Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content

Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 423; no. 1/2; pp. 429 - 442
Main Authors Holz, Maire, Zarebanadkouki, Mohsen, Kaestner, Anders, Kuzyakov, Yakov, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Cham Springer 01.02.2018
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
AbstractList AimsRhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content.MethodsWe tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots.ResultsDry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition.ConclusionRoot growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
AIMS: Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. METHODS: We tested how drought affects exudate distribution in the rhizosphere by coupling ¹⁴CO₂ labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. RESULTS: Dry and wet plants allocated similar amounts of ¹⁴C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. CONCLUSION: Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling .sup.14CO.sub.2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of .sup.14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14 CO 2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14 C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in soil and how it changes with soil water content. Methods We tested how drought affects exudate distribution in the rhizosphere by coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in roots. Rhizosphere water content was visualized by neutron radiography. A numerical model was employed to predict the exudate release and its spatiotemporal distribution along and around growing roots. Results Dry and wet plants allocated similar amounts of 14C into roots but root elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere extension. Rhizosphere water content was identical (31%) independent of drought, presumably because of the high water retention by mucilage. The model predicted that the increase in rhizosphere water content will enhance diffusion of exudates especially in dry soil and increase their microbial decomposition. Conclusion Root growth and rhizosphere water content play an important role in C release by roots and in shaping the profiles of root exudates in the rhizosphere. The release of mucilage may be a plant strategy to maintain fast diffusion of exudates and high microbial activity even under water limitation.
Audience Academic
Author Kuzyakov, Yakov
Kaestner, Anders
Zarebanadkouki, Mohsen
Carminati, Andrea
Holz, Maire
Author_xml – sequence: 1
  givenname: Maire
  surname: Holz
  fullname: Holz, Maire
– sequence: 2
  givenname: Mohsen
  surname: Zarebanadkouki
  fullname: Zarebanadkouki, Mohsen
– sequence: 3
  givenname: Anders
  surname: Kaestner
  fullname: Kaestner, Anders
– sequence: 4
  givenname: Yakov
  surname: Kuzyakov
  fullname: Kuzyakov, Yakov
– sequence: 5
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
BookMark eNp9kU1r3DAQhkVJoZu0P6CHgqCXXpzq29YxhH5BoFBa6KUIrT3e1eKVtiOZkPz6ynUJJYegg9DwPCON3nNyFlMEQl5zdskZa99nzjlTDeNtI7UQjXpGNly3stFMmjOyYUyKhrX25wtynvOBLWduNuTXt324TwOcUg4lpEjnOADSAdO82xcaMu1TLJimCQa6vaOYUqE7TLdlT9EXoD4OFJce-bQHBHpbi_hXglhekuejnzK8-rdfkB8fP3y__tzcfP305frqpuk1t6XZjkYa3QlQfTeO1myF7izrpBdcSxi9AmksdKO0faX8YKVSVm3lIKFKYOUFebf2PWH6PUMu7hhyD9PkI6Q5O8G0rA214RV9-wg9pBljfZ3jtm2ZFZ3VlbpcqZ2fwIU4poK-r2uAY6jDwRhq_UqLReFqEdpV6DHljDC6PhS__GgVw-Q4c0tObs3J1ZzckpNT1eSPzBOGo8e7Jx2xOrmycQf43xBPSG9W6ZBLwodbhDFaVFb-ASEXsIc
CitedBy_id crossref_primary_10_1016_j_still_2020_104819
crossref_primary_10_1111_nph_18157
crossref_primary_10_1016_j_apsoil_2023_105201
crossref_primary_10_1016_j_rhisph_2020_100266
crossref_primary_10_1007_s11104_021_04963_4
crossref_primary_10_1016_j_earscirev_2020_103501
crossref_primary_10_1007_s10661_023_12253_y
crossref_primary_10_2136_vzj2019_02_0021
crossref_primary_10_1063_5_0131778
crossref_primary_10_1007_s11104_020_04469_5
crossref_primary_10_1093_insilicoplants_diab028
crossref_primary_10_3390_agronomy9090485
crossref_primary_10_1016_j_scienta_2023_112597
crossref_primary_10_1007_s11104_019_03939_9
crossref_primary_10_1016_j_apsoil_2025_105870
crossref_primary_10_1038_s41467_022_28448_9
crossref_primary_10_1016_j_catena_2022_106904
crossref_primary_10_1111_pce_13708
crossref_primary_10_1016_j_agrformet_2019_03_019
crossref_primary_10_1016_j_rhisph_2020_100198
crossref_primary_10_1007_s11104_022_05306_7
crossref_primary_10_1007_s11104_023_06126_z
crossref_primary_10_1007_s11104_024_06840_2
crossref_primary_10_3389_fagro_2020_00008
crossref_primary_10_1016_j_ejsobi_2023_103515
crossref_primary_10_1007_s11104_023_06078_4
crossref_primary_10_1111_nph_19638
crossref_primary_10_3389_fpls_2021_753812
crossref_primary_10_1093_femsec_fiz080
crossref_primary_10_3389_ffgc_2023_1152142
crossref_primary_10_1016_j_catena_2021_105328
crossref_primary_10_1016_j_ecolind_2024_113005
crossref_primary_10_1021_acs_est_3c01816
crossref_primary_10_1016_j_geoderma_2023_116576
crossref_primary_10_1016_j_jenvman_2022_115751
crossref_primary_10_1007_s11104_024_06576_z
crossref_primary_10_1016_j_plaphy_2023_108290
crossref_primary_10_1016_j_rhisph_2022_100561
crossref_primary_10_1007_s10533_022_00963_3
crossref_primary_10_1111_pce_13712
crossref_primary_10_1111_pce_14413
crossref_primary_10_1007_s10343_024_01013_8
crossref_primary_10_1016_j_catena_2025_108724
crossref_primary_10_1071_FP18200
crossref_primary_10_3389_fpls_2021_691651
crossref_primary_10_1016_j_apsoil_2025_106041
crossref_primary_10_1107_S2059798318017503
crossref_primary_10_1016_j_scitotenv_2023_168370
crossref_primary_10_1007_s11104_022_05437_x
crossref_primary_10_1016_j_soilbio_2019_05_011
crossref_primary_10_1007_s11104_019_04234_3
crossref_primary_10_1016_j_apsoil_2023_104960
crossref_primary_10_1093_treephys_tpad118
crossref_primary_10_1007_s11368_022_03291_z
crossref_primary_10_1016_j_soilbio_2020_107895
crossref_primary_10_1016_j_earscirev_2022_104214
crossref_primary_10_1016_j_soilbio_2020_107852
crossref_primary_10_1016_j_jplph_2022_153829
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1016_j_soilbio_2023_109212
crossref_primary_10_1111_tpj_14852
crossref_primary_10_1007_s11104_022_05636_6
crossref_primary_10_1016_j_fcr_2024_109430
crossref_primary_10_1016_j_rhisph_2024_100922
crossref_primary_10_3389_fagro_2021_622367
crossref_primary_10_1016_j_scitotenv_2024_174858
crossref_primary_10_1111_nph_18409
Cites_doi 10.1007/BF00009191
10.2136/sssaj2005.0113
10.1007/s11104-009-9925-0
10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
10.1007/s11104-013-1874-y
10.1093/jxb/erh276
10.1016/j.soilbio.2015.07.021
10.1093/jxb/erm065
10.1111/j.1469-8137.2004.01130.x
10.1007/s11104-016-3090-z
10.1016/j.soilbio.2014.06.017
10.1007/s11104-010-0283-8
10.1111/j.1574-6941.2010.00860.x
10.1007/BF00012241
10.1016/j.geoderma.2005.03.002
10.1007/s11104-014-2059-z
10.1016/j.soilbio.2005.05.021
10.1104/pp.103.032045
10.1007/s11104-015-2668-1
10.1111/gcb.12475
10.1016/j.soilbio.2012.06.004
10.1016/S0038-0717(97)00050-3
10.1023/A:1004213728734
10.1016/j.nima.2011.08.022
10.1111/j.1469-8137.1995.tb01823.x
10.1111/nph.12569
10.1046/j.1365-3040.1999.00512.x
10.1051/agro:2003011
10.1016/j.soilbio.2014.11.014
10.1016/0038-0717(77)90021-9
10.1002/2013WR014756
10.1007/BF02184316
10.1039/tf9615701200
10.1046/j.1469-8137.2000.00595.x
10.1002/jpln.200900271
10.1023/A:1004736021965
10.1016/j.soilbio.2009.10.019
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1023/A:1025515708093
10.1093/aob/mcs262
10.1007/BF00010488
10.1002/jpln.201100300
10.1016/j.soilbio.2013.03.027
10.1111/nph.12235
10.1104/pp.103.032045.cesses
10.2136/vzj2015.04.0060
10.1111/j.1399-3054.1997.tb03445.x
10.1093/aob/mcx127
10.2136/vzj2011.0196
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Springer International Publishing AG, part of Springer Nature 2017
COPYRIGHT 2018 Springer
Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: Springer International Publishing AG, part of Springer Nature 2017
– notice: COPYRIGHT 2018 Springer
– notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-017-3522-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 442
ExternalDocumentID A529770145
10_1007_s11104_017_3522_4
26652110
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: CA 921/3-1; KU 1184/33-1
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Evangelisches Studienwerk Villigst
  funderid: http://dx.doi.org/10.13039/501100003088
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACKIV
ADINQ
ADYPR
AEBTG
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
BBWZM
CAG
COF
EN4
GQ6
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c519t-bf636582e4c8ff96b2589083a2153efa4e369e8f39c582ad934494b3d3e82ee93
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 06:34:05 EDT 2025
Fri Aug 08 08:40:49 EDT 2025
Tue Jun 10 20:17:24 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Tue Jul 01 01:47:01 EDT 2025
Fri Feb 21 02:33:36 EST 2025
Thu Jun 19 23:02:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Neutron radiography
Rhizosphere extension
Root exudates
Mucilage
Convection–diffusion model
C imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-bf636582e4c8ff96b2589083a2153efa4e369e8f39c582ad934494b3d3e82ee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://link.springer.com/content/pdf/10.1007/s11104-017-3522-4.pdf
PQID 1977092895
PQPubID 54098
PageCount 14
ParticipantIDs proquest_miscellaneous_2053908561
proquest_journals_1977092895
gale_infotracacademiconefile_A529770145
crossref_citationtrail_10_1007_s11104_017_3522_4
crossref_primary_10_1007_s11104_017_3522_4
springer_journals_10_1007_s11104_017_3522_4
jstor_primary_26652110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2018
Publisher Springer
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer International Publishing
– name: Springer Nature B.V
References Hafner, Wiesenberg, Stolnikova (CR15) 2014; 380
Kuzyakov, Shevtzova, Pustovoytov (CR28) 2006; 131
Nguyen (CR33) 2003; 23
Gunina, Kuzyakov (CR14) 2015; 90
Jones, Nguyen, Finlay (CR22) 2009; 321
Kuzyakov, Raskatov, Kaupenjohann (CR27) 2003; 254
Reid, Mexal (CR40) 1977; 9
Carminati, Vetterlein (CR3) 2013; 112
Darrah (CR9) 1991; 133
CR30
Meharg, Killham (CR31) 1995; 170
Iijima, Griffiths, Bengough (CR20) 2000; 145
Farrar, Hawes, Jones, Lindow (CR12) 2003; 84
Zarebanadkouki, Ahmed, Carminati (CR48) 2016; 398
Schweinsberg-Mickan, Jörgensen, Müller (CR42) 2012; 175
Soille (CR44) 2003
CR5
CR47
Kuzyakov, Xu (CR26) 2013; 198
North, Nobel (CR34) 1997; 191
Hamilton, Frank (CR17) 2001; 82
Kroener, Zarebanadkouki, Kaestner, Carmintati (CR25) 2014; 50
Canarini, Dijkstra (CR2) 2015; 81
Carminati, Moradi, Vetterlein (CR4) 2010; 332
Dennis, Miller, Hirsch (CR10) 2010; 72
Jones, Hodge, Kuzyakov (CR21) 2004; 163
Raynaud (CR39) 2010; 42
CR19
Sanaullah, Chabbi, Rumpel, Kuzyakov (CR41) 2012; 55
Kaestner, Kühne, Frei, Lehmann (CR23) 2015; 659
Chen, Senbayran, Blagodatsky (CR7) 2013; 20
Toal, Yeomans, Killham, Meharg (CR45) 2000; 222
Young (CR46) 1995; 130
Birouste, Zamora-ledezma, Bossard (CR1) 2014; 374
Preece, Penuelas (CR38) 2016; 409
Chaboud (CR6) 1983; 73
Personeni, Nguyen, Marchal, Pages (CR37) 2007; 58
Millingtion, Quirk (CR32) 1961; 57
Pausch, Kuzyakov (CR36) 2011; 174
Darrah (CR8) 1991; 138
Herman, Johnson, Jaeger (CR18) 2006; 70
Landi, Valori, Ascher (CR29) 2006; 38
Sharp, Poroyko, Hejlek (CR43) 2004; 55
Palta, Gregory (CR35) 1997; 29
Dilkes, Jones, Farrar (CR11) 2004; 134
Haichar, Santaella, Heulin (CR16) 2014; 77
Zhu, Cheng (CR49) 2013; 63
Fuchslueger, Bahn, Fritz (CR13) 2013; 201
Kim, Silk, Cheer (CR24) 1999; 22
M Zarebanadkouki (3522_CR48) 2016; 398
IM Young (3522_CR46) 1995; 130
Y Kuzyakov (3522_CR27) 2003; 254
C Preece (3522_CR38) 2016; 409
Y Kuzyakov (3522_CR28) 2006; 131
DL Jones (3522_CR21) 2004; 163
Z Haichar (3522_CR16) 2014; 77
Y Kuzyakov (3522_CR26) 2013; 198
RE Sharp (3522_CR43) 2004; 55
A Carminati (3522_CR3) 2013; 112
M Sanaullah (3522_CR41) 2012; 55
RJ Millingtion (3522_CR32) 1961; 57
L Fuchslueger (3522_CR13) 2013; 201
M Iijima (3522_CR20) 2000; 145
N Dilkes (3522_CR11) 2004; 134
E Kroener (3522_CR25) 2014; 50
3522_CR19
B Zhu (3522_CR49) 2013; 63
C Nguyen (3522_CR33) 2003; 23
R Chen (3522_CR7) 2013; 20
DJ Herman (3522_CR18) 2006; 70
PG Dennis (3522_CR10) 2010; 72
A Canarini (3522_CR2) 2015; 81
CPP Reid (3522_CR40) 1977; 9
S Hafner (3522_CR15) 2014; 380
J Pausch (3522_CR36) 2011; 174
P Soille (3522_CR44) 2003
3522_CR47
3522_CR5
PR Darrah (3522_CR9) 1991; 133
M Birouste (3522_CR1) 2014; 374
TK Kim (3522_CR24) 1999; 22
A Gunina (3522_CR14) 2015; 90
DL Jones (3522_CR22) 2009; 321
A Carminati (3522_CR4) 2010; 332
GB North (3522_CR34) 1997; 191
E Personeni (3522_CR37) 2007; 58
J Farrar (3522_CR12) 2003; 84
AA Meharg (3522_CR31) 1995; 170
JA Palta (3522_CR35) 1997; 29
MS Schweinsberg-Mickan (3522_CR42) 2012; 175
EW Hamilton (3522_CR17) 2001; 82
A Chaboud (3522_CR6) 1983; 73
PR Darrah (3522_CR8) 1991; 138
L Landi (3522_CR29) 2006; 38
3522_CR30
ME Toal (3522_CR45) 2000; 222
X Raynaud (3522_CR39) 2010; 42
A Kaestner (3522_CR23) 2015; 659
References_xml – volume: 133
  start-page: 187
  year: 1991
  end-page: 199
  ident: CR9
  article-title: Models of the rhizosphere - I. Microbial population dynamics around a root releasing soluble and insoluble carbon
  publication-title: Plant Soil
  doi: 10.1007/BF00009191
– volume: 70
  start-page: 1504
  year: 2006
  ident: CR18
  article-title: Root influence on nitrogen mineralization and nitrification in rhizosphere soil
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0113
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  ident: CR22
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 84
  start-page: 827
  year: 2003
  end-page: 837
  ident: CR12
  article-title: How roots control the flux of carbon to the rhizosphere
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
– volume: 374
  start-page: 299
  year: 2014
  end-page: 313
  ident: CR1
  article-title: Measurement of fine root tissue density : a comparison of three methods reveals the potential of root dry matter content
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1874-y
– volume: 55
  start-page: 2343
  year: 2004
  end-page: 2351
  ident: CR43
  article-title: Root growth maintenance during water deficits: physiology to functional genomics
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh276
– volume: 90
  start-page: 87
  year: 2015
  end-page: 100
  ident: CR14
  article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.07.021
– volume: 58
  start-page: 2091
  year: 2007
  end-page: 2099
  ident: CR37
  article-title: Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm065
– volume: 163
  start-page: 459
  year: 2004
  end-page: 480
  ident: CR21
  article-title: Plant and mycorrhizal regulation of rhizodeposition
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01130.x
– volume: 409
  start-page: 1
  year: 2016
  end-page: 17
  ident: CR38
  article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3090-z
– volume: 77
  start-page: 69
  year: 2014
  end-page: 80
  ident: CR16
  article-title: Root exudates mediated interactions belowground
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.06.017
– ident: CR19
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  ident: CR4
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 72
  start-page: 313
  year: 2010
  end-page: 327
  ident: CR10
  article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00860.x
– volume: 138
  start-page: 147
  year: 1991
  end-page: 158
  ident: CR8
  article-title: Models of the rhizosphere - II. A quasi three-dimensional simulation of the microbial population dynamics around a growing root releasing soluble exudates
  publication-title: Plant Soil
  doi: 10.1007/BF00012241
– volume: 131
  start-page: 45
  year: 2006
  end-page: 58
  ident: CR28
  article-title: Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.002
– volume: 380
  start-page: 101
  year: 2014
  end-page: 115
  ident: CR15
  article-title: Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2059-z
– ident: CR5
– volume: 38
  start-page: 509
  year: 2006
  end-page: 516
  ident: CR29
  article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.05.021
– volume: 134
  start-page: 706
  year: 2004
  end-page: 715
  ident: CR11
  article-title: Temporal dynamics of carbon partitioning and rhizodeposition in wheat
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.032045
– volume: 398
  start-page: 267
  year: 2016
  end-page: 280
  ident: CR48
  article-title: Hydraulic conductivity of the root-soil interface of lupin in sandy soil after drying and rewetting
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2668-1
– volume: 20
  start-page: 2356
  year: 2013
  end-page: 2367
  ident: CR7
  article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12475
– volume: 55
  start-page: 132
  year: 2012
  end-page: 139
  ident: CR41
  article-title: Soil Biology & Biochemistry C pulse labeling
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.06.004
– volume: 29
  start-page: 1395
  year: 1997
  end-page: 1403
  ident: CR35
  article-title: Drought effects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00050-3
– ident: CR47
– volume: 191
  start-page: 249
  year: 1997
  end-page: 258
  ident: CR34
  article-title: Drought-induced changes in soil contact and hydraulic conductivity for roots of with and without rhizosheaths
  publication-title: Plant Soil
  doi: 10.1023/A:1004213728734
– volume: 659
  start-page: 387
  year: 2015
  end-page: 393
  ident: CR23
  article-title: The ICON beamline — a facility for cold neutron imaging at SINQ
  publication-title: Nucl Instrum Methods Phys
  doi: 10.1016/j.nima.2011.08.022
– volume: 130
  start-page: 135
  year: 1995
  end-page: 139
  ident: CR46
  article-title: Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum Aestivum L. cv. Wembley)
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1995.tb01823.x
– ident: CR30
– volume: 201
  start-page: 916
  year: 2013
  end-page: 927
  ident: CR13
  article-title: Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow
  publication-title: New Phytol
  doi: 10.1111/nph.12569
– volume: 22
  start-page: 1527
  year: 1999
  end-page: 1538
  ident: CR24
  article-title: A mathematical model for pH patterns in the rhizospheres
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00512.x
– volume: 23
  start-page: 375
  year: 2003
  end-page: 396
  ident: CR33
  article-title: Rhizodeposition of organic C by plants : mechanisms and controls
  publication-title: Agronomie
  doi: 10.1051/agro:2003011
– volume: 81
  start-page: 195
  year: 2015
  end-page: 203
  ident: CR2
  article-title: Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.11.014
– volume: 9
  start-page: 417
  year: 1977
  end-page: 421
  ident: CR40
  article-title: Water stress effects on root exudation by lodgepole pine
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(77)90021-9
– volume: 50
  start-page: 6479
  year: 2014
  end-page: 6495
  ident: CR25
  article-title: Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014756
– volume: 73
  start-page: 395
  year: 1983
  end-page: 402
  ident: CR6
  article-title: Isolation, purification and chemical composition of maize root cap slime
  publication-title: Plant Soil
  doi: 10.1007/BF02184316
– volume: 57
  start-page: 1200
  year: 1961
  end-page: 1207
  ident: CR32
  article-title: Permeability of porous solids
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9615701200
– volume: 145
  start-page: 477
  year: 2000
  end-page: 482
  ident: CR20
  article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2000.00595.x
– volume: 174
  start-page: 12
  year: 2011
  end-page: 19
  ident: CR36
  article-title: Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200900271
– volume: 222
  start-page: 263
  year: 2000
  end-page: 281
  ident: CR45
  article-title: A review of rhizosphere carbon flow modelling
  publication-title: Plant Soil
  doi: 10.1023/A:1004736021965
– volume: 42
  start-page: 210
  year: 2010
  end-page: 219
  ident: CR39
  article-title: Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.019
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2402
  ident: CR17
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– volume: 254
  start-page: 317
  year: 2003
  end-page: 327
  ident: CR27
  article-title: Turnover and distribution of root exudates of Zea Mays
  publication-title: Plant Soil
  doi: 10.1023/A:1025515708093
– volume: 112
  start-page: 277
  year: 2013
  end-page: 290
  ident: CR3
  article-title: Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs262
– volume: 170
  start-page: 345
  year: 1995
  end-page: 349
  ident: CR31
  article-title: Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms
  publication-title: Plant Soil
  doi: 10.1007/BF00010488
– volume: 175
  start-page: 750
  year: 2012
  end-page: 760
  ident: CR42
  article-title: Rhizodeposition : Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100300
– year: 2003
  ident: CR44
  publication-title: Morphological image analysis: principles and applications
– volume: 63
  start-page: 89
  year: 2013
  end-page: 96
  ident: CR49
  article-title: Impacts of drying - wetting cycles on rhizosphere respiration and soil organic matter decomposition
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.03.027
– volume: 198
  start-page: 656
  year: 2013
  end-page: 669
  ident: CR26
  article-title: Tansley review competition between roots and microorganisms for nitrogen : mechanisms and ecological relevance
  publication-title: New Phytol
  doi: 10.1111/nph.12235
– volume: 174
  start-page: 12
  year: 2011
  ident: 3522_CR36
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200900271
– volume: 50
  start-page: 6479
  year: 2014
  ident: 3522_CR25
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014756
– volume: 63
  start-page: 89
  year: 2013
  ident: 3522_CR49
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.03.027
– volume: 130
  start-page: 135
  year: 1995
  ident: 3522_CR46
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1995.tb01823.x
– volume: 380
  start-page: 101
  year: 2014
  ident: 3522_CR15
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2059-z
– volume: 222
  start-page: 263
  year: 2000
  ident: 3522_CR45
  publication-title: Plant Soil
  doi: 10.1023/A:1004736021965
– volume: 9
  start-page: 417
  year: 1977
  ident: 3522_CR40
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(77)90021-9
– volume: 163
  start-page: 459
  year: 2004
  ident: 3522_CR21
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01130.x
– volume: 84
  start-page: 827
  year: 2003
  ident: 3522_CR12
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
– volume: 175
  start-page: 750
  year: 2012
  ident: 3522_CR42
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100300
– volume: 134
  start-page: 706
  year: 2004
  ident: 3522_CR11
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.032045.cesses
– volume: 77
  start-page: 69
  year: 2014
  ident: 3522_CR16
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.06.017
– volume: 332
  start-page: 163
  year: 2010
  ident: 3522_CR4
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 90
  start-page: 87
  year: 2015
  ident: 3522_CR14
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.07.021
– ident: 3522_CR5
  doi: 10.2136/vzj2015.04.0060
– volume: 23
  start-page: 375
  year: 2003
  ident: 3522_CR33
  publication-title: Agronomie
  doi: 10.1051/agro:2003011
– volume: 374
  start-page: 299
  year: 2014
  ident: 3522_CR1
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1874-y
– volume: 82
  start-page: 2397
  year: 2001
  ident: 3522_CR17
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– volume: 29
  start-page: 1395
  year: 1997
  ident: 3522_CR35
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00050-3
– volume: 81
  start-page: 195
  year: 2015
  ident: 3522_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.11.014
– volume: 138
  start-page: 147
  year: 1991
  ident: 3522_CR8
  publication-title: Plant Soil
  doi: 10.1007/BF00012241
– volume: 170
  start-page: 345
  year: 1995
  ident: 3522_CR31
  publication-title: Plant Soil
  doi: 10.1007/BF00010488
– volume: 57
  start-page: 1200
  year: 1961
  ident: 3522_CR32
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9615701200
– volume: 198
  start-page: 656
  year: 2013
  ident: 3522_CR26
  publication-title: New Phytol
  doi: 10.1111/nph.12235
– volume-title: Morphological image analysis: principles and applications
  year: 2003
  ident: 3522_CR44
– volume: 73
  start-page: 395
  year: 1983
  ident: 3522_CR6
  publication-title: Plant Soil
  doi: 10.1007/BF02184316
– volume: 145
  start-page: 477
  year: 2000
  ident: 3522_CR20
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2000.00595.x
– volume: 22
  start-page: 1527
  year: 1999
  ident: 3522_CR24
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00512.x
– volume: 112
  start-page: 277
  year: 2013
  ident: 3522_CR3
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs262
– volume: 20
  start-page: 2356
  year: 2013
  ident: 3522_CR7
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12475
– volume: 72
  start-page: 313
  year: 2010
  ident: 3522_CR10
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00860.x
– volume: 58
  start-page: 2091
  year: 2007
  ident: 3522_CR37
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm065
– volume: 55
  start-page: 132
  year: 2012
  ident: 3522_CR41
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.06.004
– volume: 38
  start-page: 509
  year: 2006
  ident: 3522_CR29
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.05.021
– volume: 409
  start-page: 1
  year: 2016
  ident: 3522_CR38
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3090-z
– volume: 70
  start-page: 1504
  year: 2006
  ident: 3522_CR18
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0113
– volume: 133
  start-page: 187
  year: 1991
  ident: 3522_CR9
  publication-title: Plant Soil
  doi: 10.1007/BF00009191
– volume: 659
  start-page: 387
  year: 2015
  ident: 3522_CR23
  publication-title: Nucl Instrum Methods Phys
  doi: 10.1016/j.nima.2011.08.022
– volume: 55
  start-page: 2343
  year: 2004
  ident: 3522_CR43
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh276
– volume: 321
  start-page: 5
  year: 2009
  ident: 3522_CR22
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 131
  start-page: 45
  year: 2006
  ident: 3522_CR28
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.002
– volume: 191
  start-page: 249
  year: 1997
  ident: 3522_CR34
  publication-title: Plant Soil
  doi: 10.1023/A:1004213728734
– ident: 3522_CR30
  doi: 10.1111/j.1399-3054.1997.tb03445.x
– volume: 201
  start-page: 916
  year: 2013
  ident: 3522_CR13
  publication-title: New Phytol
  doi: 10.1111/nph.12569
– volume: 254
  start-page: 317
  year: 2003
  ident: 3522_CR27
  publication-title: Plant Soil
  doi: 10.1023/A:1025515708093
– ident: 3522_CR19
  doi: 10.1093/aob/mcx127
– volume: 398
  start-page: 267
  year: 2016
  ident: 3522_CR48
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2668-1
– volume: 42
  start-page: 210
  year: 2010
  ident: 3522_CR39
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.019
– ident: 3522_CR47
  doi: 10.2136/vzj2011.0196
SSID ssj0003216
Score 2.5264068
Snippet Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in...
Aims Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in...
AimsRhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in...
AIMS: Rhizodeposition is an important energy source for soil microorganisms. It is therefore crucial to estimate the distribution of root derived carbon (C) in...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 429
SubjectTerms biodegradation
Biological activity
Biomedical and Life Sciences
carbon
Diffusion rate
Drought
Droughts
Ecology
Elongation
energy
Energy sources
Environmental aspects
Exudates
Growth
Growth rate
image analysis
Labeling
Life Sciences
Mathematical models
Microbial activity
Microorganisms
Moisture content
Mucilage
mucilages
Neutron radiography
neutrons
Plant growth
Plant Physiology
Plant Sciences
Radiography
radionuclides
Regular Article
rhizodeposition
Rhizosphere
root exudates
root growth
Roots
Roots (Botany)
Soil microorganisms
Soil Science & Conservation
Soil water
soil water content
Spatial distribution
Temporal distribution
Water content
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB78cYI-yLkqVr0jwoFwR8FtkrZ5XEWRg7uH4xb2RULaJiosXWkrsv-9M9l0PQ89uLfSZoaSyWS-MDNfAL7IYeGJ4eIkK00s0tShSxHrvhq6QqaZdRk1OP_4mV6PxfeJnIQ-7ravdu9Tkn6nfml2w0hFFRPoFAgaYrEK65KO7riIx8louf3yxN93Sg_xWaYmfSrzLRWvglHYkhdlia8A5185Uh96rj7CdsCMbLQw8g6s2HoAW6PbJvBm2AF8OJ8hypsPYOPS01DPd-HmF5XTVbYvy2LULtawyt_L07H7loUy9amtWDFnCKE7doun8u6OEX8EM3XFGtLREvWAZU_4svFCGKj2YHx1-fviOg6XKcQlgrQuLlzKEW0kVpS5cyotEpkrxF8GYz63zgjLU2Vzx1WJo0yluBBKFLziFoWs4vuwVs9qewAsV6lRyjhplBMIEZREIasyYyoujBlGcNbPqi4D0zhdeDHVLxzJZAiNhtBkCC0i-LoUeVjQbPxr8CmZSpMLot7ShE4C_Dsis9IjmSCqpXxpBPvemkudCEckHXkjOO7Nq4PTtnpIUgpPoCh3svyM7kY5FFPb2WOrE9y0cNoQdUbwrV8Wf6h4758P_2v0EWwiMMsX1eHHsNY1j_YTgp-u-OwX-zPRf_hj
  priority: 102
  providerName: Springer Nature
Title Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content
URI https://www.jstor.org/stable/26652110
https://link.springer.com/article/10.1007/s11104-017-3522-4
https://www.proquest.com/docview/1977092895
https://www.proquest.com/docview/2053908561
Volume 423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ha9QwFH-4nR_cB9HpsHMeEQRBKV6bpG0-Sc_dORSHDA_ODxLSNpmD0dvaDtl_73u99LYJ7lNL26ThJe-9X5KX3wN4I6OiJ4YL47Q0oUgShypFrPsqcoVMUutSOuD87Tg5WogvS7n0C26tD6scbGJvqKtVSWvkHyIEKhOF0wP58eIypKxRtLvqU2hswQhNcIaTr9F0dvz9ZGOLedwnP6WbcJKq5bCv2R-eQ89HERioZAhCQnHHM3n7vI5RvIM-_9kw7f3Q_Ak89gCS5esefwoPbL0LO_lp40k07C48nK4Q8l0_g18nFFFX2SEyi9GJsYZVfWqejp21zEeqn9uKFdcMUXTHTnFi3v1mRCHBTF2xhupoiX3Asj_4sOkLoa96Dov57Meno9DnUwhLxGldWLiEI-CIrSgz51RSxDJTCMEMun1unRGWJ8pmjqsSvzKV4kIoUfCKWyxkFd-D7XpV2xfAMpUYpYyTRjmBKEFJLGRVakzFhTFRAJNBlrr0ZOOU8-Jc39Akk_g1il-T-LUI4N2myMWaaeO-j99SB2nSQqy3NP4wAbaO-Kx0LmMaL5GQAez1fbipExGJpFlvAAdDp2qvt62-GWUBvN68Ro2jbRRT29VVq2O0Wyg2BJ4BvB8Gw60q_tfm_ft_-BIeIRjL1hHhB7DdNVf2FQKerhjDKJ8eTud0_fzz62zsR_kYthZx_hdzif59
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KVVAfRKvFaNUVFEEJXrK7SfZB5KotV9seUlq4F1k3yW4VSlKTlOP-Kf9GZ_JxtYJ969uRy27C7Hz8NjvzG4BXMkhbYjg_jDPjiyhyaFLEuq8Cl8ooti6mAufDWTQ9EV_mcr4Gv4daGEqrHHxi66jzMqNv5O8DBCpjhdsD-fH8l09do-h0dWih0anFvl0ucMtWf9j7jOv7Ogx3d44_Tf2-q4CfIVpp_NRFHMNuaEWWOKeiNJSJQiBiMPhx64ywPFI2cVxleJfJFRdCiZTn3OIgS-RL6PLXBcetzAjWt3dmX49Wvp-HbbNV-uGPYzUfzlHbYj2MtJTxgUaNoMcXVyJhHw-6nMgraPefA9o27u3eh3s9YGWTTsMewJotNuDu5LTqSTvsBtzaLhFiLh_CtyPK4MvtkAnGqEKtYnnbCqhhP2vWZ8af2ZylS4aovWGnVblofjCirGCmyFlFc9TEdmDZAi9W7SCMjY_g5EYkvQmjoizsY2CJioxSxkmjnEBUoiQOsio2JufCmMCD8SBLnfXk5tRj40xf0jKT-DWKX5P4tfDg7WrIecfscd3Nb2iBNFk9zpuZvngB3474s_REhqSfgZAebLZruJoTEZCkXbYHW8Oi6t5P1PpSqz14ufobLZyObUxhy4tah-gnUWwIdD14NyjDX1P8752fXP_AF3B7enx4oA_2ZvtP4Q4CwaTLRt-CUVNd2GcItpr0ea_hDL7ftFH9Afh1NuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KVUQfRKvFaNUVFEEJvSS7SfZB5Gp7tFaPUizci6ybZLcKJalJynH_mn-dM8nmagX71rcjl92E2fnxbXbmG4BXIsg6Yjg_THLt8zi2aFLEui8Dm4k4MTahAucvs3j_hH-ai_ka_B5qYSitcvCJnaMuqpy-kW8HCFTGErcHYtu6tIij3emH818-dZCik9ahnUavIodmucDtW_P-YBfX-nUYTve-ftz3XYcBP0fk0vqZjSMMwaHheWqtjLNQpBJBicZAGBmruYliaVIbyRzv0oWMOJc8i4rI4CBDREzo_tcT3BWNR7C-szc7Ol7FgSjsGq_SD3-cyPlwptoV7mHUpewPNHAEQD6_EhVdbOjzI68g338Oa7sYOL0P9xx4ZZNe2x7Amik34O7ktHYEHmYDbu1UCDeXD-HbMWXzFWbICmNUrVazomsL1LKfDXNZ8memYNmSIYJv2WldLdofjOgrmC4LVtMcDTEfGLbAi3U3COPkIzi5EUlvwqisSvMYWCpjLaW2QkvLEaFIgYOMTLQuIq514MF4kKXKHdE59ds4U5cUzSR-heJXJH7FPXi7GnLes3xcd_MbWiBFHgDnzbUrZMC3Iy4tNREh6WrAhQeb3Rqu5kQ0JGjH7cHWsKjK-YxGXWq4By9Xf6O10xGOLk110agQfSaKDUGvB-8GZfhriv-985PrH_gCbqMxqc8Hs8OncAcxYdonpm_BqK0vzDPEXW323Ck4g-83bVN_AKKmOxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizodeposition+under+drought+is+controlled+by+root+growth+rate+and+rhizosphere+water+content&rft.jtitle=Plant+and+soil&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Kaestner%2C+Anders&rft.au=Kuzyakov%2C+Yakov&rft.date=2018-02-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=423&rft.issue=1-2&rft.spage=429&rft_id=info:doi/10.1007%2Fs11104-017-3522-4&rft.externalDocID=A529770145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon