Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens
Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 25303 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.10.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium
Synechococcus elongatus
PCC 7942 and the fungus
Rhodotorula toruloides
NBRC 0880, as well as axenic
S. elongatus
. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens.
S. elongatus
fixed CO
2
into sugars as the primary shared metabolite, while
R. toruloides
secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. |
---|---|
AbstractList | Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium
Synechococcus elongatus
PCC 7942 and the fungus
Rhodotorula toruloides
NBRC 0880, as well as axenic
S. elongatus
. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens.
S. elongatus
fixed CO
2
into sugars as the primary shared metabolite, while
R. toruloides
secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. Abstract Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science.Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science. |
ArticleNumber | 25303 |
Author | Magnuson, Jon K Kim, Young-Mo Betenbaugh, Michael J Pomraning, Kyle R. Jenkins, Jackson P Bohutskyi, Pavlo Poirier, Brenton C |
Author_xml | – sequence: 1 givenname: Pavlo surname: Bohutskyi fullname: Bohutskyi, Pavlo email: pavlo.bohutskyi@pnnl.gov organization: Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Department of Biological Systems Engineering, Washington State University – sequence: 2 givenname: Kyle R. surname: Pomraning fullname: Pomraning, Kyle R. organization: Energy and Environment Directorate, Pacific Northwest National Laboratory – sequence: 3 givenname: Jackson P surname: Jenkins fullname: Jenkins, Jackson P organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University – sequence: 4 givenname: Young-Mo surname: Kim fullname: Kim, Young-Mo organization: Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory – sequence: 5 givenname: Brenton C surname: Poirier fullname: Poirier, Brenton C organization: Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory – sequence: 6 givenname: Michael J surname: Betenbaugh fullname: Betenbaugh, Michael J organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University – sequence: 7 givenname: Jon K surname: Magnuson fullname: Magnuson, Jon K organization: Energy and Environment Directorate, Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39455633$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2476534$$D View this record in Osti.gov |
BookMark | eNp9kstu1DAUhiNUREvpC7BAEWzYBHzNxCuEKi6Vith0bx07JzNuE3uwPRXzELwzzqSUlgVRpFjOdz4f2__z6sgHj1X1kpJ3lPDufRJUqq4hTDQrsRK8EU-qE0aEbBhn7OjB-Lg6S-malEcyJah6Vh1zJaRsOT-pfn1zP7Gvwff1hJOJ4LFJuIUIuUzb3Zh30fl1HYY67X3eYHa2tnvwwYDNGB00e4SUaxt8CjE7qCPeIoyp-DKYMM58DCk1GcabenKTszez0UNRw7jICrVBn15UT4dSimd339Pq6vOnq_OvzeX3LxfnHy8bK6nKjbErhStsKSIRTFlsRcuNaKkkvemMwY6wbtVKZZQFLmVHpUQpe1HgwVh-Wl0s2j7Atd5GN0Hc6wBOHyZCXGsoW7Ej6gHanrOhvK0RCqATqmV93ysiusFKKK4Pi2u7MxP2Fn0uu3okffzHu41eh1tNqaRUMVUMrxdDSNnpZF1GuynH6dFmzUTZBxcFenu3TAw_dpiynlyyOI7lwsIuaU4ZJbJT3ex78w96HXbRl_OcKdKq0jst1KuHfd83_CcaBWALcLi9iMM9QomeI6iXCOoSQX2IoJ7b5EtR2s6xwfh37f9U_QY_XOEi |
Cites_doi | 10.1016/j.jgg.2021.07.007 10.1038/nrmicro2386 10.1038/ismej.2010.36 10.1038/srep27184 10.4319/lo.2001.46.6.1370 10.3354/meps10428 10.1093/nar/gkr988 10.1146/annurev.micro.091208.073248 10.1038/ngeo1486 10.1101/gr.1239303 10.1093/nar/gkp356 10.1038/s41396-020-0603-9 10.1038/nature09826 10.1038/ismej.2011.118 10.3389/fmicb.2020.588778 10.1128/mSystems.00040-18 10.1093/pcp/pct079 10.3390/metabo10040171 10.4319/lo.2004.49.5.1652 10.1039/B606983P 10.1039/C7CS00431A 10.1038/s41396-022-01330-8 10.1111/j.1462-2920.2008.01633.x 10.1038/s41596-022-00710-w 10.1016/j.ymben.2017.10.009 10.1146/annurev.pp.42.060191.003005 10.1002/lno.10302 10.3389/fbioe.2021.603832 10.4319/lo.1997.42.3.0506 10.1080/14789450.2020.1766975 10.1007/978-3-662-10370-8_12 10.1128/msystems.00902-21 10.1016/S0953-7562(09)81109-X 10.1111/j.1469-8137.1979.tb02307.x 10.1073/pnas.0407716102 10.1016/j.seppur.2021.118689 10.1007/s00425-007-0563-6 10.1016/j.algal.2019.101755 10.1111/1462-2920.12242 10.1186/1471-2105-12-436 10.1038/ismej.2016.64 10.1016/j.biortech.2018.02.080 10.1073/pnas.0832439100 10.1111/j.1469-185X.1969.tb00821.x 10.1111/j.1574-6941.2008.00459.x 10.3389/fmicb.2014.00111 10.1080/11263504.2019.1701117 10.1073/pnas.1307701110 10.3389/fmicb.2021.667864 10.1111/1462-2920.12822 10.1016/0098-8472(94)90046-9 10.1007/978-3-642-85243-5_2 10.3354/ame01427 10.1016/j.jphotobiol.2012.03.005 10.1186/s13068-017-0736-x 10.1111/j.1472-765X.1989.tb00258.x 10.1038/nmicrobiol.2017.100 10.4319/lo.1984.29.2.0370 10.1128/aem.01558-22 10.1073/pnas.1514645113 10.1371/journal.pone.0016805 10.1021/ac802689c 10.1126/science.281.5374.237 10.1038/s41564-022-01251-4 10.3354/ame029239 10.1038/ismej.2011.1 10.4319/lo.2005.50.6.1924 10.1038/ngeo2841 10.1016/j.scitotenv.2018.11.026 10.1007/s11120-023-01015-z 10.1111/j.1469-8137.1989.tb00707.x 10.1007/s00253-020-10663-3 10.1038/s41564-019-0567-6 10.1128/mBio.01846-20 10.1126/sciadv.abf4792 10.1126/science.1218344 10.1128/msystems.00181-18 10.1093/jexbot/52.363.2033 10.1038/s41467-020-17612-8 10.1016/j.algal.2019.101580 10.1038/nature14488 10.1093/pcp/pcw169 10.1128/AEM.00212-07 10.1128/AEM.02479-07 10.1073/pnas.0913677107 10.21273/JASHS.127.4.467 10.1128/msystems.00017-21 10.1002/2013GB004705 10.1128/mBio.01614-21 |
ContentType | Journal Article |
Copyright | Battelle Memorial Institute and The Authors 2024 2024 2024. Battelle Memorial Institute and The Authors 2024. Battelle Memorial Institute and The Authors 2024 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Battelle Memorial Institute and The Authors 2024 2024 2024 |
Copyright_xml | – notice: Battelle Memorial Institute and The Authors 2024 2024 – notice: 2024. Battelle Memorial Institute and The Authors 2024. – notice: Battelle Memorial Institute and The Authors 2024 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Battelle Memorial Institute and The Authors 2024 2024 2024 |
CorporateAuthor | Johns Hopkins University, Baltimore, MD (United States) |
CorporateAuthor_xml | – name: Johns Hopkins University, Baltimore, MD (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41598-024-74743-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_fa6d32f32f6b49aa84962ddd9048fc5a PMC11511929 2476534 39455633 10_1038_s41598_024_74743_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory grantid: Predictive Phenomics Initiative; Predictive Phenomics Initiative; Predictive Phenomics Initiative; Predictive Phenomics Initiative; Predictive Phenomics Initiative – fundername: U.S. Department of Energy Genomic Science Program grantid: DE-SC0019388; DE-SC0019388; DE-SC0019388; DE-SC0019388 – fundername: U.S. Department of Energy Genomic Science Program grantid: DE-SC0019388 – fundername: Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory grantid: Predictive Phenomics Initiative |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 OIOZB OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c519t-bc79e7e61ee0429ce6463b46150db8bbe80287659b9ca3558155e55d4429fbc3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:59 EDT 2025 Thu Aug 21 18:43:49 EDT 2025 Mon Jun 23 02:30:29 EDT 2025 Fri Jul 11 10:20:38 EDT 2025 Wed Aug 13 09:12:23 EDT 2025 Wed Feb 19 02:11:38 EST 2025 Tue Jul 01 03:23:19 EDT 2025 Fri Feb 21 02:37:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Membrane-separated bioreactor Synthetic lichen Metabolite exchange Phototroph-heterotroph co-culture Cross-feeding Microbial community |
Language | English |
License | 2024. Battelle Memorial Institute and The Authors 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-bc79e7e61ee0429ce6463b46150db8bbe80287659b9ca3558155e55d4429fbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0019388; AC05-76RL01830 USDOE Laboratory Directed Research and Development (LDRD) Program None USDOE Office of Science (SC), Biological and Environmental Research (BER) |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-74743-4 |
PMID | 39455633 |
PQID | 3120699041 |
PQPubID | 2041939 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fa6d32f32f6b49aa84962ddd9048fc5a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511929 osti_scitechconnect_2476534 proquest_miscellaneous_3121058989 proquest_journals_3120699041 pubmed_primary_39455633 crossref_primary_10_1038_s41598_024_74743_4 springer_journals_10_1038_s41598_024_74743_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-25 |
PublicationDateYYYYMMDD | 2024-10-25 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol., (2017). 2(9). GökalsınBBerberDÖzyiğitoğluGÇYeşiladaESesalNCQuorum sensing attenuation properties of ethnobotanically valuable lichens againstPseudomonas aeruginosaPlant. Biosystems - Int. J. Dealing all Aspects Plant. Biology2019154679279910.1080/11263504.2019.1701117 Ruiz-GonzálezCSimóRVila-CostaMSommarugaRGasolJMSunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptakeISME J.20116365065921955992328013210.1038/ismej.2011.118 Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. (2020). https://CRAN.R-project.org/package=factoextra MillotMDi MeoFTomasiSBoustieJTrouillasPPhotoprotective capacities of lichen metabolites: a joint theoretical and experimental studyJ. Photochem. Photobiol., B201211117261:CAS:528:DC%2BC38XlvFOks7o%3D2251689210.1016/j.jphotobiol.2012.03.005 Becker, J. W. et al. Closely Relat. Phytoplankton Species Produce Similar Suites Dissolved Org. Matter Front. Microbiol., 5. (2014). JiangLEvidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environmentsAppl. Microbiol. Biotechnol.202010414641364261:CAS:528:DC%2BB3cXhtVCks7nF3247217510.1007/s00253-020-10663-3 CoeASurvival of Prochlorococcus in extended darknessLimnol. Oceanogr.2016614137513882016LimOc..61.1375C10.1002/lno.10302 FieldCBBehrenfeldMJRandersonJTFalkowskiPPrimary production of the Biosphere: integrating Terrestrial and Oceanic ComponentsScience199828153742372401998Sci...281..237F1:CAS:528:DyaK1cXksFKitb0%3D965771310.1126/science.281.5374.237 CowanDAGreenTGAWilsonATLichen Metabolism. 2. Aspects of light and dark physiologyNew Phytol.200683376176910.1111/j.1469-8137.1979.tb02307.x TeiraEJosé PazóMSerretPFernándezEDissolved organic carbon production by microbial populations in the Atlantic OceanLimnol. Oceanogr.2001466137013772001LimOc..46.1370T1:CAS:528:DC%2BD3MXnsVSktbo%3D10.4319/lo.2001.46.6.1370 MartinezJRieraMLalucatJVives-RegoJThymidine incorporation into algal DNA from axenic cultures of Synechococcus, Chlorella and TetraselmisLett. Appl. Microbiol.1989841351381:CAS:528:DyaL1MXkslCmsbg%3D10.1111/j.1472-765X.1989.tb00258.x LuoYWFriedrichsMAMDoneySCChurchMJDucklowHWOceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modelingAquat. Microb. Ecol.201060327328710.3354/ame01427 Pontiller, B., Martínez-García, S., Lundin, D. & Pinhassi, J. Labile dissolved Organic Matter compound characteristics select for divergence in Marine bacterial activity and transcription. Front. Microbiol., 11. (2020). PangZUsing MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics dataNat. Protoc.2022178173517611:CAS:528:DC%2BB38XhsFCrsL3L3571552210.1038/s41596-022-00710-w PoradaPWeberBElbertWPöschlUKleidonAEstimating impacts of lichens and bryophytes on global biogeochemical cyclesGlob. Biogeochem. Cycles201428271852014GBioC..28...71P1:CAS:528:DC%2BC2cXks1Sisb4%3D10.1002/2013GB004705 Li, T. et al. Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45. (2020). Cuhel, R. L. & Waterbury, J. B. Biochemical composition and short term nutrient incorporation patterns in a unicellular marine cyanobacterium, Synechococcus (WH7803)1. Limnology and Oceanography, 29(2): pp. 370–374. (1984). Moran, M. A. et al. Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences, 113(12): pp. 3143–3151. (2016). OsyczkaPMyśliwa-KurdzielBThe pattern of photosynthetic response and adaptation to changing light conditions in lichens is linked to their ecological rangePhotosynth. Res.2023157121351:CAS:528:DC%2BB3sXmsVaqu7c%3D369764461028204210.1007/s11120-023-01015-z ChenTZhangHLiuYLiuYXHuangLEVenn: Easy to create repeatable and editable Venn diagrams and Venn networks onlineJ. Genet. Genomics20214898638663445285110.1016/j.jgg.2021.07.007 Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences, 110(24): pp. 9824–9829. (2013). Biller, S. J., Coe, A., Roggensack, S. E., Chisholm, S. W. & Mason, O. Heterotroph Interact. Alter. Prochlorococcus Transcriptome Dynamics Dur. Ext. Periods Darkn. mSystems, 3(3). (2018). WilliamsonJDJenningsDBGuoWWPharrDMEhrenshaftMSugar Alcohols, Salt stress, and Fungal Resistance: polyols—multifunctional Plant Protection?J. Am. Soc. Hortic. Sci.200212744674731:CAS:528:DC%2BD38Xlt1Orsr8%3D10.21273/JASHS.127.4.467 PaoliACelussiMDel NegroPFonda UmaniSTalaricoLEcological advantages from light adaptation and heterotrophic-like behavior in Synechococcus harvested from the Gulf of Trieste (Northern Adriatic Sea)FEMS Microbiol. Ecol.20086422192291:CAS:528:DC%2BD1cXlvVKmt7w%3D1833655710.1111/j.1574-6941.2008.00459.x Bohutskyi, P. et al. Metabolic effects of vitamin B12 on physiology, stress resistance, growth rate and biomass productivity of cyanobacterium stanieri planktonic and biofilm cultures. Algal Res., 42. (2019). YeltonAPGlobal genetic capacity for mixotrophy in marine picocyanobacteriaISME J.20161012294629571:CAS:528:DC%2BC28XhvFOht7vM27137127514818810.1038/ismej.2016.64 HillerKMetaboliteDetector: Comprehensive Analysis Tool for targeted and nontargeted GC/MS based Metabolome AnalysisAnal. Chem.2009819342934391:CAS:528:DC%2BD1MXktlSlu7o%3D1935859910.1021/ac802689c ElbertWContribution of cryptogamic covers to the global cycles of carbon and nitrogenNat. Geosci.2012574594622012NatGe...5..459E1:CAS:528:DC%2BC38XnvVynur4%3D10.1038/ngeo1486 WeissbergOAharonovichDSherDPhototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversityISME J.202217222723736335212986006410.1038/s41396-022-01330-8 WuZSingle-cell Measurements Modelling Reveal. Substantial Org. Carbon Acquisition Prochlorococcus Nat. Microbiol.2022712206820771:CAS:528:DC%2BB38XivVWiu7%2FP36329198 Bertilsson, S., Berglund, O., Pullin, M. & Chisholm, S. Release of Dissolved Organic Matter by Prochlorococcus55p. 225–231 (Vie et Milieu/Life & Environment, 2005). Vila-CostaMDimethylsulfoniopropionate Uptake Mar. Phytoplankton Sci.20063145799652654 Pomraning, K. R. et al. Integration of Proteomics and Metabolomics Into the Design, Build, Test, Learn Cycle to Improve 3-Hydroxypropionic Acid Production in Aspergillus pseudoterreus. Frontiers in Bioengineering and Biotechnology, 9. (2021). Li, T. et al. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10(1). (2017). MorrisJJKirkegaardRSzulMJJohnsonZIZinserERFacilitation of Robust Growth of Prochlorococcus colonies and dilute liquid cultures by helper heterotrophic BacteriaAppl. Environ. Microbiol.20087414453045342008ApEnM..74.4530M1:CAS:528:DC%2BD1cXptVeit7Y%3D18502916249317310.1128/AEM.02479-07 AminSAInteraction and signalling between a cosmopolitan phytoplankton and associated bacteriaNature20155227554981012015Natur.522...98A1:CAS:528:DC%2BC2MXhtFeitLrN2601730710.1038/nature14488 Jo, C. et al. Construction and modeling of a coculture microplate for real-time measurement of Microbial interactions. mSystems, 8(2). (2023). Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, 100(14): pp. 8124–8129. (2003). HoneggerRFunctional aspects of the Lichen SymbiosisAnnu. Rev. Plant Physiol. Plant Mol. Biol.19914215535781:CAS:528:DyaK3MXltFSms7s%3D10.1146/annurev.pp.42.060191.003005 Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proceedings of the National Academy of Sciences, 107(23): pp. 10430–10435. (2010). MarañónECermeñoPFernándezERodríguezJZabalaLSignificance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystemLimnol. Oceanogr.2004495165216662004LimOc..49.1652M10.4319/lo.2004.49.5.1652 BohutskyiPProduction of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestionSci. Total Environ.2019653137713942019ScTEn.653.1377B1:CAS:528:DC%2BC1cXit1SnsrrP3075957710.1016/j.scitotenv.2018.11.026 Huneck, S. & Yoshimura, I. Identification of Lichen Substances, in Identification of Lichen Substances. pp. 11–123. (1996). JardillierLZubkovMVPearmanJScanlanDJSignificant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic OceanISME J.201049118011921:CAS:528:DC%2BC3cXhtVKgsr7E2039357510.1038/ismej.2010.36 Wang, J. et al. Construction of fungi-microalgae Symbiotic System and Adsorption Study of Heavy Metal ions268 (Separation and Purification Technology, 2021). BohutskyiPConversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph systemBioresour. Technol.201826068751:CAS:528:DC%2BC1cXjt1yqsLc%3D2961445310.1016/j.biortech.2018.02.080 Zuñiga, C. et al. Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nature Communications, 11(1). (2020). De PerezLAlseekhSBrotmanYFernieARNetwork-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretationExpert Rev. Proteomics202017424325510.1080/14789450.2020.1766975 LandaMPhylogenetic and structural response of heterotrophic bacteria to disso 74743_CR83 74743_CR84 74743_CR85 Z Pang (74743_CR92) 2022; 17 VK Michelou (74743_CR62) 2007; 73 M Vila-Costa (74743_CR64) 2006; 314 C Ruiz-González (74743_CR65) 2011; 6 74743_CR81 M Kosugi (74743_CR47) 2013; 54 74743_CR76 74743_CR73 74743_CR74 E Stocker-Wörgötter (74743_CR44) 2008; 25 74743_CR75 R Honegger (74743_CR38) 1993; 97 JA Christie-Oleza (74743_CR21) 2015; 17 R Honegger (74743_CR17) 1991; 42 A Paoli (74743_CR56) 2008; 64 YW Luo (74743_CR19) 2010; 60 74743_CR70 MC Muñoz-Marín (74743_CR60) 2020; 14 XAG Morán (74743_CR18) 2013; 489 74743_CR23 XAG Morán (74743_CR7) 2002; 29 74743_CR20 CB Field (74743_CR2) 1998; 281 P Osyczka (74743_CR87) 2023; 157 74743_CR25 N Jiao (74743_CR10) 2010; 8 74743_CR26 DA Cowan (74743_CR88) 2006; 83 D Fahselt (74743_CR39) 1994; 17 MC Muñoz-Marín (74743_CR57) 2022; 7 I Mary (74743_CR61) 2008; 10 E Marañón (74743_CR8) 2004; 49 P Porada (74743_CR15) 2014; 28 A Coe (74743_CR32) 2016; 61 E Teira (74743_CR9) 2001; 46 74743_CR12 74743_CR94 74743_CR95 74743_CR96 74743_CR14 TL Weiss (74743_CR72) 2017; 44 D Sher (74743_CR27) 2011; 5 74743_CR90 B Biddanda (74743_CR5) 1997; 42 74743_CR43 JJ Morris (74743_CR28) 2008; 74 74743_CR40 RMW Amon (74743_CR11) 2016; 9 74743_CR42 P Bohutskyi (74743_CR78) 2019; 653 M Millot (74743_CR49) 2012; 111 74743_CR48 AP Yelton (74743_CR59) 2016; 10 JD Williamson (74743_CR46) 2002; 127 OL Lange (74743_CR86) 2001; 52 L Jardillier (74743_CR3) 2010; 4 74743_CR33 74743_CR34 74743_CR35 PD Straight (74743_CR50) 2009; 63 RR Malmstrom (74743_CR63) 2005; 50 74743_CR30 74743_CR31 Z Wu (74743_CR58) 2022; 7 EI Friedmann (74743_CR54) 1988; 58 BW Abramson (74743_CR89) 2016; 57 O Weissberg (74743_CR29) 2022; 17 C Zuñiga (74743_CR77) 2019; 4 D Smith (74743_CR36) 1969; 44 T Chen (74743_CR97) 2021; 48 M Landa (74743_CR22) 2014; 16 J Martinez (74743_CR67) 1989; 8 CEM Lines (74743_CR37) 1989; 111 S Aubert (74743_CR41) 2007; 226 74743_CR4 74743_CR66 74743_CR1 74743_CR68 H Teeling (74743_CR24) 2012; 336 74743_CR69 J Xia (74743_CR93) 2009; 37 L De Perez (74743_CR82) 2020; 17 P Shannon (74743_CR80) 2003; 13 P Bohutskyi (74743_CR79) 2018; 260 K Hiller (74743_CR91) 2009; 81 L Jiang (74743_CR71) 2020; 104 PF Sexton (74743_CR13) 2011; 471 SA Amin (74743_CR53) 2015; 522 74743_CR52 M Kanehisa (74743_CR98) 2011; 40 H Li (74743_CR55) 2016; 6 W Elbert (74743_CR16) 2012; 5 MJ Calcott (74743_CR45) 2018; 47 74743_CR6 B Gökalsın (74743_CR51) 2019; 154 |
References_xml | – reference: PangZUsing MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics dataNat. Protoc.2022178173517611:CAS:528:DC%2BB38XhsFCrsL3L3571552210.1038/s41596-022-00710-w – reference: DiMucci, D., Kon, M., Segrè, D. & Typas, N. Machine learning reveals Missing edges and Putative Interaction mechanisms in Microbial Ecosystem Networks. mSystems, 3(5). (2018). – reference: Moran, M. A. et al. Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences, 113(12): pp. 3143–3151. (2016). – reference: Huneck, S. & Yoshimura, I. Identification of Lichen Substances, in Identification of Lichen Substances. pp. 11–123. (1996). – reference: Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, 100(14): pp. 8124–8129. (2003). – reference: MoránXAGDucklowHWEricksonMCarbon fluxes through estuarine bacteria reflect coupling with phytoplanktonMar. Ecol. Prog. Ser.201348975852013MEPS..489...75M10.3354/meps10428 – reference: Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.16.0. (2022). https://github.com/kevinblighe/EnhancedVolcano. – reference: FriedmannEIHuaMOcampo-FriedmannR3.6 cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, AntarcticaPolarforschung1988582/32512591:STN:280:DC%2BD3Mnls12jtw%3D%3D11538357 – reference: PaoliACelussiMDel NegroPFonda UmaniSTalaricoLEcological advantages from light adaptation and heterotrophic-like behavior in Synechococcus harvested from the Gulf of Trieste (Northern Adriatic Sea)FEMS Microbiol. Ecol.20086422192291:CAS:528:DC%2BD1cXlvVKmt7w%3D1833655710.1111/j.1574-6941.2008.00459.x – reference: MartinezJRieraMLalucatJVives-RegoJThymidine incorporation into algal DNA from axenic cultures of Synechococcus, Chlorella and TetraselmisLett. Appl. Microbiol.1989841351381:CAS:528:DyaL1MXkslCmsbg%3D10.1111/j.1472-765X.1989.tb00258.x – reference: LiHWeiJCFunctional analysis of thioredoxin from the desert lichen-forming fungus, endocarpon pusillum Hedwig, reveals its role in stress toleranceSci. Rep.20166271842016NatSR...627184L1:CAS:528:DC%2BC28XptFChsLc%3D27251605489003710.1038/srep27184 – reference: AminSAInteraction and signalling between a cosmopolitan phytoplankton and associated bacteriaNature20155227554981012015Natur.522...98A1:CAS:528:DC%2BC2MXhtFeitLrN2601730710.1038/nature14488 – reference: Muñoz-MarínMCMixotrophy in depthNat. Microbiol.2022712194919503632919910.1038/s41564-022-01251-4 – reference: MarañónECermeñoPFernándezERodríguezJZabalaLSignificance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystemLimnol. Oceanogr.2004495165216662004LimOc..49.1652M10.4319/lo.2004.49.5.1652 – reference: Ruiz-GonzálezCSimóRVila-CostaMSommarugaRGasolJMSunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptakeISME J.20116365065921955992328013210.1038/ismej.2011.118 – reference: WuZSingle-cell Measurements Modelling Reveal. Substantial Org. Carbon Acquisition Prochlorococcus Nat. Microbiol.2022712206820771:CAS:528:DC%2BB38XivVWiu7%2FP36329198 – reference: ElbertWContribution of cryptogamic covers to the global cycles of carbon and nitrogenNat. Geosci.2012574594622012NatGe...5..459E1:CAS:528:DC%2BC38XnvVynur4%3D10.1038/ngeo1486 – reference: OsyczkaPMyśliwa-KurdzielBThe pattern of photosynthetic response and adaptation to changing light conditions in lichens is linked to their ecological rangePhotosynth. Res.2023157121351:CAS:528:DC%2BB3sXmsVaqu7c%3D369764461028204210.1007/s11120-023-01015-z – reference: Bertilsson, S., Berglund, O., Pullin, M. & Chisholm, S. Release of Dissolved Organic Matter by Prochlorococcus55p. 225–231 (Vie et Milieu/Life & Environment, 2005). – reference: Zhang, Z. et al. Long-term survival of Synechococcus and heterotrophic Bacteria without external nutrient supply after changes in their relationship from antagonism to Mutualism. mBio, 12(4). (2021). – reference: Morris, J. H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinform., 12(1). (2011). – reference: Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol., (2017). 2(9). – reference: Zuñiga, C. et al. Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nature Communications, 11(1). (2020). – reference: ChenTZhangHLiuYLiuYXHuangLEVenn: Easy to create repeatable and editable Venn diagrams and Venn networks onlineJ. Genet. Genomics20214898638663445285110.1016/j.jgg.2021.07.007 – reference: Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proceedings of the National Academy of Sciences, 107(23): pp. 10430–10435. (2010). – reference: LuoYWFriedrichsMAMDoneySCChurchMJDucklowHWOceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modelingAquat. Microb. Ecol.201060327328710.3354/ame01427 – reference: MichelouVKCottrellMTKirchmanDLLight-stimulated bacterial production and amino acid assimilation by Cyanobacteria and other microbes in the North Atlantic OceanAppl. Environ. Microbiol.20077317553955462007ApEnM..73.5539M1:CAS:528:DC%2BD2sXhtVeht7zM17630296204207810.1128/AEM.00212-07 – reference: CowanDAGreenTGAWilsonATLichen Metabolism. 2. Aspects of light and dark physiologyNew Phytol.200683376176910.1111/j.1469-8137.1979.tb02307.x – reference: AbramsonBWKachelBKramerDMDucatDCIncreased photochemical efficiency in Cyanobacteria via an Engineered sucrose SinkPlant Cell Physiol.20165712245124601:CAS:528:DC%2BC2sXkt1aisb8%3D2774288310.1093/pcp/pcw169 – reference: LandaMPhylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture studyEnviron. Microbiol.2014166166816811:CAS:528:DC%2BC2cXpsVenu7s%3D2402067810.1111/1462-2920.12242 – reference: Kranner, I. et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8): pp. 3141–3146. (2005). – reference: Nazem-Bokaee, H., Hom, E. F. Y., Warden, A. C., Mathews, S. & Gueidan, C. Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling12 (Frontiers in Microbiology, 2021). – reference: AmonRMWOcean dissolved organics matterNat. Geosci.20169128648652016NatGe...9..864A1:CAS:528:DC%2BC28XhvVGiurvN10.1038/ngeo2841 – reference: AubertSJugeCBoissonAMGoutEBlignyRMetabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environmentsPlanta20072265128712971:CAS:528:DC%2BD2sXhtVWjsbvI17574473238690710.1007/s00425-007-0563-6 – reference: GökalsınBBerberDÖzyiğitoğluGÇYeşiladaESesalNCQuorum sensing attenuation properties of ethnobotanically valuable lichens againstPseudomonas aeruginosaPlant. Biosystems - Int. J. Dealing all Aspects Plant. Biology2019154679279910.1080/11263504.2019.1701117 – reference: Pomraning, K. R. et al. Integration of Proteomics and Metabolomics Into the Design, Build, Test, Learn Cycle to Improve 3-Hydroxypropionic Acid Production in Aspergillus pseudoterreus. Frontiers in Bioengineering and Biotechnology, 9. (2021). – reference: Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (2022). https://www.R-project.org/ – reference: FahseltDCarbon Metabolism in LichensSymbiosis1994171271821:CAS:528:DyaK2MXksFanur0%3D – reference: Armstrong, R. A. & Smith, S. N. The Levels of Ribitol, Arabitol and Mannitol in Individual Lobes of the Lichen Parmelia Conspersa (Ehrh. ex Ach.) ACH34p. 253–260 (Environmental and Experimental Botany, 1994). 3. – reference: CalcottMJAckerleyDFKnightAKeyzersRAOwenJGSecondary metabolism in the lichen symbiosisChem. Soc. Rev.2018475173017601:CAS:528:DC%2BC2sXhslGrurvN2909412910.1039/C7CS00431A – reference: JiaoNMicrobial production of recalcitrant dissolved organic matter: long-term carbon storage in the global oceanNat. Rev. Microbiol.2010885935991:CAS:528:DC%2BC3cXotlWku70%3D2060196410.1038/nrmicro2386 – reference: Xu, J. et al. You Exude What You Eat: How Carbon-, Nitrogen-, and Sulfur-Rich Organic Substrates Shape Microbial Community Composition and the Dissolved Organic Matter Pool (Applied and Environmental Microbiology, 2022). 88(23). – reference: JiangLEvidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environmentsAppl. Microbiol. Biotechnol.202010414641364261:CAS:528:DC%2BB3cXhtVCks7nF3247217510.1007/s00253-020-10663-3 – reference: HillerKMetaboliteDetector: Comprehensive Analysis Tool for targeted and nontargeted GC/MS based Metabolome AnalysisAnal. Chem.2009819342934391:CAS:528:DC%2BD1MXktlSlu7o%3D1935859910.1021/ac802689c – reference: Christie-OlezaJAArmengaudJGuerinPScanlanDJFunctional distinctness in the exoproteomes of marineSynechococcusEnviron. Microbiol.20151710378137941:CAS:528:DC%2BC2MXhslCltbvL25727668494970710.1111/1462-2920.12822 – reference: Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M. & Zinser, E. R. Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean’s Surface. PLoS ONE, 6(2). (2011). – reference: MalmstromRRKieneRPVilaMKirchmanDLDimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic OceanLimnol. Oceanogr.2005506192419312005LimOc..50.1924M1:CAS:528:DC%2BD2MXhtlWrsb7F10.4319/lo.2005.50.6.1924 – reference: Birer-Williams, C. M. C., Chu, R. K., Anderton, C. R., Wright, E. S. & Bernstein, H. C. SubTap, a versatile 3D printed platform for eavesdropping on extracellular interactions. mSystems, 6(4). (2021). – reference: Li, T. et al. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10(1). (2017). – reference: Honegger, R. Metabolic Interactions at the Mycobiont-Photobiont Interface in Lichens, in Plant Relationships. pp. 209–221. (1997). – reference: PoradaPWeberBElbertWPöschlUKleidonAEstimating impacts of lichens and bryophytes on global biogeochemical cyclesGlob. Biogeochem. Cycles201428271852014GBioC..28...71P1:CAS:528:DC%2BC2cXks1Sisb4%3D10.1002/2013GB004705 – reference: KanehisaMGotoSSatoYFurumichiMTanabeMKEGG for integration and interpretation of large-scale molecular data setsNucleic Acids Res.201140D1D109D11422080510324502010.1093/nar/gkr988 – reference: SmithDMuscatineLLewisDCarbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosisBiol. Rev.196944117851:CAS:528:DyaF1MXhtFags78%3D489011810.1111/j.1469-185X.1969.tb00821.x – reference: Nair, S. et al. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. Sci. Adv., 8(39). (2022). – reference: HoneggerRKutasiVRuffnerHPPolyol patterns in eleven species of aposymbiotically cultured lichen mycobiontsMycol. Res.199397135391:CAS:528:DyaK3sXks1Ontro%3D10.1016/S0953-7562(09)81109-X – reference: SextonPFEocene global warming events driven by ventilation of oceanic dissolved organic carbonNature201147173383493522011Natur.471..349S1:CAS:528:DC%2BC3MXjsVOjtbk%3D2141233610.1038/nature09826 – reference: BiddandaBBennerRCarbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplanktonLimnol. Oceanogr.19974235065181997LimOc..42..506B1:CAS:528:DyaK2sXmsF2ht7o%3D10.4319/lo.1997.42.3.0506 – reference: Vila-CostaMDimethylsulfoniopropionate Uptake Mar. Phytoplankton Sci.20063145799652654 – reference: De PerezLAlseekhSBrotmanYFernieARNetwork-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretationExpert Rev. Proteomics202017424325510.1080/14789450.2020.1766975 – reference: WilliamsonJDJenningsDBGuoWWPharrDMEhrenshaftMSugar Alcohols, Salt stress, and Fungal Resistance: polyols—multifunctional Plant Protection?J. Am. Soc. Hortic. Sci.200212744674731:CAS:528:DC%2BD38Xlt1Orsr8%3D10.21273/JASHS.127.4.467 – reference: XiaJPsychogiosNYoungNWishartDMetaboAnalyst: a web server for metabolomic data analysis and interpretationNucleic Acids Res.200937Web ServerW652W6601:CAS:528:DC%2BD1MXosFSkt7c%3D19429898270387810.1093/nar/gkp356 – reference: BohutskyiPConversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph systemBioresour. Technol.201826068751:CAS:528:DC%2BC1cXjt1yqsLc%3D2961445310.1016/j.biortech.2018.02.080 – reference: Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. (2020). https://CRAN.R-project.org/package=factoextra – reference: MillotMDi MeoFTomasiSBoustieJTrouillasPPhotoprotective capacities of lichen metabolites: a joint theoretical and experimental studyJ. Photochem. Photobiol., B201211117261:CAS:528:DC%2BC38XlvFOks7o%3D2251689210.1016/j.jphotobiol.2012.03.005 – reference: LangeOLGreenTGAHeberUHydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance?J. Exp. Bot.200152363203320421:CAS:528:DC%2BD3MXns1Wkt7g%3D1155973910.1093/jexbot/52.363.2033 – reference: Pontiller, B., Martínez-García, S., Lundin, D. & Pinhassi, J. Labile dissolved Organic Matter compound characteristics select for divergence in Marine bacterial activity and transcription. Front. Microbiol., 11. (2020). – reference: LinesCEMRatcliffeRGReesTAVSouthonTEA 13 C NMR study of photosynthate transport and metabolism in the lichen Xanthoria Calcicola OxnerNew Phytol.198911134474561:CAS:528:DyaL1MXkt1Wjs78%3D3387400710.1111/j.1469-8137.1989.tb00707.x – reference: Roth-Rosenberg, D. et al. Prochlorococcus cells rely on microbial interactions rather than on chlorotic resting stages to survive long-term nutrient starvation. mBio, 11(4). (2020). – reference: Teiser, M. L. O. Extracellular low Molecular Weight Organic Compounds Produced by Synechococcus sp. and Their Roles in the food web of Alkaline hot Spring Microbial mat Communities, in Department of Biology (University of Oregon, 1993). – reference: Biller, S. J., Coe, A., Roggensack, S. E., Chisholm, S. W. & Mason, O. Heterotroph Interact. Alter. Prochlorococcus Transcriptome Dynamics Dur. Ext. Periods Darkn. mSystems, 3(3). (2018). – reference: WeissbergOAharonovichDSherDPhototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversityISME J.202217222723736335212986006410.1038/s41396-022-01330-8 – reference: MaryIDiel rhythmicity in amino acid uptake byProchlorococcusEnviron. Microbiol.2008108212421311:CAS:528:DC%2BD1cXpsFOqt7k%3D1843001910.1111/j.1462-2920.2008.01633.x – reference: MoránXAGGasolJMPedrós-AlióCEstradaMPartitioning of phytoplanktonic organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimesAquat. Microb. Ecol.20022923925210.3354/ame029239 – reference: TeiraEJosé PazóMSerretPFernándezEDissolved organic carbon production by microbial populations in the Atlantic OceanLimnol. Oceanogr.2001466137013772001LimOc..46.1370T1:CAS:528:DC%2BD3MXnsVSktbo%3D10.4319/lo.2001.46.6.1370 – reference: YeltonAPGlobal genetic capacity for mixotrophy in marine picocyanobacteriaISME J.20161012294629571:CAS:528:DC%2BC28XhvFOht7vM27137127514818810.1038/ismej.2016.64 – reference: Bohutskyi, P. et al. Metabolic effects of vitamin B12 on physiology, stress resistance, growth rate and biomass productivity of cyanobacterium stanieri planktonic and biofilm cultures. Algal Res., 42. (2019). – reference: CoeASurvival of Prochlorococcus in extended darknessLimnol. Oceanogr.2016614137513882016LimOc..61.1375C10.1002/lno.10302 – reference: Wang, J. et al. Construction of fungi-microalgae Symbiotic System and Adsorption Study of Heavy Metal ions268 (Separation and Purification Technology, 2021). – reference: HoneggerRFunctional aspects of the Lichen SymbiosisAnnu. Rev. Plant Physiol. Plant Mol. Biol.19914215535781:CAS:528:DyaK3MXltFSms7s%3D10.1146/annurev.pp.42.060191.003005 – reference: Jo, C. et al. Construction and modeling of a coculture microplate for real-time measurement of Microbial interactions. mSystems, 8(2). (2023). – reference: Becker, J. W. et al. Closely Relat. Phytoplankton Species Produce Similar Suites Dissolved Org. Matter Front. Microbiol., 5. (2014). – reference: ZuñigaCEnvironmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communitiesNat. Microbiol.2019412218421913159155410.1038/s41564-019-0567-6 – reference: JardillierLZubkovMVPearmanJScanlanDJSignificant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic OceanISME J.201049118011921:CAS:528:DC%2BC3cXhtVKgsr7E2039357510.1038/ismej.2010.36 – reference: TeelingHSubstrate-controlled succession of Marine Bacterioplankton populations Induced by a Phytoplankton BloomScience201233660816086112012Sci...336..608T1:CAS:528:DC%2BC38Xmt1Gntrw%3D2255625810.1126/science.1218344 – reference: KosugiMArabitol provided by Lichenous Fungi Enhances Ability To Dissipate Excess Light Energy in a Symbiotic Green Alga under DesiccationPlant Cell Physiol.2013548131613251:CAS:528:DC%2BC3sXht1Wlur%2FJ2373750110.1093/pcp/pct079 – reference: Stocker-WörgötterEMetabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genesNat. Prod. Rep.20082511882001825090210.1039/B606983P – reference: Li, T. et al. Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45. (2020). – reference: WeissTLYoungEJDucatDCA synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate productionMetab. Eng.2017442362451:CAS:528:DC%2BC2sXhsleltb%2FF2906149210.1016/j.ymben.2017.10.009 – reference: ShannonPCytoscape: a Software Environment for Integrated Models of Biomolecular Interaction NetworksGenome Res.20031311249825041:CAS:528:DC%2BD3sXovFWrtr4%3D1459765840376910.1101/gr.1239303 – reference: MorrisJJKirkegaardRSzulMJJohnsonZIZinserERFacilitation of Robust Growth of Prochlorococcus colonies and dilute liquid cultures by helper heterotrophic BacteriaAppl. Environ. Microbiol.20087414453045342008ApEnM..74.4530M1:CAS:528:DC%2BD1cXptVeit7Y%3D18502916249317310.1128/AEM.02479-07 – reference: BohutskyiPProduction of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestionSci. Total Environ.2019653137713942019ScTEn.653.1377B1:CAS:528:DC%2BC1cXit1SnsrrP3075957710.1016/j.scitotenv.2018.11.026 – reference: FieldCBBehrenfeldMJRandersonJTFalkowskiPPrimary production of the Biosphere: integrating Terrestrial and Oceanic ComponentsScience199828153742372401998Sci...281..237F1:CAS:528:DyaK1cXksFKitb0%3D965771310.1126/science.281.5374.237 – reference: Cuhel, R. L. & Waterbury, J. B. Biochemical composition and short term nutrient incorporation patterns in a unicellular marine cyanobacterium, Synechococcus (WH7803)1. Limnology and Oceanography, 29(2): pp. 370–374. (1984). – reference: Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences, 110(24): pp. 9824–9829. (2013). – reference: SherDThompsonJWKashtanNCroalLChisholmSWResponse of Prochlorococcus ecotypes to co-culture with diverse marine bacteriaISME J.201157112511321:CAS:528:DC%2BC3MXnvVaqsLg%3D21326334314628810.1038/ismej.2011.1 – reference: Jahagirdar, S. & Saccenti, E. On the use of correlation and MI as a measure of Metabolite—Metabolite Association for Network Differential Connectivity Analysis. Metabolites, 10(4). (2020). – reference: StraightPDKolterRInterspecies Chemical Communication in Bacterial DevelopmentAnnu. Rev. Microbiol.2009631991181:CAS:528:DC%2BD1MXhtlSitLvN1956642110.1146/annurev.micro.091208.073248 – reference: Muñoz-MarínMCMixotrophy in Marine picocyanobacteria: use of organic compounds by Prochlorococcus and SynechococcusISME J.20201451065107332034281717436510.1038/s41396-020-0603-9 – volume: 48 start-page: 863 issue: 9 year: 2021 ident: 74743_CR97 publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2021.07.007 – volume: 8 start-page: 593 issue: 8 year: 2010 ident: 74743_CR10 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2386 – volume: 4 start-page: 1180 issue: 9 year: 2010 ident: 74743_CR3 publication-title: ISME J. doi: 10.1038/ismej.2010.36 – volume: 6 start-page: 27184 year: 2016 ident: 74743_CR55 publication-title: Sci. Rep. doi: 10.1038/srep27184 – volume: 46 start-page: 1370 issue: 6 year: 2001 ident: 74743_CR9 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2001.46.6.1370 – volume: 489 start-page: 75 year: 2013 ident: 74743_CR18 publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps10428 – volume: 40 start-page: D109 issue: D1 year: 2011 ident: 74743_CR98 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr988 – volume: 63 start-page: 99 issue: 1 year: 2009 ident: 74743_CR50 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.091208.073248 – volume: 5 start-page: 459 issue: 7 year: 2012 ident: 74743_CR16 publication-title: Nat. Geosci. doi: 10.1038/ngeo1486 – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 74743_CR80 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 37 start-page: W652 issue: Web Server year: 2009 ident: 74743_CR93 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp356 – volume: 14 start-page: 1065 issue: 5 year: 2020 ident: 74743_CR60 publication-title: ISME J. doi: 10.1038/s41396-020-0603-9 – volume: 471 start-page: 349 issue: 7338 year: 2011 ident: 74743_CR13 publication-title: Nature doi: 10.1038/nature09826 – volume: 6 start-page: 650 issue: 3 year: 2011 ident: 74743_CR65 publication-title: ISME J. doi: 10.1038/ismej.2011.118 – ident: 74743_CR25 doi: 10.3389/fmicb.2020.588778 – ident: 74743_CR33 doi: 10.1128/mSystems.00040-18 – volume: 54 start-page: 1316 issue: 8 year: 2013 ident: 74743_CR47 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct079 – ident: 74743_CR83 doi: 10.3390/metabo10040171 – volume: 49 start-page: 1652 issue: 5 year: 2004 ident: 74743_CR8 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.5.1652 – volume: 25 start-page: 188 issue: 1 year: 2008 ident: 74743_CR44 publication-title: Nat. Prod. Rep. doi: 10.1039/B606983P – volume: 47 start-page: 1730 issue: 5 year: 2018 ident: 74743_CR45 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00431A – volume: 17 start-page: 227 issue: 2 year: 2022 ident: 74743_CR29 publication-title: ISME J. doi: 10.1038/s41396-022-01330-8 – volume: 10 start-page: 2124 issue: 8 year: 2008 ident: 74743_CR61 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01633.x – volume: 17 start-page: 1735 issue: 8 year: 2022 ident: 74743_CR92 publication-title: Nat. Protoc. doi: 10.1038/s41596-022-00710-w – volume: 44 start-page: 236 year: 2017 ident: 74743_CR72 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2017.10.009 – ident: 74743_CR95 – volume: 42 start-page: 553 issue: 1 year: 1991 ident: 74743_CR17 publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.pp.42.060191.003005 – volume: 61 start-page: 1375 issue: 4 year: 2016 ident: 74743_CR32 publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10302 – ident: 74743_CR90 doi: 10.3389/fbioe.2021.603832 – volume: 42 start-page: 506 issue: 3 year: 1997 ident: 74743_CR5 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1997.42.3.0506 – volume: 17 start-page: 243 issue: 4 year: 2020 ident: 74743_CR82 publication-title: Expert Rev. Proteomics doi: 10.1080/14789450.2020.1766975 – ident: 74743_CR42 doi: 10.1007/978-3-662-10370-8_12 – ident: 74743_CR84 doi: 10.1128/msystems.00902-21 – volume: 97 start-page: 35 issue: 1 year: 1993 ident: 74743_CR38 publication-title: Mycol. Res. doi: 10.1016/S0953-7562(09)81109-X – volume: 83 start-page: 761 issue: 3 year: 2006 ident: 74743_CR88 publication-title: New Phytol. doi: 10.1111/j.1469-8137.1979.tb02307.x – ident: 74743_CR48 doi: 10.1073/pnas.0407716102 – ident: 74743_CR68 doi: 10.1016/j.seppur.2021.118689 – volume: 226 start-page: 1287 issue: 5 year: 2007 ident: 74743_CR41 publication-title: Planta doi: 10.1007/s00425-007-0563-6 – ident: 74743_CR69 doi: 10.1016/j.algal.2019.101755 – volume: 16 start-page: 1668 issue: 6 year: 2014 ident: 74743_CR22 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12242 – ident: 74743_CR81 doi: 10.1186/1471-2105-12-436 – volume: 10 start-page: 2946 issue: 12 year: 2016 ident: 74743_CR59 publication-title: ISME J. doi: 10.1038/ismej.2016.64 – volume: 260 start-page: 68 year: 2018 ident: 74743_CR79 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.080 – ident: 74743_CR14 doi: 10.1073/pnas.0832439100 – volume: 44 start-page: 17 issue: 1 year: 1969 ident: 74743_CR36 publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1969.tb00821.x – volume: 64 start-page: 219 issue: 2 year: 2008 ident: 74743_CR56 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00459.x – ident: 74743_CR23 doi: 10.3389/fmicb.2014.00111 – volume: 154 start-page: 792 issue: 6 year: 2019 ident: 74743_CR51 publication-title: Plant. Biosystems - Int. J. Dealing all Aspects Plant. Biology doi: 10.1080/11263504.2019.1701117 – ident: 74743_CR6 – ident: 74743_CR1 doi: 10.1073/pnas.1307701110 – ident: 74743_CR52 doi: 10.3389/fmicb.2021.667864 – volume: 17 start-page: 3781 issue: 10 year: 2015 ident: 74743_CR21 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12822 – ident: 74743_CR40 doi: 10.1016/0098-8472(94)90046-9 – ident: 74743_CR43 doi: 10.1007/978-3-642-85243-5_2 – volume: 60 start-page: 273 issue: 3 year: 2010 ident: 74743_CR19 publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01427 – volume: 111 start-page: 17 year: 2012 ident: 74743_CR49 publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2012.03.005 – ident: 74743_CR70 doi: 10.1186/s13068-017-0736-x – volume: 8 start-page: 135 issue: 4 year: 1989 ident: 74743_CR67 publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.1989.tb00258.x – ident: 74743_CR96 – ident: 74743_CR30 doi: 10.1038/nmicrobiol.2017.100 – ident: 74743_CR66 doi: 10.4319/lo.1984.29.2.0370 – ident: 74743_CR26 doi: 10.1128/aem.01558-22 – ident: 74743_CR12 doi: 10.1073/pnas.1514645113 – ident: 74743_CR34 doi: 10.1371/journal.pone.0016805 – volume: 81 start-page: 3429 issue: 9 year: 2009 ident: 74743_CR91 publication-title: Anal. Chem. doi: 10.1021/ac802689c – volume: 281 start-page: 237 issue: 5374 year: 1998 ident: 74743_CR2 publication-title: Science doi: 10.1126/science.281.5374.237 – volume: 7 start-page: 1949 issue: 12 year: 2022 ident: 74743_CR57 publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01251-4 – volume: 29 start-page: 239 year: 2002 ident: 74743_CR7 publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame029239 – volume: 5 start-page: 1125 issue: 7 year: 2011 ident: 74743_CR27 publication-title: ISME J. doi: 10.1038/ismej.2011.1 – ident: 74743_CR4 – volume: 50 start-page: 1924 issue: 6 year: 2005 ident: 74743_CR63 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2005.50.6.1924 – volume: 9 start-page: 864 issue: 12 year: 2016 ident: 74743_CR11 publication-title: Nat. Geosci. doi: 10.1038/ngeo2841 – volume: 653 start-page: 1377 year: 2019 ident: 74743_CR78 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.026 – volume: 157 start-page: 21 issue: 1 year: 2023 ident: 74743_CR87 publication-title: Photosynth. Res. doi: 10.1007/s11120-023-01015-z – volume: 7 start-page: 2068 issue: 12 year: 2022 ident: 74743_CR58 publication-title: Single-cell Measurements Modelling Reveal. Substantial Org. Carbon Acquisition Prochlorococcus Nat. Microbiol. – volume: 111 start-page: 447 issue: 3 year: 1989 ident: 74743_CR37 publication-title: New Phytol. doi: 10.1111/j.1469-8137.1989.tb00707.x – volume: 104 start-page: 6413 issue: 14 year: 2020 ident: 74743_CR71 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10663-3 – volume: 314 start-page: 652 issue: 5799 year: 2006 ident: 74743_CR64 publication-title: Dimethylsulfoniopropionate Uptake Mar. Phytoplankton Sci. – volume: 4 start-page: 2184 issue: 12 year: 2019 ident: 74743_CR77 publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0567-6 – ident: 74743_CR31 doi: 10.1128/mBio.01846-20 – volume: 17 start-page: 127 year: 1994 ident: 74743_CR39 publication-title: Symbiosis – ident: 74743_CR76 doi: 10.1126/sciadv.abf4792 – volume: 336 start-page: 608 issue: 6081 year: 2012 ident: 74743_CR24 publication-title: Science doi: 10.1126/science.1218344 – ident: 74743_CR74 doi: 10.1128/msystems.00181-18 – volume: 52 start-page: 2033 issue: 363 year: 2001 ident: 74743_CR86 publication-title: J. Exp. Bot. doi: 10.1093/jexbot/52.363.2033 – ident: 74743_CR73 doi: 10.1038/s41467-020-17612-8 – ident: 74743_CR35 doi: 10.1016/j.algal.2019.101580 – ident: 74743_CR94 – volume: 522 start-page: 98 issue: 7554 year: 2015 ident: 74743_CR53 publication-title: Nature doi: 10.1038/nature14488 – volume: 57 start-page: 2451 issue: 12 year: 2016 ident: 74743_CR89 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw169 – volume: 73 start-page: 5539 issue: 17 year: 2007 ident: 74743_CR62 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00212-07 – volume: 74 start-page: 4530 issue: 14 year: 2008 ident: 74743_CR28 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02479-07 – volume: 58 start-page: 251 issue: 2/3 year: 1988 ident: 74743_CR54 publication-title: Polarforschung – ident: 74743_CR20 doi: 10.1073/pnas.0913677107 – volume: 127 start-page: 467 issue: 4 year: 2002 ident: 74743_CR46 publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.127.4.467 – ident: 74743_CR85 doi: 10.1128/msystems.00017-21 – volume: 28 start-page: 71 issue: 2 year: 2014 ident: 74743_CR15 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2013GB004705 – ident: 74743_CR75 doi: 10.1128/mBio.01614-21 |
SSID | ssj0000529419 |
Score | 2.4316602 |
Snippet | Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these... Abstract Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 25303 |
SubjectTerms | 631/326/2565 631/326/2565/855 Alcohols Amino acids BASIC BIOLOGICAL SCIENCES Bioreactors Bioreactors - microbiology Biotechnology Carbon cycle Carbon dioxide Coculture Techniques - methods Cross-feeding Cyanobacteria - genetics Cyanobacteria - metabolism Environmental science Germfree Humanities and Social Sciences Intermediates Lichens Lichens - metabolism Lichens - microbiology Membrane-separated bioreactor Metabolic engineering Metabolism Metabolite exchange Metabolites Microbial activity Microbial communities Microbial community Microbial Consortia Microbial ecology Microbial Interactions Microbiomes multidisciplinary Nitrogen cycle Phototroph-heterotroph co-culture Rhodotorula - genetics Rhodotorula - metabolism Science Science (multidisciplinary) Sugar Synechococcus - genetics Synechococcus - metabolism Synthetic lichen Tricarboxylic acid cycle Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3q27SgTfNGzbnHaaRxWXRVifVti30FyKxZ2O2FlwfoT_2e-knXHHC74IpYU2PU1yzun50qTfEeIFQDCF6Baq0D5XVGNnusopR4sy5D5vfPrgdvahPv1I7y-qi2upvnhN2EQPPHXccdfWQZcdttqRaduGTF2GEAxMr_NVgkaIedcGUxOrd2moMPNfMrlujkdEKv6brCQFBE1a0V4kSoT9OKzgWH8Cm7-vmfxl4jTFo5M74vYMJOXrqQF3xY043BM3p9SSm_vi-1n_LQbZDkEu4xJD4iGqMSaib5ye-DYgV646OW4GoECIkX7TDvDvxN_cqg2n9ZEYL4-A6H0rmewJxgp5a1jOJZfnhinA989y2S97z5_dZaIKRc2SsEteaTqMD8T5ybvzt6dqTr2gPCDdWjm_MHER6yJGjlg-1lRrR8weH1zjXGyASxZ1ZZzxLTO0A5bEqgqEwp3z-qE4GFZDfCwkubzEHYWjtiKKHd4gMe8ihq2Bp2y7TLzcasF-mQg2bJoY142ddGahM5t0ZikTb1hRu5JMjp1OwGTsbDL2XyaTiUNWswXGYKJczyuK_NqWhAZpPOJoq307-_NodVHmNQI3FZl4vrsMT-TpFWhwdZXKFJyksTGZeDQZy66e2hAzselMNHtmtNeQ_StD_ymxfQOyF4DhEPpqa3E_6_X3nnryP3rqUNwq2WMQq8vqSBysv17FpwBha_cs-dsPkNQxbA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxPfCBjISb2AtsS9O8oQAMU1I42lIfbP8FahYk7FkEv0j-J-5c9JO5UuqWilxr3bvzvezz_kdYy8RBEOIrhKF8rkAjW9NWzrhoJIh93nt04bb6Sd98hk-LsrFvOE2zMcqN3NimqhD72mP_EgVMtc4dULx5uK7oKpRlF2dS2jcZLeIuoysulpU2z0WymJB0czPyuSqPhowXtEzZRIE4mhQAnbiUaLtx48e3etvkPPPk5O_pU9TVDq-x-7OcJK_nfR_n92I3QN2eyowuX7Ifp4uf8TAbRf4Kq5wYdxFMcRE942XJ9YNlMv7lg_rDrEgiuF-bTv08sTibMWaivtwXDUPCNSXlhPlE5osyhvRfs6pPQ1MIIj_xlfL1dLT5jtPhKHYsyTsnM6bdsMjdnb84ez9iZgLMAiPwG4UzldNrKIuYqS45aMGrRwQh3xwtXOxRnRS6bJxjbfE047gJJZlAGzcOq8es72u7-I-4-Byid8oHNgSILY4j8S8jbh4DZS4bTP2aqMFczHRbJiUHle1mXRmUGcm6cxAxt6RorYtiSI7Xegvv5jZ40xrdVCyxZd20FhbQ6NlCAFNqG59aTN2QGo2iDSILtfTuSI_Ggk4IIU_cbjRvpm9ejDXNpixF9vb6I-UZEEN9lepTUGlGusmY08mY9n2UzVAfGwqY_WOGe0MZPdOt_yaOL8RuKOFSxT6emNx1_369z_19P_DOGB3JPkCxmJZHrK98fIqPkOQNbrnyZN-AdbyJ_g priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGJiReEL_JNpCReAOLJL6kyWNBTFOl8cKQ9mbFPwIVa4qWTqJ_xP5nvnPSosJ4QKpaKbm4du7O99lnfxbiNUAw-WAnKtMuVVTiq24LqyxNcp-6tHJxwu3sU3n6hWYXxcWeyDd7YeKi_UhpGbvpzeqwdz0CDW8Gy0kBAJNWdEccMFU7bPtgOp19nm1nVjh3RVk97pBJdXXLwztRKJL142cJp7oNaP69XvKPpGmMRScPxP0RRMrpUO2HYi90j8Td4VjJ9WNxczb_GbxsOi8XYYHhcBdUHyLJNy4PXBsoVy5b2a87IEAUI9266eDbkbu5UWs-0kdirNwDns8byURPMFSUt4LVXLI8N0wBun-Xi_li7njKXcZ3iprFwi55lWnXPxHnJx_PP5yq8dgF5QDnVsq6SR0mocxC4GjlQkmltsTM8d5W1oYKmGRSFrWtXcPs7IAkoSg8Qbi1Tj8V-92yC8-FJJvmeCKz1BREoUXvEdI2YMjqOV3bJuLNRgvmx0CuYWJSXFdm0JmBzkzUmaFEvGdFbSWZGDteWF59NaOhmLYpvc5bfEpLddNUVJe5975GT9W6oknEEavZAF8wSa7j1URuZXJCgzT-4nijfTP6cm90lqclgjZliXi1vQ0v5NQKNLi8jjIZH9BY1Yl4NhjLtp66JmZh04modsxopyG7d7r5t8j0DbieAYKj0Lcbi_tdr3-_qcP_Ez8S93L2DUTkvDgW-6ur6_ACUGtlX46-9QtB1Sc9 priority: 102 providerName: Springer Nature |
Title | Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens |
URI | https://link.springer.com/article/10.1038/s41598-024-74743-4 https://www.ncbi.nlm.nih.gov/pubmed/39455633 https://www.proquest.com/docview/3120699041 https://www.proquest.com/docview/3121058989 https://www.osti.gov/servlets/purl/2476534 https://pubmed.ncbi.nlm.nih.gov/PMC11511929 https://doaj.org/article/fa6d32f32f6b49aa84962ddd9048fc5a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBa9MNjL2H1uu-DB3jZttizfHsZIQ0sJpIythbwJS5a3sMRZ4xSaH7H_vO_ITka2bBBikJUTSedI59PtO4y9BgiWpdUpDyMTcJngK69izbVMRRmYIDNuwW10mVxcy-E4Hu-xdbijrgGbnVM7iid1vZi-u7tZfUSH_9BeGc_eN3BCdFFMSA5wLCMu99khPFNKEQ1GHdxvub5FLl2sDyJh5wATortHs1vMlq9ylP54zNH1dsHRv09V_rG16jzW-UP2oIOafr-1jUdsz9aP2b02-OTqCfs5mtzZ0i_q0p_ZGSbNteWNdVTgSG4ZOSDXn1d-s6qBEyHGN6uixgjgGJ4LvqLAPz5m1A3ab1L4RAeFZoW8JWxrSvmpYhxt-92fTWYTQwvzviMTRcmcsCmdRa2bp-zq_OxqcMG74AzcAPQtuTZpblObhNaSTzM2kUmkJfHLlzrT2mZALmkS5zo3BXG4A7jYOC4lMlfaRM_YQT2v7QvmSx0I_CLUsoiltBXGGBtUFhPbkjZ1K4-9WWtB_WgpOJTbOo8y1epMQWfK6UxJj52SojY5iT7bJcwXX1XXG1VVJGUkKnwSLfOiyGSeiLIsc4xnlYkLjx2TmhVQCFHpGjpzZJZKSFQowl-crLWv1garolAECVy7DD32avMafZU2YKDB-a3LE1IYxyz32PPWWDbljHJJXG2Rx7ItM9qqyPabevLN8YED1IcA6hD6dm1xv8v175Y6-m8lj9l9QV0BblrEJ-xgubi1L4G_lrrH9tNx2mOH_f7wyxDP07PLT5-ROkgGPbem0XPd7hdwTzLo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIgQXxI5pgUGCE4zqZbwdEGKrWtr0FKTcRp7FENHYpU4F-RH8FP4j3xvHqcJ2qxQlkj15mcnb542_x9hTBMHSOp2LKDGhkBneyjrVQss8tqEJC-M33EZH2d5H-WGSTjbYz-FZGDpWOdhEb6hta2iPfCeJ4jCD6ZTRq5OvgrpGUXV1aKHRi8WBW3xDyta93H8H_j6L493347d7YtlVQBhEK3OhTV663GWRc2SMjctklmhJwOhWF1q7Ai43z9JSl6Yi8HF4XJemVmJwrU0CspfYZfjdkHK9fJKvtnSoaCajcvloTpgUOx3cIz3CFkuBsF0mQq65P98lAB8ttPlvEe6fBzV_q9Z6J7h7g11fRq_8dS9uN9mGa26xK30_y8Vt9mM0_e4srxrLZ26GPLxxonMeXRyXe5AP0OVtzbtFg9ATZLhZVA2MigeNrsSCeglxJOkd8oJpxQlhChoCenOI6zGNp4UJ5Axf-Gw6mxra6-cenxQz88SO6Xhr091h44vgzF222bSNu8-41GGMb0RaVqmUrobZcmHtkCtbqhPXAXs-cEGd9Kgeylfjk0L1PFPgmfI8UzJgb4hRq5GEyO0vtKef1FLBVV1lNolrvDIty6oqZJnF1lpIbFGbtArYFrFZIbAhdF5Dx5jMXMUSC0rwE9sD99XSiHTqXOQD9mR1G-pPNR1wsD3zYyLqDFmUAbvXC8tqnkkpCf4tCVixJkZrC1m_00w_e4hx5AkRYn8QfTFI3Pm8_v1PPfj_Mh6zq3vj0aE63D862GLXYtILhAFxus0256dn7iHiu7l-5LWKM3XBWvwLL7Bjnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKViBeEDehBYwET2BtYjvXA0KUdtVSuqpQkfpmxUdgRTcpzVaQH8EP4t8x4yRbLddbpdWulDizdubwjMf-hpBn4ARL63TKImFCJhP4ystYMy1TbkMTZsYvuB1Mk92P8t1xfLxGfg5nYXBb5WATvaG2tcE18rGIeJiA6ZTRuOy3RRxuT16ffmVYQQozrUM5jU5E9l37DcK35tXeNvD6OeeTnaO3u6yvMMAMeC4Lpk2au9QlkXNomI1LZCK0RJB0qzOtXQbTb5rEuc5NgUDkMPu6OLYSGpfaCCB7haynGBSNyPrWzvTww3KBB1NoMsr7gzqhyMYNTJZ4oI1LBk68FEyuTIa-ZgD81KDbf_N3_9y2-Vvu1k-Jk5vkRu_L0jed8N0ia666Ta521S3bO-THwey7s7SoLJ27OUTllWON81jjcLmD_AC6tC5p01bgiAIZatqiAhPjIaQL1mJlIQohewNRwqygiDcF-gL0FiC8J9geB8YggvhC57P5zODKP_VopdAzT-wEN7tWzV1ydBm8uUdGVV25B4RKHXJ4ItKyiKV0JRgxF5YOImeLWeMyIC8GLqjTDuND-dy8yFTHMwU8U55nSgZkCxm1bIn43P5CffZJ9equyiKxgpfwSbTMiyKTecKttSC_WWniIiAbyGYFbg5i9Rrc1GQWiksYkIC_2By4r3qT0qgLBQjI0-VtMAaY4QEO1ue-TYR1IrM8IPc7YVn2U-QSweBEQLIVMVoZyOqdavbZA45D1BBBJABEXw4Sd9Gvf7-ph_8fxhNyDTRYvd-b7m-Q6xzVAnwCHm-S0eLs3D0CZ2-hH_dqRYm6ZEX-Bb67aTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+and+membrane-separated+culturing+of+synthetic+cyanobacteria-yeast+consortia+reveals+metabolic+cross-talk+mimicking+natural+cyanolichens&rft.jtitle=Scientific+reports&rft.au=Bohutskyi%2C+Pavlo&rft.au=Pomraning%2C+Kyle+R.&rft.au=Jenkins%2C+Jackson+P.&rft.au=Kim%2C+Young-Mo&rft.date=2024-10-25&rft.pub=Nature+Publishing+Group&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-74743-4&rft.externalDocID=2476534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |