The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins

The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of resear...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 346; no. 6209; p. 601
Main Authors Wong, Mie, Munro, Sean
Format Journal Article
LanguageEnglish
Published Washington American Association for the Advancement of Science 31.10.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science , this issue 10.1126/science.1256898 Specific proteins can tether and distinguish between specific intracellular transport vesicles in vivo. The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
AbstractList The Golgi apparatus is a multi-compartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. Here, we develop a re-routing and capture assay to investigate systematically the vesicle-tethering activities of ten widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science , this issue 10.1126/science.1256898 Specific proteins can tether and distinguish between specific intracellular transport vesicles in vivo. The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
The eukaryotic cell contains membrane-bound organelles with distinct functionality and composition. Preservation of organelle identity depends on the highly selective transfer of proteins and lipids between compartments. Central to this are transport carriers called vesicles. Mechanisms are required not only for the selective incorporation of specific cargos into vesicles as they bud off a donor organelle, but also for the correct delivery to an acceptor organelle. SNARE proteins on the vesicle and destination organelle drive membrane fusion after arrival and have been implicated in contributing to specificity in choice of organelle. However, upstream of the fusion step, a process called tethering is thought to initially attach the vesicle to the destination organelle and then bring it close to allow the SNARE proteins on opposite membranes to interact. The importance of tethering in conferring specificity to membrane traffic is currently unclear. To study the contribution of tethering to specificity in membrane trafficking, we focused on the Golgi apparatus. The Golgi complex is a multicompartment organelle at the intersection of secretory and endocytic trafficking pathways and so receives vesicles from a range of destinations. A family of well-conserved large coiled-coil proteins on the Golgi, the golgins, have been suggested to function as vesicle tethers at the Golgi. However, mild phenotypes of golgin mutants have presented a challenge for elucidating their in vivo roles. We thus used a relocation strategy to test for their sufficiency rather than necessity in vesicle tethering. Ten mammalian golgins that are conserved outside of vertebrates and found on different regions of the Golgi were ectopically expressed at the mitochondria through attachment to a mitochondrial transmembrane domain in place of their C-terminal Golgi targeting domain. We then used the distribution of cargo-laden vesicles originating from different locations as a readout for the golgins' tethering activity. We demonstrate that subsets of golgins are capable of redirecting particular endogenous or exogenous cargo destined for the Golgi to an ectopic site, the mitochondria. Specifically, golgin-97, golgin-245, and GCC88 were able to capture endosome-to- Golgi cargos; GM130 and GMAP210 were able to capture endoplasmic reticulum (ER)-to-Golgi cargos; and golgin-84, TMF, and GMAP210 were able to capture Golgi resident proteins. Furthermore, electron microscopy yielded ultrastructural evidence for the accumulation of vesicular membranes around mitochondria decorated with specific golgins. These data suggest that not only do the golgins capture vesicles, but they also exhibit specificity toward vesicles of different origins--from the endosomes, from the ER, or from within the Golgi itself. We have been able to demonstrate that relocation of specific golgins is sufficient to reroute specific classes of transport vesicles to an ectopic site. Thus, most golgins are sufficient to nucleate a specific tethering process, and hence they are likely to make a major contribution to the specificity of vesicle traffic arriving at the Golgi. In addition, this relocation system may be a useful tool for isolating specific transport vesicles that are normally short-lived, hence providing a route to further understanding of specificity in membrane traffic. The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane "tethers." However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science, this issue 10.1126/science.1256898 The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
You've got to pick a Golgi tether or twoThe inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane "tethers." However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria.Science, this issue 10.1126/science.1256898 The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
You've got to pick a Golgi tether or two The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target destination. The detailed mechanism specifying which vesicle can fuse with which target membrane has been the subject of an enormous amount of research. An additional layer of specificity in intracellular membrane trafficking across the Golgi complex is thought to involve particular membrane “tethers.” However, the importance of these tethers has been unclear. Wong and Munro used a clever trick to reveal how specific tethers can indeed ensure correct vesicle destination. Tether proteins experimentally expressed on mitochondria hijacked different transport vesicles and diverted them from their normal destination to the mitochondria. Science , this issue 10.1126/science.1256898
Author Wong, Mie
Munro, Sean
AuthorAffiliation 1 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
AuthorAffiliation_xml – name: 1 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
Author_xml – sequence: 1
  givenname: Mie
  surname: Wong
  fullname: Wong, Mie
– sequence: 2
  givenname: Sean
  surname: Munro
  fullname: Munro, Sean
BookMark eNqFkUFrGzEQhUVJaZy0554Kgl5y2WQkrVbSpVBCmwYCvaTHIrTaWUdmLbkrOZB_Xzl2CwmEnAZmvjd6mndCjmKKSMhHBueM8e4i-4DR4znjstNGvyELBkY2hoM4IgsA0TUalDwmJzmvAOrMiHfkmEshjdGwIL9v75DmDfowBh_KA00jvccc_IS0zG6sXVoSLZW6StMy0JBpfTENONAQH_vLXT9Sn8KEQ7MrdDOngiHm9-Tt6KaMHw71lPz6_u328kdz8_Pq-vLrTeMlM6XpPeiRe8_Gak-rXisJ0HcKDBrvhEbttFcaXO-YHwfZKYdqQGY633d8GMQp-bLfu9n2axw8xup9sps5rN38YJML9ukkhju7TPe25bIVRtcFZ4cFc_qzxVzsOmSP0-Qipm22vN6uBQVCvYoyAy1vtVa8op-foau0nWO9hGUd05oLJkSl5J7yc8p5xtHWIFwJaWc1TJaB3WVtD1nbQ9ZVd_FM9--_Lys-7RWrXNL8H-etYUpyLf4CFE65HQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_funbio_2020_08_004
crossref_primary_10_1242_dev_134577
crossref_primary_10_3389_fcell_2021_665289
crossref_primary_10_1073_pnas_2026494119
crossref_primary_10_1242_dmm_043448
crossref_primary_10_1016_j_gene_2018_07_053
crossref_primary_10_1073_pnas_1713524114
crossref_primary_10_1093_plcell_koab247
crossref_primary_10_1038_s42003_022_03604_5
crossref_primary_10_3389_fpls_2018_01784
crossref_primary_10_1073_pnas_1608576114
crossref_primary_10_15252_embj_2020105853
crossref_primary_10_1371_journal_pone_0197401
crossref_primary_10_1002_jcb_27376
crossref_primary_10_1038_s41467_023_42661_0
crossref_primary_10_1083_jcb_201706118
crossref_primary_10_1111_tra_12574
crossref_primary_10_3389_fcell_2019_00153
crossref_primary_10_1002_bies_201600062
crossref_primary_10_1002_1873_3468_13884
crossref_primary_10_3389_fpls_2022_933283
crossref_primary_10_1038_s41467_021_25465_y
crossref_primary_10_1177_2515256419859186
crossref_primary_10_1242_bio_059719
crossref_primary_10_3389_fcell_2020_00163
crossref_primary_10_1038_nrm_2016_65
crossref_primary_10_1016_j_tcb_2016_02_005
crossref_primary_10_1111_febs_16099
crossref_primary_10_1083_jcb_202005166
crossref_primary_10_1083_jcb_201902184
crossref_primary_10_1111_jmi_12946
crossref_primary_10_1073_pnas_2309910120
crossref_primary_10_1016_j_cub_2022_07_029
crossref_primary_10_1038_nature24464
crossref_primary_10_1038_ncb3627
crossref_primary_10_1093_jxb_erx167
crossref_primary_10_1073_pnas_2006766117
crossref_primary_10_1091_mbc_e16_11_0764
crossref_primary_10_1242_jcs_262160
crossref_primary_10_3390_cells9122652
crossref_primary_10_7554_eLife_57241
crossref_primary_10_15252_embj_2020107238
crossref_primary_10_1016_j_ceb_2018_03_002
crossref_primary_10_1186_s12915_016_0345_3
crossref_primary_10_3389_fcell_2022_842448
crossref_primary_10_3390_life11080867
crossref_primary_10_1242_jcs_260783
crossref_primary_10_1038_s41467_021_27298_1
crossref_primary_10_1016_j_ejcb_2018_01_003
crossref_primary_10_1039_C9MT00252A
crossref_primary_10_3389_fgene_2018_00610
crossref_primary_10_1016_j_cub_2022_08_054
crossref_primary_10_1083_jcb_202410003
crossref_primary_10_3390_cells10020359
crossref_primary_10_1042_BCJ20190050
crossref_primary_10_1002_dvg_23039
crossref_primary_10_1073_pnas_1919820117
crossref_primary_10_1038_s41467_017_00570_z
crossref_primary_10_1016_j_devcel_2023_08_005
crossref_primary_10_1242_dev_156588
crossref_primary_10_1016_j_ceb_2017_02_003
crossref_primary_10_1038_s41467_019_09617_9
crossref_primary_10_1038_s41467_018_08044_6
crossref_primary_10_3852_15_309
crossref_primary_10_1093_hmg_ddac108
crossref_primary_10_1242_jcs_193367
crossref_primary_10_15252_embj_2020105117
crossref_primary_10_1371_journal_pone_0195401
crossref_primary_10_1091_mbc_E14_10_1450
crossref_primary_10_1042_EBC20210023
crossref_primary_10_1080_21541248_2017_1384087
crossref_primary_10_1074_jbc_RA119_008107
crossref_primary_10_1091_mbc_E23_09_0376
crossref_primary_10_1002_1873_3468_13541
crossref_primary_10_1016_j_febslet_2015_06_001
crossref_primary_10_1242_jcs_201319
crossref_primary_10_1073_pnas_2315171120
crossref_primary_10_3389_fcell_2015_00086
crossref_primary_10_3389_fcell_2019_00094
crossref_primary_10_1016_j_molcel_2015_11_018
crossref_primary_10_3389_fcell_2015_00084
crossref_primary_10_1016_j_cub_2018_01_006
crossref_primary_10_1126_sciadv_adl0608
crossref_primary_10_1038_ncb3649
crossref_primary_10_1073_pnas_1909316116
crossref_primary_10_1002_pro_3095
crossref_primary_10_1038_s41467_019_10891_w
crossref_primary_10_3389_fneur_2021_743787
crossref_primary_10_1007_s11427_020_1875_x
crossref_primary_10_7554_eLife_24845
crossref_primary_10_1126_sciadv_abf4885
crossref_primary_10_1016_j_cub_2017_07_047
crossref_primary_10_1091_mbc_e17_02_0112
crossref_primary_10_3390_ijms21134654
crossref_primary_10_1186_s12864_016_3229_6
crossref_primary_10_1016_j_isci_2018_11_002
crossref_primary_10_1016_j_devcel_2018_09_017
crossref_primary_10_1016_j_cub_2017_10_003
crossref_primary_10_1038_s41467_021_26677_y
crossref_primary_10_1042_BST20170188
crossref_primary_10_1111_tra_12421
crossref_primary_10_3389_fcell_2020_577342
crossref_primary_10_1038_ncomms13586
crossref_primary_10_1073_pnas_1519458113
crossref_primary_10_1038_s41467_020_19840_4
crossref_primary_10_1091_mbc_e17_03_0137
crossref_primary_10_1111_tra_12655
crossref_primary_10_1111_tra_12779
crossref_primary_10_1242_jcs_212308
crossref_primary_10_1038_s41598_019_50244_7
crossref_primary_10_1242_bio_025502
crossref_primary_10_1038_s42003_024_06320_4
crossref_primary_10_2139_ssrn_4075230
crossref_primary_10_1242_bio_201410975
crossref_primary_10_7554_eLife_13232
crossref_primary_10_15252_embj_2021107766
crossref_primary_10_1111_tra_12773
crossref_primary_10_1016_j_celrep_2024_113791
crossref_primary_10_3389_fphys_2018_01070
crossref_primary_10_1002_1873_3468_13567
crossref_primary_10_1016_j_jbc_2022_102136
crossref_primary_10_7554_eLife_16988
crossref_primary_10_1083_jcb_201905097
crossref_primary_10_3389_fcell_2018_00029
crossref_primary_10_1083_jcb_201812044
crossref_primary_10_1016_j_jconrel_2024_05_025
crossref_primary_10_7554_eLife_32723
crossref_primary_10_1002_humu_24235
crossref_primary_10_2174_1389203721666200218105302
crossref_primary_10_1111_tra_12885
crossref_primary_10_1083_jcb_201902028
crossref_primary_10_1091_mbc_E20_01_0063
crossref_primary_10_1038_nprot_2017_065
crossref_primary_10_1083_jcb_202103199
crossref_primary_10_1111_tra_12649
crossref_primary_10_1172_jci_insight_124701
crossref_primary_10_1016_j_tim_2016_02_003
crossref_primary_10_7554_eLife_63046
crossref_primary_10_1016_j_bbapap_2024_141029
crossref_primary_10_1242_jcs_166710
crossref_primary_10_1016_j_devcel_2016_09_030
crossref_primary_10_3389_fcell_2016_00018
crossref_primary_10_1093_jxb_erx216
crossref_primary_10_1371_journal_pone_0137965
crossref_primary_10_1002_pmic_201900392
crossref_primary_10_1091_mbc_E15_04_0245
crossref_primary_10_1155_2022_3273779
crossref_primary_10_1186_s12964_018_0230_5
crossref_primary_10_3389_fmicb_2025_1492742
crossref_primary_10_3389_fcell_2016_00012
crossref_primary_10_1111_tra_12876
crossref_primary_10_1002_cbin_11118
crossref_primary_10_1016_j_ceb_2019_04_010
crossref_primary_10_1371_journal_pone_0135260
crossref_primary_10_3389_fcell_2016_00015
crossref_primary_10_1242_jcs_185702
crossref_primary_10_1016_j_celrep_2016_06_022
crossref_primary_10_1016_j_critrevonc_2016_11_008
crossref_primary_10_1016_j_ejcb_2017_02_005
crossref_primary_10_1038_s41467_018_04993_0
crossref_primary_10_1172_JCI81508
crossref_primary_10_1016_j_celrep_2024_115156
crossref_primary_10_1111_tra_70003
crossref_primary_10_1126_sciadv_adj4605
crossref_primary_10_1083_jcb_201702137
crossref_primary_10_1242_jcs_259374
crossref_primary_10_3389_fcell_2016_00028
crossref_primary_10_1002_mrd_22523
crossref_primary_10_3389_fcell_2020_00830
crossref_primary_10_1186_s12915_018_0492_9
crossref_primary_10_3402_jev_v5_31295
crossref_primary_10_1016_j_ceb_2024_102365
crossref_primary_10_3389_fnins_2015_00340
crossref_primary_10_1042_BCJ20210719
crossref_primary_10_1083_jcb_201806153
crossref_primary_10_1111_tra_12507
crossref_primary_10_1016_j_bbrc_2018_03_163
crossref_primary_10_7554_eLife_12790
crossref_primary_10_1038_s41569_021_00511_w
crossref_primary_10_1002_1873_3468_12780
crossref_primary_10_1038_s41588_018_0149_1
crossref_primary_10_1083_jcb_202405002
crossref_primary_10_1038_s41467_018_02919_4
crossref_primary_10_1242_bio_018937
crossref_primary_10_1212_WNL_0000000000006457
crossref_primary_10_1242_jcs_225557
crossref_primary_10_1016_j_ceb_2023_102191
crossref_primary_10_1038_ncomms14236
Cites_doi 10.1146/annurev.cellbio.24.110707.175421
10.1016/j.tcb.2010.05.001
10.1242/jcs.115.13.2627
10.1091/mbc.4.7.679
10.1034/j.1600-0854.2003.00103.x
10.1083/jcb.200808018
10.1016/j.tcb.2010.02.006
10.1111/j.1600-0854.2010.01087.x
10.1083/jcb.200909011
10.1083/jcb.200310061
10.1091/mbc.E02-06-0349
10.1126/science.1108061
10.1016/j.devcel.2007.04.002
10.1083/jcb.200407088
10.1016/j.semcdb.2009.03.011
10.1091/mbc.E06-02-0153
10.1038/ncomms2535
10.1016/j.febslet.2009.10.038
10.1093/oxfordjournals.jbchem.a123712
10.1146/annurev.cellbio.042308.113327
10.1083/jcb.145.1.83
10.1016/S0955-0674(99)80065-9
10.1083/jcb.200110081
10.1083/jcb.125.2.253
10.1038/emboj.2008.40
10.1016/j.bbamcr.2008.10.016
10.1101/cshperspect.a005256
10.1038/nbt.2375
10.1091/mbc.E05-05-0408
10.1038/362318a0
10.1038/35025000
10.1083/jcb.200312034
10.1056/NEJMoa0900158
10.1083/jcb.131.6.1715
10.1016/S0092-8674(00)80225-1
10.1101/cshperspect.a005215
10.1074/jbc.M210387200
10.1016/j.mce.2012.09.003
10.1038/nrm2002
10.1016/j.bbamcr.2005.02.001
10.1126/science.1155821
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7S9
L.6
5PM
DOI 10.1126/science.1256898
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 601
ExternalDocumentID PMC4254398
3476741141
10_1126_science_1256898
24917528
Genre Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c519t-bc08f2cc1f59387b87500b6709e9ca38e8a8c780aba1cfd567ae7de196cb62dd3
ISSN 0036-8075
IngestDate Thu Aug 21 18:01:14 EDT 2025
Thu Jul 10 17:29:03 EDT 2025
Mon Jul 21 10:12:29 EDT 2025
Fri Jul 25 11:06:16 EDT 2025
Tue Jul 01 04:10:22 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Thu Jul 03 22:44:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6209
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-bc08f2cc1f59387b87500b6709e9ca38e8a8c780aba1cfd567ae7de196cb62dd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1126/science.1256898
PMID 25359980
PQID 1618823133
PQPubID 1256
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254398
proquest_miscellaneous_2000407037
proquest_miscellaneous_1904248872
proquest_journals_1618823133
crossref_citationtrail_10_1126_science_1256898
crossref_primary_10_1126_science_1256898
jstor_primary_24917528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141031
2014-10-31
PublicationDateYYYYMMDD 2014-10-31
PublicationDate_xml – month: 10
  year: 2014
  text: 20141031
  day: 31
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_9_2
  doi: 10.1146/annurev.cellbio.24.110707.175421
– ident: e_1_3_2_32_2
  doi: 10.1016/j.tcb.2010.05.001
– ident: e_1_3_2_6_2
  doi: 10.1242/jcs.115.13.2627
– ident: e_1_3_2_40_2
  doi: 10.1091/mbc.4.7.679
– ident: e_1_3_2_36_2
  doi: 10.1034/j.1600-0854.2003.00103.x
– ident: e_1_3_2_31_2
  doi: 10.1083/jcb.200808018
– ident: e_1_3_2_10_2
  doi: 10.1016/j.tcb.2010.02.006
– ident: e_1_3_2_25_2
  doi: 10.1111/j.1600-0854.2010.01087.x
– ident: e_1_3_2_37_2
  doi: 10.1083/jcb.200909011
– ident: e_1_3_2_16_2
  doi: 10.1083/jcb.200310061
– ident: e_1_3_2_34_2
  doi: 10.1091/mbc.E02-06-0349
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1108061
– ident: e_1_3_2_15_2
  doi: 10.1016/j.devcel.2007.04.002
– ident: e_1_3_2_38_2
  doi: 10.1083/jcb.200407088
– ident: e_1_3_2_11_2
  doi: 10.1016/j.semcdb.2009.03.011
– ident: e_1_3_2_33_2
  doi: 10.1091/mbc.E06-02-0153
– ident: e_1_3_2_5_2
  doi: 10.1038/ncomms2535
– ident: e_1_3_2_24_2
  doi: 10.1016/j.febslet.2009.10.038
– ident: e_1_3_2_41_2
  doi: 10.1093/oxfordjournals.jbchem.a123712
– ident: e_1_3_2_8_2
  doi: 10.1146/annurev.cellbio.042308.113327
– ident: e_1_3_2_27_2
  doi: 10.1083/jcb.145.1.83
– ident: e_1_3_2_7_2
  doi: 10.1016/S0955-0674(99)80065-9
– ident: e_1_3_2_21_2
  doi: 10.1083/jcb.200110081
– ident: e_1_3_2_22_2
  doi: 10.1083/jcb.125.2.253
– ident: e_1_3_2_29_2
  doi: 10.1038/emboj.2008.40
– ident: e_1_3_2_20_2
  doi: 10.1016/j.bbamcr.2008.10.016
– ident: e_1_3_2_12_2
  doi: 10.1101/cshperspect.a005256
– ident: e_1_3_2_30_2
  doi: 10.1038/nbt.2375
– ident: e_1_3_2_42_2
  doi: 10.1091/mbc.E05-05-0408
– ident: e_1_3_2_3_2
  doi: 10.1038/362318a0
– ident: e_1_3_2_4_2
  doi: 10.1038/35025000
– ident: e_1_3_2_23_2
  doi: 10.1083/jcb.200312034
– ident: e_1_3_2_18_2
  doi: 10.1056/NEJMoa0900158
– ident: e_1_3_2_26_2
  doi: 10.1083/jcb.131.6.1715
– ident: e_1_3_2_19_2
  doi: 10.1016/S0092-8674(00)80225-1
– ident: e_1_3_2_28_2
  doi: 10.1101/cshperspect.a005215
– ident: e_1_3_2_39_2
  doi: 10.1074/jbc.M210387200
– ident: e_1_3_2_17_2
  doi: 10.1016/j.mce.2012.09.003
– ident: e_1_3_2_2_2
  doi: 10.1038/nrm2002
– ident: e_1_3_2_35_2
  doi: 10.1016/j.bbamcr.2005.02.001
– ident: e_1_3_2_14_2
  doi: 10.1126/science.1155821
SSID ssj0009593
Score 2.5562332
Snippet The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find and fuse with its correct target...
The eukaryotic cell contains membrane-bound organelles with distinct functionality and composition. Preservation of organelle identity depends on the highly...
You've got to pick a Golgi tether or twoThe inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find...
You've got to pick a Golgi tether or two The inside of the cell contains a large variety of different membrane transport vesicles, each of which needs to find...
The Golgi apparatus is a multi-compartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit...
SourceID pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms cell membranes
Cells
Eukaryotes
Fuses
Golgi apparatus
Lipids
Membranes
mitochondria
physiological transport
Proteins
Relocation
RESEARCH ARTICLE SUMMARY
Tethers
Traffic
Traffic engineering
Traffic flow
Transport
Vesicles
Title The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
URI https://www.jstor.org/stable/24917528
https://www.proquest.com/docview/1618823133
https://www.proquest.com/docview/1904248872
https://www.proquest.com/docview/2000407037
https://pubmed.ncbi.nlm.nih.gov/PMC4254398
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKJiReEBtMhA1kJB6GUKo0ThP7sQPGhDSeNmkvKLIdZ0SaEkRTJPZH-LvcJZfUBSoxXtLGcdIo9_V853z-jrFXECKXQieQpprChkmZlKGWtgwLGVulEieEwPXO55_Ss8vk49X8ajL56bGWVq2Z2tu_riv5H6tCG9gVV8newbLjRaEBvoN9YQsWhu0_2xiXSiLdh6gV390Se2HpBxSHGELLD83NdYXFy1G3snDFQG-8xnZkooNzKEL8eNMpN1Q0iUdh6-ABIBwdX_F4hh25ioueUTAQDOg0b7ZhYACfV2vOLfIRu0lYR0ilSYhZ4nnvNe__Tj_tO2XSRO6HpN4PR1hCMo6E76gFTVb2iEzjSHmeN6U5Eefv_Tk-eBUt3RSCu1T2RbB_E92GpBTiqljeY7sx5B_gQHcXJ-9OTrfqOZNqlLcea7j6RsDTc143splNLq4X3Fw8Yg8pK-GLHmJ7bOLqfXa_r1P6Y5_t0dNc8mOSKX_9mH0G9HEPfbwpOaGPE_p423CwDe_Qx6slJ_Txqu7ae_RxD318QN8Tdnn6_uLtWUjFOkILSUAbGhvJMrZ2VsKTkZmBPDiKDKoDOmW1kE6CD8hkpI2e2bKYp5l2WeFgALAmjYtCHLCduqndU8blPFNYO8kZo5I0EjqytkytLlUhtXI2YNPhieaWlOyxoMpN3mW0cZqTCXIyQcCOxxO-9iIu27sedCYa-w1ICNjRYLOcXMAyx2oT-B5diIC9HA-Dg8a3brp2zQr6KGQXwFgeb--D6-USHHyzgGUbeBjvA2XgN4_U1ZdODj5BPQsln22780P2YP2XPWI77beVew6RdGteEKp_AeAKz9Y
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+specificity+of+vesicle+traffic+to+the+Golgi+is+encoded+in+the+golgin+coiled-coil+proteins&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wong%2C+Mie&rft.au=Munro%2C+Sean&rft.date=2014-10-31&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=346&rft.issue=6209&rft.spage=601&rft.epage=601&rft_id=info:doi/10.1126%2Fscience.1256898&rft.externalDocID=24917528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon