Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural Networks

The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishabili...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 8897
Main Authors Das, Hritom, Schuman, Catherine, Chakraborty, Nishith N., Rose, Garrett S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO 2 based memristive device. 1 st and 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3 × and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
AbstractList Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the $${\hbox {HfO}}_{2}$$ HfO 2 based memristive device. $$1\textrm{st}$$ 1 st and $$2\textrm{nd}$$ 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to $$\sim$$ ∼ 4.3 $$\times$$ × and $$\sim$$ ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the $${\hbox {HfO}}_{2}$$ HfO 2 based memristive device. $$1\textrm{st}$$ 1 st and $$2\textrm{nd}$$ 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to $$\sim$$ ∼ 4.3 $$\times$$ × and $$\sim$$ ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the based memristive device. and stage device of our proposed synapse design can be scaled to enhance the READ current margin up to 4.3 and 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab's neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO2 based memristive device. 1st and 2nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3× and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO 2 based memristive device. 1 st and 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3 × and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {HfO}}_{2}$$\end{document} HfO 2 based memristive device. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\textrm{st}$$\end{document} 1 st and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\textrm{nd}$$\end{document} 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} ∼ 4.3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} × and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO 2 based memristive device. 1 st and 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3 × and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab's neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise.
ArticleNumber 8897
Author Rose, Garrett S.
Das, Hritom
Chakraborty, Nishith N.
Schuman, Catherine
Author_xml – sequence: 1
  givenname: Hritom
  surname: Das
  fullname: Das, Hritom
  email: hdas@utk.edu
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee
– sequence: 2
  givenname: Catherine
  surname: Schuman
  fullname: Schuman, Catherine
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee
– sequence: 3
  givenname: Nishith N.
  surname: Chakraborty
  fullname: Chakraborty, Nishith N.
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee
– sequence: 4
  givenname: Garrett S.
  surname: Rose
  fullname: Rose, Garrett S.
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38632304$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2337975$$D View this record in Osti.gov
BookMark eNp9kstu1TAQhi1UREvpC7BAEWzYBHxN4hVCVYFKFSyADRvLcSY5Pk3sg50U9e2Z05TSssALXz__M_49T8lBiAEIec7oG0ZF8zZLpnRTUi5L1WhZl_wROeJUqpILzg_uzQ_JSc5bik1xLZl-Qg5FUwkuqDwiP87CxgYHXZHA7rscx2X2MRQ-4MrF0PthSbYdoZhgSj7P_gqKfB3sLkMu-piKrzt_6cNQfAYERxzmXzFd5mfkcW_HDCe34zH5_uHs2-mn8uLLx_PT9xelU0zPZVtLUVvd1pZbRm2nOqaUthVVtZKtoL3jlZRNSxkDUcveWe2sdNw61leV4uKYnK-6XbRbs0t-sunaROvNzUZMg7Fp9m4EA3XXdboRtUbLREtbaKRVou8p143VHWq9W7V2SztB5yDM-KQHog9Pgt-YIV4ZxvAnGJOo8HJViOiUyc7P4DZoYwA3Gy4wdK0Qen0bJsWfC-TZTD47GEcbIC7Z4NcwLmQtGaKv_kG3cUkBDd1TlMmK8QYpvlIuxZwT9HcpM2r29WLWejGYpbmpF7M37sX9x95d-VMdCIgVyHgUBkh_Y_9H9jezoMzi
Cites_doi 10.1155/2019/4316548
10.1021/acsami.7b11191
10.1002/pssa.201700570
10.1109/JETCAS.2017.2777181
10.1088/0268-1242/30/7/075002
10.1142/S0129065720500732
10.1109/LED.2009.2039021
10.1145/2700234
10.1063/1.4977063
10.1039/C5RA22728C
10.1109/TCSVT.2018.2890383
10.1145/3451210
10.1088/0957-4484/24/38/384011
10.1088/1361-6528/aae81c
10.1109/JETCAS.2023.3312163
10.1109/TCSI.2023.3301020
10.3390/s21020644
10.5573/JSTS.2019.19.1.129
10.1109/LOCS.2018.2885976
10.1049/el.2015.2237
10.1109/TCT.1971.1083337
10.3390/s21134462
10.1039/C4NR00500G
10.1145/3381755.3381758
10.1109/MWSCAS57524.2023.10406066
10.1145/3583781.3590283
10.1109/CICC.2011.6055294
10.1109/MWSCAS54063.2022.9859294
10.1109/EDSSC.2015.7285053
10.1145/3583781.3590211
10.1145/3526241.3530381
10.1109/MWSCAS57524.2023.10406099
10.1109/MWSCAS57524.2023.10406136
10.1109/IS.2018.8710576
10.1109/ISVLSI51109.2021.00023
10.1109/MWSCAS57524.2023.10406062
10.1109/IEEECONF59524.2023.10477027
10.1109/IIRW47491.2019.8989872
10.1145/3583781.3590210
10.1109/ISCAS45731.2020.9180808
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41598-024-58947-2
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8897
ExternalDocumentID oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d
2337975
10_1038_s41598_024_58947_2
38632304
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-SC0022566
– fundername: Air Force Research Laboratory
  grantid: FA8750-21-1-1018
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
Q9U
7X8
AAADF
AFGXO
OTOTI
5PM
ID FETCH-LOGICAL-c519t-b7437a9b7a2a10ad5d1559a605754b30fc26448b011e374fca9ca4c2ac1f66523
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:16:36 EDT 2024
Tue Sep 17 21:28:25 EDT 2024
Mon Apr 22 04:53:08 EDT 2024
Sat Oct 26 05:12:48 EDT 2024
Sat Oct 26 08:58:01 EDT 2024
Fri Aug 23 01:35:32 EDT 2024
Sat Nov 02 12:29:58 EDT 2024
Fri Oct 11 20:56:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Read failure
Current-controlled
Low power
READ current resolution
Spiking Neural Network
Stochastic computing
Approximate computing
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-b7437a9b7a2a10ad5d1559a605754b30fc26448b011e374fca9ca4c2ac1f66523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
SC0022566
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024114/
PMID 38632304
PQID 3040146128
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11024114
osti_scitechconnect_2337975
proquest_miscellaneous_3041234741
proquest_journals_3040146128
crossref_primary_10_1038_s41598_024_58947_2
pubmed_primary_38632304
springer_journals_10_1038_s41598_024_58947_2
PublicationCentury 2000
PublicationDate 2024-04-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United Kingdom
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Plank, Schuman, Bruer, Dean, Rose (CR31) 2018; 1
Bousoulas, Giannopoulos, Asenov, Karageorgiou, Tsoukalas (CR41) 2017; 121
Kim (CR4) 2017; 9
Chung, Cheng, Das (CR24) 2015; 51
Xu, Das, Gong, Gong (CR21) 2020; 30
Adnan (CR2) 2021; 17
CR19
CR17
CR39
CR16
CR38
Rashvand, Ahmadzadeh, Shayegh (CR5) 2020; 31
Asghar, Arslan, Kim (CR8) 2021; 21
CR15
CR37
PhilipáWong (CR44) 2014; 6
CR14
CR13
Cruz-Albrecht, Derosier, Srinivasa (CR20) 2013; 24
CR12
CR34
Huang (CR43) 2016; 6
CR11
Mannan, Kim, Chua (CR26) 2021; 21
CR33
CR10
CR32
Das (CR18) 2023; 70
CR30
Chua (CR25) 1971; 18
Tsigkourakos, Bousoulas, Aslanidis, Skotadis, Tsoukalas (CR45) 2017; 214
Bird (CR36) 2019; 2019
Terai, Sakotsubo, Kotsuji, Hada (CR40) 2010; 31
CR6
CR7
CR29
CR27
Krizhevsky, Sutskever, Hinton, Pereira, Burges, Bottou, Weinberger (CR1) 2012
CR23
Brivio (CR22) 2018; 30
Kim, Zhang, Li (CR9) 2015; 11
Chakma (CR46) 2018; 8
Asuncion, Newman (CR35) 2007
Das (CR28) 2023; 13
Lee, Park, Yoo (CR3) 2019; 19
Chen (CR42) 2015; 30
S Brivio (58947_CR22) 2018; 30
Y Xu (58947_CR21) 2020; 30
M Terai (58947_CR40) 2010; 31
A Krizhevsky (58947_CR1) 2012
A Asuncion (58947_CR35) 2007
JM Cruz-Albrecht (58947_CR20) 2013; 24
G Chakma (58947_CR46) 2018; 8
H-S PhilipáWong (58947_CR44) 2014; 6
M Tsigkourakos (58947_CR45) 2017; 214
58947_CR14
L Chua (58947_CR25) 1971; 18
58947_CR15
58947_CR37
P Rashvand (58947_CR5) 2020; 31
58947_CR16
58947_CR38
58947_CR17
58947_CR39
ZI Mannan (58947_CR26) 2021; 21
Y Huang (58947_CR43) 2016; 6
58947_CR19
P Bousoulas (58947_CR41) 2017; 121
K Lee (58947_CR3) 2019; 19
58947_CR30
Y Kim (58947_CR9) 2015; 11
58947_CR10
58947_CR32
58947_CR11
58947_CR33
58947_CR12
58947_CR34
58947_CR13
Y Chung (58947_CR24) 2015; 51
H Das (58947_CR28) 2023; 13
JS Plank (58947_CR31) 2018; 1
M Asghar (58947_CR8) 2021; 21
MM Adnan (58947_CR2) 2021; 17
58947_CR27
S Kim (58947_CR4) 2017; 9
58947_CR29
W Chen (58947_CR42) 2015; 30
JJ Bird (58947_CR36) 2019; 2019
H Das (58947_CR18) 2023; 70
58947_CR7
58947_CR6
58947_CR23
References_xml – volume: 2019
  start-page: 145
  year: 2019
  ident: CR36
  article-title: A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction
  publication-title: Complexity
  doi: 10.1155/2019/4316548
  contributor:
    fullname: Bird
– ident: CR14
– ident: CR39
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 9
  start-page: 40420
  year: 2017
  ident: CR4
  article-title: Analog synaptic behavior of a silicon nitride memristor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11191
  contributor:
    fullname: Kim
– volume: 214
  start-page: 1700570
  year: 2017
  ident: CR45
  article-title: Ultra-low power multilevel switching with enhanced uniformity in forming free tio2- x-based rram with embedded pt nanocrystals
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700570
  contributor:
    fullname: Tsoukalas
– year: 2012
  ident: CR1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Weinberger
– ident: CR6
– ident: CR29
– volume: 8
  start-page: 125
  year: 2018
  end-page: 136
  ident: CR46
  article-title: Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level
  publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst.
  doi: 10.1109/JETCAS.2017.2777181
  contributor:
    fullname: Chakma
– volume: 30
  start-page: 075002
  year: 2015
  ident: CR42
  article-title: Switching characteristics of w/zr/hfo2/tin reram devices for multi-level cell non-volatile memory applications
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/7/075002
  contributor:
    fullname: Chen
– volume: 31
  start-page: 2050073
  year: 2020
  ident: CR5
  article-title: Design and implementation of a spiking neural network with integrate-and-fire neuron model for pattern recognition
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065720500732
  contributor:
    fullname: Shayegh
– volume: 31
  start-page: 204
  year: 2010
  end-page: 206
  ident: CR40
  article-title: Resistance controllability of Ta O /TiO stack reram for low-voltage and multilevel operation
  publication-title: IEEE Electron. Dev. Lett.
  doi: 10.1109/LED.2009.2039021
  contributor:
    fullname: Hada
– volume: 11
  start-page: 1
  year: 2015
  end-page: 25
  ident: CR9
  article-title: A reconfigurable digital neuromorphic processor with memristive synaptic crossbar for cognitive computing
  publication-title: J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/2700234
  contributor:
    fullname: Li
– volume: 121
  start-page: 094501
  year: 2017
  ident: CR41
  article-title: Investigating the origins of high multilevel resistive switching in forming free ti/tio2- x-based memory devices through experiments and simulations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4977063
  contributor:
    fullname: Tsoukalas
– volume: 6
  start-page: 17867
  year: 2016
  end-page: 17872
  ident: CR43
  article-title: Amorphous zno based resistive random access memory
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22728C
  contributor:
    fullname: Huang
– ident: CR27
– volume: 30
  start-page: 256
  year: 2020
  end-page: 266
  ident: CR21
  article-title: On mathematical models of optimal video memory design
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2890383
  contributor:
    fullname: Gong
– ident: CR23
– ident: CR19
– volume: 17
  start-page: 1
  year: 2021
  end-page: 26
  ident: CR2
  article-title: Design of a robust memristive spiking neuromorphic system with unsupervised learning in hardware
  publication-title: J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/3451210
  contributor:
    fullname: Adnan
– ident: CR15
– ident: CR38
– ident: CR17
– volume: 24
  start-page: 384011
  year: 2013
  ident: CR20
  article-title: A scalable neural chip with synaptic electronics using cmos integrated memristors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/384011
  contributor:
    fullname: Srinivasa
– volume: 30
  start-page: 015102
  year: 2018
  ident: CR22
  article-title: Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aae81c
  contributor:
    fullname: Brivio
– ident: CR13
– ident: CR11
– volume: 13
  start-page: 889
  year: 2023
  end-page: 900
  ident: CR28
  article-title: Optimizations for a current-controlled memristor- based neuromorphic synapse design
  publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst.
  doi: 10.1109/JETCAS.2023.3312163
  contributor:
    fullname: Das
– volume: 70
  start-page: 4804
  year: 2023
  end-page: 4815
  ident: CR18
  article-title: An efficient and accurate memristive memory for array-based spiking neural networks
  publication-title: IEEE Trans. Circ. Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2023.3301020
  contributor:
    fullname: Das
– volume: 21
  start-page: 644
  year: 2021
  ident: CR26
  article-title: Implementation of neuro-memristive synapse for long-and short-term bio-synaptic plasticity
  publication-title: Sensors
  doi: 10.3390/s21020644
  contributor:
    fullname: Chua
– volume: 19
  start-page: 129
  year: 2019
  end-page: 136
  ident: CR3
  article-title: A low-power, mixed-mode neural network classifier for robust scene classification
  publication-title: J. Semicond. Technol. Sci.
  doi: 10.5573/JSTS.2019.19.1.129
  contributor:
    fullname: Yoo
– ident: CR32
– volume: 1
  start-page: 17
  year: 2018
  end-page: 20
  ident: CR31
  article-title: The tennlab exploratory neuromorphic computing framework
  publication-title: IEEE Lett. Comput. Soc.
  doi: 10.1109/LOCS.2018.2885976
  contributor:
    fullname: Rose
– ident: CR34
– volume: 51
  start-page: 1854
  year: 2015
  end-page: 1855
  ident: CR24
  article-title: Built-in parasitic-diode-based charge injection technique enhancing data retention of gain cell dram
  publication-title: Electron. Lett.
  doi: 10.1049/el.2015.2237
  contributor:
    fullname: Das
– year: 2007
  ident: CR35
  publication-title: Uci Machine Learning Repository
  contributor:
    fullname: Newman
– volume: 18
  start-page: 507
  year: 1971
  end-page: 519
  ident: CR25
  article-title: Memristor-the missing circuit element
  publication-title: IEEE Trans. Circ. Theory
  doi: 10.1109/TCT.1971.1083337
  contributor:
    fullname: Chua
– ident: CR7
– volume: 21
  start-page: 4462
  year: 2021
  ident: CR8
  article-title: A low-power spiking neural network chip based on a compact lif neuron and binary exponential charge injector synapse circuits
  publication-title: Sensors
  doi: 10.3390/s21134462
  contributor:
    fullname: Kim
– volume: 6
  start-page: 5698
  year: 2014
  end-page: 5702
  ident: CR44
  article-title: Multi-level control of conductive nano-filament evolution in hfo 2 reram by pulse-train operations
  publication-title: Nanoscale
  doi: 10.1039/C4NR00500G
  contributor:
    fullname: PhilipáWong
– ident: 58947_CR19
– ident: 58947_CR34
  doi: 10.1145/3381755.3381758
– volume: 30
  start-page: 015102
  year: 2018
  ident: 58947_CR22
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aae81c
  contributor:
    fullname: S Brivio
– volume: 1
  start-page: 17
  year: 2018
  ident: 58947_CR31
  publication-title: IEEE Lett. Comput. Soc.
  doi: 10.1109/LOCS.2018.2885976
  contributor:
    fullname: JS Plank
– volume-title: Uci Machine Learning Repository
  year: 2007
  ident: 58947_CR35
  contributor:
    fullname: A Asuncion
– ident: 58947_CR17
  doi: 10.1109/MWSCAS57524.2023.10406066
– volume: 11
  start-page: 1
  year: 2015
  ident: 58947_CR9
  publication-title: J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/2700234
  contributor:
    fullname: Y Kim
– ident: 58947_CR13
  doi: 10.1145/3583781.3590283
– volume: 17
  start-page: 1
  year: 2021
  ident: 58947_CR2
  publication-title: J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/3451210
  contributor:
    fullname: MM Adnan
– volume: 24
  start-page: 384011
  year: 2013
  ident: 58947_CR20
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/384011
  contributor:
    fullname: JM Cruz-Albrecht
– volume: 214
  start-page: 1700570
  year: 2017
  ident: 58947_CR45
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700570
  contributor:
    fullname: M Tsigkourakos
– volume: 21
  start-page: 4462
  year: 2021
  ident: 58947_CR8
  publication-title: Sensors
  doi: 10.3390/s21134462
  contributor:
    fullname: M Asghar
– volume: 31
  start-page: 2050073
  year: 2020
  ident: 58947_CR5
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065720500732
  contributor:
    fullname: P Rashvand
– volume: 31
  start-page: 204
  year: 2010
  ident: 58947_CR40
  publication-title: IEEE Electron. Dev. Lett.
  doi: 10.1109/LED.2009.2039021
  contributor:
    fullname: M Terai
– volume: 13
  start-page: 889
  year: 2023
  ident: 58947_CR28
  publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst.
  doi: 10.1109/JETCAS.2023.3312163
  contributor:
    fullname: H Das
– volume: 6
  start-page: 17867
  year: 2016
  ident: 58947_CR43
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22728C
  contributor:
    fullname: Y Huang
– ident: 58947_CR7
  doi: 10.1109/CICC.2011.6055294
– ident: 58947_CR14
  doi: 10.1109/MWSCAS54063.2022.9859294
– volume: 18
  start-page: 507
  year: 1971
  ident: 58947_CR25
  publication-title: IEEE Trans. Circ. Theory
  doi: 10.1109/TCT.1971.1083337
  contributor:
    fullname: L Chua
– ident: 58947_CR38
– volume: 2019
  start-page: 145
  year: 2019
  ident: 58947_CR36
  publication-title: Complexity
  doi: 10.1155/2019/4316548
  contributor:
    fullname: JJ Bird
– ident: 58947_CR23
  doi: 10.1109/EDSSC.2015.7285053
– volume: 21
  start-page: 644
  year: 2021
  ident: 58947_CR26
  publication-title: Sensors
  doi: 10.3390/s21020644
  contributor:
    fullname: ZI Mannan
– ident: 58947_CR32
  doi: 10.1145/3583781.3590211
– volume: 6
  start-page: 5698
  year: 2014
  ident: 58947_CR44
  publication-title: Nanoscale
  doi: 10.1039/C4NR00500G
  contributor:
    fullname: H-S PhilipáWong
– ident: 58947_CR10
  doi: 10.1145/3526241.3530381
– ident: 58947_CR15
  doi: 10.1109/MWSCAS57524.2023.10406099
– ident: 58947_CR16
  doi: 10.1109/MWSCAS57524.2023.10406136
– ident: 58947_CR37
  doi: 10.1109/IS.2018.8710576
– volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 58947_CR1
  contributor:
    fullname: A Krizhevsky
– volume: 51
  start-page: 1854
  year: 2015
  ident: 58947_CR24
  publication-title: Electron. Lett.
  doi: 10.1049/el.2015.2237
  contributor:
    fullname: Y Chung
– ident: 58947_CR11
  doi: 10.1109/ISVLSI51109.2021.00023
– volume: 70
  start-page: 4804
  year: 2023
  ident: 58947_CR18
  publication-title: IEEE Trans. Circ. Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2023.3301020
  contributor:
    fullname: H Das
– volume: 9
  start-page: 40420
  year: 2017
  ident: 58947_CR4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11191
  contributor:
    fullname: S Kim
– ident: 58947_CR33
– volume: 121
  start-page: 094501
  year: 2017
  ident: 58947_CR41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4977063
  contributor:
    fullname: P Bousoulas
– ident: 58947_CR30
  doi: 10.1109/MWSCAS57524.2023.10406062
– ident: 58947_CR12
  doi: 10.1109/IEEECONF59524.2023.10477027
– volume: 8
  start-page: 125
  year: 2018
  ident: 58947_CR46
  publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst.
  doi: 10.1109/JETCAS.2017.2777181
  contributor:
    fullname: G Chakma
– volume: 30
  start-page: 256
  year: 2020
  ident: 58947_CR21
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2890383
  contributor:
    fullname: Y Xu
– volume: 30
  start-page: 075002
  year: 2015
  ident: 58947_CR42
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/7/075002
  contributor:
    fullname: W Chen
– volume: 19
  start-page: 129
  year: 2019
  ident: 58947_CR3
  publication-title: J. Semicond. Technol. Sci.
  doi: 10.5573/JSTS.2019.19.1.129
  contributor:
    fullname: K Lee
– ident: 58947_CR27
  doi: 10.1109/IIRW47491.2019.8989872
– ident: 58947_CR6
  doi: 10.1145/3583781.3590210
– ident: 58947_CR39
– ident: 58947_CR29
  doi: 10.1109/ISCAS45731.2020.9180808
SSID ssj0000529419
Score 2.4695873
Snippet The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive...
Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device....
Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device....
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8897
SubjectTerms 639/166/987
639/925/927/1007
Accuracy
Current-controlled
Design
Firing pattern
High voltage
Humanities and Social Sciences
Low power
multidisciplinary
Nervous system
Neural networks
READ current resolution
Read failure
Science
Science (multidisciplinary)
Signal processing
Spiking Neural Network
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG_SBzISN4ia2E5iH2nVqkKiF6hUcbEcP-geml01u0j998zY2aVbQFy4JFKc5zwy33jszwDvGull7RG5KV1LTFBqdCkdVdn6xiPAblUvaaLw5_P27EJ-umwu7yz1RWPCMj1wFtxh6Lz3GtOoxBTeV31Q0jYiRuIOt9qnv2-l7yRTmdWba1nraZZMJdThiJGKZpNxWTZ4p67kW5EoEfbjbo6O9Sew-fuYyXuF0xSPTp_A4wlIso_5A57CgzA8g4d5acnb5_DtZLhKxX2GqJA2axtjs4GlLDjOvq9uaOIUuw7XydV_BDbeDnYxhpEhlmVfFjPqSGdE4IGPOs8jxscXcHF68vX4rJzWUSgd4rNl2SNK6KzuO8ttXVnUAtUibUtQTfaiii5laT26ehCdjM5qZ6Xj1tWxbTFTfQk7w3wIr4Fp3grBY9d4XkmnPbG_OyUqpzX3SsQC3q9lahaZLsOkMrdQJmvAoAZM0oDhBRyR2DdnEtV1OoAGYCYDMP8ygAL2SGkGEQPR3joaH-SWhgu8omsK2F_r0kzeORqBfy5az5yrAt5umtGvqFhihzBfpXMwqEsEXAW8yqrfvKdQraDO9ALUllFsfch2yzC7StzdiLYQM9V46Ye1_fx6r79Lavd_SGoPHnGyf2Kq7PZhZ3mzCgcIqZb9m-Q9PwHgpxti
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXivJMW5CRuEHUxHYS-4QAtaqQ6AUqrbhYju20e2iybHYr9d93xkm2WqBcEikPxfHM2N88_BngfSG9zD0iN6VziQ5KjialG5WWvvAIsEtVS1oo_P2sPD2X32bFbAy49WNZ5TQmxoHad45i5EfodhPPCQ6nnxa_U9o1irKr4xYaD-FRzrOSSrqqWbWJsVAWS-Z6XCuTCXXU43xFa8q4TAuliaRgaz6KtP146tC8_gU5_66c_CN9Gmelk6ewO8JJ9nmQ_x48CO0zeDxsMHnzHH4dt5cxxc8QG9Jh0jQ2b1n0hZv5xXpJy6fYVbiKBn8dWH_T2kUfeoaIlv1YzCmczojGAz91NtSN9y_g_OT459fTdNxNIXWI0lZpjVihsrquLLd5ZlEWlJG0JQE2WYuscdFXq9Hgg6hk46x2VjpuXd6UJfqrL2Gn7drwGpjmpRC8qQrPM-m0Jw54p0TmtOZeiSaBD1OfmsVAmmFislsoM0jAoARMlIDhCXyhbt88SYTX8UK3vDCj_ZhQee81etORML7O6qCkLUTTEIW81T6BAxKaQdxA5LeOqoTcynCBb1RFAoeTLM1oo72506gE3m1uo3VRysS2oVvHZ3Bqlwi7Eng1iH7TTqFKQSH1BNSWUmz9yPaddn4ZGbwRcyFyyvHVj5P-3LXr_p7a__9vHMATTppNTJTVIeysluvwBiHTqn4b7eIWZV4Scg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BERIXVD6btiAjcYOIxHYc-9iuWlVI9AKVKi6WYzt0D82uml2k_vvOONmtAuXAJZFiW3E8nswbj-cZ4GMlgywDIjdtSokOSokqZVqdq1AFBNhKN5IShb-dq7ML-fWyuhxpcigXZhK_F_pLjwaGksC4zCttiFXgMTxBG6xp-9ZMzbbrKRSxkqUZ82IebjqxPYmiH28LVKWH4OXfuyT_CJUmC3S6C89H6MiOBlm_gEexewlPh8Mkb1_Bz5PuKoXzGeJAumxmFZt3LPm97fzX-oZSpdh1vE7K_Tuy_rZzyz72DNEr-76c09I5I8oOfNX5sEe8fw0Xpyc_Zmf5eHJC7hGRrfIGcUHtTFM77srC4bhT9NEpAmeyEUXrk1_WoHJHUcvWO-Od9Nz5slUKfdM3sNMturgHzHAlBG_rKvBCehOI791rUXhjeNCizeDTZkztciDIsCmwLbQdJGBRAjZJwPIMjmnYtzWJ3Do9QJnbUVdsrEMIBj3nRA7fFE3U0lWibYku3pmQwQEJzSJGIKJbTzuC_MpygS3qKoPDjSztqI-9FfivohPMuc7gw7YYNYnCI66Li3Wqg2ZcIsTK4O0g-m0_hVaCls8z0JNJMfmQaUk3v0ps3YivECWV2PTzZv7c9-vfI7X_f9UP4BmnmU4slPUh7Kxu1vEdwqVV8z7pyR1k1wuY
  priority: 102
  providerName: Springer Nature
Title Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural Networks
URI https://link.springer.com/article/10.1038/s41598-024-58947-2
https://www.ncbi.nlm.nih.gov/pubmed/38632304
https://www.proquest.com/docview/3040146128
https://www.proquest.com/docview/3041234741
https://www.osti.gov/biblio/2337975
https://pubmed.ncbi.nlm.nih.gov/PMC11024114
https://doaj.org/article/e7ddd983798943b0be84a53ff0298a9d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajo2-jH3PbRc82NuWxpZkW3pcQ0oZNJRthbAXIUt2a1icECeD_ve9k-1s2cfLXmz8hWXdHfc73d3PAO8S4UTsELlJFQsMUGI0KVXKYeoShwA7lbmgRuHLaXpxLT7NktkepH0vjC_at3l1Wn-fn9bVra-tXM7tqK8TG11djtFloeOJxWgf9lFDf4nRW0ZvpkSsug6ZiMtRg16KOsmYGCZSETXBITziMuW0IrrjkDxvP-4WaF9_w5x_lk7-lj_1bun8CTzu8GT4sR33U9gr6mfwsP3D5N1z-Dapb32OP0RwSJte1cKqDn0wXFY3mxX1T4XzYu4t_kcRNne1WTZFEyKkDb8sK1pPD4nHA181bQvHmxdwfT75Or4Ydr9TGFqEaethjmAhMyrPDDNxZFAYlJI0KSE2kfOotD5Yy9HiC56J0hpljbDM2LhMUwxYX8JBvaiL1xAqlnLOyixxLBJWOSKBt5JHVinmJC8DeN_PqV62rBnaZ7u51K0wNApDe2FoFsAZTfv2TmK89icWqxvdyV0XmXNOYTjtGePzKC-kMAkvS-KQN8oFcExC0wgciP3WUpmQXWvG8YksCeCkl6XujLTRKHyizkEPHcDb7WU0L8qZmLpYbPw96NsF4q4AXrWi346z16AA5I5S7HzI7hXUaE_h3WtwAB96_fk5rn_P1NH_v-kYDhkZANFUZidwsF5tijeIp9b5AI1olg3gwdlkevUZj8bpeODXJgbesO4BifogDw
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4k3aAkbiBlGT2EnsEwLUaoF2L7TSiovl2E67hybLZrdS_z0zTrLV8rokUh6K45mxv5mxvwF4mwsnUofITapUoIOSokmpWsaFyx0C7EJWgjYKn0yLyZn4OstnQ8CtG5ZVjmNiGKhdaylGfoBuN_Gc4HD6YfEzpqpRlF0dSmjchjvEw0UVDMpZuYmxUBZLpGrYK5NwedDhfEV7yjIR51IRScHWfBRo-_HUonn9DXL-uXLyt_RpmJWOHsKDAU6yj738H8Et3zyGu32Byesn8OOwuQgpfobYkA6jprF5w4IvXM_P10vaPsUu_WUw-CvPuuvGLDrfMUS07PtiTuF0RjQe-Klpv268ewpnR4ennyfxUE0htojSVnGFWKE0qipNZtLEoCwoI2kKAmyi4kltg69WocF7XoraGmWNsJmxaV0U6K8-g52mbfwLYCorsLfrMndZIqxyxAFvJU-sUpmTvI7g3dinetGTZuiQ7OZS9xLQKAEdJKCzCD5Rt2-eJMLrcKFdnuvBfrQvnXMKvelAGF8llZfC5LyuiULeKBfBHglNI24g8ltLq4TsSmcc3yjzCPZHWerBRjt9o1ERvNncRuuilIlpfLsOz-DULhB2RfC8F_2mnVwWnELqEcgtpdj6ke07zfwiMHgj5kLklOKr70f9uWnXv3tq9_-_8RruTU5PjvXxl-m3PbifkZYTK2W5Dzur5dq_RPi0ql4FG_kFWv8VWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuFc8SWiBI3CDaxHYS-4Qo7Kq8VhVQqeJiOXbS7qHJstmt1H_PjJNstbwuWSkPbeKZz_7GM_4M8DIVTiQOmZtUicAAJUFIqUpGmUsdEuxMFoIWCn-ZZUcn4uNpetrXP7V9WeXQJ_qO2jWW5sjHGHaTzgl2p-OqL4s4fj99s_gZ0Q5SlGntt9O4CTu5yHg8gp3Dyez462bGhXJaIlH9ypmYy3GLoxetMGMiSqUiyYKt0cmL-ONPg2D7GwH9s47yt2SqH6Omd2G3J5fh284b7sGNsr4Pt7rtJq8ewI9Jfe4T_iEyRToMfhfO69BHxtX8bL2kxVThRXnh4X9Zhu1VbRZt2YbIb8NvizlNrock6oF_NeuqyNuHcDKdfH93FPV7K0QWOdsqKpA55EYVuWEmiQ1ahvKTJiP6JgoeV9ZHbgXCv-S5qKxR1gjLjE2qLMPo9RGM6qYuH0OoWMY5q_LUsVhY5UgR3koeW6WYk7wK4NXQpnrRSWhon_rmUncW0GgB7S2gWQCH1OybO0n-2p9olme6R5Muc-ecwtjay8cXcVFKYVJeVSQob5QLYJ-MppFFkBSupZohu9KM4xN5GsDBYEvdI7bV1_4VwIvNZcQaJVBMXTZrfw8O9AJJWAB7nek378llxmmCPQC55RRbH7J9pZ6fez1vZGDIoxJ89PXgP9fv9e-WevL_z3gOtxEg-vOH2ad9uMPIyUmiMj-A0Wq5Lp8il1oVz3qQ_AJInRr2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+read+resolution+in+reconfigurable+memristive+synapses+for+Spiking+Neural+Networks&rft.jtitle=Scientific+reports&rft.au=Hritom+Das&rft.au=Catherine+Schuman&rft.au=Nishith+N.+Chakraborty&rft.au=Garrett+S.+Rose&rft.date=2024-04-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-58947-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon