Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands
Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were fed with nitrate-dominated water to investigate nitrate removal affected by plant and external cattail litter with or without alkali pretreat...
Saved in:
Published in | Bioresource technology Vol. 101; no. 19; pp. 7286 - 7292 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2010
[New York, NY]: Elsevier Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were fed with nitrate-dominated water to investigate nitrate removal affected by plant and external cattail litter with or without alkali pretreatment. The results showed that the unit with plant and alkali-pretreated litter was more efficient in the initial stage whereas unit with plant and unpretreated litter was superior to other units in the middle and terminal stages. Plant accounted for less than 37% of the nitrate removal in biomass-up added CWs. The different nitrate removal rates were found to be greatly affected by the composition of the plant biomass as well as the quantity and quality of the available organic matters. It was also observed that plant biomass degradation over the period of this study resulted in various N species and concentrations in effluent. |
---|---|
AbstractList | Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were fed with nitrate-dominated water to investigate nitrate removal affected by plant and external cattail litter with or without alkali pretreatment. The results showed that the unit with plant and alkali-pretreated litter was more efficient in the initial stage whereas unit with plant and unpretreated litter was superior to other units in the middle and terminal stages. Plant accounted for less than 37% of the nitrate removal in biomass-up added CWs. The different nitrate removal rates were found to be greatly affected by the composition of the plant biomass as well as the quantity and quality of the available organic matters. It was also observed that plant biomass degradation over the period of this study resulted in various N species and concentrations in effluent. Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were fed with nitrate-dominated water to investigate nitrate removal affected by plant and external cattail litter with or without alkali pretreatment. The results showed that the unit with plant and alkali-pretreated litter was more efficient in the initial stage whereas unit with plant and unpretreated litter was superior to other units in the middle and terminal stages. Plant accounted for less than 37% of the nitrate removal in biomass-up added CWs. The different nitrate removal rates were found to be greatly affected by the composition of the plant biomass as well as the quantity and quality of the available organic matters. It was also observed that plant biomass degradation over the period of this study resulted in various N species and concentrations in effluent.Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were fed with nitrate-dominated water to investigate nitrate removal affected by plant and external cattail litter with or without alkali pretreatment. The results showed that the unit with plant and alkali-pretreated litter was more efficient in the initial stage whereas unit with plant and unpretreated litter was superior to other units in the middle and terminal stages. Plant accounted for less than 37% of the nitrate removal in biomass-up added CWs. The different nitrate removal rates were found to be greatly affected by the composition of the plant biomass as well as the quantity and quality of the available organic matters. It was also observed that plant biomass degradation over the period of this study resulted in various N species and concentrations in effluent. |
Author | Chen, Yi Zhou, Qi Wen, Yue Zheng, Nan Yang, Dianhai |
Author_xml | – sequence: 1 givenname: Yue surname: Wen fullname: Wen, Yue email: weny@tongji.edu.cn – sequence: 2 givenname: Yi surname: Chen fullname: Chen, Yi – sequence: 3 givenname: Nan surname: Zheng fullname: Zheng, Nan – sequence: 4 givenname: Dianhai surname: Yang fullname: Yang, Dianhai – sequence: 5 givenname: Qi surname: Zhou fullname: Zhou, Qi |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23004411$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20478703$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URNuFr1ByQXDJMrYT25E4gKryR6rEAXq2HMcGr5J4sZ0Wvj2z3S1IHNiTrdHvzYz93jk5mePsCLmgsKZAxevNug8xFWe_rxlgEZo1CPWInFElec06KU7IGXQCatWy5pSc57wBAE4le0JOGTRSSeBn5OeV986WXEVfbUczlwr7TiZjYa7mUJIprkpuirdmrMw8VFiZs49pMiUggjJrUo-3HJdkXa4CXpc-L8kb62o_xrvKxjmXtNjihurOFRwz5KfksTdjds8O54rcvL_6evmxvv784dPlu-vatrQrdT-oplXMtp53YKXhtuUwcM6k6AFYqzzrrW-dpU64jgolaMN5zxWVvWibga_Iy33fbYo_FpeLnkK2bsQlXFyyli0XqgHJjpOcc8ka_LYVefVfkkopKQiGqxxFuWgBPbtHLw7o0k9u0NsUJpN-6QezEHhxAEy2ZvTohA35L8cBmoZS5MSesynmnJz_g1DQu_TojX5Ij96lR0OjMT0ofPOP0IZy7zO6Hsbj8ud7uTdRm28Jd7v5ggDHB7aqE7svfrsnHDp-G1zS2QY3WzeEhCnUQwzHhvwGCVztqA |
CitedBy_id | crossref_primary_10_1016_j_ecoleng_2018_07_011 crossref_primary_10_1021_acs_est_1c07512 crossref_primary_10_1007_s13762_013_0475_x crossref_primary_10_1016_j_scitotenv_2020_141905 crossref_primary_10_7717_peerj_13339 crossref_primary_10_1016_j_jenvman_2022_116104 crossref_primary_10_1016_j_jece_2023_110397 crossref_primary_10_1016_j_jenvman_2018_02_078 crossref_primary_10_1016_j_biortech_2014_03_143 crossref_primary_10_1016_j_jenvman_2021_114159 crossref_primary_10_3390_su132212456 crossref_primary_10_1016_j_biortech_2018_09_054 crossref_primary_10_1016_j_biortech_2014_01_095 crossref_primary_10_1016_j_biortech_2010_09_056 crossref_primary_10_1016_j_jclepro_2023_136057 crossref_primary_10_1016_j_cej_2018_03_087 crossref_primary_10_1016_j_jenvman_2020_110912 crossref_primary_10_1080_19443994_2014_1003335 crossref_primary_10_1016_j_jece_2024_115037 crossref_primary_10_1016_j_watres_2014_06_015 crossref_primary_10_2175_106143017X15131012188024 crossref_primary_10_1016_j_chemosphere_2020_127863 crossref_primary_10_1016_j_cej_2017_02_143 crossref_primary_10_1016_j_ecoleng_2015_12_029 crossref_primary_10_1016_j_jenvman_2024_123708 crossref_primary_10_12677_AEP_2018_86059 crossref_primary_10_1007_s11356_016_7922_4 crossref_primary_10_1016_j_ecoleng_2016_02_039 crossref_primary_10_1111_jam_14476 crossref_primary_10_1016_j_scitotenv_2016_07_085 crossref_primary_10_1016_j_bej_2020_107919 crossref_primary_10_1016_j_scitotenv_2018_08_365 crossref_primary_10_1016_j_biortech_2018_09_039 crossref_primary_10_3390_su141912545 crossref_primary_10_1039_D3EW00272A crossref_primary_10_1016_j_biortech_2014_10_006 crossref_primary_10_3390_w15061074 crossref_primary_10_1016_j_jclepro_2018_09_036 crossref_primary_10_1007_s13157_013_0444_7 crossref_primary_10_18307_2017_0306 crossref_primary_10_1002_ep_12248 crossref_primary_10_1007_s11814_012_0139_4 crossref_primary_10_1016_j_biortech_2018_12_058 crossref_primary_10_1016_j_biortech_2010_10_122 crossref_primary_10_1080_19443994_2014_961555 crossref_primary_10_1007_s11356_016_6324_y crossref_primary_10_1016_j_jclepro_2019_119934 crossref_primary_10_1016_j_biortech_2016_11_007 crossref_primary_10_1007_s00203_022_03352_4 crossref_primary_10_1007_s11270_014_2181_9 crossref_primary_10_1016_j_scitotenv_2021_147761 crossref_primary_10_3390_fermentation7040296 crossref_primary_10_1016_j_jes_2016_07_008 crossref_primary_10_1016_j_biortech_2017_07_015 crossref_primary_10_1016_j_chemosphere_2017_09_125 crossref_primary_10_1016_j_biortech_2020_123358 crossref_primary_10_1016_j_scitotenv_2021_145901 crossref_primary_10_1016_j_ecss_2025_109147 crossref_primary_10_1016_j_chemosphere_2022_135259 crossref_primary_10_1016_j_envres_2022_112867 crossref_primary_10_1016_j_scitotenv_2020_144475 crossref_primary_10_1016_j_ecoleng_2015_07_013 crossref_primary_10_1088_1755_1315_358_2_022050 crossref_primary_10_1631_jzus_B1400090 crossref_primary_10_1007_s11356_015_4286_0 crossref_primary_10_1016_j_scitotenv_2023_169568 crossref_primary_10_1016_j_watres_2020_116781 crossref_primary_10_1016_j_envpol_2021_118170 crossref_primary_10_1016_j_biortech_2022_127312 crossref_primary_10_1016_j_ecoleng_2012_08_017 crossref_primary_10_1016_j_ecoleng_2012_06_002 crossref_primary_10_1016_j_jenvman_2013_06_045 crossref_primary_10_1007_s11356_021_13485_6 crossref_primary_10_1016_j_scitotenv_2023_165765 crossref_primary_10_1186_s13638_021_01899_2 crossref_primary_10_1016_j_biortech_2021_124959 crossref_primary_10_1016_j_jhazmat_2015_05_044 crossref_primary_10_1088_1755_1315_571_1_012063 crossref_primary_10_1016_j_watres_2016_07_001 crossref_primary_10_1016_j_biortech_2017_06_150 crossref_primary_10_1016_j_ecoleng_2018_11_029 crossref_primary_10_1016_j_watres_2013_12_027 crossref_primary_10_2166_wst_2016_163 crossref_primary_10_1016_j_ecoleng_2016_11_024 crossref_primary_10_1002_wer_1584 crossref_primary_10_1016_j_biortech_2022_127545 crossref_primary_10_1016_j_cej_2020_127904 crossref_primary_10_1016_j_jclepro_2019_03_235 crossref_primary_10_1002_wer_10849 crossref_primary_10_1016_j_biortech_2012_01_049 crossref_primary_10_1016_j_biortech_2021_125820 crossref_primary_10_1021_acs_est_8b04871 crossref_primary_10_1016_j_jclepro_2025_145272 crossref_primary_10_3390_w11051086 crossref_primary_10_1007_s11270_018_3837_7 crossref_primary_10_1016_j_watres_2014_03_077 crossref_primary_10_1016_j_jenvman_2013_07_002 crossref_primary_10_3390_w10040511 crossref_primary_10_1016_j_jclepro_2021_125944 crossref_primary_10_21859_psj_16_4_6 crossref_primary_10_1016_j_chemosphere_2014_12_010 crossref_primary_10_1016_j_ecoleng_2016_12_019 crossref_primary_10_1080_19443994_2015_1070292 crossref_primary_10_1016_j_jece_2022_107444 crossref_primary_10_1016_j_ecoleng_2016_06_032 crossref_primary_10_1016_j_biortech_2017_07_188 crossref_primary_10_3390_ijerph15061081 crossref_primary_10_1016_j_scitotenv_2020_144283 crossref_primary_10_1016_j_ecoenv_2021_112292 crossref_primary_10_1016_j_jhazmat_2022_128395 crossref_primary_10_4028_www_scientific_net_AMR_1073_1076_779 crossref_primary_10_1016_j_jwpe_2024_106407 crossref_primary_10_1016_j_envpol_2017_07_049 crossref_primary_10_5004_dwt_2019_24289 crossref_primary_10_4028_www_scientific_net_AMM_522_524_590 crossref_primary_10_1016_j_biortech_2014_01_137 crossref_primary_10_1016_j_jenvman_2022_114624 crossref_primary_10_1016_j_scitotenv_2017_02_069 crossref_primary_10_1016_j_jwpe_2023_103908 crossref_primary_10_1016_j_biortech_2015_09_083 crossref_primary_10_1016_j_scitotenv_2022_157538 crossref_primary_10_3389_fmicb_2022_934441 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS Copyright 2010 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright 2010 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 7X8 7QH 7QO 7ST 7UA F1W H95 L.G P64 SOI |
DOI | 10.1016/j.biortech.2010.04.068 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic Aqualine Biotechnology Research Abstracts Environment Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology Research Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Environment Abstracts Water Resources Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 7292 |
ExternalDocumentID | 20478703 23004411 10_1016_j_biortech_2010_04_068 US201301858962 S0960852410007546 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEGFY AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 7X8 7QH 7QO 7ST 7UA F1W H95 L.G P64 SOI |
ID | FETCH-LOGICAL-c519t-bd84582c5f390c7a3c530d33276b00258f2bcf5ec1e6e916861433b3817b654d3 |
IEDL.DBID | AIKHN |
ISSN | 0960-8524 1873-2976 |
IngestDate | Mon Jul 21 11:57:07 EDT 2025 Thu Jul 10 19:11:41 EDT 2025 Thu Jul 10 21:55:15 EDT 2025 Tue Aug 05 11:25:17 EDT 2025 Wed Feb 19 01:47:06 EST 2025 Mon Jul 21 09:15:29 EDT 2025 Tue Jul 01 02:42:40 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Thu Apr 03 09:46:10 EDT 2025 Fri Feb 23 02:26:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Nitrate removal Subsurface-flow constructed wetlands (SSF CWs) Available carbon source Plant biomass Underground flow Constructed wetland Lagooning Nitrates Biomass Carbon Denitration |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright 2010 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-bd84582c5f390c7a3c530d33276b00258f2bcf5ec1e6e916861433b3817b654d3 |
Notes | http://dx.doi.org/10.1016/j.biortech.2010.04.068 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20478703 |
PQID | 1365018714 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_753684072 proquest_miscellaneous_733372470 proquest_miscellaneous_1777106214 proquest_miscellaneous_1365018714 pubmed_primary_20478703 pascalfrancis_primary_23004411 crossref_primary_10_1016_j_biortech_2010_04_068 crossref_citationtrail_10_1016_j_biortech_2010_04_068 fao_agris_US201301858962 elsevier_sciencedirect_doi_10_1016_j_biortech_2010_04_068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2010 |
Publisher | Elsevier Ltd [New York, NY]: Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: [New York, NY]: Elsevier Ltd – name: Elsevier |
References | Mansfield, Mooney, Saddler (bib22) 1999; 15 Gebremariam, Beutel (bib10) 2008; 34 Ragab, Aldag, Mohamed, Mehana (bib26) 1994; 17 Bachand, Horne (bib3) 2000; 14 Bastviken, Weisner, Thiere, Svensson, Ehde, Tonderski (bib4) 2009; 35 GB18918-2002 (bib8) 2003 Greenan, Moorman, Kaspar, Parkin, Jaynes (bib9) 2006; 35 Grady, Daigger, Lim (bib7) 1999 Lu, Hu, Sun, Yang (bib19) 2009; 21 Rittmann, McCarty (bib27) 2001 International Water Association (IWA) (bib14) 2000 Park, Craggs, Sukias (bib25) 2009; 100 Breen (bib2) 1990; 24 Kadlec (bib15) 2008; 33 Ingersoll, Baker (bib13) 1998; 32 Tanner, Kadlec, Gibbs, Sukias, Nguyen (bib30) 2002; 18 Fleming-Singer, Horne (bib6) 2002; 36 Hume, Fleming, Horne (bib12) 2002; 66 Mosier, Wyman, Dale, Elander, Lee, Holtzapple, Ladisch (bib23) 2005; 96 Lin, Jing, Wang, Lee (bib17) 2002; 119 Vymazal, Kröpfelová (bib33) 2008 Hume, Fleming, Horne (bib11) 2002; 36 Melillo, Aber, Muratore (bib21) 1982; 63 Lowry, Rosebrough, Farr, Randall (bib16) 1951; 193 American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA. Ovez, Ozgen, Yuksel (bib24) 2006; 41 Vansoest, Robertson, Lewis (bib31) 1991; 74 Xue, Kovacic, David, Gentry, Mulvaney, Lindau (bib34) 1999; 28 Van Rijn, Tal, Schreier (bib32) 2006; 34 Davidsson, Stahl (bib5) 2000; 64 Seo, DeLaune (bib29) 2010; 44 Robertson, Vogan, Lombardo (bib28) 2008; 28 Miller (bib20) 1959; 31 Lin, Wen, Jiang, Li, Yang, Zhou (bib18) 2008; 72 |
References_xml | – year: 2000 ident: bib14 article-title: Constructed Wetlands for Pollution Control. Processes, Performance, Design and Operation – volume: 35 start-page: 946 year: 2009 end-page: 952 ident: bib4 article-title: Effects of vegetation and hydraulic load on seasonal nitrate removal in treatment wetlands publication-title: Ecological Engineering – volume: 36 start-page: 577 year: 2002 end-page: 584 ident: bib11 article-title: Plant carbohydrate limitation on nitrate reduction in wetland microcosms publication-title: Water Research – volume: 17 start-page: 219 year: 1994 end-page: 224 ident: bib26 article-title: Denitrification and nitrogen immobilization as affected by organic matter and different forms of nitrogen added to an anaerobic water-sediment system publication-title: Biology and Fertility of Soils – year: 1999 ident: bib7 article-title: Biological Wastewater Treatment – volume: 18 start-page: 499 year: 2002 end-page: 520 ident: bib30 article-title: Nitrogen processing gradients in subsurface-flow treatment wetlands – influence of wastewater characteristics publication-title: Ecological Engineering – volume: 44 start-page: 2441 year: 2010 end-page: 2450 ident: bib29 article-title: Fungal and bacterial mediated denitrification in wetlands: influence of sediment redox condition publication-title: Water Research – reference: American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA. – volume: 193 start-page: 165 year: 1951 end-page: 175 ident: bib16 article-title: Protein measurement with the Folin phenol reagent publication-title: The Journal of Biological Chemistry – volume: 63 start-page: 621 year: 1982 end-page: 626 ident: bib21 article-title: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics publication-title: Ecology – volume: 74 start-page: 3583 year: 1991 end-page: 3597 ident: bib31 article-title: Methods for dietary fiber, neutral detergent fiber, and nonstarchpolysaccharides in relation to animal nutrition publication-title: Journal of Dairy Science – volume: 33 start-page: 126 year: 2008 end-page: 141 ident: bib15 article-title: The effects of wetland vegetation and morphology on nitrogen processing publication-title: Ecological Engineering – volume: 14 start-page: 17 year: 2000 end-page: 32 ident: bib3 article-title: Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature publication-title: Ecological Engineering – volume: 66 start-page: 1706 year: 2002 end-page: 1712 ident: bib12 article-title: Denitrification potential and carbon quality of four aquatic plants in wetland microcosms publication-title: Soil Science Society of America Journal – volume: 41 start-page: 1539 year: 2006 end-page: 1544 ident: bib24 article-title: Biological denitrification in drinking water using publication-title: Process Biochemistry – volume: 36 start-page: 1231 year: 2002 end-page: 1237 ident: bib6 article-title: Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification publication-title: Environmental Science and Technology – volume: 32 start-page: 677 year: 1998 end-page: 684 ident: bib13 article-title: Nitrate removal in wetland microcosms publication-title: Water Research – volume: 119 start-page: 413 year: 2002 end-page: 420 ident: bib17 article-title: Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands publication-title: Environmental Pollution – volume: 34 start-page: 364 year: 2006 end-page: 376 ident: bib32 article-title: Denitrification in recirculating systems: theory and applications publication-title: Aquacultural Engineering – year: 2001 ident: bib27 article-title: Environmental Biotechnology: Principles and Applications – volume: 100 start-page: 3175 year: 2009 end-page: 3179 ident: bib25 article-title: Removal of nitrate and phosphorus from hydroponic wastewater using a hybrid denitrification filter (HDF) publication-title: Bioresource Technology – volume: 64 start-page: 1129 year: 2000 end-page: 1136 ident: bib5 article-title: The influence of organic carbon on nitrogen transformations in five wetland soils publication-title: Soil Science Society of America Journal – volume: 34 start-page: 1 year: 2008 end-page: 6 ident: bib10 article-title: Nitrate removal and DO levels in batch wetland microcosms: Cattail (Typha spp.) versus bulrush (Scirpus spp.) publication-title: Ecological Engineering – volume: 24 start-page: 689 year: 1990 end-page: 697 ident: bib2 article-title: A mass balance method for assessing the potential of artificial wetlands for wastewater treatment publication-title: Water Res – volume: 15 start-page: 804 year: 1999 end-page: 816 ident: bib22 article-title: Substrate and enzyme characteristics that limit cellulose hydrolysis publication-title: Biotechnology Progress – volume: 72 start-page: 122 year: 2008 end-page: 128 ident: bib18 article-title: Study of atrazine degradation in subsurface flow constructed wetland under different salinity publication-title: Chemosphere – volume: 96 start-page: 673 year: 2005 end-page: 686 ident: bib23 article-title: Features of promising technologies for pretreatment of lignocellulosic biomass publication-title: Bioresource Technology – volume: 28 start-page: 263 year: 1999 end-page: 269 ident: bib34 article-title: In situ measurements of denitrification in constructed wetlands publication-title: Journal of Environmental Quality – volume: 35 start-page: 824 year: 2006 end-page: 829 ident: bib9 article-title: Comparing carbon substrates for denitrification of subsurface drainage water publication-title: Journal of Environmental Quality – volume: 21 start-page: 1036 year: 2009 end-page: 1043 ident: bib19 article-title: Effect of carbon source on the denitrification in constructed wetlands publication-title: Journal of Environmental Sciences – China – volume: 31 start-page: 426 year: 1959 end-page: 427 ident: bib20 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Analytical Chemistry – volume: 28 start-page: 65 year: 2008 end-page: 72 ident: bib28 article-title: Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate publication-title: Ground Water Monitoring and Remediation – year: 2008 ident: bib33 article-title: Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow – year: 2003 ident: bib8 article-title: Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant |
SSID | ssj0003172 |
Score | 2.3930843 |
Snippet | Denitrification is strongly dependent on carbon quantity and quality in most constructed wetlands (CWs). In this study, four batch CWs were designed, and were... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7286 |
SubjectTerms | alkalis analysis Available carbon source Biodegradation, Environmental Biological and medical sciences Biological treatment of waters Biomass Biotechnology Carbohydrates Carbohydrates - isolation & purification Carbon Carbon - metabolism constructed wetlands Construction denitrification Effluents Environment and pollution Fatty Acids, Volatile Fatty Acids, Volatile - isolation & purification Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects isolation & purification Litter metabolism methods Nitrate removal nitrates Nitrates - isolation & purification Nitrogen Nitrogen - analysis nitrogen content organic matter pharmacology Plant biomass plant litter Plants (organisms) Proteins Proteins - isolation & purification Sodium Hydroxide Sodium Hydroxide - pharmacology Solubility subsurface flow Subsurface-flow constructed wetlands (SSF CWs) Time Factors Typhaceae Typhaceae - metabolism Waste Disposal, Fluid Waste Disposal, Fluid - methods Wetlands |
Title | Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands |
URI | https://dx.doi.org/10.1016/j.biortech.2010.04.068 https://www.ncbi.nlm.nih.gov/pubmed/20478703 https://www.proquest.com/docview/1365018714 https://www.proquest.com/docview/1777106214 https://www.proquest.com/docview/733372470 https://www.proquest.com/docview/753684072 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEBVxcmh7KG36EaetUaHXtXdXH7t7NKbBbSGX1JCbkLRScXB2jdchPfW3Z0a76zrQJIfehD0DQjOreTBPbwj5opNCo65NhFIfEdcQC2N8HlkJy9wIJC4i2-Jczhf8-6W4PCCz_i0M0iq7u7-908Nt3f0y6U5zsl4uJxcIvnMBFSjUPS4H5ChlhYTUPpp--zE_313IUCJDMwHsI3TYeyh8NTZLJLWGvgSyvPg4RtXVf9eogdc1kid1A-fn28EXDyPTUKHOXpGXHbSk03b3r8mBq47Ji-mvTSev4Y7Js1k_3w3-2ZMifEN-tzLGDa09Xa_guCk-zAdkTeuKwmePihJ0465ryEyqq5Ju9xAvmICb1RsDq7Yd0NAlLOFWutl4bV3kV_UttXWnV-tKeuu24ZnxW7I4-_pzNo-6qQyRBbS3jUyZY6_NCs-K2GaaWcHikrE0kwFB5T411gtnEycdgM8cAABjBpUAjRS8ZO_IYVVX7oRQI-LSCZx5bUvOmdSAzlImrfeFzBlzQyL6OCjbSZbj5IyV6rlpV6qPn8L4qZgriN-QTHZ-61a040mPog-zupd-CirLk74nkBdKQzgbtbhIsRcMKCgvZDoko3vJsttNikJnPEmG5HOfPQrCj80aXbn6plFIP8SBiQl_xCbLACDKFG3oAzYZYyxLeRY_YiIYSv5ksN33bQL_3WcQb4rZ6X-czwfyPFAuAgPyIzmEPHOfAMltzYgMxn-SUfe93gGe_Ea5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELWAHmgPqKUfbKHUlXrNbhJ_JDmiFWjbUi6wEjfLduxq0ZKsNovoqb-9M04Ci1Tg0JuVjCXLM_Y8aZ7fEPJVJ4VGXZsIpT4irsEXxvg8shKGuRFIXES2xZmcTPn3S3G5Qcb9WxikVXZ3f3unh9u6-zLqdnO0mM1G5wi-cwEZKOQ9LjfJCw7HF0_n8M89zwMSZCglgHWE5mvPhK-GZoaU1lCVQI4XH8aoufrvDLXpdY3USd3A7vm27cXjuDTkp5PXZKcDlvSoXfsbsuGqXfLq6NeyE9dwu2R73Hd3gz9rQoRvye9WxLihtaeLOWw2xWf5gKtpXVE49KgnQZfuuoa4pLoq6WoN74IJTLN6aWDUFgMaOoMh3Ek3S6-ti_y8vqW27tRqXUlv3So8Mn5HpifHF-NJ1PVkiCxgvVVkyhwrbVZ4VsQ208wKFpeMpZkM-Cn3qbFeOJs46QB65pD-GTOoA2ik4CV7T7aqunJ7hBoRl05gx2tbcs6kBmyWMmm9L2TOmBsQ0ftB2U6wHPtmzFXPTLtSvf8U-k_FXIH_BmR0N2_RSnY8O6Po3aweBJ-CvPLs3D2IC6XBnY2anqdYCQYMlBcyHZDDB8Fyt5oUZc54kgzIlz56FLgfSzW6cvVNo5B8iO0SE_6ETZYBPJQp2tBHbDLGWJbyLH7CRDAU_MlguR_aAL5fZ5BuitnH_9ifz2R7cvHzVJ1-O_uxT14G8kXgQh6QLYg59wkw3cochjP7F1KoR30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+plant+biomass+on+nitrate+removal+and+transformation+of+carbon+sources+in+subsurface-flow+constructed+wetlands&rft.jtitle=Bioresource+technology&rft.au=Wen%2C+Yue&rft.au=Chen%2C+Yi&rft.au=Zheng%2C+Nan&rft.au=Yang%2C+Dianhai&rft.date=2010-10-01&rft.issn=0960-8524&rft.volume=101&rft.issue=19&rft.spage=7286&rft.epage=7292&rft_id=info:doi/10.1016%2Fj.biortech.2010.04.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2010_04_068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |