Predicting student outcomes using digital logs of learning behaviors: Review, current standards, and suggestions for future work

Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning an...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 55; no. 6; pp. 3026 - 3054
Main Authors Arizmendi, Cara J., Bernacki, Matthew L., Raković, Mladen, Plumley, Robert D., Urban, Christopher J., Panter, A. T., Greene, Jeffrey A., Gates, Kathleen M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1554-3528
1554-351X
1554-3528
DOI10.3758/s13428-022-01939-9

Cover

Loading…
Abstract Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.
AbstractList Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students' learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students' success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students' learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students' success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.
Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.
Author Raković, Mladen
Greene, Jeffrey A.
Arizmendi, Cara J.
Plumley, Robert D.
Urban, Christopher J.
Bernacki, Matthew L.
Gates, Kathleen M.
Panter, A. T.
Author_xml – sequence: 1
  givenname: Cara J.
  surname: Arizmendi
  fullname: Arizmendi, Cara J.
  email: cara.arizmendi@duke.edu
  organization: Duke University
– sequence: 2
  givenname: Matthew L.
  surname: Bernacki
  fullname: Bernacki, Matthew L.
  organization: The University of North Carolina Chapel Hill
– sequence: 3
  givenname: Mladen
  surname: Raković
  fullname: Raković, Mladen
  organization: Centre for Learning Analytics, Monash University
– sequence: 4
  givenname: Robert D.
  surname: Plumley
  fullname: Plumley, Robert D.
  organization: The University of North Carolina Chapel Hill
– sequence: 5
  givenname: Christopher J.
  surname: Urban
  fullname: Urban, Christopher J.
  organization: The University of North Carolina Chapel Hill
– sequence: 6
  givenname: A. T.
  surname: Panter
  fullname: Panter, A. T.
  organization: The University of North Carolina Chapel Hill
– sequence: 7
  givenname: Jeffrey A.
  surname: Greene
  fullname: Greene, Jeffrey A.
  organization: The University of North Carolina Chapel Hill
– sequence: 8
  givenname: Kathleen M.
  surname: Gates
  fullname: Gates, Kathleen M.
  organization: The University of North Carolina Chapel Hill
BookMark eNp9UctuFDEQtFAQecAPcLLEhUMG_Bx7uKAo4iVFAiE4W16PPXGYtYN7vBE3Ph0PGwTkkJNb7qrq6q5jdJBy8gg9peQFV1K_BMoF0x1hrCN04EM3PEBHVErRccn0wT_1IToGuCKEa0bFI3TIe0K10PwI_fxU_BjdEtOEYamjTwvOdXF56wFXWL_HOMXFznjOE-Ac8OxtSWtj4y_tLuYCr_Bnv4v-5hS7WsoqAYtNoy0jnOJWYKjT5GGJOQEOueBQl1o8vsnl22P0MNgZ_JPb9wR9ffvmy_n77uLjuw_nZxedk3RYuo0eSAhMKOF80HxkanAq2LHnPdtowRUXQW4cdaS3LOhAhVKOjdxKTa3yhJ-g13vd67rZ-tE1l8XO5rrErS0_TLbR_N9J8dJMeWcokbKnfFV4fqtQ8vfa1jHbCM7Ps00-VzBMEdVT1S7coM_uQK9yLantZ5hWXArGKWsovUe5kgGKD8a1Q69Xagbi3CabNWezz9m0nM3vnM3QqOwO9c8i95L4ngQNnCZf_rq6h_ULXGO-jA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3521857
crossref_primary_10_1016_j_psicod_2024_04_003
crossref_primary_10_1007_s10639_024_12881_y
crossref_primary_10_1016_j_lindif_2024_102598
crossref_primary_10_1057_s41599_024_02882_0
crossref_primary_10_1080_0142159X_2023_2186203
crossref_primary_10_1007_s10639_024_12653_8
crossref_primary_10_3390_bdcc8120187
crossref_primary_10_3390_app14093615
crossref_primary_10_1080_15391523_2024_2437741
crossref_primary_10_1177_14778785231187193
crossref_primary_10_1016_j_ajpe_2024_100713
crossref_primary_10_3390_educsci15030304
crossref_primary_10_3390_educsci14060657
crossref_primary_10_1016_j_psicoe_2024_05_004
crossref_primary_10_1080_17517575_2024_2415596
crossref_primary_10_1007_s40692_025_00358_x
crossref_primary_10_1007_s10639_025_13370_6
crossref_primary_10_3390_higheredu2020015
Cites_doi 10.2307/3001453
10.1002/cae.20456
10.1016/j.iheduc.2015.06.001
10.1007/s10758-017-9334-z
10.1057/jit.2015.5
10.3102/00346543045001089
10.1111/j.2517-6161.1996.tb02080.x
10.1023/A:1010933404324
10.1073/pnas.0708471105
10.1016/j.asoc.2019.105662
10.4324/9780429329067-10
10.1007/3-540-49257-7_15
10.4324/9781315697048-24
10.1109/HICSS.2011.456
10.1016/j.dsp.2017.10.011
10.1007/s11409-014-9126-y
10.1007/s11162-004-4139-z
10.1016/j.chb.2014.09.034
10.1007/s10462-007-9052-3
10.2307/2529786
10.1037/edu0000745
10.1016/j.compedu.2010.02.026
10.4324/9780203840023
10.1021/ed076p562
10.1111/j.1467-9868.2005.00503.x
10.1016/j.iheduc.2008.03.002
10.1152/advan.00112.2014
10.1007/BFb0026666
10.1016/j.compedu.2009.09.008
10.35542/osf.io/pbmvz
10.18201/ijisae.2017526690
10.1002/0470011815.b2a10079
10.1186/1471-2105-8-25
10.1353/csd.2005.0023
10.1504/IJTEL.2013.059088
10.1023/A:1009744630224
10.1007/978-1-4419-9863-7∖_209
10.1002/msj.21341
10.3102/0034654315584955
10.1177/001316446002000104
10.14445/22312803/IJCTT-V48P126
10.4324/9781315697048-21
10.1037/h0042519
10.1037/a0019506
10.1073/pnas.1320040111
10.1177/0098628314562679
10.3389/fgene.2013.00270
10.1613/jair.953
10.1353/sor.2017.0010
10.1109/TIT.1967.1053964
10.1017/CBO9780511801389
10.1016/j.iheduc.2015.05.002
10.1353/csd.2003.0008
10.3758/BF03195443
10.25777/t58r-6w25
10.1103/PhysRevPhysEducRes.15.020120
10.1016/j.compedu.2020.103999
10.1016/j.cedpsych.2014.06.003
10.18608/hla17.004
10.1016/B978-012109890-2/50043-3
10.21037/atm.2016.03.37
10.1038/323533a0
10.1145/2460296.2460324
10.18608/hla17.028
10.1016/j.iheduc.2015.11.003
10.1145/2330601.2330664
10.1007/978-1-4614-3305-7∖_5
10.28971/242016DB105
10.1038/538020a
10.1007/s10489-012-0374-8
10.1080/0142159X.2017.1309376
10.1080/01972243.2016.1130502
10.1007/s10956-011-9318-z
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
4T-
7TK
K9.
7X8
5PM
DOI 10.3758/s13428-022-01939-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Education
EISSN 1554-3528
EndPage 3054
ExternalDocumentID PMC10556130
10_3758_s13428_022_01939_9
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
4T-
7TK
ABRTQ
K9.
7X8
5PM
ID FETCH-LOGICAL-c519t-b890ff2474cef83d279c7fad6362b843734f5bc1c06a2f8f1477c2d3a581a7e03
IEDL.DBID U2A
ISSN 1554-3528
1554-351X
IngestDate Thu Aug 21 18:35:51 EDT 2025
Thu Jul 10 17:31:24 EDT 2025
Fri Jul 25 23:12:33 EDT 2025
Tue Jul 01 01:06:00 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:41:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Equity
Data privacy
Learning management system
Machine learning
Digital data
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-b890ff2474cef83d279c7fad6362b843734f5bc1c06a2f8f1477c2d3a581a7e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://link.springer.com/10.3758/s13428-022-01939-9
PMID 36018483
PQID 2873542312
PQPubID 976348
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10556130
proquest_miscellaneous_2707617214
proquest_journals_2873542312
crossref_citationtrail_10_3758_s13428_022_01939_9
crossref_primary_10_3758_s13428_022_01939_9
springer_journals_10_3758_s13428_022_01939_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References RichardsNMKingJHThree paradoxes of big dataStan. L. Rev. Online20136641
PintrichPRThe role of goal orientation in self-regulated learning. Handbook of self-regulation2000AmsterdamElsevier451502
GoadTPredicting student success in online physical education (Doctoral dissertation)2018College of Physical Activity and Sports Sciences
BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press
HauserLAn examination of the predictive relationship between mode of instruction and student success in introductory biologyInquiry20162014960https://doi.org/10.25777/t58r-6w25
Bernacki, M.L., Chavez, M.M., & Uesbeck, P.M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers and Education, 158. https://doi.org/10.1016/j.compedu.2020.103999
CortesCVapnikVSupport-vector networksMachine Learning1995203273297
Davidson, J. L. (2017). Student demographic and academic characteristics that predict community college student success in online courses (Doctoral dissertation). Illinois State University, Normal, United States.
RubelAJonesKMLStudent privacy in learning analytics: An information ethics perspectiveThe Information Society2016322143159
Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11).
Krzanowski, W.J. (2005). Multivariate techniques, robustness. Encyclopedia of Biostatistics 5.
CoverTHartPNearest neighbor pattern classificationIEEE Transactions on Information Theory19671312127
CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press
YouJWIdentifying significant indicators using LMS data to predict course achievement in online learningThe Internet and Higher Education2016292330
FogleTTClass modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation)2016Capella University
DasNThe influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation)2009University of New Orleans
Zeide, E. (2017). Unpacking Student Privacy. Handbook of Learning Analytics, 327–335. https://doi.org/10.18608/hla17.028
Panter, A.T., & Sterba, S.K. (2011). Ethics in quantitative methodology: An introduction. Handbook of ethics in quantitative methodology, 1–11.
CastelvecchiDCan we open the black box of AI?Nature News2016538762320
MatonKIPollardSAMcDougall WeiseTVHrabowskiFAMeyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematicsMount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine2012795610623
Slade, S., & Tait, A (2019). Global guidelines: Ethics in learning analytics.
PettyTMotivating first-generation students to academic success and college completionCollege Student Journal2014481133140
DaiTCromleyJGChanges in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approachContemporary Educational Psychology2014393233247
Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge, 145–149.
DennisJMPhinneyJSChuatecoLIThe role of motivation, parental support, and peer support in the academic success of ethnic minority first-generation college studentsJournal of College Student Development2005463223236
O’ConnellKAWostlECrosslinMBerryTLGroverJPStudent ability best predicts final grade in a college algebra courseJournal of Learning Analytics201853167181
Prinsloo, P., & Slade, S. (2017). Ethics and Learning Analytics: Charting the (Un)Charted. Handbook of Learning Analytics, 49–57. https://doi.org/10.18608/hla17.004
CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement19602013746
OgutuJOSchulz-StreeckTPiephoH-PGenomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensionsBMC Proceedings20126216
ZuboffSBig other: surveillance capitalism and the prospects of an information civilizationJournal of Information Technology20153017589
RishIAn empirical study of the naive Bayes classifierIJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence20013224146
ZacharisNZClassification and regression trees (CART) for predictive modeling in blended learningIJ Intelligent Systems and Applications2018319
Seldon, A., Lucking, R., Lakhani, P., & Clement-Jones, T. (2020) the institute for ethical AI in education interim report (tech. rep). Buckingham: University of Buckingham. https://www.buckingham.ac.uk/wpcontent/uploads/2020/02/The-Institute-for-Ethical-AI-in-Educations-Interim-Report-Towards-a-Shared-Vision-of-Ethical-AI-in-Education.pdf
JuncoRClemCPredicting course outcomes with digital textbook usage dataThe Internet and Higher Education2015275463
FountainRSSearching for predictors of success in community college online courses (Doctoral dissertation)2016Appalachian State University
TeneOPolonetskyJA theory of creepy: technology, privacy and shifting social normsYale JL & Tech20131659
Melo, F. (2013). Area under the ROC Curve. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.) Encyclopedia of systems biology. https://doi.org/10.1007/978-1-4419-9863-7∖_209 (pp. 38–39). New York: Springer.
Baker, R.S., & Hawn, A. (2021). Algorithmic bias in education. Unpublished.
MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing A Review Journal201873115https://doi.org/10.1016/j.dsp.2017.10.011
TintoVDropout from higher education: A theoretical synthesis of recent researchReview of Educational Research197545189125
ZabriskieCYangJDeVoreSStewartJUsing machine learning to predict physics course outcomesPhysical Review Physics Education Research201915220120
ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216321357
Landis, J.R., & Koch, G.G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374.
MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining and Knowledge Discovery199824345389
Redford, J., & Mulvaney Hoyer, K (2017). First generation and continuing-generation college students: A comparison of high school and postsecondary experiences.
Paquette, L., Li, Z., Baker, R., Ocumpaugh, J., & Andres, A. (2020). Who’s learning? Using demographics in EDM research. Journal of Educational Data Mining,12(3), 1–30. https://www2.ed.gov/rschstat/catalog/student-demographics.html
PermzadianVCredéMDo first-year seminars improve college grades and retention? A quantitative review of their overall effectiveness and an examination of moderators of effectivenessReview of Educational Research2016861277316
NistorNNeubauerKFrom participation to dropout: Quantitative participation patterns in online university coursesComputers & Education2010552663672
Pistilli, M.D., Willis, J.E., & Campbell, J.P. (2014). Analytics through an institutional lens: Definition, theory, design, and impact. In J.A. Larusson, & B. White (Eds.) Learning analytics: From research to practice. https://doi.org/10.1007/978-1-4614-3305-7∖_5 (pp. 79–102). New York: Springer.
KotsiantisSBZaharakisIDPintelasPEMachine learning: A review of classification and combining techniquesArtificial Intelligence Review2006263159190
StroblCBoulesteixA-LZeileisAHothornTBias in random forest variable importance measures: Illustrations, sources and a solutionBMC Bioinformatics200781121
MacfadyenLPDawsonSMining LMS data to develop an “early warning system” for educators: A proof of conceptComputers & Education2010542588599
JapkowiczNLearning from imbalanced data sets: a comparison of various strategiesAAAI Workshop on Learning from Imbalanced Data Sets2000681015
Malloy, T. E., Jensen, G. C., Regan, A., & Reddick, M. (2002). Open courseware and shared knowledge in higher education. Behavior Research Methods, Instruments, and Computers,34(2), 200–203. https://doi.org/10.3758/BF03195443
Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. European conference on machine learning, 4–15.
OsisanwoFYAkinsolaJETAwodeleOHinmikaiyeJOOlakanmiOAkinjobiJSupervised machine learning algorithms: classification and comparisonInternational Journal of Computer Trends and Technology (IJCTT)2017483128138
CooperCIPearsonPTA genetically optimized predictive system for success in general chemistry using a diagnostic algebra testJournal of Science Education and Technology2012211197205
Lee, H., & Kizilcec, R.F. (2020). Evaluation of fairness trade-offs in predicting student success, 1–3. arXiv:2007.00088.
Pritchard, M.E., & Wilson, G.S. (2003). Using emotional and social factors to predict student success. Journal of College Student Development, 44(1), 18–28. https://doi.org/10.1353/csd.2003.0008
LingCXLiCData mining for direct marketing: Problems and solutionsKdd1998987379
HullemanCSGodesOHendricksBLHarackiewiczJMEnhancing interest and performance with a utility value interventionJournal of Educational Psychology20101024880
KramerADIGuilloryJEHancockJTExperimental evidence of massive-scale emotional contagion through social networksProceedings of the National Academy of Sciences20141112487888790
GulticeAWithamAKallmeyerRAre your students ready for anatomy and physiology? Developing tools to identify students at risk for failureAdvances in Physiology Education201539210811526031727
RosenblattFThe perceptron: a probabilistic model for information storage and organization in the brainPsychological Review195865638613602029
Kizilcec, R.F., & Lee, H. (2021). Algorithmic fairness in Education. Unpublished work.
E
1939_CR81
1939_CR82
1939_CR83
LP Macfadyen (1939_CR60) 2010; 54
1939_CR85
J Cohen (1939_CR19) 1960; 20
1939_CR115
1939_CR114
N Japkowicz (1939_CR42) 2000; 68
O Tene (1939_CR99) 2013; 16
F Rosenblatt (1939_CR89) 1958; 65
S Zuboff (1939_CR117) 2015; 30
LA Cummings (1939_CR25) 2009
1939_CR77
CS Hulleman (1939_CR41) 2010; 102
I Rish (1939_CR87) 2001; 3
AE Krumm (1939_CR52) 2014
G Montavon (1939_CR67) 2018; 73
B Binbasaran Tuysuzoglu (1939_CR8) 2015; 10
V Tinto (1939_CR101) 1975; 45
M Saqr (1939_CR93) 2017; 39
JW Jerome (1939_CR43) 2013; 66
M Rayno (1939_CR84) 2010
1939_CR76
D Castelvecchi (1939_CR15) 2016; 538
D Liben-Nowell (1939_CR57) 2008; 105
JO Ogutu (1939_CR73) 2012; 6
JM Dennis (1939_CR30) 2005; 46
K Eagan (1939_CR31) 2010
1939_CR66
1939_CR68
V Tinto (1939_CR102) 1993; 79
VC Smith (1939_CR97) 2012; 16
T Cover (1939_CR22) 1967; 13
National Academies of Sciences Engineering & Medicine (1939_CR70) 2016
CX Ling (1939_CR58) 1998; 98
C McFate (1939_CR65) 1999; 76
1939_CR13
T Petty (1939_CR79) 2014; 48
NM Richards (1939_CR86) 2013; 66
P Waldmann (1939_CR104) 2013; 4
G Kovács (1939_CR50) 2019; 83
1939_CR18
1939_CR92
KI Maton (1939_CR63) 2012; 79
1939_CR94
RS Fountain (1939_CR33) 2016
1939_CR96
1939_CR109
1939_CR103
1939_CR106
DL Williams (1939_CR105) 2019
A Zajacova (1939_CR113) 2005; 46
NV Chawla (1939_CR16) 2002; 16
SK Murthy (1939_CR69) 1998; 2
L Hauser (1939_CR40) 2016; 20
ADI Kramer (1939_CR51) 2014; 111
L Breiman (1939_CR12) 1984
TT Fogle (1939_CR32) 2016
N Nistor (1939_CR71) 2010; 55
RS Baker (1939_CR2) 2015
N Das (1939_CR28) 2009
F Ornelas (1939_CR74) 2017; 22
T Dai (1939_CR26) 2014; 39
T Goad (1939_CR34) 2018
1939_CR35
J Silverman (1939_CR95) 2017; 84
1939_CR37
R Tibshirani (1939_CR100) 1996; 58
1939_CR39
JW You (1939_CR108) 2016; 29
C Márquez-Vera (1939_CR62) 2013; 38
SB Kotsiantis (1939_CR49) 2006; 26
NZ Zacharis (1939_CR111) 2015; 27
EW Black (1939_CR10) 2008; 11
S Kotsiantis (1939_CR48) 2013; 5
1939_CR24
1939_CR27
A Cakmak (1939_CR14) 2017; 5
1939_CR29
GV Kass (1939_CR46) 1980; 29
1939_CR3
N Cristianini (1939_CR23) 2000
1939_CR1
PR Pintrich (1939_CR80) 2000
1939_CR61
1939_CR7
1939_CR6
1939_CR5
W Xing (1939_CR107) 2015; 47
1939_CR4
1939_CR9
CI Cooper (1939_CR20) 2012; 21
V Permzadian (1939_CR78) 2016; 86
C Strobl (1939_CR98) 2007; 8
BJ Gorvine (1939_CR36) 2015; 42
C Romero (1939_CR88) 2010; 21
1939_CR55
1939_CR56
DE Rumelhart (1939_CR91) 1986; 323
FY Osisanwo (1939_CR75) 2017; 48
1939_CR59
SPM Choi (1939_CR17) 2018; 21
NZ Zacharis (1939_CR112) 2018; 3
A Gultice (1939_CR38) 2015; 39
H Zou (1939_CR116) 2005; 67
1939_CR53
1939_CR54
L Breiman (1939_CR11) 2001; 45
WS McCulloch (1939_CR64) 1948; 4
R Junco (1939_CR44) 2015; 27
KA O’Connell (1939_CR72) 2018; 5
A Rubel (1939_CR90) 2016; 32
C Cortes (1939_CR21) 1995; 20
1939_CR45
C Zabriskie (1939_CR110) 2019; 15
1939_CR47
References_xml – reference: Morrison, M. C., & Schmit, S. (2010). Predicting success in a gateway mathematics course. Online Submission.
– reference: PettyTMotivating first-generation students to academic success and college completionCollege Student Journal2014481133140
– reference: Márquez-VeraCCanoARomeroCVenturaSPredicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced dataApplied Intelligence2013383315330
– reference: Redford, J., & Mulvaney Hoyer, K (2017). First generation and continuing-generation college students: A comparison of high school and postsecondary experiences.
– reference: Kizilcec, R.F., & Lee, H. (2021). Algorithmic fairness in Education. Unpublished work.
– reference: CortesCVapnikVSupport-vector networksMachine Learning1995203273297
– reference: D’Aloisio, B.E. (2016). Investigating predictors of academic success in a foundational business mathematics course. Master–s Theses, Dissertations, Graduate Research and Major Papers Overview, 138.
– reference: GulticeAWithamAKallmeyerRAre your students ready for anatomy and physiology? Developing tools to identify students at risk for failureAdvances in Physiology Education201539210811526031727
– reference: SmithVCLangeAHustonDRPredictive modeling to forecast student outcomes and drive effective interventions in online community college coursesJournal of Asynchronous Learning Networks20121635161
– reference: BakerRSLindrumDLindrumMJPerkowskiDAnalyzing early at-risk factors in higher education e-learning courses2015MontrealInternational Educational Data Mining Society
– reference: BlackEWDawsonKPriemJData for free: Using LMS activity logs to measure community in online coursesThe Internet and Higher Education20081126570
– reference: RosenblattFThe perceptron: a probabilistic model for information storage and organization in the brainPsychological Review195865638613602029
– reference: Panter, A.T., & Sterba, S.K. (2011). Ethics in quantitative methodology: An introduction. Handbook of ethics in quantitative methodology, 1–11.
– reference: TeneOPolonetskyJA theory of creepy: technology, privacy and shifting social normsYale JL & Tech20131659
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature19863236088533536
– reference: OsisanwoFYAkinsolaJETAwodeleOHinmikaiyeJOOlakanmiOAkinjobiJSupervised machine learning algorithms: classification and comparisonInternational Journal of Computer Trends and Technology (IJCTT)2017483128138
– reference: Pistilli, M.D., Willis, J.E., & Campbell, J.P. (2014). Analytics through an institutional lens: Definition, theory, design, and impact. In J.A. Larusson, & B. White (Eds.) Learning analytics: From research to practice. https://doi.org/10.1007/978-1-4614-3305-7∖_5 (pp. 79–102). New York: Springer.
– reference: PintrichPRThe role of goal orientation in self-regulated learning. Handbook of self-regulation2000AmsterdamElsevier451502
– reference: Davidson, J. L. (2017). Student demographic and academic characteristics that predict community college student success in online courses (Doctoral dissertation). Illinois State University, Normal, United States.
– reference: RomeroCEspejoPGZafraARomeroJRVenturaSWeb usage mining for predicting final marks of students that use Moodle coursesComputer Applications in Engineering Education2010211135146
– reference: McCullochWSPittsWThe statistical organization of nervous activityBiometrics194842919918871168
– reference: KotsiantisSTseliosNFilippidiAKomisVUsing learning analytics to identify successful learners in a blended learning courseInternational Journal of Technology Enhanced Learning201352133150
– reference: Paquette, L., Li, Z., Baker, R., Ocumpaugh, J., & Andres, A. (2020). Who’s learning? Using demographics in EDM research. Journal of Educational Data Mining,12(3), 1–30. https://www2.ed.gov/rschstat/catalog/student-demographics.html
– reference: ZajacovaALynchSMEspenshadeTJSelf-efficacy, stress, and academic success in collegeResearch in Higher Education2005466677706https://doi.org/10.1007/s11162-004-4139-z
– reference: EaganKHurtadoSChangMWhat matters in STEM: Institutional contexts that influence STEM bachelor’s degree completion rates2010IndianapolisAnnual meeting of the Association for the Study of Higher Education
– reference: Zeide, E. (2017). Unpacking Student Privacy. Handbook of Learning Analytics, 327–335. https://doi.org/10.18608/hla17.028
– reference: McFateCOlmstedJIIIAssessing student preparation through placement testsJournal of Chemical Education1999764562
– reference: WilliamsDLPredicting student success using digital textbook analytics in online courses (Doctoral dissertation)2019Liberty University
– reference: SilvermanJPrivacy under surveillance capitalismSocial Research An International Quarterly2017841147164
– reference: Krzanowski, W.J. (2005). Multivariate techniques, robustness. Encyclopedia of Biostatistics 5.
– reference: Yu, R., Li, Q., Fischer, C., Doroudi, S., & Xu, D. (2020). Towards accurate and fair prediction of college success: Evaluating different sources of student data. International educational data mining society.
– reference: Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. European conference on machine learning, 4–15.
– reference: PermzadianVCredéMDo first-year seminars improve college grades and retention? A quantitative review of their overall effectiveness and an examination of moderators of effectivenessReview of Educational Research2016861277316
– reference: TintoVDropout from higher education: A theoretical synthesis of recent researchReview of Educational Research197545189125
– reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJournal of Artificial Intelligence Research200216321357
– reference: Cogliano, M., Bernacki, M.L., Hilpert, J.C., & Strong, C.L. (2022). A self-regulated learning analytics prediction-and-intervention design: Detecting and supporting struggling biology students. Journal of Educational Psychology. No Pagination Specified–No Pagination Specified. https://doi.org/10.1037/edu0000745
– reference: GorvineBJSmithHDPredicting student success in a psychological statistics course emphasizing collaborative learningTeaching of Psychology20154215659
– reference: Pritchard, M.E., & Wilson, G.S. (2003). Using emotional and social factors to predict student success. Journal of College Student Development, 44(1), 18–28. https://doi.org/10.1353/csd.2003.0008
– reference: FountainRSSearching for predictors of success in community college online courses (Doctoral dissertation)2016Appalachian State University
– reference: DennisJMPhinneyJSChuatecoLIThe role of motivation, parental support, and peer support in the academic success of ethnic minority first-generation college studentsJournal of College Student Development2005463223236
– reference: Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: simple definition and calculation of accuracy, sensitivity and specificity.
– reference: XingWGuoRPetakovicEGogginsSParticipation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theoryComputers in Human Behavior201547168181
– reference: Bernacki, M.L. (2018). Examining the cyclical, loosely sequenced, and contingent features of self-regulated learning: Trace data and their analysis.
– reference: ZuboffSBig other: surveillance capitalism and the prospects of an information civilizationJournal of Information Technology20153017589
– reference: ZacharisNZClassification and regression trees (CART) for predictive modeling in blended learningIJ Intelligent Systems and Applications2018319
– reference: Barber, R., & Sharkey, M. (2012). Course correction: Using analytics to predict course success. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 259–262).
– reference: Bird, M.E. (2012). Predicting student performance in lower division mathematics courses (Doctoral dissertation). Texas Womans University.
– reference: O’ConnellKAWostlECrosslinMBerryTLGroverJPStudent ability best predicts final grade in a college algebra courseJournal of Learning Analytics201853167181
– reference: Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful? In International conference on database theory (pp. 217–235).
– reference: CakmakAPredicting student success in courses via collaborative filteringInternational Journal of Intelligent Systems and Applications in Engineering2017511017
– reference: KrummAEWaddingtonRJTeasleySDLonnSA learning management system-based early warning system for academic advising in undergraduate engineering. Learning analytics2014BerlinSpringer103119
– reference: CastelvecchiDCan we open the black box of AI?Nature News2016538762320
– reference: Kaschesky, M., & Riedl, R. (2011). Tracing opinion-formation on political issues on the internet: A model and methodology for qualitative analysis and results. In 2011 44th Hawaii International Conference on System Sciences (pp. 1–10).
– reference: MatonKIPollardSAMcDougall WeiseTVHrabowskiFAMeyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematicsMount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine2012795610623
– reference: TintoVBuilding communityLiberal Education19937941621
– reference: OgutuJOSchulz-StreeckTPiephoH-PGenomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensionsBMC Proceedings20126216
– reference: National Academies of Sciences Engineering & MedicineDeveloping a national STEM workforce strategy: A workshop summary2016WashingtonNational Academies Press
– reference: Binbasaran TuysuzogluBGreeneJAAn investigation of the role of contingent metacognitive behavior in self-regulated learningMetacognition and Learning20151017798https://doi.org/10.1007/s11409-014-9126-y
– reference: JapkowiczNLearning from imbalanced data sets: a comparison of various strategiesAAAI Workshop on Learning from Imbalanced Data Sets2000681015
– reference: Seldon, A., Lucking, R., Lakhani, P., & Clement-Jones, T. (2020) the institute for ethical AI in education interim report (tech. rep). Buckingham: University of Buckingham. https://www.buckingham.ac.uk/wpcontent/uploads/2020/02/The-Institute-for-Ethical-AI-in-Educations-Interim-Report-Towards-a-Shared-Vision-of-Ethical-AI-in-Education.pdf
– reference: OrnelasFOrdonezCPredicting student success: a naïve bayesian application to community college dataTechnology, Knowledge and Learning2017223299315
– reference: Hadwin, A.F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. In D. Schunk, & J. Greene (Eds.) Handbook of self-regulation of learning and performance (pp. 65–84): Routledge.
– reference: Baker, R.S., & Hawn, A. (2021). Algorithmic bias in education. Unpublished.
– reference: MacfadyenLPDawsonSMining LMS data to develop an “early warning system” for educators: A proof of conceptComputers & Education2010542588599
– reference: WaldmannPMészárosGGredlerBFuerstCSölknerJEvaluation of the lasso and the elastic net in genome-wide association studiesFrontiers in genetics20134270243636623850240
– reference: RaynoMRelationships of academic preparedness, age, gender, and ethnicity to success in a community college fundamentals of nursing course (Doctoral dissertation)2010University of Phoenix
– reference: DasNThe influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation)2009University of New Orleans
– reference: CoverTHartPNearest neighbor pattern classificationIEEE Transactions on Information Theory19671312127
– reference: Torgo, L., & Torgo, M.L. (2013). Package ‘dmwr’. Comprehensive R Archive Network.
– reference: KramerADIGuilloryJEHancockJTExperimental evidence of massive-scale emotional contagion through social networksProceedings of the National Academy of Sciences20141112487888790
– reference: BreimanLRandom forestsMachine Learning2001451532
– reference: Culver, T. (2014). Relationships between motivational, demographic, and academic variables and course grade in developmental mathematics among students at North Central State College (Doctoral dissertation). Colorado State University.
– reference: Goosen, R.A. (2008). Cognitive and affective measures as indicators of course outcomes for developmental mathematics students at a Texas community college (Doctoral dissertation). Grambling State University, Grambling, United States.
– reference: CristianiniNShawe-TaylorJAn introduction to support vector machines and other kernel-based learning methods2000CambridgeCambridge University Press
– reference: KassGVAn exploratory technique for investigating large quantities of categorical dataJournal of the Royal Statistical Society: Series C (Applied Statistics)1980292119127
– reference: Greene, J.A., Deekens, V.M., Copeland, D.Z., & Yu, S. (2018). Capturing and modeling self-regulated learning using think-aloud protocols.
– reference: DaiTCromleyJGChanges in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approachContemporary Educational Psychology2014393233247
– reference: SaqrMForsUTedreMHow learning analytics can early predict under-achieving students in a blended medical education courseMedical Teacher201739775776728421894
– reference: RichardsNMKingJHThree paradoxes of big dataStan. L. Rev. Online20136641
– reference: HullemanCSGodesOHendricksBLHarackiewiczJMEnhancing interest and performance with a utility value interventionJournal of Educational Psychology20101024880
– reference: GoadTPredicting student success in online physical education (Doctoral dissertation)2018College of Physical Activity and Sports Sciences
– reference: NistorNNeubauerKFrom participation to dropout: Quantitative participation patterns in online university coursesComputers & Education2010552663672
– reference: Lee, H., & Kizilcec, R.F. (2020). Evaluation of fairness trade-offs in predicting student success, 1–3. arXiv:2007.00088.
– reference: Saenz, V.B., Hurtado, S., Barrera, D., Wolf, D.S., & Yeung, F.P. (1971). First In my family: A profile of first-generation college students at four-year institutions since. The Foundation for Independent Education.
– reference: CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement19602013746
– reference: Longadge, R., & Dongre, S. (2013). Class imbalance problem in data mining review. arXiv:1305.1707.
– reference: YouJWIdentifying significant indicators using LMS data to predict course achievement in online learningThe Internet and Higher Education2016292330
– reference: Melo, F. (2013). Area under the ROC Curve. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.) Encyclopedia of systems biology. https://doi.org/10.1007/978-1-4419-9863-7∖_209 (pp. 38–39). New York: Springer.
– reference: BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press
– reference: CooperCIPearsonPTA genetically optimized predictive system for success in general chemistry using a diagnostic algebra testJournal of Science Education and Technology2012211197205
– reference: Prinsloo, P., & Slade, S. (2017). Ethics and Learning Analytics: Charting the (Un)Charted. Handbook of Learning Analytics, 49–57. https://doi.org/10.18608/hla17.004
– reference: ChoiSPMLamSSLiKCWongBTMLearning analytics at low cost: At-risk student prediction with clicker data and systematic proactive interventionsJournal of Educational Technology & Society2018212273290
– reference: HauserLAn examination of the predictive relationship between mode of instruction and student success in introductory biologyInquiry20162014960https://doi.org/10.25777/t58r-6w25
– reference: FogleTTClass modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation)2016Capella University
– reference: RishIAn empirical study of the naive Bayes classifierIJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence20013224146
– reference: Malloy, T. E., Jensen, G. C., Regan, A., & Reddick, M. (2002). Open courseware and shared knowledge in higher education. Behavior Research Methods, Instruments, and Computers,34(2), 200–203. https://doi.org/10.3758/BF03195443
– reference: MurthySKAutomatic construction of decision trees from data: A multi-disciplinary surveyData Mining and Knowledge Discovery199824345389
– reference: JuncoRClemCPredicting course outcomes with digital textbook usage dataThe Internet and Higher Education2015275463
– reference: StroblCBoulesteixA-LZeileisAHothornTBias in random forest variable importance measures: Illustrations, sources and a solutionBMC Bioinformatics200781121
– reference: Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11).
– reference: Bernacki, M.L., Chavez, M.M., & Uesbeck, P.M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers and Education, 158. https://doi.org/10.1016/j.compedu.2020.103999
– reference: Buckingham Shum, S. (2020). Should predictive models of student outcome be “colour-blind”? http://simon.buckinghamshum.net/2020/07/should-predictivemodels-of-student-outcome-be-colour-blind/
– reference: RubelAJonesKMLStudent privacy in learning analytics: An information ethics perspectiveThe Information Society2016322143159
– reference: KovácsGAn empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasetsApplied Soft Computing201983105662
– reference: Landis, J.R., & Koch, G.G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374.
– reference: Liben-NowellDKleinbergJTracing information flow on a global scale using Internet chain-letter dataProceedings of the National Academy of Sciences20081051246334638
– reference: ZabriskieCYangJDeVoreSStewartJUsing machine learning to predict physics course outcomesPhysical Review Physics Education Research201915220120
– reference: CummingsLAPredicting student success in online courses at a rural Alabama Community College (Doctoral dissertation)2009Mississippi State University
– reference: KotsiantisSBZaharakisIDPintelasPEMachine learning: A review of classification and combining techniquesArtificial Intelligence Review2006263159190
– reference: Slade, S., & Tait, A (2019). Global guidelines: Ethics in learning analytics.
– reference: TibshiraniRRegression shrinkage and selection via the lassoJournal of the Royal Statistical Society: Series B (Methodological)1996581267288
– reference: JeromeJWBuying and selling privacy: Big data’s difference burdens and benefitsStanford Law Review Online20136647
– reference: ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)2005672301320
– reference: Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge, 145–149.
– reference: LingCXLiCData mining for direct marketing: Problems and solutionsKdd1998987379
– reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing A Review Journal201873115https://doi.org/10.1016/j.dsp.2017.10.011
– reference: ZacharisNZA multivariate approach to predicting student outcomes in web-enabled blended learning coursesThe Internet and Higher Education2015274453
– volume: 4
  start-page: 91
  issue: 2
  year: 1948
  ident: 1939_CR64
  publication-title: Biometrics
  doi: 10.2307/3001453
– ident: 1939_CR55
– ident: 1939_CR9
– volume: 21
  start-page: 135
  issue: 1
  year: 2010
  ident: 1939_CR88
  publication-title: Computer Applications in Engineering Education
  doi: 10.1002/cae.20456
– volume: 27
  start-page: 54
  year: 2015
  ident: 1939_CR44
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2015.06.001
– volume-title: Predicting student success in online physical education (Doctoral dissertation)
  year: 2018
  ident: 1939_CR34
– volume: 22
  start-page: 299
  issue: 3
  year: 2017
  ident: 1939_CR74
  publication-title: Technology, Knowledge and Learning
  doi: 10.1007/s10758-017-9334-z
– volume: 3
  start-page: 41
  issue: 22
  year: 2001
  ident: 1939_CR87
  publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
– volume: 30
  start-page: 75
  issue: 1
  year: 2015
  ident: 1939_CR117
  publication-title: Journal of Information Technology
  doi: 10.1057/jit.2015.5
– volume: 21
  start-page: 273
  issue: 2
  year: 2018
  ident: 1939_CR17
  publication-title: Journal of Educational Technology & Society
– volume: 45
  start-page: 89
  issue: 1
  year: 1975
  ident: 1939_CR101
  publication-title: Review of Educational Research
  doi: 10.3102/00346543045001089
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 1939_CR100
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1939_CR11
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume-title: Class modality, student characteristics, and performance in a community college introductory STEM course (Doctoral dissertation)
  year: 2016
  ident: 1939_CR32
– volume: 105
  start-page: 4633
  issue: 12
  year: 2008
  ident: 1939_CR57
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0708471105
– volume: 16
  start-page: 51
  issue: 3
  year: 2012
  ident: 1939_CR97
  publication-title: Journal of Asynchronous Learning Networks
– volume: 83
  start-page: 105662
  year: 2019
  ident: 1939_CR50
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105662
– ident: 1939_CR47
  doi: 10.4324/9780429329067-10
– ident: 1939_CR7
  doi: 10.1007/3-540-49257-7_15
– ident: 1939_CR5
  doi: 10.4324/9781315697048-24
– ident: 1939_CR45
  doi: 10.1109/HICSS.2011.456
– volume: 73
  start-page: 1
  year: 2018
  ident: 1939_CR67
  publication-title: Digital Signal Processing A Review Journal
  doi: 10.1016/j.dsp.2017.10.011
– volume: 10
  start-page: 77
  issue: 1
  year: 2015
  ident: 1939_CR8
  publication-title: Metacognition and Learning
  doi: 10.1007/s11409-014-9126-y
– volume: 46
  start-page: 677
  issue: 6
  year: 2005
  ident: 1939_CR113
  publication-title: Research in Higher Education
  doi: 10.1007/s11162-004-4139-z
– ident: 1939_CR96
– volume: 47
  start-page: 168
  year: 2015
  ident: 1939_CR107
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.09.034
– volume: 26
  start-page: 159
  issue: 3
  year: 2006
  ident: 1939_CR49
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-007-9052-3
– ident: 1939_CR54
  doi: 10.2307/2529786
– ident: 1939_CR18
  doi: 10.1037/edu0000745
– volume: 55
  start-page: 663
  issue: 2
  year: 2010
  ident: 1939_CR71
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2010.02.026
– ident: 1939_CR76
  doi: 10.4324/9780203840023
– volume: 76
  start-page: 562
  issue: 4
  year: 1999
  ident: 1939_CR65
  publication-title: Journal of Chemical Education
  doi: 10.1021/ed076p562
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 1939_CR116
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 11
  start-page: 65
  issue: 2
  year: 2008
  ident: 1939_CR10
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2008.03.002
– volume: 68
  start-page: 10
  year: 2000
  ident: 1939_CR42
  publication-title: AAAI Workshop on Learning from Imbalanced Data Sets
– volume: 39
  start-page: 108
  issue: 2
  year: 2015
  ident: 1939_CR38
  publication-title: Advances in Physiology Education
  doi: 10.1152/advan.00112.2014
– ident: 1939_CR56
  doi: 10.1007/BFb0026666
– volume: 54
  start-page: 588
  issue: 2
  year: 2010
  ident: 1939_CR60
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2009.09.008
– volume: 5
  start-page: 167
  issue: 3
  year: 2018
  ident: 1939_CR72
  publication-title: Journal of Learning Analytics
– ident: 1939_CR1
  doi: 10.35542/osf.io/pbmvz
– volume: 5
  start-page: 10
  issue: 1
  year: 2017
  ident: 1939_CR14
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
  doi: 10.18201/ijisae.2017526690
– ident: 1939_CR53
  doi: 10.1002/0470011815.b2a10079
– volume: 8
  start-page: 1
  issue: 1
  year: 2007
  ident: 1939_CR98
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– volume-title: Classification and regression trees
  year: 1984
  ident: 1939_CR12
– volume: 46
  start-page: 223
  issue: 3
  year: 2005
  ident: 1939_CR30
  publication-title: Journal of College Student Development
  doi: 10.1353/csd.2005.0023
– volume: 5
  start-page: 133
  issue: 2
  year: 2013
  ident: 1939_CR48
  publication-title: International Journal of Technology Enhanced Learning
  doi: 10.1504/IJTEL.2013.059088
– ident: 1939_CR103
– volume: 2
  start-page: 345
  issue: 4
  year: 1998
  ident: 1939_CR69
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009744630224
– ident: 1939_CR66
  doi: 10.1007/978-1-4419-9863-7∖_209
– volume: 79
  start-page: 610
  issue: 5
  year: 2012
  ident: 1939_CR63
  publication-title: Mount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine
  doi: 10.1002/msj.21341
– ident: 1939_CR39
– volume: 86
  start-page: 277
  issue: 1
  year: 2016
  ident: 1939_CR78
  publication-title: Review of Educational Research
  doi: 10.3102/0034654315584955
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 1939_CR19
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/001316446002000104
– volume: 48
  start-page: 128
  issue: 3
  year: 2017
  ident: 1939_CR75
  publication-title: International Journal of Computer Trends and Technology (IJCTT)
  doi: 10.14445/22312803/IJCTT-V48P126
– ident: 1939_CR37
  doi: 10.4324/9781315697048-21
– volume-title: The influence of individual factors on web-based developmental education course success in a two-year technical college (Doctoral dissertation)
  year: 2009
  ident: 1939_CR28
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 1939_CR89
  publication-title: Psychological Review
  doi: 10.1037/h0042519
– volume: 102
  start-page: 880
  issue: 4
  year: 2010
  ident: 1939_CR41
  publication-title: Journal of Educational Psychology
  doi: 10.1037/a0019506
– ident: 1939_CR59
– volume: 111
  start-page: 8788
  issue: 24
  year: 2014
  ident: 1939_CR51
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1320040111
– volume: 42
  start-page: 56
  issue: 1
  year: 2015
  ident: 1939_CR36
  publication-title: Teaching of Psychology
  doi: 10.1177/0098628314562679
– volume: 48
  start-page: 133
  issue: 1
  year: 2014
  ident: 1939_CR79
  publication-title: College Student Journal
– volume-title: Searching for predictors of success in community college online courses (Doctoral dissertation)
  year: 2016
  ident: 1939_CR33
– volume: 4
  start-page: 270
  year: 2013
  ident: 1939_CR104
  publication-title: Frontiers in genetics
  doi: 10.3389/fgene.2013.00270
– ident: 1939_CR13
– volume: 16
  start-page: 321
  year: 2002
  ident: 1939_CR16
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 84
  start-page: 147
  issue: 1
  year: 2017
  ident: 1939_CR95
  publication-title: Social Research An International Quarterly
  doi: 10.1353/sor.2017.0010
– ident: 1939_CR68
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 1939_CR22
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume-title: An introduction to support vector machines and other kernel-based learning methods
  year: 2000
  ident: 1939_CR23
  doi: 10.1017/CBO9780511801389
– volume: 27
  start-page: 44
  year: 2015
  ident: 1939_CR111
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2015.05.002
– volume: 66
  start-page: 47
  year: 2013
  ident: 1939_CR43
  publication-title: Stanford Law Review Online
– ident: 1939_CR83
  doi: 10.1353/csd.2003.0008
– ident: 1939_CR85
– ident: 1939_CR61
  doi: 10.3758/BF03195443
– volume: 20
  start-page: 49
  issue: 1
  year: 2016
  ident: 1939_CR40
  publication-title: Inquiry
  doi: 10.25777/t58r-6w25
– ident: 1939_CR109
– volume: 98
  start-page: 73
  year: 1998
  ident: 1939_CR58
  publication-title: Kdd
– volume: 15
  start-page: 20120
  issue: 2
  year: 2019
  ident: 1939_CR110
  publication-title: Physical Review Physics Education Research
  doi: 10.1103/PhysRevPhysEducRes.15.020120
– ident: 1939_CR6
  doi: 10.1016/j.compedu.2020.103999
– ident: 1939_CR92
– volume: 39
  start-page: 233
  issue: 3
  year: 2014
  ident: 1939_CR26
  publication-title: Contemporary Educational Psychology
  doi: 10.1016/j.cedpsych.2014.06.003
– start-page: 103
  volume-title: A learning management system-based early warning system for academic advising in undergraduate engineering. Learning analytics
  year: 2014
  ident: 1939_CR52
– volume-title: Developing a national STEM workforce strategy: A workshop summary
  year: 2016
  ident: 1939_CR70
– ident: 1939_CR82
  doi: 10.18608/hla17.004
– start-page: 451
  volume-title: The role of goal orientation in self-regulated learning. Handbook of self-regulation
  year: 2000
  ident: 1939_CR80
  doi: 10.1016/B978-012109890-2/50043-3
– ident: 1939_CR115
  doi: 10.21037/atm.2016.03.37
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 1939_CR91
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 3
  start-page: 1
  year: 2018
  ident: 1939_CR112
  publication-title: IJ Intelligent Systems and Applications
– volume-title: What matters in STEM: Institutional contexts that influence STEM bachelor’s degree completion rates
  year: 2010
  ident: 1939_CR31
– ident: 1939_CR106
  doi: 10.1145/2460296.2460324
– volume: 79
  start-page: 16
  issue: 4
  year: 1993
  ident: 1939_CR102
  publication-title: Liberal Education
– volume: 6
  start-page: 1
  issue: 2
  year: 2012
  ident: 1939_CR73
  publication-title: BMC Proceedings
– volume: 66
  start-page: 41
  year: 2013
  ident: 1939_CR86
  publication-title: Stan. L. Rev. Online
– ident: 1939_CR114
  doi: 10.18608/hla17.028
– volume: 29
  start-page: 23
  year: 2016
  ident: 1939_CR108
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2015.11.003
– ident: 1939_CR4
  doi: 10.1145/2330601.2330664
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1939_CR21
  publication-title: Machine Learning
– ident: 1939_CR24
– ident: 1939_CR81
  doi: 10.1007/978-1-4614-3305-7∖_5
– ident: 1939_CR3
– ident: 1939_CR27
  doi: 10.28971/242016DB105
– volume-title: Analyzing early at-risk factors in higher education e-learning courses
  year: 2015
  ident: 1939_CR2
– ident: 1939_CR35
– ident: 1939_CR29
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: 1939_CR15
  publication-title: Nature News
  doi: 10.1038/538020a
– volume: 29
  start-page: 119
  issue: 2
  year: 1980
  ident: 1939_CR46
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume-title: Predicting student success in online courses at a rural Alabama Community College (Doctoral dissertation)
  year: 2009
  ident: 1939_CR25
– volume: 38
  start-page: 315
  issue: 3
  year: 2013
  ident: 1939_CR62
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-012-0374-8
– volume: 39
  start-page: 757
  issue: 7
  year: 2017
  ident: 1939_CR93
  publication-title: Medical Teacher
  doi: 10.1080/0142159X.2017.1309376
– volume: 32
  start-page: 143
  issue: 2
  year: 2016
  ident: 1939_CR90
  publication-title: The Information Society
  doi: 10.1080/01972243.2016.1130502
– ident: 1939_CR94
– volume: 16
  start-page: 59
  year: 2013
  ident: 1939_CR99
  publication-title: Yale JL & Tech
– volume-title: Predicting student success using digital textbook analytics in online courses (Doctoral dissertation)
  year: 2019
  ident: 1939_CR105
– volume-title: Relationships of academic preparedness, age, gender, and ethnicity to success in a community college fundamentals of nursing course (Doctoral dissertation)
  year: 2010
  ident: 1939_CR84
– ident: 1939_CR77
– volume: 21
  start-page: 197
  issue: 1
  year: 2012
  ident: 1939_CR20
  publication-title: Journal of Science Education and Technology
  doi: 10.1007/s10956-011-9318-z
SSID ssj0038214
Score 2.5327837
SecondaryResourceType review_article
Snippet Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices....
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3026
SubjectTerms Behavioral Science and Psychology
Cognitive Psychology
Education
Learning management systems
Literature reviews
Psychology
Well being
Title Predicting student outcomes using digital logs of learning behaviors: Review, current standards, and suggestions for future work
URI https://link.springer.com/article/10.3758/s13428-022-01939-9
https://www.proquest.com/docview/2873542312
https://www.proquest.com/docview/2707617214
https://pubmed.ncbi.nlm.nih.gov/PMC10556130
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a5JJLafqg2yaLCr11TW1JtuTeliUPWlp66EJ6Mlo9toHgLdHuIbf89M5Y9oYNpJCbQRKyNKN5aEbfAHw0Mmijg8o8DxIdFOVQDsqAXqtSzmkngqWI7vcf1cVcfr0sL_tHYXHIdh9Ckp2kJr8SjdrPsRCS0JQ5pRLUos7qPTgoyXdHLp7z6SB_heaFTM9jHhm3q4Lu7cqHWZEPQqOdxjl7Ac97U5FNE22P4JlvX8LhVmLdvoK7nzcUZ6HMZRYTSCVbbda4Hh8ZZbQvmbtaUlkQhgMiWwXWV4lYsuF9fvzCUnxgwmzCamLD9UKcMPxgcbOkIBTxJ0MTlyUYEkYZXa9hfnb6a3aR9SUVMoum2jpb6DoPgUslrQ9aOK5qq4JxFeqxhSaYIxnKhS1sXhkedCikUpY7YUpdGOVz8Qb221Xr3wJzxnhU9oHbikvtauOkyQurvDTcljYfQTHscmN7vHEqe3HdoN9BlGkSZRqkTNNRpqlH8Gk75m9C2_hv7-OBeE1_8mKDHqAo0UYs-Ag-bJvxzFAgxLR-tcE-im5v0PeVI9A7RN_OSqjbuy3t1Z8OfTtVFBW4vsnAH_ezP_6z757W_T0cUmH7lM12DPvrm40_QfNnvRjDwfT897fTMezNqtm44_1_3FUEvQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNemguJY-WbJumE8ita2pLsiXnVpaGbV70kEBuQqvHJlC8Jd499Naf3pmVvekGUujNIAnZnpFmRt_oG8aOrYza6qiywKPEAEV53AdlxKhVKe-1F9ERont5VY1v5NltedvR5NBdmL_we4Gu7Oe2EJI4lDklENSizuoN9lJipEzpe6Nq1O-6QvNCpksxz4xbNzyP3uTTXMgngOjSzpxus9edgwhfkkR32IvQ7LKt1T71a4_9_v5A6ArlK0ObqClhtpij6oQWKI99Cv5-SsVAAAe0MIvQ1YaYQn8rvz2BhAoMwSWGJugPFdoh4AO0iylBT6SVgI4tJPIRoDyuN-zm9Ov1aJx1hRQyhw7aPJvoOo-RSyVdiFp4rmqnovUVWq-JJnIjGcuJK1xeWR51LKRSjnthS11YFXLxlm02sybsM_DWBjTxkbuKS-1r66XNC6eCtNyVLh-wov_LxnUs41Ts4ofBaIMkY5JkDErGLCVj6gH7tBrzM3Fs_LP3QS8806231mDcJ0r0DAs-YEerZlwpBH_YJswW2EfRmQ1GvHLA9JrQV7MS1_Z6S3N_t-TcTnVEBX7fsNePx9mff9l3_9f9I3s1vr68MBffrs7fsy0qbZ_y2Q7Y5vxhET6gAzSfHC41_w9kdQEe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKiXivIQWwoMEjc2amI7scMNLV2VV9UDlXqzvH4slVC2arIHbvx0ZuJky1YqErdItuUkY3tm_M18w9hbK6O2Oqos8CjRQVEez0EZ0WtVynvtRXSE6H47rU7O5eeL8uKvLP4-2n2EJFNOA7E0Nd3RlY-0xQUauEdtISQxK3MKK6hFndX32QP0VHqgdlbNxrNYaF7IlCpzx7htdXRjY96OkLwFk_baZ_6I7Q1mI3xIct5n90LzmO1uTq9fT9jvs2vCXCiKGdpEWAmrdYffFlqg6PYl-MsllQgBHNDCKsJQMWIJY65--x4SVjAFl3ibYLxqaKeAD9CulwRI0VoFNHchUZIARXc9Zefz4--zk2wor5A5NNu6bKHrPEYulXQhauG5qp2K1leo0xaaKI9kLBeucHlledSxkEo57oUtdWFVyMUzttOsmvCcgbc2oOKP3FVcal9bL21eOBWk5a50-YQV4182buAepxIYPw36ICQZkyRjUDKml4ypJ-zdZsxVYt74Z-_DUXhm2IWtQW9QlGgvFnzC3myacf8QKGKbsFpjH0U3OegHywnTW0LfzEoM3NstzeWPnok7VRcV-H3TcX3czH73yx78X_fX7OHZx7n5-un0ywu2S_XuU5DbIdvprtfhJVpF3eJVv_D_AGq9CWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+student+outcomes+using+digital+logs+of+learning+behaviors%3A+Review%2C+current+standards%2C+and+suggestions+for+future+work&rft.jtitle=Behavior+research+methods&rft.au=Arizmendi%2C+Cara+J.&rft.au=Bernacki%2C+Matthew+L.&rft.au=Rakovi%C4%87%2C+Mladen&rft.au=Plumley%2C+Robert+D.&rft.date=2023-09-01&rft.pub=Springer+US&rft.issn=1554-351X&rft.eissn=1554-3528&rft.volume=55&rft.issue=6&rft.spage=3026&rft.epage=3054&rft_id=info:doi/10.3758%2Fs13428-022-01939-9&rft_id=info%3Apmid%2F36018483&rft.externalDocID=PMC10556130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon