The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of resear...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 346; no. 6209; p. 601 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
American Association for the Advancement of Science
31.10.2014
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria.
Science
, this issue
10.1126/science.1256898
Specific proteins can tether and distinguish between specific intracellular transport vesicles in vivo.
The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus. |
---|---|
AbstractList | The Golgi apparatus is a multi-compartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. Here, we develop a re-routing and capture assay to investigate systematically the vesicle-tethering activities of ten widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus. The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science , this issue 10.1126/science.1256898 Specific proteins can tether and distinguish between specific intracellular transport vesicles in vivo. The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus. The eukaryotic cell contains membrane-bound organelles with distinct functionality and composition. Preservation of organelle identity depends on the highly selective transfer of proteins and lipids between compartments. Central to this are transport carriers called vesicles. Mechanisms are required not only for the selective incorporation of specific cargos into vesicles as they bud off a donor organelle, but also for the correct delivery to an acceptor organelle. SNARE proteins on the vesicle and destination organelle drive membrane fusion after arrival and have been implicated in contributing to specificity in choice of organelle. However, upstream of the fusion step, a process called tethering is thought to initially attach the vesicle to the destination organelle and then bring it close to allow the SNARE proteins on opposite membranes to interact. The importance of tethering in conferring specificity to membrane traffic is currently unclear. To study the contribution of tethering to specificity in membrane trafficking, we focused on the Golgi apparatus. The Golgi complex is a multicompartment organelle at the intersection of secretory and endocytic trafficking pathways and so receives vesicles from a range of destinations. A family of well-conserved large coiled-coil proteins on the Golgi, the golgins, have been suggested to function as vesicle tethers at the Golgi. However, mild phenotypes of golgin mutants have presented a challenge for elucidating their in vivo roles. We thus used a relocation strategy to test for their sufficiency rather than necessity in vesicle tethering. Ten mammalian golgins that are conserved outside of vertebrates and found on different regions of the Golgi were ectopically expressed at the mitochondria through attachment to a mitochondrial transmembrane domain in place of their C-terminal Golgi targeting domain. We then used the distribution of cargo-laden vesicles originating from different locations as a readout for the golgins' tethering activity. We demonstrate that subsets of golgins are capable of redirecting particular endogenous or exogenous cargo destined for the Golgi to an ectopic site, the mitochondria. Specifically, golgin-97, golgin-245, and GCC88 were able to capture endosome-to- Golgi cargos; GM130 and GMAP210 were able to capture endoplasmic reticulum (ER)-to-Golgi cargos; and golgin-84, TMF, and GMAP210 were able to capture Golgi resident proteins. Furthermore, electron microscopy yielded ultrastructural evidence for the accumulation of vesicular membranes around mitochondria decorated with specific golgins. These data suggest that not only do the golgins capture vesicles, but they also exhibit specificity toward vesicles of different origins--from the endosomes, from the ER, or from within the Golgi itself. We have been able to demonstrate that relocation of specific golgins is sufficient to reroute specific classes of transport vesicles to an ectopic site. Thus, most golgins are sufficient to nucleate a specific tethering process, and hence they are likely to make a major contribution to the specificity of vesicle traffic arriving at the Golgi. In addition, this relocation system may be a useful tool for isolating specific transport vesicles that are normally short-lived, hence providing a route to further understanding of specificity in membrane traffic. The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane "tethers." However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science, this issue 10.1126/science.1256898 The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus. You've got to pick a Golgi tether or twoThe inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane "tethers." However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria.Science, this issue 10.1126/science.1256898 The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus. You've got to pick a Golgi tether or two The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science , this issue 10.1126/science.1256898 |
Author | Wong, Mie Munro, Sean |
AuthorAffiliation | 1 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK |
AuthorAffiliation_xml | – name: 1 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK |
Author_xml | – sequence: 1 givenname: Mie surname: Wong fullname: Wong, Mie – sequence: 2 givenname: Sean surname: Munro fullname: Munro, Sean |
BookMark | eNqFkUFrGzEQhUVJaZy0554Kgl5y2WQkrVbSpVBCmwYCvaTHIrTaWUdmLbkrOZB_Xzl2CwmEnAZmvjd6mndCjmKKSMhHBueM8e4i-4DR4znjstNGvyELBkY2hoM4IgsA0TUalDwmJzmvAOrMiHfkmEshjdGwIL9v75DmDfowBh_KA00jvccc_IS0zG6sXVoSLZW6StMy0JBpfTENONAQH_vLXT9Sn8KEQ7MrdDOngiHm9-Tt6KaMHw71lPz6_u328kdz8_Pq-vLrTeMlM6XpPeiRe8_Gak-rXisJ0HcKDBrvhEbttFcaXO-YHwfZKYdqQGY633d8GMQp-bLfu9n2axw8xup9sps5rN38YJML9ukkhju7TPe25bIVRtcFZ4cFc_qzxVzsOmSP0-Qipm22vN6uBQVCvYoyAy1vtVa8op-foau0nWO9hGUd05oLJkSl5J7yc8p5xtHWIFwJaWc1TJaB3WVtD1nbQ9ZVd_FM9--_Lys-7RWrXNL8H-etYUpyLf4CFE65HQ |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_funbio_2020_08_004 crossref_primary_10_1242_dev_134577 crossref_primary_10_3389_fcell_2021_665289 crossref_primary_10_1073_pnas_2026494119 crossref_primary_10_1242_dmm_043448 crossref_primary_10_1016_j_gene_2018_07_053 crossref_primary_10_1073_pnas_1713524114 crossref_primary_10_1093_plcell_koab247 crossref_primary_10_1038_s42003_022_03604_5 crossref_primary_10_3389_fpls_2018_01784 crossref_primary_10_1073_pnas_1608576114 crossref_primary_10_15252_embj_2020105853 crossref_primary_10_1371_journal_pone_0197401 crossref_primary_10_1002_jcb_27376 crossref_primary_10_1038_s41467_023_42661_0 crossref_primary_10_1083_jcb_201706118 crossref_primary_10_1111_tra_12574 crossref_primary_10_3389_fcell_2019_00153 crossref_primary_10_1002_bies_201600062 crossref_primary_10_1002_1873_3468_13884 crossref_primary_10_3389_fpls_2022_933283 crossref_primary_10_1038_s41467_021_25465_y crossref_primary_10_1177_2515256419859186 crossref_primary_10_1242_bio_059719 crossref_primary_10_3389_fcell_2020_00163 crossref_primary_10_1038_nrm_2016_65 crossref_primary_10_1016_j_tcb_2016_02_005 crossref_primary_10_1111_febs_16099 crossref_primary_10_1083_jcb_202005166 crossref_primary_10_1083_jcb_201902184 crossref_primary_10_1111_jmi_12946 crossref_primary_10_1073_pnas_2309910120 crossref_primary_10_1016_j_cub_2022_07_029 crossref_primary_10_1038_nature24464 crossref_primary_10_1038_ncb3627 crossref_primary_10_1093_jxb_erx167 crossref_primary_10_1073_pnas_2006766117 crossref_primary_10_1091_mbc_e16_11_0764 crossref_primary_10_1242_jcs_262160 crossref_primary_10_3390_cells9122652 crossref_primary_10_7554_eLife_57241 crossref_primary_10_15252_embj_2020107238 crossref_primary_10_1016_j_ceb_2018_03_002 crossref_primary_10_1186_s12915_016_0345_3 crossref_primary_10_3389_fcell_2022_842448 crossref_primary_10_3390_life11080867 crossref_primary_10_1242_jcs_260783 crossref_primary_10_1038_s41467_021_27298_1 crossref_primary_10_1016_j_ejcb_2018_01_003 crossref_primary_10_1039_C9MT00252A crossref_primary_10_3389_fgene_2018_00610 crossref_primary_10_1016_j_cub_2022_08_054 crossref_primary_10_1083_jcb_202410003 crossref_primary_10_3390_cells10020359 crossref_primary_10_1042_BCJ20190050 crossref_primary_10_1002_dvg_23039 crossref_primary_10_1073_pnas_1919820117 crossref_primary_10_1038_s41467_017_00570_z crossref_primary_10_1016_j_devcel_2023_08_005 crossref_primary_10_1242_dev_156588 crossref_primary_10_1016_j_ceb_2017_02_003 crossref_primary_10_1038_s41467_019_09617_9 crossref_primary_10_1038_s41467_018_08044_6 crossref_primary_10_3852_15_309 crossref_primary_10_1093_hmg_ddac108 crossref_primary_10_1242_jcs_193367 crossref_primary_10_15252_embj_2020105117 crossref_primary_10_1371_journal_pone_0195401 crossref_primary_10_1091_mbc_E14_10_1450 crossref_primary_10_1042_EBC20210023 crossref_primary_10_1080_21541248_2017_1384087 crossref_primary_10_1074_jbc_RA119_008107 crossref_primary_10_1091_mbc_E23_09_0376 crossref_primary_10_1002_1873_3468_13541 crossref_primary_10_1016_j_febslet_2015_06_001 crossref_primary_10_1242_jcs_201319 crossref_primary_10_1073_pnas_2315171120 crossref_primary_10_3389_fcell_2015_00086 crossref_primary_10_3389_fcell_2019_00094 crossref_primary_10_1016_j_molcel_2015_11_018 crossref_primary_10_3389_fcell_2015_00084 crossref_primary_10_1016_j_cub_2018_01_006 crossref_primary_10_1126_sciadv_adl0608 crossref_primary_10_1038_ncb3649 crossref_primary_10_1073_pnas_1909316116 crossref_primary_10_1002_pro_3095 crossref_primary_10_1038_s41467_019_10891_w crossref_primary_10_3389_fneur_2021_743787 crossref_primary_10_1007_s11427_020_1875_x crossref_primary_10_7554_eLife_24845 crossref_primary_10_1126_sciadv_abf4885 crossref_primary_10_1016_j_cub_2017_07_047 crossref_primary_10_1091_mbc_e17_02_0112 crossref_primary_10_3390_ijms21134654 crossref_primary_10_1186_s12864_016_3229_6 crossref_primary_10_1016_j_isci_2018_11_002 crossref_primary_10_1016_j_devcel_2018_09_017 crossref_primary_10_1016_j_cub_2017_10_003 crossref_primary_10_1038_s41467_021_26677_y crossref_primary_10_1042_BST20170188 crossref_primary_10_1111_tra_12421 crossref_primary_10_3389_fcell_2020_577342 crossref_primary_10_1038_ncomms13586 crossref_primary_10_1073_pnas_1519458113 crossref_primary_10_1038_s41467_020_19840_4 crossref_primary_10_1091_mbc_e17_03_0137 crossref_primary_10_1111_tra_12655 crossref_primary_10_1111_tra_12779 crossref_primary_10_1242_jcs_212308 crossref_primary_10_1038_s41598_019_50244_7 crossref_primary_10_1242_bio_025502 crossref_primary_10_1038_s42003_024_06320_4 crossref_primary_10_2139_ssrn_4075230 crossref_primary_10_1242_bio_201410975 crossref_primary_10_7554_eLife_13232 crossref_primary_10_15252_embj_2021107766 crossref_primary_10_1111_tra_12773 crossref_primary_10_1016_j_celrep_2024_113791 crossref_primary_10_3389_fphys_2018_01070 crossref_primary_10_1002_1873_3468_13567 crossref_primary_10_1016_j_jbc_2022_102136 crossref_primary_10_7554_eLife_16988 crossref_primary_10_1083_jcb_201905097 crossref_primary_10_3389_fcell_2018_00029 crossref_primary_10_1083_jcb_201812044 crossref_primary_10_1016_j_jconrel_2024_05_025 crossref_primary_10_7554_eLife_32723 crossref_primary_10_1002_humu_24235 crossref_primary_10_2174_1389203721666200218105302 crossref_primary_10_1111_tra_12885 crossref_primary_10_1083_jcb_201902028 crossref_primary_10_1091_mbc_E20_01_0063 crossref_primary_10_1038_nprot_2017_065 crossref_primary_10_1083_jcb_202103199 crossref_primary_10_1111_tra_12649 crossref_primary_10_1172_jci_insight_124701 crossref_primary_10_1016_j_tim_2016_02_003 crossref_primary_10_7554_eLife_63046 crossref_primary_10_1016_j_bbapap_2024_141029 crossref_primary_10_1242_jcs_166710 crossref_primary_10_1016_j_devcel_2016_09_030 crossref_primary_10_3389_fcell_2016_00018 crossref_primary_10_1093_jxb_erx216 crossref_primary_10_1371_journal_pone_0137965 crossref_primary_10_1002_pmic_201900392 crossref_primary_10_1091_mbc_E15_04_0245 crossref_primary_10_1155_2022_3273779 crossref_primary_10_1186_s12964_018_0230_5 crossref_primary_10_3389_fmicb_2025_1492742 crossref_primary_10_3389_fcell_2016_00012 crossref_primary_10_1111_tra_12876 crossref_primary_10_1002_cbin_11118 crossref_primary_10_1016_j_ceb_2019_04_010 crossref_primary_10_1371_journal_pone_0135260 crossref_primary_10_3389_fcell_2016_00015 crossref_primary_10_1242_jcs_185702 crossref_primary_10_1016_j_celrep_2016_06_022 crossref_primary_10_1016_j_critrevonc_2016_11_008 crossref_primary_10_1016_j_ejcb_2017_02_005 crossref_primary_10_1038_s41467_018_04993_0 crossref_primary_10_1172_JCI81508 crossref_primary_10_1016_j_celrep_2024_115156 crossref_primary_10_1111_tra_70003 crossref_primary_10_1126_sciadv_adj4605 crossref_primary_10_1083_jcb_201702137 crossref_primary_10_1242_jcs_259374 crossref_primary_10_3389_fcell_2016_00028 crossref_primary_10_1002_mrd_22523 crossref_primary_10_3389_fcell_2020_00830 crossref_primary_10_1186_s12915_018_0492_9 crossref_primary_10_3402_jev_v5_31295 crossref_primary_10_1016_j_ceb_2024_102365 crossref_primary_10_3389_fnins_2015_00340 crossref_primary_10_1042_BCJ20210719 crossref_primary_10_1083_jcb_201806153 crossref_primary_10_1111_tra_12507 crossref_primary_10_1016_j_bbrc_2018_03_163 crossref_primary_10_7554_eLife_12790 crossref_primary_10_1038_s41569_021_00511_w crossref_primary_10_1002_1873_3468_12780 crossref_primary_10_1038_s41588_018_0149_1 crossref_primary_10_1083_jcb_202405002 crossref_primary_10_1038_s41467_018_02919_4 crossref_primary_10_1242_bio_018937 crossref_primary_10_1212_WNL_0000000000006457 crossref_primary_10_1242_jcs_225557 crossref_primary_10_1016_j_ceb_2023_102191 crossref_primary_10_1038_ncomms14236 |
Cites_doi | 10.1146/annurev.cellbio.24.110707.175421 10.1016/j.tcb.2010.05.001 10.1242/jcs.115.13.2627 10.1091/mbc.4.7.679 10.1034/j.1600-0854.2003.00103.x 10.1083/jcb.200808018 10.1016/j.tcb.2010.02.006 10.1111/j.1600-0854.2010.01087.x 10.1083/jcb.200909011 10.1083/jcb.200310061 10.1091/mbc.E02-06-0349 10.1126/science.1108061 10.1016/j.devcel.2007.04.002 10.1083/jcb.200407088 10.1016/j.semcdb.2009.03.011 10.1091/mbc.E06-02-0153 10.1038/ncomms2535 10.1016/j.febslet.2009.10.038 10.1093/oxfordjournals.jbchem.a123712 10.1146/annurev.cellbio.042308.113327 10.1083/jcb.145.1.83 10.1016/S0955-0674(99)80065-9 10.1083/jcb.200110081 10.1083/jcb.125.2.253 10.1038/emboj.2008.40 10.1016/j.bbamcr.2008.10.016 10.1101/cshperspect.a005256 10.1038/nbt.2375 10.1091/mbc.E05-05-0408 10.1038/362318a0 10.1038/35025000 10.1083/jcb.200312034 10.1056/NEJMoa0900158 10.1083/jcb.131.6.1715 10.1016/S0092-8674(00)80225-1 10.1101/cshperspect.a005215 10.1074/jbc.M210387200 10.1016/j.mce.2012.09.003 10.1038/nrm2002 10.1016/j.bbamcr.2005.02.001 10.1126/science.1155821 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Association for the Advancement of Science Copyright © 2014, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2014 American Association for the Advancement of Science – notice: Copyright © 2014, American Association for the Advancement of Science |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7S9 L.6 5PM |
DOI | 10.1126/science.1256898 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database Solid State and Superconductivity Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 601 |
ExternalDocumentID | PMC4254398 3476741141 10_1126_science_1256898 24917528 |
Genre | Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX ABCQX CITATION K-O 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c519t-bc08f2cc1f59387b87500b6709e9ca38e8a8c780aba1cfd567ae7de196cb62dd3 |
ISSN | 0036-8075 |
IngestDate | Thu Aug 21 18:01:14 EDT 2025 Thu Jul 10 17:29:03 EDT 2025 Mon Jul 21 10:12:29 EDT 2025 Fri Jul 25 11:06:16 EDT 2025 Tue Jul 01 04:10:22 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Thu Jul 03 22:44:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6209 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c519t-bc08f2cc1f59387b87500b6709e9ca38e8a8c780aba1cfd567ae7de196cb62dd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1126/science.1256898 |
PMID | 25359980 |
PQID | 1618823133 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254398 proquest_miscellaneous_2000407037 proquest_miscellaneous_1904248872 proquest_journals_1618823133 crossref_citationtrail_10_1126_science_1256898 crossref_primary_10_1126_science_1256898 jstor_primary_24917528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20141031 2014-10-31 |
PublicationDateYYYYMMDD | 2014-10-31 |
PublicationDate_xml | – month: 10 year: 2014 text: 20141031 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2014 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_9_2 doi: 10.1146/annurev.cellbio.24.110707.175421 – ident: e_1_3_2_32_2 doi: 10.1016/j.tcb.2010.05.001 – ident: e_1_3_2_6_2 doi: 10.1242/jcs.115.13.2627 – ident: e_1_3_2_40_2 doi: 10.1091/mbc.4.7.679 – ident: e_1_3_2_36_2 doi: 10.1034/j.1600-0854.2003.00103.x – ident: e_1_3_2_31_2 doi: 10.1083/jcb.200808018 – ident: e_1_3_2_10_2 doi: 10.1016/j.tcb.2010.02.006 – ident: e_1_3_2_25_2 doi: 10.1111/j.1600-0854.2010.01087.x – ident: e_1_3_2_37_2 doi: 10.1083/jcb.200909011 – ident: e_1_3_2_16_2 doi: 10.1083/jcb.200310061 – ident: e_1_3_2_34_2 doi: 10.1091/mbc.E02-06-0349 – ident: e_1_3_2_13_2 doi: 10.1126/science.1108061 – ident: e_1_3_2_15_2 doi: 10.1016/j.devcel.2007.04.002 – ident: e_1_3_2_38_2 doi: 10.1083/jcb.200407088 – ident: e_1_3_2_11_2 doi: 10.1016/j.semcdb.2009.03.011 – ident: e_1_3_2_33_2 doi: 10.1091/mbc.E06-02-0153 – ident: e_1_3_2_5_2 doi: 10.1038/ncomms2535 – ident: e_1_3_2_24_2 doi: 10.1016/j.febslet.2009.10.038 – ident: e_1_3_2_41_2 doi: 10.1093/oxfordjournals.jbchem.a123712 – ident: e_1_3_2_8_2 doi: 10.1146/annurev.cellbio.042308.113327 – ident: e_1_3_2_27_2 doi: 10.1083/jcb.145.1.83 – ident: e_1_3_2_7_2 doi: 10.1016/S0955-0674(99)80065-9 – ident: e_1_3_2_21_2 doi: 10.1083/jcb.200110081 – ident: e_1_3_2_22_2 doi: 10.1083/jcb.125.2.253 – ident: e_1_3_2_29_2 doi: 10.1038/emboj.2008.40 – ident: e_1_3_2_20_2 doi: 10.1016/j.bbamcr.2008.10.016 – ident: e_1_3_2_12_2 doi: 10.1101/cshperspect.a005256 – ident: e_1_3_2_30_2 doi: 10.1038/nbt.2375 – ident: e_1_3_2_42_2 doi: 10.1091/mbc.E05-05-0408 – ident: e_1_3_2_3_2 doi: 10.1038/362318a0 – ident: e_1_3_2_4_2 doi: 10.1038/35025000 – ident: e_1_3_2_23_2 doi: 10.1083/jcb.200312034 – ident: e_1_3_2_18_2 doi: 10.1056/NEJMoa0900158 – ident: e_1_3_2_26_2 doi: 10.1083/jcb.131.6.1715 – ident: e_1_3_2_19_2 doi: 10.1016/S0092-8674(00)80225-1 – ident: e_1_3_2_28_2 doi: 10.1101/cshperspect.a005215 – ident: e_1_3_2_39_2 doi: 10.1074/jbc.M210387200 – ident: e_1_3_2_17_2 doi: 10.1016/j.mce.2012.09.003 – ident: e_1_3_2_2_2 doi: 10.1038/nrm2002 – ident: e_1_3_2_35_2 doi: 10.1016/j.bbamcr.2005.02.001 – ident: e_1_3_2_14_2 doi: 10.1126/science.1155821 |
SSID | ssj0009593 |
Score | 2.5562332 |
Snippet | The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target... The eukaryotic cell contains membrane-bound organelles with distinct functionality and composition. Preservation of organelle identity depends on the highly... You've got to pick a Golgi tether or twoThe inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find... You've got to pick a Golgi tether or two The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find... The Golgi apparatus is a multi-compartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 601 |
SubjectTerms | cell membranes Cells Eukaryotes Fuses Golgi apparatus Lipids Membranes mitochondria physiological transport Proteins Relocation RESEARCH ARTICLE SUMMARY Tethers Traffic Traffic engineering Traffic flow Transport Vesicles |
Title | The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins |
URI | https://www.jstor.org/stable/24917528 https://www.proquest.com/docview/1618823133 https://www.proquest.com/docview/1904248872 https://www.proquest.com/docview/2000407037 https://pubmed.ncbi.nlm.nih.gov/PMC4254398 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKJiReEBtMhA1kJB6GUKo0ThP7sQPGhDSeNmkvKLIdZ0SaEkRTJPZH-LvcJZfUBSoxXtLGcdIo9_V853z-jrFXECKXQieQpprChkmZlKGWtgwLGVulEieEwPXO55_Ss8vk49X8ajL56bGWVq2Z2tu_riv5H6tCG9gVV8newbLjRaEBvoN9YQsWhu0_2xiXSiLdh6gV390Se2HpBxSHGELLD83NdYXFy1G3snDFQG-8xnZkooNzKEL8eNMpN1Q0iUdh6-ABIBwdX_F4hh25ioueUTAQDOg0b7ZhYACfV2vOLfIRu0lYR0ilSYhZ4nnvNe__Tj_tO2XSRO6HpN4PR1hCMo6E76gFTVb2iEzjSHmeN6U5Eefv_Tk-eBUt3RSCu1T2RbB_E92GpBTiqljeY7sx5B_gQHcXJ-9OTrfqOZNqlLcea7j6RsDTc143splNLq4X3Fw8Yg8pK-GLHmJ7bOLqfXa_r1P6Y5_t0dNc8mOSKX_9mH0G9HEPfbwpOaGPE_p423CwDe_Qx6slJ_Txqu7ae_RxD318QN8Tdnn6_uLtWUjFOkILSUAbGhvJMrZ2VsKTkZmBPDiKDKoDOmW1kE6CD8hkpI2e2bKYp5l2WeFgALAmjYtCHLCduqndU8blPFNYO8kZo5I0EjqytkytLlUhtXI2YNPhieaWlOyxoMpN3mW0cZqTCXIyQcCOxxO-9iIu27sedCYa-w1ICNjRYLOcXMAyx2oT-B5diIC9HA-Dg8a3brp2zQr6KGQXwFgeb--D6-USHHyzgGUbeBjvA2XgN4_U1ZdODj5BPQsln22780P2YP2XPWI77beVew6RdGteEKp_AeAKz9Y |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+specificity+of+vesicle+traffic+to+the+Golgi+is+encoded+in+the+golgin+coiled-coil+proteins&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wong%2C+Mie&rft.au=Munro%2C+Sean&rft.date=2014-10-31&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=346&rft.issue=6209&rft.spage=601&rft.epage=601&rft_id=info:doi/10.1126%2Fscience.1256898&rft.externalDocID=24917528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |