3522_CR36 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200900271 – volume: 50 start-page: 6479 year: 2014 ident: 3522_CR25 publication-title: Water Resour Res doi: 10.1002/2013WR014756 – volume: 63 start-page: 89 year: 2013 ident: 3522_CR49 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.03.027 – volume: 130 start-page: 135 year: 1995 ident: 3522_CR46 publication-title: New Phytol doi: 10.1111/j.1469-8137.1995.tb01823.x – volume: 380 start-page: 101 year: 2014 ident: 3522_CR15 publication-title: Plant Soil doi: 10.1007/s11104-014-2059-z – volume: 222 start-page: 263 year: 2000 ident: 3522_CR45 publication-title: Plant Soil doi: 10.1023/A:1004736021965 – volume: 9 start-page: 417 year: 1977 ident: 3522_CR40 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(77)90021-9 – volume: 163 start-page: 459 year: 2004 ident: 3522_CR21 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01130.x – volume: 84 start-page: 827 year: 2003 ident: 3522_CR12 publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 – volume: 175 start-page: 750 year: 2012 ident: 3522_CR42 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100300 – volume: 134 start-page: 706 year: 2004 ident: 3522_CR11 publication-title: Plant Physiol doi: 10.1104/pp.103.032045.cesses – volume: 77 start-page: 69 year: 2014 ident: 3522_CR16 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.06.017 – volume: 332 start-page: 163 year: 2010 ident: 3522_CR4 publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 90 start-page: 87 year: 2015 ident: 3522_CR14 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.07.021 – ident: 3522_CR5 doi: 10.2136/vzj2015.04.0060 – volume: 23 start-page: 375 year: 2003 ident: 3522_CR33 publication-title: Agronomie doi: 10.1051/agro:2003011 – volume: 374 start-page: 299 year: 2014 ident: 3522_CR1 publication-title: Plant Soil doi: 10.1007/s11104-013-1874-y – volume: 82 start-page: 2397 year: 2001 ident: 3522_CR17 publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – volume: 29 start-page: 1395 year: 1997 ident: 3522_CR35 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00050-3 – volume: 81 start-page: 195 year: 2015 ident: 3522_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.014 – volume: 138 start-page: 147 year: 1991 ident: 3522_CR8 publication-title: Plant Soil doi: 10.1007/BF00012241 – volume: 170 start-page: 345 year: 1995 ident: 3522_CR31 publication-title: Plant Soil doi: 10.1007/BF00010488 – volume: 57 start-page: 1200 year: 1961 ident: 3522_CR32 publication-title: Trans Faraday Soc doi: 10.1039/tf9615701200 – volume: 198 start-page: 656 year: 2013 ident: 3522_CR26 publication-title: New Phytol doi: 10.1111/nph.12235 – volume-title: Morphological image analysis: principles and applications year: 2003 ident: 3522_CR44 – volume: 73 start-page: 395 year: 1983 ident: 3522_CR6 publication-title: Plant Soil doi: 10.1007/BF02184316 – volume: 145 start-page: 477 year: 2000 ident: 3522_CR20 publication-title: New Phytol doi: 10.1046/j.1469-8137.2000.00595.x – volume: 22 start-page: 1527 year: 1999 ident: 3522_CR24 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00512.x – volume: 112 start-page: 277 year: 2013 ident: 3522_CR3 publication-title: Ann Bot doi: 10.1093/aob/mcs262 – volume: 20 start-page: 2356 year: 2013 ident: 3522_CR7 publication-title: Glob Chang Biol doi: 10.1111/gcb.12475 – volume: 72 start-page: 313 year: 2010 ident: 3522_CR10 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00860.x – volume: 58 start-page: 2091 year: 2007 ident: 3522_CR37 publication-title: J Exp Bot doi: 10.1093/jxb/erm065 – volume: 55 start-page: 132 year: 2012 ident: 3522_CR41 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.06.004 – volume: 38 start-page: 509 year: 2006 ident: 3522_CR29 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.05.021 – volume: 409 start-page: 1 year: 2016 ident: 3522_CR38 publication-title: Plant Soil doi: 10.1007/s11104-016-3090-z – volume: 70 start-page: 1504 year: 2006 ident: 3522_CR18 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0113 – volume: 133 start-page: 187 year: 1991 ident: 3522_CR9 publication-title: Plant Soil doi: 10.1007/BF00009191 – volume: 659 start-page: 387 year: 2015 ident: 3522_CR23 publication-title: Nucl Instrum Methods Phys doi: 10.1016/j.nima.2011.08.022 – volume: 55 start-page: 2343 year: 2004 ident: 3522_CR43 publication-title: J Exp Bot doi: 10.1093/jxb/erh276 – volume: 321 start-page: 5 year: 2009 ident: 3522_CR22 publication-title: Plant Soil doi: 10.1007/s11104-009-9925-0 – volume: 131 start-page: 45 year: 2006 ident: 3522_CR28 publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.002 – volume: 191 start-page: 249 year: 1997 ident: 3522_CR34 publication-title: Plant Soil doi: 10.1023/A:1004213728734 – ident: 3522_CR30 doi: 10.1111/j.1399-3054.1997.tb03445.x – volume: 201 start-page: 916 year: 2013 ident: 3522_CR13 publication-title: New Phytol doi: 10.1111/nph.12569 – volume: 254 start-page: 317 year: 2003 ident: 3522_CR27 publication-title: Plant Soil doi: 10.1023/A:1025515708093 – ident: 3522_CR19 doi: 10.1093/aob/mcx127 – volume: 398 start-page: 267 year: 2016 ident: 3522_CR48 publication-title: Plant Soil doi: 10.1007/s11104-015-2668-1 – volume: 42 start-page: 210 year: 2010 ident: 3522_CR39 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.019 – ident: 3522_CR47 doi: 10.2136/vzj2011.0196 |
SSID | ssj0003216 |
Score | 2.5264068 |
Snippet | Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in... Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in... AimsRhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in... AIMS: Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 429 |
SubjectTerms | biodegradation Biological activity Biomedical and Life Sciences carbon Diffusion rate Drought Droughts Ecology Elongation energy Energy sources Environmental aspects Exudates Growth Growth rate image analysis Labeling Life Sciences Mathematical models Microbial activity Microorganisms Moisture content Mucilage mucilages Neutron radiography neutrons Plant growth Plant Physiology Plant Sciences Radiography radionuclides Regular Article rhizodeposition Rhizosphere root exudates root growth Roots Roots (Botany) Soil microorganisms Soil Science & Conservation Soil water soil water content Spatial distribution Temporal distribution Water content |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB78cYI-yLkqVr0jwoFwR8FtkrZ5XEWRg7uH4xb2RULaJiosXWkrsv-9M9l0PQ89uLfSZoaSyWS-MDNfAL7IYeGJ4eIkK00s0tShSxHrvhq6QqaZdRk1OP_4mV6PxfeJnIQ-7ravdu9Tkn6nfml2w0hFFRPoFAgaYrEK65KO7riIx8louf3yxN93Sg_xWaYmfSrzLRWvglHYkhdlia8A5185Uh96rj7CdsCMbLQw8g6s2HoAW6PbJvBm2AF8OJ8hypsPYOPS01DPd-HmF5XTVbYvy2LULtawyt_L07H7loUy9amtWDFnCKE7doun8u6OEX8EM3XFGtLREvWAZU_4svFCGKj2YHx1-fviOg6XKcQlgrQuLlzKEW0kVpS5cyotEpkrxF8GYz63zgjLU2Vzx1WJo0yluBBKFLziFoWs4vuwVs9qewAsV6lRyjhplBMIEZREIasyYyoujBlGcNbPqi4D0zhdeDHVLxzJZAiNhtBkCC0i-LoUeVjQbPxr8CmZSpMLot7ShE4C_Dsis9IjmSCqpXxpBPvemkudCEckHXkjOO7Nq4PTtnpIUgpPoCh3svyM7kY5FFPb2WOrE9y0cNoQdUbwrV8Wf6h4758P_2v0EWwiMMsX1eHHsNY1j_YTgp-u-OwX-zPRf_hj priority: 102 providerName: Springer Nature |
Title | Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content |
URI | https://www.jstor.org/stable/26652110 https://link.springer.com/article/10.1007/s11104-017-3522-4 https://www.proquest.com/docview/1977092895 https://www.proquest.com/docview/2053908561 |
Volume | 423 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ha9QwFH-4nR_cB9HpsHMeEQRBKV6bpG0-Sc_dORSHDA_ODxLSNpmD0dvaDtl_73u99LYJ7lNL26ThJe-9X5KX3wN4I6OiJ4YL47Q0oUgShypFrPsqcoVMUutSOuD87Tg5WogvS7n0C26tD6scbGJvqKtVSWvkHyIEKhOF0wP58eIypKxRtLvqU2hswQhNcIaTr9F0dvz9ZGOLedwnP6WbcJKq5bCv2R-eQ89HERioZAhCQnHHM3n7vI5RvIM-_9kw7f3Q_Ak89gCS5esefwoPbL0LO_lp40k07C48nK4Q8l0_g18nFFFX2SEyi9GJsYZVfWqejp21zEeqn9uKFdcMUXTHTnFi3v1mRCHBTF2xhupoiX3Asj_4sOkLoa96Dov57Meno9DnUwhLxGldWLiEI-CIrSgz51RSxDJTCMEMun1unRGWJ8pmjqsSvzKV4kIoUfCKWyxkFd-D7XpV2xfAMpUYpYyTRjmBKEFJLGRVakzFhTFRAJNBlrr0ZOOU8-Jc39Akk_g1il-T-LUI4N2myMWaaeO-j99SB2nSQqy3NP4wAbaO-Kx0LmMaL5GQAez1fbipExGJpFlvAAdDp2qvt62-GWUBvN68Ro2jbRRT29VVq2O0Wyg2BJ4BvB8Gw60q_tfm_ft_-BIeIRjL1hHhB7DdNVf2FQKerhjDKJ8eTud0_fzz62zsR_kYthZx_hdzif59 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KVVAfRKvFaNUVFEEJXrK7SfZB5KotV9seUlq4F1k3yW4VSlKTlOP-Kf9GZ_JxtYJ969uRy27C7Hz8NjvzG4BXMkhbYjg_jDPjiyhyaFLEuq8Cl8ooti6mAufDWTQ9EV_mcr4Gv4daGEqrHHxi66jzMqNv5O8DBCpjhdsD-fH8l09do-h0dWih0anFvl0ucMtWf9j7jOv7Ogx3d44_Tf2-q4CfIVpp_NRFHMNuaEWWOKeiNJSJQiBiMPhx64ywPFI2cVxleJfJFRdCiZTn3OIgS-RL6PLXBcetzAjWt3dmX49Wvp-HbbNV-uGPYzUfzlHbYj2MtJTxgUaNoMcXVyJhHw-6nMgraPefA9o27u3eh3s9YGWTTsMewJotNuDu5LTqSTvsBtzaLhFiLh_CtyPK4MvtkAnGqEKtYnnbCqhhP2vWZ8af2ZylS4aovWGnVblofjCirGCmyFlFc9TEdmDZAi9W7SCMjY_g5EYkvQmjoizsY2CJioxSxkmjnEBUoiQOsio2JufCmMCD8SBLnfXk5tRj40xf0jKT-DWKX5P4tfDg7WrIecfscd3Nb2iBNFk9zpuZvngB3474s_REhqSfgZAebLZruJoTEZCkXbYHW8Oi6t5P1PpSqz14ufobLZyObUxhy4tah-gnUWwIdD14NyjDX1P8752fXP_AF3B7enx4oA_2ZvtP4Q4CwaTLRt-CUVNd2GcItpr0ea_hDL7ftFH9Afh1NuA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KVUQfRKvFaNUVFEEJvSS7SfZB5Gp7tFaPUizci6ybZLcKJalJynH_mn-dM8nmagX71rcjl92E2fnxbXbmG4BXIsg6Yjg_THLt8zi2aFLEui8Dm4k4MTahAucvs3j_hH-ai_ka_B5qYSitcvCJnaMuqpy-kW8HCFTGErcHYtu6tIij3emH818-dZCik9ahnUavIodmucDtW_P-YBfX-nUYTve-ftz3XYcBP0fk0vqZjSMMwaHheWqtjLNQpBJBicZAGBmruYliaVIbyRzv0oWMOJc8i4rI4CBDREzo_tcT3BWNR7C-szc7Ol7FgSjsGq_SD3-cyPlwptoV7mHUpewPNHAEQD6_EhVdbOjzI68g338Oa7sYOL0P9xx4ZZNe2x7Amik34O7ktHYEHmYDbu1UCDeXD-HbMWXzFWbICmNUrVazomsL1LKfDXNZ8memYNmSIYJv2WldLdofjOgrmC4LVtMcDTEfGLbAi3U3COPkIzi5EUlvwqisSvMYWCpjLaW2QkvLEaFIgYOMTLQuIq514MF4kKXKHdE59ds4U5cUzSR-heJXJH7FPXi7GnLes3xcd_MbWiBFHgDnzbUrZMC3Iy4tNREh6WrAhQeb3Rqu5kQ0JGjH7cHWsKjK-YxGXWq4By9Xf6O10xGOLk110agQfSaKDUGvB-8GZfhriv-985PrH_gCbqMxqc8Hs8OncAcxYdonpm_BqK0vzDPEXW323Ck4g-83bVN_AKKmOxU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizodeposition+under+drought+is+controlled+by+root+growth+rate+and+rhizosphere+water+content&rft.jtitle=Plant+and+soil&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Kaestner%2C+Anders&rft.au=Kuzyakov%2C+Yakov&rft.date=2018-02-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=423&rft.issue=1-2&rft.spage=429&rft_id=info:doi/10.1007%2Fs11104-017-3522-4&rft.externalDocID=A529770145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |