Predicting student outcomes using digital logs of learning behaviors: Review, current standards, and suggestions for future work
Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning an...
Saved in:
Published in | Behavior research methods Vol. 55; no. 6; pp. 3026 - 3054 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1554-3528 1554-351X 1554-3528 |
DOI | 10.3758/s13428-022-01939-9 |
Cover
Loading…
Abstract | Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications. |
---|---|
AbstractList | Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students' learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students' success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students' learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students' success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications. Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications. |
Author | Raković, Mladen Greene, Jeffrey A. Arizmendi, Cara J. Plumley, Robert D. Urban, Christopher J. Bernacki, Matthew L. Gates, Kathleen M. Panter, A. T. |
Author_xml | – sequence: 1 givenname: Cara J. surname: Arizmendi fullname: Arizmendi, Cara J. email: cara.arizmendi@duke.edu organization: Duke University – sequence: 2 givenname: Matthew L. surname: Bernacki fullname: Bernacki, Matthew L. organization: The University of North Carolina Chapel Hill – sequence: 3 givenname: Mladen surname: Raković fullname: Raković, Mladen organization: Centre for Learning Analytics, Monash University – sequence: 4 givenname: Robert D. surname: Plumley fullname: Plumley, Robert D. organization: The University of North Carolina Chapel Hill – sequence: 5 givenname: Christopher J. surname: Urban fullname: Urban, Christopher J. organization: The University of North Carolina Chapel Hill – sequence: 6 givenname: A. T. surname: Panter fullname: Panter, A. T. organization: The University of North Carolina Chapel Hill – sequence: 7 givenname: Jeffrey A. surname: Greene fullname: Greene, Jeffrey A. organization: The University of North Carolina Chapel Hill – sequence: 8 givenname: Kathleen M. surname: Gates fullname: Gates, Kathleen M. organization: The University of North Carolina Chapel Hill |
BookMark | eNp9UctuFDEQtFAQecAPcLLEhUMG_Bx7uKAo4iVFAiE4W16PPXGYtYN7vBE3Ph0PGwTkkJNb7qrq6q5jdJBy8gg9peQFV1K_BMoF0x1hrCN04EM3PEBHVErRccn0wT_1IToGuCKEa0bFI3TIe0K10PwI_fxU_BjdEtOEYamjTwvOdXF56wFXWL_HOMXFznjOE-Ac8OxtSWtj4y_tLuYCr_Bnv4v-5hS7WsoqAYtNoy0jnOJWYKjT5GGJOQEOueBQl1o8vsnl22P0MNgZ_JPb9wR9ffvmy_n77uLjuw_nZxedk3RYuo0eSAhMKOF80HxkanAq2LHnPdtowRUXQW4cdaS3LOhAhVKOjdxKTa3yhJ-g13vd67rZ-tE1l8XO5rrErS0_TLbR_N9J8dJMeWcokbKnfFV4fqtQ8vfa1jHbCM7Ps00-VzBMEdVT1S7coM_uQK9yLantZ5hWXArGKWsovUe5kgGKD8a1Q69Xagbi3CabNWezz9m0nM3vnM3QqOwO9c8i95L4ngQNnCZf_rq6h_ULXGO-jA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3521857 crossref_primary_10_1016_j_psicod_2024_04_003 crossref_primary_10_1007_s10639_024_12881_y crossref_primary_10_1016_j_lindif_2024_102598 crossref_primary_10_1057_s41599_024_02882_0 crossref_primary_10_1080_0142159X_2023_2186203 crossref_primary_10_1007_s10639_024_12653_8 crossref_primary_10_3390_bdcc8120187 crossref_primary_10_3390_app14093615 crossref_primary_10_1080_15391523_2024_2437741 crossref_primary_10_1177_14778785231187193 crossref_primary_10_1016_j_ajpe_2024_100713 crossref_primary_10_3390_educsci15030304 crossref_primary_10_3390_educsci14060657 crossref_primary_10_1016_j_psicoe_2024_05_004 crossref_primary_10_1080_17517575_2024_2415596 crossref_primary_10_1007_s40692_025_00358_x crossref_primary_10_1007_s10639_025_13370_6 crossref_primary_10_3390_higheredu2020015 |
Cites_doi | 10.2307/3001453 10.1002/cae.20456 10.1016/j.iheduc.2015.06.001 10.1007/s10758-017-9334-z 10.1057/jit.2015.5 10.3102/00346543045001089 10.1111/j.2517-6161.1996.tb02080.x 10.1023/A:1010933404324 10.1073/pnas.0708471105 10.1016/j.asoc.2019.105662 10.4324/9780429329067-10 10.1007/3-540-49257-7_15 10.4324/9781315697048-24 10.1109/HICSS.2011.456 10.1016/j.dsp.2017.10.011 10.1007/s11409-014-9126-y 10.1007/s11162-004-4139-z 10.1016/j.chb.2014.09.034 10.1007/s10462-007-9052-3 10.2307/2529786 10.1037/edu0000745 10.1016/j.compedu.2010.02.026 10.4324/9780203840023 10.1021/ed076p562 10.1111/j.1467-9868.2005.00503.x 10.1016/j.iheduc.2008.03.002 10.1152/advan.00112.2014 10.1007/BFb0026666 10.1016/j.compedu.2009.09.008 10.35542/osf.io/pbmvz 10.18201/ijisae.2017526690 10.1002/0470011815.b2a10079 10.1186/1471-2105-8-25 10.1353/csd.2005.0023 10.1504/IJTEL.2013.059088 10.1023/A:1009744630224 10.1007/978-1-4419-9863-7∖_209 10.1002/msj.21341 10.3102/0034654315584955 10.1177/001316446002000104 10.14445/22312803/IJCTT-V48P126 10.4324/9781315697048-21 10.1037/h0042519 10.1037/a0019506 10.1073/pnas.1320040111 10.1177/0098628314562679 10.3389/fgene.2013.00270 10.1613/jair.953 10.1353/sor.2017.0010 10.1109/TIT.1967.1053964 10.1017/CBO9780511801389 10.1016/j.iheduc.2015.05.002 10.1353/csd.2003.0008 10.3758/BF03195443 10.25777/t58r-6w25 10.1103/PhysRevPhysEducRes.15.020120 10.1016/j.compedu.2020.103999 10.1016/j.cedpsych.2014.06.003 10.18608/hla17.004 10.1016/B978-012109890-2/50043-3 10.21037/atm.2016.03.37 10.1038/323533a0 10.1145/2460296.2460324 10.18608/hla17.028 10.1016/j.iheduc.2015.11.003 10.1145/2330601.2330664 10.1007/978-1-4614-3305-7∖_5 10.28971/242016DB105 10.1038/538020a 10.1007/s10489-012-0374-8 10.1080/0142159X.2017.1309376 10.1080/01972243.2016.1130502 10.1007/s10956-011-9318-z |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 4T- 7TK K9. 7X8 5PM |
DOI | 10.3758/s13428-022-01939-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Education |
EISSN | 1554-3528 |
EndPage | 3054 |
ExternalDocumentID | PMC10556130 10_3758_s13428_022_01939_9 |
GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A C6C CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 4T- 7TK ABRTQ K9. 7X8 5PM |
ID | FETCH-LOGICAL-c519t-b890ff2474cef83d279c7fad6362b843734f5bc1c06a2f8f1477c2d3a581a7e03 |
IEDL.DBID | U2A |
ISSN | 1554-3528 1554-351X |
IngestDate | Thu Aug 21 18:35:51 EDT 2025 Thu Jul 10 17:31:24 EDT 2025 Fri Jul 25 23:12:33 EDT 2025 Tue Jul 01 01:06:00 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Equity Data privacy Learning management system Machine learning Digital data |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-b890ff2474cef83d279c7fad6362b843734f5bc1c06a2f8f1477c2d3a581a7e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://link.springer.com/10.3758/s13428-022-01939-9 |
PMID | 36018483 |
PQID | 2873542312 |
PQPubID | 976348 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10556130 proquest_miscellaneous_2707617214 proquest_journals_2873542312 crossref_citationtrail_10_3758_s13428_022_01939_9 crossref_primary_10_3758_s13428_022_01939_9 springer_journals_10_3758_s13428_022_01939_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Behavior research methods |
PublicationTitleAbbrev | Behav Res |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | RichardsNMKingJHThree paradoxes of big dataStan. L. Rev. Online20136641 PintrichPRThe role of goal orientation in self-regulated learning. Handbook of self-regulation2000AmsterdamElsevier451502 GoadTPredicting student success in online physical education (Doctoral dissertation)2018College of Physical Activity and Sports Sciences BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press HauserLAn examination of the predictive relationship between mode of instruction and student success in introductory biologyInquiry20162014960https://doi.org/10.25777/t58r-6w25 Bernacki, M.L., Chavez, M.M., & Uesbeck, P.M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers and Education, 158. https://doi.org/10.1016/j.compedu.2020.103999 CortesCVapnikVSupport-vector networksMachine Learning1995203273297 Davidson, J. L. (2017). Student demographic and academic characteristics that predict community college student success in online courses (Doctoral dissertation). Illinois State University, Normal, United States. RubelAJonesKMLStudent privacy in learning analytics: An information ethics perspectiveThe Information Society2016322143159 Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11). Krzanowski, W.J. (2005). Multivariate techniques, robustness. Encyclopedia of Biostatistics 5. CoverTHartPNearest neighbor pattern classificationIEEE Transactions on Information Theory19671312127 CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press YouJWIdentifying significant indicators using LMS data to predict course achievement in online learningThe Internet and Higher Education2016292330 FogleTTClass modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation)2016Capella University DasNThe influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation)2009University of New Orleans Zeide, E. (2017). Unpacking Student Privacy. Handbook of Learning Analytics, 327–335. https://doi.org/10.18608/hla17.028 Panter, A.T., & Sterba, S.K. (2011). Ethics in quantitative methodology: An introduction. Handbook of ethics in quantitative methodology, 1–11. CastelvecchiDCan we open the black box of AI?Nature News2016538762320 MatonKIPollardSAMcDougall WeiseTVHrabowskiFAMeyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematicsMount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine2012795610623 Slade, S., & Tait, A (2019). Global guidelines: Ethics in learning analytics. PettyTMotivating first-generation students to academic success and college completionCollege Student Journal2014481133140 DaiTCromleyJGChanges in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approachContemporary Educational Psychology2014393233247 Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge, 145–149. DennisJMPhinneyJSChuatecoLIThe role of motivation, parental support, and peer support in the academic success of ethnic minority first-generation college studentsJournal of College Student Development2005463223236 O’ConnellKAWostlECrosslinMBerryTLGroverJPStudent ability best predicts final grade in a college algebra courseJournal of Learning Analytics201853167181 Prinsloo, P., & Slade, S. (2017). Ethics and Learning Analytics: Charting the (Un)Charted. Handbook of Learning Analytics, 49–57. https://doi.org/10.18608/hla17.004 CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement19602013746 OgutuJOSchulz-StreeckTPiephoH-PGenomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensionsBMC Proceedings20126216 ZuboffSBig other: surveillance capitalism and the prospects of an information civilizationJournal of Information Technology20153017589 RishIAn empirical study of the naive Bayes classifierIJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence20013224146 ZacharisNZClassification and regression trees (CART) for predictive modeling in blended learningIJ Intelligent Systems and Applications2018319 Seldon, A., Lucking, R., Lakhani, P., & Clement-Jones, T. (2020) the institute for ethical AI in education interim report (tech. rep). Buckingham: University of Buckingham. https://www.buckingham.ac.uk/wpcontent/uploads/2020/02/The-Institute-for-Ethical-AI-in-Educations-Interim-Report-Towards-a-Shared-Vision-of-Ethical-AI-in-Education.pdf JuncoRClemCPredicting course outcomes with digital textbook usage dataThe Internet and Higher Education2015275463 FountainRSSearching for predictors of success in community college online courses (Doctoral dissertation)2016Appalachian State University TeneOPolonetskyJA theory of creepy: technology, privacy and shifting social normsYale JL & Tech20131659 Melo, F. (2013). Area under the ROC Curve. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.) Encyclopedia of systems biology. https://doi.org/10.1007/978-1-4419-9863-7∖_209 (pp. 38–39). New York: Springer. Baker, R.S., & Hawn, A. (2021). Algorithmic bias in education. Unpublished. MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing A Review Journal201873115https://doi.org/10.1016/j.dsp.2017.10.011 TintoVDropout from higher education: A theoretical synthesis of recent researchReview of Educational Research197545189125 ZabriskieCYangJDeVoreSStewartJUsing machine learning to predict physics course outcomesPhysical Review Physics Education Research201915220120 ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216321357 Landis, J.R., & Koch, G.G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374. MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining and Knowledge Discovery199824345389 Redford, J., & Mulvaney Hoyer, K (2017). First generation and continuing-generation college students: A comparison of high school and postsecondary experiences. Paquette, L., Li, Z., Baker, R., Ocumpaugh, J., & Andres, A. (2020). Who’s learning? Using demographics in EDM research. Journal of Educational Data Mining,12(3), 1–30. https://www2.ed.gov/rschstat/catalog/student-demographics.html PermzadianVCredéMDo first-year seminars improve college grades and retention? A quantitative review of their overall effectiveness and an examination of moderators of effectivenessReview of Educational Research2016861277316 NistorNNeubauerKFrom participation to dropout: Quantitative participation patterns in online university coursesComputers & Education2010552663672 Pistilli, M.D., Willis, J.E., & Campbell, J.P. (2014). Analytics through an institutional lens: Definition, theory, design, and impact. In J.A. Larusson, & B. White (Eds.) Learning analytics: From research to practice. https://doi.org/10.1007/978-1-4614-3305-7∖_5 (pp. 79–102). New York: Springer. KotsiantisSBZaharakisIDPintelasPEMachine learning: A review of classification and combining techniquesArtificial Intelligence Review2006263159190 StroblCBoulesteixA-LZeileisAHothornTBias in random forest variable importance measures: Illustrations, sources and a solutionBMC Bioinformatics200781121 MacfadyenLPDawsonSMining LMS data to develop an “early warning system” for educators: A proof of conceptComputers & Education2010542588599 JapkowiczNLearning from imbalanced data sets: a comparison of various strategiesAAAI Workshop on Learning from Imbalanced Data Sets2000681015 Malloy, T. E., Jensen, G. C., Regan, A., & Reddick, M. (2002). Open courseware and shared knowledge in higher education. Behavior Research Methods, Instruments, and Computers,34(2), 200–203. https://doi.org/10.3758/BF03195443 Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. European conference on machine learning, 4–15. OsisanwoFYAkinsolaJETAwodeleOHinmikaiyeJOOlakanmiOAkinjobiJSupervised machine learning algorithms: classification and comparisonInternational Journal of Computer Trends and Technology (IJCTT)2017483128138 CooperCIPearsonPTA genetically optimized predictive system for success in general chemistry using a diagnostic algebra testJournal of Science Education and Technology2012211197205 Lee, H., & Kizilcec, R.F. (2020). Evaluation of fairness trade-offs in predicting student success, 1–3. arXiv:2007.00088. Pritchard, M.E., & Wilson, G.S. (2003). Using emotional and social factors to predict student success. Journal of College Student Development, 44(1), 18–28. https://doi.org/10.1353/csd.2003.0008 LingCXLiCData mining for direct marketing: Problems and solutionsKdd1998987379 HullemanCSGodesOHendricksBLHarackiewiczJMEnhancing interest and performance with a utility value interventionJournal of Educational Psychology20101024880 KramerADIGuilloryJEHancockJTExperimental evidence of massive-scale emotional contagion through social networksProceedings of the National Academy of Sciences20141112487888790 GulticeAWithamAKallmeyerRAre your students ready for anatomy and physiology? Developing tools to identify students at risk for failureAdvances in Physiology Education201539210811526031727 RosenblattFThe perceptron: a probabilistic model for information storage and organization in the brainPsychological Review195865638613602029 Kizilcec, R.F., & Lee, H. (2021). Algorithmic fairness in Education. Unpublished work. E 1939_CR81 1939_CR82 1939_CR83 LP Macfadyen (1939_CR60) 2010; 54 1939_CR85 J Cohen (1939_CR19) 1960; 20 1939_CR115 1939_CR114 N Japkowicz (1939_CR42) 2000; 68 O Tene (1939_CR99) 2013; 16 F Rosenblatt (1939_CR89) 1958; 65 S Zuboff (1939_CR117) 2015; 30 LA Cummings (1939_CR25) 2009 1939_CR77 CS Hulleman (1939_CR41) 2010; 102 I Rish (1939_CR87) 2001; 3 AE Krumm (1939_CR52) 2014 G Montavon (1939_CR67) 2018; 73 B Binbasaran Tuysuzoglu (1939_CR8) 2015; 10 V Tinto (1939_CR101) 1975; 45 M Saqr (1939_CR93) 2017; 39 JW Jerome (1939_CR43) 2013; 66 M Rayno (1939_CR84) 2010 1939_CR76 D Castelvecchi (1939_CR15) 2016; 538 D Liben-Nowell (1939_CR57) 2008; 105 JO Ogutu (1939_CR73) 2012; 6 JM Dennis (1939_CR30) 2005; 46 K Eagan (1939_CR31) 2010 1939_CR66 1939_CR68 V Tinto (1939_CR102) 1993; 79 VC Smith (1939_CR97) 2012; 16 T Cover (1939_CR22) 1967; 13 National Academies of Sciences Engineering & Medicine (1939_CR70) 2016 CX Ling (1939_CR58) 1998; 98 C McFate (1939_CR65) 1999; 76 1939_CR13 T Petty (1939_CR79) 2014; 48 NM Richards (1939_CR86) 2013; 66 P Waldmann (1939_CR104) 2013; 4 G Kovács (1939_CR50) 2019; 83 1939_CR18 1939_CR92 KI Maton (1939_CR63) 2012; 79 1939_CR94 RS Fountain (1939_CR33) 2016 1939_CR96 1939_CR109 1939_CR103 1939_CR106 DL Williams (1939_CR105) 2019 A Zajacova (1939_CR113) 2005; 46 NV Chawla (1939_CR16) 2002; 16 SK Murthy (1939_CR69) 1998; 2 L Hauser (1939_CR40) 2016; 20 ADI Kramer (1939_CR51) 2014; 111 L Breiman (1939_CR12) 1984 TT Fogle (1939_CR32) 2016 N Nistor (1939_CR71) 2010; 55 RS Baker (1939_CR2) 2015 N Das (1939_CR28) 2009 F Ornelas (1939_CR74) 2017; 22 T Dai (1939_CR26) 2014; 39 T Goad (1939_CR34) 2018 1939_CR35 J Silverman (1939_CR95) 2017; 84 1939_CR37 R Tibshirani (1939_CR100) 1996; 58 1939_CR39 JW You (1939_CR108) 2016; 29 C Márquez-Vera (1939_CR62) 2013; 38 SB Kotsiantis (1939_CR49) 2006; 26 NZ Zacharis (1939_CR111) 2015; 27 EW Black (1939_CR10) 2008; 11 S Kotsiantis (1939_CR48) 2013; 5 1939_CR24 1939_CR27 A Cakmak (1939_CR14) 2017; 5 1939_CR29 GV Kass (1939_CR46) 1980; 29 1939_CR3 N Cristianini (1939_CR23) 2000 1939_CR1 PR Pintrich (1939_CR80) 2000 1939_CR61 1939_CR7 1939_CR6 1939_CR5 W Xing (1939_CR107) 2015; 47 1939_CR4 1939_CR9 CI Cooper (1939_CR20) 2012; 21 V Permzadian (1939_CR78) 2016; 86 C Strobl (1939_CR98) 2007; 8 BJ Gorvine (1939_CR36) 2015; 42 C Romero (1939_CR88) 2010; 21 1939_CR55 1939_CR56 DE Rumelhart (1939_CR91) 1986; 323 FY Osisanwo (1939_CR75) 2017; 48 1939_CR59 SPM Choi (1939_CR17) 2018; 21 NZ Zacharis (1939_CR112) 2018; 3 A Gultice (1939_CR38) 2015; 39 H Zou (1939_CR116) 2005; 67 1939_CR53 1939_CR54 L Breiman (1939_CR11) 2001; 45 WS McCulloch (1939_CR64) 1948; 4 R Junco (1939_CR44) 2015; 27 KA O’Connell (1939_CR72) 2018; 5 A Rubel (1939_CR90) 2016; 32 C Cortes (1939_CR21) 1995; 20 1939_CR45 C Zabriskie (1939_CR110) 2019; 15 1939_CR47 |
References_xml | – reference: Morrison, M. C., & Schmit, S. (2010). Predicting success in a gateway mathematics course. Online Submission. – reference: PettyTMotivating first-generation students to academic success and college completionCollege Student Journal2014481133140 – reference: Márquez-VeraCCanoARomeroCVenturaSPredicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced dataApplied Intelligence2013383315330 – reference: Redford, J., & Mulvaney Hoyer, K (2017). First generation and continuing-generation college students: A comparison of high school and postsecondary experiences. – reference: Kizilcec, R.F., & Lee, H. (2021). Algorithmic fairness in Education. Unpublished work. – reference: CortesCVapnikVSupport-vector networksMachine Learning1995203273297 – reference: D’Aloisio, B.E. (2016). Investigating predictors of academic success in a foundational business mathematics course. Master–s Theses, Dissertations, Graduate Research and Major Papers Overview, 138. – reference: GulticeAWithamAKallmeyerRAre your students ready for anatomy and physiology? Developing tools to identify students at risk for failureAdvances in Physiology Education201539210811526031727 – reference: SmithVCLangeAHustonDRPredictive modeling to forecast student outcomes and drive effective interventions in online community college coursesJournal of Asynchronous Learning Networks20121635161 – reference: BakerRSLindrumDLindrumMJPerkowskiDAnalyzing early at-risk factors in higher education e-learning courses2015MontrealInternational Educational Data Mining Society – reference: BlackEWDawsonKPriemJData for free: Using LMS activity logs to measure community in online coursesThe Internet and Higher Education20081126570 – reference: RosenblattFThe perceptron: a probabilistic model for information storage and organization in the brainPsychological Review195865638613602029 – reference: Panter, A.T., & Sterba, S.K. (2011). Ethics in quantitative methodology: An introduction. Handbook of ethics in quantitative methodology, 1–11. – reference: TeneOPolonetskyJA theory of creepy: technology, privacy and shifting social normsYale JL & Tech20131659 – reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature19863236088533536 – reference: OsisanwoFYAkinsolaJETAwodeleOHinmikaiyeJOOlakanmiOAkinjobiJSupervised machine learning algorithms: classification and comparisonInternational Journal of Computer Trends and Technology (IJCTT)2017483128138 – reference: Pistilli, M.D., Willis, J.E., & Campbell, J.P. (2014). Analytics through an institutional lens: Definition, theory, design, and impact. In J.A. Larusson, & B. White (Eds.) Learning analytics: From research to practice. https://doi.org/10.1007/978-1-4614-3305-7∖_5 (pp. 79–102). New York: Springer. – reference: PintrichPRThe role of goal orientation in self-regulated learning. Handbook of self-regulation2000AmsterdamElsevier451502 – reference: Davidson, J. L. (2017). Student demographic and academic characteristics that predict community college student success in online courses (Doctoral dissertation). Illinois State University, Normal, United States. – reference: RomeroCEspejoPGZafraARomeroJRVenturaSWeb usage mining for predicting final marks of students that use Moodle coursesComputer Applications in Engineering Education2010211135146 – reference: McCullochWSPittsWThe statistical organization of nervous activityBiometrics194842919918871168 – reference: KotsiantisSTseliosNFilippidiAKomisVUsing learning analytics to identify successful learners in a blended learning courseInternational Journal of Technology Enhanced Learning201352133150 – reference: Paquette, L., Li, Z., Baker, R., Ocumpaugh, J., & Andres, A. (2020). Who’s learning? Using demographics in EDM research. Journal of Educational Data Mining,12(3), 1–30. https://www2.ed.gov/rschstat/catalog/student-demographics.html – reference: ZajacovaALynchSMEspenshadeTJSelf-efficacy, stress, and academic success in collegeResearch in Higher Education2005466677706https://doi.org/10.1007/s11162-004-4139-z – reference: EaganKHurtadoSChangMWhat matters in STEM: Institutional contexts that influence STEM bachelor’s degree completion rates2010IndianapolisAnnual meeting of the Association for the Study of Higher Education – reference: Zeide, E. (2017). Unpacking Student Privacy. Handbook of Learning Analytics, 327–335. https://doi.org/10.18608/hla17.028 – reference: McFateCOlmstedJIIIAssessing student preparation through placement testsJournal of Chemical Education1999764562 – reference: WilliamsDLPredicting student success using digital textbook analytics in online courses (Doctoral dissertation)2019Liberty University – reference: SilvermanJPrivacy under surveillance capitalismSocial Research An International Quarterly2017841147164 – reference: Krzanowski, W.J. (2005). Multivariate techniques, robustness. Encyclopedia of Biostatistics 5. – reference: Yu, R., Li, Q., Fischer, C., Doroudi, S., & Xu, D. (2020). Towards accurate and fair prediction of college success: Evaluating different sources of student data. International educational data mining society. – reference: Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. European conference on machine learning, 4–15. – reference: PermzadianVCredéMDo first-year seminars improve college grades and retention? A quantitative review of their overall effectiveness and an examination of moderators of effectivenessReview of Educational Research2016861277316 – reference: TintoVDropout from higher education: A theoretical synthesis of recent researchReview of Educational Research197545189125 – reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216321357 – reference: Cogliano, M., Bernacki, M.L., Hilpert, J.C., & Strong, C.L. (2022). A self-regulated learning analytics prediction-and-intervention design: Detecting and supporting struggling biology students. Journal of Educational Psychology. No Pagination Specified–No Pagination Specified. https://doi.org/10.1037/edu0000745 – reference: GorvineBJSmithHDPredicting student success in a psychological statistics course emphasizing collaborative learningTeaching of Psychology20154215659 – reference: Pritchard, M.E., & Wilson, G.S. (2003). Using emotional and social factors to predict student success. Journal of College Student Development, 44(1), 18–28. https://doi.org/10.1353/csd.2003.0008 – reference: FountainRSSearching for predictors of success in community college online courses (Doctoral dissertation)2016Appalachian State University – reference: DennisJMPhinneyJSChuatecoLIThe role of motivation, parental support, and peer support in the academic success of ethnic minority first-generation college studentsJournal of College Student Development2005463223236 – reference: Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: simple definition and calculation of accuracy, sensitivity and specificity. – reference: XingWGuoRPetakovicEGogginsSParticipation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theoryComputers in Human Behavior201547168181 – reference: Bernacki, M.L. (2018). Examining the cyclical, loosely sequenced, and contingent features of self-regulated learning: Trace data and their analysis. – reference: ZuboffSBig other: surveillance capitalism and the prospects of an information civilizationJournal of Information Technology20153017589 – reference: ZacharisNZClassification and regression trees (CART) for predictive modeling in blended learningIJ Intelligent Systems and Applications2018319 – reference: Barber, R., & Sharkey, M. (2012). Course correction: Using analytics to predict course success. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 259–262). – reference: Bird, M.E. (2012). Predicting student performance in lower division mathematics courses (Doctoral dissertation). Texas Womans University. – reference: O’ConnellKAWostlECrosslinMBerryTLGroverJPStudent ability best predicts final grade in a college algebra courseJournal of Learning Analytics201853167181 – reference: Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful? In International conference on database theory (pp. 217–235). – reference: CakmakAPredicting student success in courses via collaborative filteringInternational Journal of Intelligent Systems and Applications in Engineering2017511017 – reference: KrummAEWaddingtonRJTeasleySDLonnSA learning management system-based early warning system for academic advising in undergraduate engineering. Learning analytics2014BerlinSpringer103119 – reference: CastelvecchiDCan we open the black box of AI?Nature News2016538762320 – reference: Kaschesky, M., & Riedl, R. (2011). Tracing opinion-formation on political issues on the internet: A model and methodology for qualitative analysis and results. In 2011 44th Hawaii International Conference on System Sciences (pp. 1–10). – reference: MatonKIPollardSAMcDougall WeiseTVHrabowskiFAMeyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematicsMount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine2012795610623 – reference: TintoVBuilding communityLiberal Education19937941621 – reference: OgutuJOSchulz-StreeckTPiephoH-PGenomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensionsBMC Proceedings20126216 – reference: National Academies of Sciences Engineering & MedicineDeveloping a national STEM workforce strategy: A workshop summary2016WashingtonNational Academies Press – reference: Binbasaran TuysuzogluBGreeneJAAn investigation of the role of contingent metacognitive behavior in self-regulated learningMetacognition and Learning20151017798https://doi.org/10.1007/s11409-014-9126-y – reference: JapkowiczNLearning from imbalanced data sets: a comparison of various strategiesAAAI Workshop on Learning from Imbalanced Data Sets2000681015 – reference: Seldon, A., Lucking, R., Lakhani, P., & Clement-Jones, T. (2020) the institute for ethical AI in education interim report (tech. rep). Buckingham: University of Buckingham. https://www.buckingham.ac.uk/wpcontent/uploads/2020/02/The-Institute-for-Ethical-AI-in-Educations-Interim-Report-Towards-a-Shared-Vision-of-Ethical-AI-in-Education.pdf – reference: OrnelasFOrdonezCPredicting student success: a naïve bayesian application to community college dataTechnology, Knowledge and Learning2017223299315 – reference: Hadwin, A.F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. In D. Schunk, & J. Greene (Eds.) Handbook of self-regulation of learning and performance (pp. 65–84): Routledge. – reference: Baker, R.S., & Hawn, A. (2021). Algorithmic bias in education. Unpublished. – reference: MacfadyenLPDawsonSMining LMS data to develop an “early warning system” for educators: A proof of conceptComputers & Education2010542588599 – reference: WaldmannPMészárosGGredlerBFuerstCSölknerJEvaluation of the lasso and the elastic net in genome-wide association studiesFrontiers in genetics20134270243636623850240 – reference: RaynoMRelationships of academic preparedness, age, gender, and ethnicity to success in a community college fundamentals of nursing course (Doctoral dissertation)2010University of Phoenix – reference: DasNThe influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation)2009University of New Orleans – reference: CoverTHartPNearest neighbor pattern classificationIEEE Transactions on Information Theory19671312127 – reference: Torgo, L., & Torgo, M.L. (2013). Package ‘dmwr’. Comprehensive R Archive Network. – reference: KramerADIGuilloryJEHancockJTExperimental evidence of massive-scale emotional contagion through social networksProceedings of the National Academy of Sciences20141112487888790 – reference: BreimanLRandom forestsMachine Learning2001451532 – reference: Culver, T. (2014). Relationships between motivational, demographic, and academic variables and course grade in developmental mathematics among students at North Central State College (Doctoral dissertation). Colorado State University. – reference: Goosen, R.A. (2008). Cognitive and affective measures as indicators of course outcomes for developmental mathematics students at a Texas community college (Doctoral dissertation). Grambling State University, Grambling, United States. – reference: CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press – reference: KassGVAn exploratory technique for investigating large quantities of categorical dataJournal of the Royal Statistical Society: Series C (Applied Statistics)1980292119127 – reference: Greene, J.A., Deekens, V.M., Copeland, D.Z., & Yu, S. (2018). Capturing and modeling self-regulated learning using think-aloud protocols. – reference: DaiTCromleyJGChanges in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approachContemporary Educational Psychology2014393233247 – reference: SaqrMForsUTedreMHow learning analytics can early predict under-achieving students in a blended medical education courseMedical Teacher201739775776728421894 – reference: RichardsNMKingJHThree paradoxes of big dataStan. L. Rev. Online20136641 – reference: HullemanCSGodesOHendricksBLHarackiewiczJMEnhancing interest and performance with a utility value interventionJournal of Educational Psychology20101024880 – reference: GoadTPredicting student success in online physical education (Doctoral dissertation)2018College of Physical Activity and Sports Sciences – reference: NistorNNeubauerKFrom participation to dropout: Quantitative participation patterns in online university coursesComputers & Education2010552663672 – reference: Lee, H., & Kizilcec, R.F. (2020). Evaluation of fairness trade-offs in predicting student success, 1–3. arXiv:2007.00088. – reference: Saenz, V.B., Hurtado, S., Barrera, D., Wolf, D.S., & Yeung, F.P. (1971). First In my family: A profile of first-generation college students at four-year institutions since. The Foundation for Independent Education. – reference: CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement19602013746 – reference: Longadge, R., & Dongre, S. (2013). Class imbalance problem in data mining review. arXiv:1305.1707. – reference: YouJWIdentifying significant indicators using LMS data to predict course achievement in online learningThe Internet and Higher Education2016292330 – reference: Melo, F. (2013). Area under the ROC Curve. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.) Encyclopedia of systems biology. https://doi.org/10.1007/978-1-4419-9863-7∖_209 (pp. 38–39). New York: Springer. – reference: BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press – reference: CooperCIPearsonPTA genetically optimized predictive system for success in general chemistry using a diagnostic algebra testJournal of Science Education and Technology2012211197205 – reference: Prinsloo, P., & Slade, S. (2017). Ethics and Learning Analytics: Charting the (Un)Charted. Handbook of Learning Analytics, 49–57. https://doi.org/10.18608/hla17.004 – reference: ChoiSPMLamSSLiKCWongBTMLearning analytics at low cost: At-risk student prediction with clicker data and systematic proactive interventionsJournal of Educational Technology & Society2018212273290 – reference: HauserLAn examination of the predictive relationship between mode of instruction and student success in introductory biologyInquiry20162014960https://doi.org/10.25777/t58r-6w25 – reference: FogleTTClass modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation)2016Capella University – reference: RishIAn empirical study of the naive Bayes classifierIJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence20013224146 – reference: Malloy, T. E., Jensen, G. C., Regan, A., & Reddick, M. (2002). Open courseware and shared knowledge in higher education. Behavior Research Methods, Instruments, and Computers,34(2), 200–203. https://doi.org/10.3758/BF03195443 – reference: MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining and Knowledge Discovery199824345389 – reference: JuncoRClemCPredicting course outcomes with digital textbook usage dataThe Internet and Higher Education2015275463 – reference: StroblCBoulesteixA-LZeileisAHothornTBias in random forest variable importance measures: Illustrations, sources and a solutionBMC Bioinformatics200781121 – reference: Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11). – reference: Bernacki, M.L., Chavez, M.M., & Uesbeck, P.M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers and Education, 158. https://doi.org/10.1016/j.compedu.2020.103999 – reference: Buckingham Shum, S. (2020). Should predictive models of student outcome be “colour-blind”? http://simon.buckinghamshum.net/2020/07/should-predictivemodels-of-student-outcome-be-colour-blind/ – reference: RubelAJonesKMLStudent privacy in learning analytics: An information ethics perspectiveThe Information Society2016322143159 – reference: KovácsGAn empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasetsApplied Soft Computing201983105662 – reference: Landis, J.R., & Koch, G.G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374. – reference: Liben-NowellDKleinbergJTracing information flow on a global scale using Internet chain-letter dataProceedings of the National Academy of Sciences20081051246334638 – reference: ZabriskieCYangJDeVoreSStewartJUsing machine learning to predict physics course outcomesPhysical Review Physics Education Research201915220120 – reference: CummingsLAPredicting student success in online courses at a rural Alabama Community College (Doctoral dissertation)2009Mississippi State University – reference: KotsiantisSBZaharakisIDPintelasPEMachine learning: A review of classification and combining techniquesArtificial Intelligence Review2006263159190 – reference: Slade, S., & Tait, A (2019). Global guidelines: Ethics in learning analytics. – reference: TibshiraniRRegression shrinkage and selection via the lassoJournal of the Royal Statistical Society: Series B (Methodological)1996581267288 – reference: JeromeJWBuying and selling privacy: Big data’s difference burdens and benefitsStanford Law Review Online20136647 – reference: ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)2005672301320 – reference: Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge, 145–149. – reference: LingCXLiCData mining for direct marketing: Problems and solutionsKdd1998987379 – reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing A Review Journal201873115https://doi.org/10.1016/j.dsp.2017.10.011 – reference: ZacharisNZA multivariate approach to predicting student outcomes in web-enabled blended learning coursesThe Internet and Higher Education2015274453 – volume: 4 start-page: 91 issue: 2 year: 1948 ident: 1939_CR64 publication-title: Biometrics doi: 10.2307/3001453 – ident: 1939_CR55 – ident: 1939_CR9 – volume: 21 start-page: 135 issue: 1 year: 2010 ident: 1939_CR88 publication-title: Computer Applications in Engineering Education doi: 10.1002/cae.20456 – volume: 27 start-page: 54 year: 2015 ident: 1939_CR44 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2015.06.001 – volume-title: Predicting student success in online physical education (Doctoral dissertation) year: 2018 ident: 1939_CR34 – volume: 22 start-page: 299 issue: 3 year: 2017 ident: 1939_CR74 publication-title: Technology, Knowledge and Learning doi: 10.1007/s10758-017-9334-z – volume: 3 start-page: 41 issue: 22 year: 2001 ident: 1939_CR87 publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence – volume: 30 start-page: 75 issue: 1 year: 2015 ident: 1939_CR117 publication-title: Journal of Information Technology doi: 10.1057/jit.2015.5 – volume: 21 start-page: 273 issue: 2 year: 2018 ident: 1939_CR17 publication-title: Journal of Educational Technology & Society – volume: 45 start-page: 89 issue: 1 year: 1975 ident: 1939_CR101 publication-title: Review of Educational Research doi: 10.3102/00346543045001089 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 1939_CR100 publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1939_CR11 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume-title: Class modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation) year: 2016 ident: 1939_CR32 – volume: 105 start-page: 4633 issue: 12 year: 2008 ident: 1939_CR57 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0708471105 – volume: 16 start-page: 51 issue: 3 year: 2012 ident: 1939_CR97 publication-title: Journal of Asynchronous Learning Networks – volume: 83 start-page: 105662 year: 2019 ident: 1939_CR50 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105662 – ident: 1939_CR47 doi: 10.4324/9780429329067-10 – ident: 1939_CR7 doi: 10.1007/3-540-49257-7_15 – ident: 1939_CR5 doi: 10.4324/9781315697048-24 – ident: 1939_CR45 doi: 10.1109/HICSS.2011.456 – volume: 73 start-page: 1 year: 2018 ident: 1939_CR67 publication-title: Digital Signal Processing A Review Journal doi: 10.1016/j.dsp.2017.10.011 – volume: 10 start-page: 77 issue: 1 year: 2015 ident: 1939_CR8 publication-title: Metacognition and Learning doi: 10.1007/s11409-014-9126-y – volume: 46 start-page: 677 issue: 6 year: 2005 ident: 1939_CR113 publication-title: Research in Higher Education doi: 10.1007/s11162-004-4139-z – ident: 1939_CR96 – volume: 47 start-page: 168 year: 2015 ident: 1939_CR107 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.09.034 – volume: 26 start-page: 159 issue: 3 year: 2006 ident: 1939_CR49 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-007-9052-3 – ident: 1939_CR54 doi: 10.2307/2529786 – ident: 1939_CR18 doi: 10.1037/edu0000745 – volume: 55 start-page: 663 issue: 2 year: 2010 ident: 1939_CR71 publication-title: Computers & Education doi: 10.1016/j.compedu.2010.02.026 – ident: 1939_CR76 doi: 10.4324/9780203840023 – volume: 76 start-page: 562 issue: 4 year: 1999 ident: 1939_CR65 publication-title: Journal of Chemical Education doi: 10.1021/ed076p562 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 1939_CR116 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 11 start-page: 65 issue: 2 year: 2008 ident: 1939_CR10 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2008.03.002 – volume: 68 start-page: 10 year: 2000 ident: 1939_CR42 publication-title: AAAI Workshop on Learning from Imbalanced Data Sets – volume: 39 start-page: 108 issue: 2 year: 2015 ident: 1939_CR38 publication-title: Advances in Physiology Education doi: 10.1152/advan.00112.2014 – ident: 1939_CR56 doi: 10.1007/BFb0026666 – volume: 54 start-page: 588 issue: 2 year: 2010 ident: 1939_CR60 publication-title: Computers & Education doi: 10.1016/j.compedu.2009.09.008 – volume: 5 start-page: 167 issue: 3 year: 2018 ident: 1939_CR72 publication-title: Journal of Learning Analytics – ident: 1939_CR1 doi: 10.35542/osf.io/pbmvz – volume: 5 start-page: 10 issue: 1 year: 2017 ident: 1939_CR14 publication-title: International Journal of Intelligent Systems and Applications in Engineering doi: 10.18201/ijisae.2017526690 – ident: 1939_CR53 doi: 10.1002/0470011815.b2a10079 – volume: 8 start-page: 1 issue: 1 year: 2007 ident: 1939_CR98 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume-title: Classification and regression trees year: 1984 ident: 1939_CR12 – volume: 46 start-page: 223 issue: 3 year: 2005 ident: 1939_CR30 publication-title: Journal of College Student Development doi: 10.1353/csd.2005.0023 – volume: 5 start-page: 133 issue: 2 year: 2013 ident: 1939_CR48 publication-title: International Journal of Technology Enhanced Learning doi: 10.1504/IJTEL.2013.059088 – ident: 1939_CR103 – volume: 2 start-page: 345 issue: 4 year: 1998 ident: 1939_CR69 publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009744630224 – ident: 1939_CR66 doi: 10.1007/978-1-4419-9863-7∖_209 – volume: 79 start-page: 610 issue: 5 year: 2012 ident: 1939_CR63 publication-title: Mount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine doi: 10.1002/msj.21341 – ident: 1939_CR39 – volume: 86 start-page: 277 issue: 1 year: 2016 ident: 1939_CR78 publication-title: Review of Educational Research doi: 10.3102/0034654315584955 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 1939_CR19 publication-title: Educational and Psychological Measurement doi: 10.1177/001316446002000104 – volume: 48 start-page: 128 issue: 3 year: 2017 ident: 1939_CR75 publication-title: International Journal of Computer Trends and Technology (IJCTT) doi: 10.14445/22312803/IJCTT-V48P126 – ident: 1939_CR37 doi: 10.4324/9781315697048-21 – volume-title: The influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation) year: 2009 ident: 1939_CR28 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 1939_CR89 publication-title: Psychological Review doi: 10.1037/h0042519 – volume: 102 start-page: 880 issue: 4 year: 2010 ident: 1939_CR41 publication-title: Journal of Educational Psychology doi: 10.1037/a0019506 – ident: 1939_CR59 – volume: 111 start-page: 8788 issue: 24 year: 2014 ident: 1939_CR51 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1320040111 – volume: 42 start-page: 56 issue: 1 year: 2015 ident: 1939_CR36 publication-title: Teaching of Psychology doi: 10.1177/0098628314562679 – volume: 48 start-page: 133 issue: 1 year: 2014 ident: 1939_CR79 publication-title: College Student Journal – volume-title: Searching for predictors of success in community college online courses (Doctoral dissertation) year: 2016 ident: 1939_CR33 – volume: 4 start-page: 270 year: 2013 ident: 1939_CR104 publication-title: Frontiers in genetics doi: 10.3389/fgene.2013.00270 – ident: 1939_CR13 – volume: 16 start-page: 321 year: 2002 ident: 1939_CR16 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 84 start-page: 147 issue: 1 year: 2017 ident: 1939_CR95 publication-title: Social Research An International Quarterly doi: 10.1353/sor.2017.0010 – ident: 1939_CR68 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 1939_CR22 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1967.1053964 – volume-title: An introduction to support vector machines and other kernel-based learning methods year: 2000 ident: 1939_CR23 doi: 10.1017/CBO9780511801389 – volume: 27 start-page: 44 year: 2015 ident: 1939_CR111 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2015.05.002 – volume: 66 start-page: 47 year: 2013 ident: 1939_CR43 publication-title: Stanford Law Review Online – ident: 1939_CR83 doi: 10.1353/csd.2003.0008 – ident: 1939_CR85 – ident: 1939_CR61 doi: 10.3758/BF03195443 – volume: 20 start-page: 49 issue: 1 year: 2016 ident: 1939_CR40 publication-title: Inquiry doi: 10.25777/t58r-6w25 – ident: 1939_CR109 – volume: 98 start-page: 73 year: 1998 ident: 1939_CR58 publication-title: Kdd – volume: 15 start-page: 20120 issue: 2 year: 2019 ident: 1939_CR110 publication-title: Physical Review Physics Education Research doi: 10.1103/PhysRevPhysEducRes.15.020120 – ident: 1939_CR6 doi: 10.1016/j.compedu.2020.103999 – ident: 1939_CR92 – volume: 39 start-page: 233 issue: 3 year: 2014 ident: 1939_CR26 publication-title: Contemporary Educational Psychology doi: 10.1016/j.cedpsych.2014.06.003 – start-page: 103 volume-title: A learning management system-based early warning system for academic advising in undergraduate engineering. Learning analytics year: 2014 ident: 1939_CR52 – volume-title: Developing a national STEM workforce strategy: A workshop summary year: 2016 ident: 1939_CR70 – ident: 1939_CR82 doi: 10.18608/hla17.004 – start-page: 451 volume-title: The role of goal orientation in self-regulated learning. Handbook of self-regulation year: 2000 ident: 1939_CR80 doi: 10.1016/B978-012109890-2/50043-3 – ident: 1939_CR115 doi: 10.21037/atm.2016.03.37 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 1939_CR91 publication-title: Nature doi: 10.1038/323533a0 – volume: 3 start-page: 1 year: 2018 ident: 1939_CR112 publication-title: IJ Intelligent Systems and Applications – volume-title: What matters in STEM: Institutional contexts that influence STEM bachelor’s degree completion rates year: 2010 ident: 1939_CR31 – ident: 1939_CR106 doi: 10.1145/2460296.2460324 – volume: 79 start-page: 16 issue: 4 year: 1993 ident: 1939_CR102 publication-title: Liberal Education – volume: 6 start-page: 1 issue: 2 year: 2012 ident: 1939_CR73 publication-title: BMC Proceedings – volume: 66 start-page: 41 year: 2013 ident: 1939_CR86 publication-title: Stan. L. Rev. Online – ident: 1939_CR114 doi: 10.18608/hla17.028 – volume: 29 start-page: 23 year: 2016 ident: 1939_CR108 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2015.11.003 – ident: 1939_CR4 doi: 10.1145/2330601.2330664 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 1939_CR21 publication-title: Machine Learning – ident: 1939_CR24 – ident: 1939_CR81 doi: 10.1007/978-1-4614-3305-7∖_5 – ident: 1939_CR3 – ident: 1939_CR27 doi: 10.28971/242016DB105 – volume-title: Analyzing early at-risk factors in higher education e-learning courses year: 2015 ident: 1939_CR2 – ident: 1939_CR35 – ident: 1939_CR29 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: 1939_CR15 publication-title: Nature News doi: 10.1038/538020a – volume: 29 start-page: 119 issue: 2 year: 1980 ident: 1939_CR46 publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – volume-title: Predicting student success in online courses at a rural Alabama Community College (Doctoral dissertation) year: 2009 ident: 1939_CR25 – volume: 38 start-page: 315 issue: 3 year: 2013 ident: 1939_CR62 publication-title: Applied Intelligence doi: 10.1007/s10489-012-0374-8 – volume: 39 start-page: 757 issue: 7 year: 2017 ident: 1939_CR93 publication-title: Medical Teacher doi: 10.1080/0142159X.2017.1309376 – volume: 32 start-page: 143 issue: 2 year: 2016 ident: 1939_CR90 publication-title: The Information Society doi: 10.1080/01972243.2016.1130502 – ident: 1939_CR94 – volume: 16 start-page: 59 year: 2013 ident: 1939_CR99 publication-title: Yale JL & Tech – volume-title: Predicting student success using digital textbook analytics in online courses (Doctoral dissertation) year: 2019 ident: 1939_CR105 – volume-title: Relationships of academic preparedness, age, gender, and ethnicity to success in a community college fundamentals of nursing course (Doctoral dissertation) year: 2010 ident: 1939_CR84 – ident: 1939_CR77 – volume: 21 start-page: 197 issue: 1 year: 2012 ident: 1939_CR20 publication-title: Journal of Science Education and Technology doi: 10.1007/s10956-011-9318-z |
SSID | ssj0038214 |
Score | 2.5327837 |
SecondaryResourceType | review_article |
Snippet | Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices.... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3026 |
SubjectTerms | Behavioral Science and Psychology Cognitive Psychology Education Learning management systems Literature reviews Psychology Well being |
Title | Predicting student outcomes using digital logs of learning behaviors: Review, current standards, and suggestions for future work |
URI | https://link.springer.com/article/10.3758/s13428-022-01939-9 https://www.proquest.com/docview/2873542312 https://www.proquest.com/docview/2707617214 https://pubmed.ncbi.nlm.nih.gov/PMC10556130 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a5JJLafqg2yaLCr11TW1JtuTeliUPWlp66EJ6Mlo9toHgLdHuIbf89M5Y9oYNpJCbQRKyNKN5aEbfAHw0Mmijg8o8DxIdFOVQDsqAXqtSzmkngqWI7vcf1cVcfr0sL_tHYXHIdh9Ckp2kJr8SjdrPsRCS0JQ5pRLUos7qPTgoyXdHLp7z6SB_heaFTM9jHhm3q4Lu7cqHWZEPQqOdxjl7Ac97U5FNE22P4JlvX8LhVmLdvoK7nzcUZ6HMZRYTSCVbbda4Hh8ZZbQvmbtaUlkQhgMiWwXWV4lYsuF9fvzCUnxgwmzCamLD9UKcMPxgcbOkIBTxJ0MTlyUYEkYZXa9hfnb6a3aR9SUVMoum2jpb6DoPgUslrQ9aOK5qq4JxFeqxhSaYIxnKhS1sXhkedCikUpY7YUpdGOVz8Qb221Xr3wJzxnhU9oHbikvtauOkyQurvDTcljYfQTHscmN7vHEqe3HdoN9BlGkSZRqkTNNRpqlH8Gk75m9C2_hv7-OBeE1_8mKDHqAo0UYs-Ag-bJvxzFAgxLR-tcE-im5v0PeVI9A7RN_OSqjbuy3t1Z8OfTtVFBW4vsnAH_ezP_6z757W_T0cUmH7lM12DPvrm40_QfNnvRjDwfT897fTMezNqtm44_1_3FUEvQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNemguJY-WbJumE8ita2pLsiXnVpaGbV70kEBuQqvHJlC8Jd499Naf3pmVvekGUujNIAnZnpFmRt_oG8aOrYza6qiywKPEAEV53AdlxKhVKe-1F9ERont5VY1v5NltedvR5NBdmL_we4Gu7Oe2EJI4lDklENSizuoN9lJipEzpe6Nq1O-6QvNCpksxz4xbNzyP3uTTXMgngOjSzpxus9edgwhfkkR32IvQ7LKt1T71a4_9_v5A6ArlK0ObqClhtpij6oQWKI99Cv5-SsVAAAe0MIvQ1YaYQn8rvz2BhAoMwSWGJugPFdoh4AO0iylBT6SVgI4tJPIRoDyuN-zm9Ov1aJx1hRQyhw7aPJvoOo-RSyVdiFp4rmqnovUVWq-JJnIjGcuJK1xeWR51LKRSjnthS11YFXLxlm02sybsM_DWBjTxkbuKS-1r66XNC6eCtNyVLh-wov_LxnUs41Ts4ofBaIMkY5JkDErGLCVj6gH7tBrzM3Fs_LP3QS8806231mDcJ0r0DAs-YEerZlwpBH_YJswW2EfRmQ1GvHLA9JrQV7MS1_Z6S3N_t-TcTnVEBX7fsNePx9mff9l3_9f9I3s1vr68MBffrs7fsy0qbZ_y2Q7Y5vxhET6gAzSfHC41_w9kdQEe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKiXivIQWwoMEjc2amI7scMNLV2VV9UDlXqzvH4slVC2arIHbvx0ZuJky1YqErdItuUkY3tm_M18w9hbK6O2Oqos8CjRQVEez0EZ0WtVynvtRXSE6H47rU7O5eeL8uKvLP4-2n2EJFNOA7E0Nd3RlY-0xQUauEdtISQxK3MKK6hFndX32QP0VHqgdlbNxrNYaF7IlCpzx7htdXRjY96OkLwFk_baZ_6I7Q1mI3xIct5n90LzmO1uTq9fT9jvs2vCXCiKGdpEWAmrdYffFlqg6PYl-MsllQgBHNDCKsJQMWIJY65--x4SVjAFl3ibYLxqaKeAD9CulwRI0VoFNHchUZIARXc9Zefz4--zk2wor5A5NNu6bKHrPEYulXQhauG5qp2K1leo0xaaKI9kLBeucHlledSxkEo57oUtdWFVyMUzttOsmvCcgbc2oOKP3FVcal9bL21eOBWk5a50-YQV4182buAepxIYPw36ICQZkyRjUDKml4ypJ-zdZsxVYt74Z-_DUXhm2IWtQW9QlGgvFnzC3myacf8QKGKbsFpjH0U3OegHywnTW0LfzEoM3NstzeWPnok7VRcV-H3TcX3czH73yx78X_fX7OHZx7n5-un0ywu2S_XuU5DbIdvprtfhJVpF3eJVv_D_AGq9CWU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+student+outcomes+using+digital+logs+of+learning+behaviors%3A+Review%2C+current+standards%2C+and+suggestions+for+future+work&rft.jtitle=Behavior+research+methods&rft.au=Arizmendi%2C+Cara+J.&rft.au=Bernacki%2C+Matthew+L.&rft.au=Rakovi%C4%87%2C+Mladen&rft.au=Plumley%2C+Robert+D.&rft.date=2023-09-01&rft.pub=Springer+US&rft.issn=1554-351X&rft.eissn=1554-3528&rft.volume=55&rft.issue=6&rft.spage=3026&rft.epage=3054&rft_id=info:doi/10.3758%2Fs13428-022-01939-9&rft_id=info%3Apmid%2F36018483&rft.externalDocID=PMC10556130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |