Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural Networks
The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishabili...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 8897 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage,
SET
or
RESET
failure, and
READ
margin issues that can degrade the distinguishability of stored weights. Enhancing
READ
resolution is very important to improving the reliability of memristive synapses. Usually, the
READ
resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the
READ
current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the
HfO
2
based memristive device.
1
st
and
2
nd
stage device of our proposed synapse design can be scaled to enhance the
READ
current margin up to
∼
4.3
×
and
∼
21%, respectively. Moreover,
READ
current resolution can be enhanced with run-time adaptation techniques such as
READ
voltage scaling and body biasing. The
READ
voltage scaling and body biasing can improve the
READ
current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of
READ
current resolution on classification, control, and reservoir computing applications. Higher
READ
current resolution shows better accuracy than lower resolution even when facing different levels of read noise. |
---|---|
AbstractList | Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the $${\hbox {HfO}}_{2}$$ HfO 2 based memristive device. $$1\textrm{st}$$ 1 st and $$2\textrm{nd}$$ 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to $$\sim$$ ∼ 4.3 $$\times$$ × and $$\sim$$ ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the $${\hbox {HfO}}_{2}$$ HfO 2 based memristive device. $$1\textrm{st}$$ 1 st and $$2\textrm{nd}$$ 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to $$\sim$$ ∼ 4.3 $$\times$$ × and $$\sim$$ ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the based memristive device. and stage device of our proposed synapse design can be scaled to enhance the READ current margin up to 4.3 and 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab's neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO2 based memristive device. 1st and 2nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3× and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO 2 based memristive device. 1 st and 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3 × and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {HfO}}_{2}$$\end{document} HfO 2 based memristive device. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\textrm{st}$$\end{document} 1 st and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\textrm{nd}$$\end{document} 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} ∼ 4.3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} × and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive synapses suffer from various challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade the distinguishability of stored weights. Enhancing READ resolution is very important to improving the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ current resolution or the read current difference between two resistance levels for a current-controlled memristor-based synapse. An empirical model is used to characterize the HfO 2 based memristive device. 1 st and 2 nd stage device of our proposed synapse design can be scaled to enhance the READ current margin up to ∼ 4.3 × and ∼ 21%, respectively. Moreover, READ current resolution can be enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 15%, respectively. TENNLab's neuromorphic computing framework is leveraged to evaluate the effect of READ current resolution on classification, control, and reservoir computing applications. Higher READ current resolution shows better accuracy than lower resolution even when facing different levels of read noise. |
ArticleNumber | 8897 |
Author | Rose, Garrett S. Das, Hritom Chakraborty, Nishith N. Schuman, Catherine |
Author_xml | – sequence: 1 givenname: Hritom surname: Das fullname: Das, Hritom email: hdas@utk.edu organization: Department of Electrical Engineering and Computer Science, University of Tennessee – sequence: 2 givenname: Catherine surname: Schuman fullname: Schuman, Catherine organization: Department of Electrical Engineering and Computer Science, University of Tennessee – sequence: 3 givenname: Nishith N. surname: Chakraborty fullname: Chakraborty, Nishith N. organization: Department of Electrical Engineering and Computer Science, University of Tennessee – sequence: 4 givenname: Garrett S. surname: Rose fullname: Rose, Garrett S. organization: Department of Electrical Engineering and Computer Science, University of Tennessee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38632304$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2337975$$D View this record in Osti.gov |
BookMark | eNp9kstu1TAQhi1UREvpC7BAEWzYBHxN4hVCVYFKFSyADRvLcSY5Pk3sg50U9e2Z05TSssALXz__M_49T8lBiAEIec7oG0ZF8zZLpnRTUi5L1WhZl_wROeJUqpILzg_uzQ_JSc5bik1xLZl-Qg5FUwkuqDwiP87CxgYHXZHA7rscx2X2MRQ-4MrF0PthSbYdoZhgSj7P_gqKfB3sLkMu-piKrzt_6cNQfAYERxzmXzFd5mfkcW_HDCe34zH5_uHs2-mn8uLLx_PT9xelU0zPZVtLUVvd1pZbRm2nOqaUthVVtZKtoL3jlZRNSxkDUcveWe2sdNw61leV4uKYnK-6XbRbs0t-sunaROvNzUZMg7Fp9m4EA3XXdboRtUbLREtbaKRVou8p143VHWq9W7V2SztB5yDM-KQHog9Pgt-YIV4ZxvAnGJOo8HJViOiUyc7P4DZoYwA3Gy4wdK0Qen0bJsWfC-TZTD47GEcbIC7Z4NcwLmQtGaKv_kG3cUkBDd1TlMmK8QYpvlIuxZwT9HcpM2r29WLWejGYpbmpF7M37sX9x95d-VMdCIgVyHgUBkh_Y_9H9jezoMzi |
Cites_doi | 10.1155/2019/4316548 10.1021/acsami.7b11191 10.1002/pssa.201700570 10.1109/JETCAS.2017.2777181 10.1088/0268-1242/30/7/075002 10.1142/S0129065720500732 10.1109/LED.2009.2039021 10.1145/2700234 10.1063/1.4977063 10.1039/C5RA22728C 10.1109/TCSVT.2018.2890383 10.1145/3451210 10.1088/0957-4484/24/38/384011 10.1088/1361-6528/aae81c 10.1109/JETCAS.2023.3312163 10.1109/TCSI.2023.3301020 10.3390/s21020644 10.5573/JSTS.2019.19.1.129 10.1109/LOCS.2018.2885976 10.1049/el.2015.2237 10.1109/TCT.1971.1083337 10.3390/s21134462 10.1039/C4NR00500G 10.1145/3381755.3381758 10.1109/MWSCAS57524.2023.10406066 10.1145/3583781.3590283 10.1109/CICC.2011.6055294 10.1109/MWSCAS54063.2022.9859294 10.1109/EDSSC.2015.7285053 10.1145/3583781.3590211 10.1145/3526241.3530381 10.1109/MWSCAS57524.2023.10406099 10.1109/MWSCAS57524.2023.10406136 10.1109/IS.2018.8710576 10.1109/ISVLSI51109.2021.00023 10.1109/MWSCAS57524.2023.10406062 10.1109/IEEECONF59524.2023.10477027 10.1109/IIRW47491.2019.8989872 10.1145/3583781.3590210 10.1109/ISCAS45731.2020.9180808 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 OTOTI 5PM DOA |
DOI | 10.1038/s41598-024-58947-2 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8897 |
ExternalDocumentID | oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d 2337975 10_1038_s41598_024_58947_2 38632304 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-SC0022566 – fundername: Air Force Research Laboratory grantid: FA8750-21-1-1018 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. M48 PQEST PQUKI Q9U 7X8 AAADF AFGXO OTOTI 5PM |
ID | FETCH-LOGICAL-c519t-b7437a9b7a2a10ad5d1559a605754b30fc26448b011e374fca9ca4c2ac1f66523 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:16:36 EDT 2024 Tue Sep 17 21:28:25 EDT 2024 Mon Apr 22 04:53:08 EDT 2024 Sat Oct 26 05:12:48 EDT 2024 Sat Oct 26 08:58:01 EDT 2024 Fri Aug 23 01:35:32 EDT 2024 Sat Nov 02 12:29:58 EDT 2024 Fri Oct 11 20:56:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Read failure Current-controlled Low power READ current resolution Spiking Neural Network Stochastic computing Approximate computing |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-b7437a9b7a2a10ad5d1559a605754b30fc26448b011e374fca9ca4c2ac1f66523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE SC0022566 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024114/ |
PMID | 38632304 |
PQID | 3040146128 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11024114 osti_scitechconnect_2337975 proquest_miscellaneous_3041234741 proquest_journals_3040146128 crossref_primary_10_1038_s41598_024_58947_2 pubmed_primary_38632304 springer_journals_10_1038_s41598_024_58947_2 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-17 |
PublicationDateYYYYMMDD | 2024-04-17 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United Kingdom |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Plank, Schuman, Bruer, Dean, Rose (CR31) 2018; 1 Bousoulas, Giannopoulos, Asenov, Karageorgiou, Tsoukalas (CR41) 2017; 121 Kim (CR4) 2017; 9 Chung, Cheng, Das (CR24) 2015; 51 Xu, Das, Gong, Gong (CR21) 2020; 30 Adnan (CR2) 2021; 17 CR19 CR17 CR39 CR16 CR38 Rashvand, Ahmadzadeh, Shayegh (CR5) 2020; 31 Asghar, Arslan, Kim (CR8) 2021; 21 CR15 CR37 PhilipáWong (CR44) 2014; 6 CR14 CR13 Cruz-Albrecht, Derosier, Srinivasa (CR20) 2013; 24 CR12 CR34 Huang (CR43) 2016; 6 CR11 Mannan, Kim, Chua (CR26) 2021; 21 CR33 CR10 CR32 Das (CR18) 2023; 70 CR30 Chua (CR25) 1971; 18 Tsigkourakos, Bousoulas, Aslanidis, Skotadis, Tsoukalas (CR45) 2017; 214 Bird (CR36) 2019; 2019 Terai, Sakotsubo, Kotsuji, Hada (CR40) 2010; 31 CR6 CR7 CR29 CR27 Krizhevsky, Sutskever, Hinton, Pereira, Burges, Bottou, Weinberger (CR1) 2012 CR23 Brivio (CR22) 2018; 30 Kim, Zhang, Li (CR9) 2015; 11 Chakma (CR46) 2018; 8 Asuncion, Newman (CR35) 2007 Das (CR28) 2023; 13 Lee, Park, Yoo (CR3) 2019; 19 Chen (CR42) 2015; 30 S Brivio (58947_CR22) 2018; 30 Y Xu (58947_CR21) 2020; 30 M Terai (58947_CR40) 2010; 31 A Krizhevsky (58947_CR1) 2012 A Asuncion (58947_CR35) 2007 JM Cruz-Albrecht (58947_CR20) 2013; 24 G Chakma (58947_CR46) 2018; 8 H-S PhilipáWong (58947_CR44) 2014; 6 M Tsigkourakos (58947_CR45) 2017; 214 58947_CR14 L Chua (58947_CR25) 1971; 18 58947_CR15 58947_CR37 P Rashvand (58947_CR5) 2020; 31 58947_CR16 58947_CR38 58947_CR17 58947_CR39 ZI Mannan (58947_CR26) 2021; 21 Y Huang (58947_CR43) 2016; 6 58947_CR19 P Bousoulas (58947_CR41) 2017; 121 K Lee (58947_CR3) 2019; 19 58947_CR30 Y Kim (58947_CR9) 2015; 11 58947_CR10 58947_CR32 58947_CR11 58947_CR33 58947_CR12 58947_CR34 58947_CR13 Y Chung (58947_CR24) 2015; 51 H Das (58947_CR28) 2023; 13 JS Plank (58947_CR31) 2018; 1 M Asghar (58947_CR8) 2021; 21 MM Adnan (58947_CR2) 2021; 17 58947_CR27 S Kim (58947_CR4) 2017; 9 58947_CR29 W Chen (58947_CR42) 2015; 30 JJ Bird (58947_CR36) 2019; 2019 H Das (58947_CR18) 2023; 70 58947_CR7 58947_CR6 58947_CR23 |
References_xml | – volume: 2019 start-page: 145 year: 2019 ident: CR36 article-title: A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction publication-title: Complexity doi: 10.1155/2019/4316548 contributor: fullname: Bird – ident: CR14 – ident: CR39 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 9 start-page: 40420 year: 2017 ident: CR4 article-title: Analog synaptic behavior of a silicon nitride memristor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11191 contributor: fullname: Kim – volume: 214 start-page: 1700570 year: 2017 ident: CR45 article-title: Ultra-low power multilevel switching with enhanced uniformity in forming free tio2- x-based rram with embedded pt nanocrystals publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700570 contributor: fullname: Tsoukalas – year: 2012 ident: CR1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems contributor: fullname: Weinberger – ident: CR6 – ident: CR29 – volume: 8 start-page: 125 year: 2018 end-page: 136 ident: CR46 article-title: Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst. doi: 10.1109/JETCAS.2017.2777181 contributor: fullname: Chakma – volume: 30 start-page: 075002 year: 2015 ident: CR42 article-title: Switching characteristics of w/zr/hfo2/tin reram devices for multi-level cell non-volatile memory applications publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/30/7/075002 contributor: fullname: Chen – volume: 31 start-page: 2050073 year: 2020 ident: CR5 article-title: Design and implementation of a spiking neural network with integrate-and-fire neuron model for pattern recognition publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065720500732 contributor: fullname: Shayegh – volume: 31 start-page: 204 year: 2010 end-page: 206 ident: CR40 article-title: Resistance controllability of Ta O /TiO stack reram for low-voltage and multilevel operation publication-title: IEEE Electron. Dev. Lett. doi: 10.1109/LED.2009.2039021 contributor: fullname: Hada – volume: 11 start-page: 1 year: 2015 end-page: 25 ident: CR9 article-title: A reconfigurable digital neuromorphic processor with memristive synaptic crossbar for cognitive computing publication-title: J. Emerg. Technol. Comput. Syst. doi: 10.1145/2700234 contributor: fullname: Li – volume: 121 start-page: 094501 year: 2017 ident: CR41 article-title: Investigating the origins of high multilevel resistive switching in forming free ti/tio2- x-based memory devices through experiments and simulations publication-title: J. Appl. Phys. doi: 10.1063/1.4977063 contributor: fullname: Tsoukalas – volume: 6 start-page: 17867 year: 2016 end-page: 17872 ident: CR43 article-title: Amorphous zno based resistive random access memory publication-title: RSC Adv. doi: 10.1039/C5RA22728C contributor: fullname: Huang – ident: CR27 – volume: 30 start-page: 256 year: 2020 end-page: 266 ident: CR21 article-title: On mathematical models of optimal video memory design publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2018.2890383 contributor: fullname: Gong – ident: CR23 – ident: CR19 – volume: 17 start-page: 1 year: 2021 end-page: 26 ident: CR2 article-title: Design of a robust memristive spiking neuromorphic system with unsupervised learning in hardware publication-title: J. Emerg. Technol. Comput. Syst. doi: 10.1145/3451210 contributor: fullname: Adnan – ident: CR15 – ident: CR38 – ident: CR17 – volume: 24 start-page: 384011 year: 2013 ident: CR20 article-title: A scalable neural chip with synaptic electronics using cmos integrated memristors publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/384011 contributor: fullname: Srinivasa – volume: 30 start-page: 015102 year: 2018 ident: CR22 article-title: Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics publication-title: Nanotechnology doi: 10.1088/1361-6528/aae81c contributor: fullname: Brivio – ident: CR13 – ident: CR11 – volume: 13 start-page: 889 year: 2023 end-page: 900 ident: CR28 article-title: Optimizations for a current-controlled memristor- based neuromorphic synapse design publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst. doi: 10.1109/JETCAS.2023.3312163 contributor: fullname: Das – volume: 70 start-page: 4804 year: 2023 end-page: 4815 ident: CR18 article-title: An efficient and accurate memristive memory for array-based spiking neural networks publication-title: IEEE Trans. Circ. Syst. I Regul. Pap. doi: 10.1109/TCSI.2023.3301020 contributor: fullname: Das – volume: 21 start-page: 644 year: 2021 ident: CR26 article-title: Implementation of neuro-memristive synapse for long-and short-term bio-synaptic plasticity publication-title: Sensors doi: 10.3390/s21020644 contributor: fullname: Chua – volume: 19 start-page: 129 year: 2019 end-page: 136 ident: CR3 article-title: A low-power, mixed-mode neural network classifier for robust scene classification publication-title: J. Semicond. Technol. Sci. doi: 10.5573/JSTS.2019.19.1.129 contributor: fullname: Yoo – ident: CR32 – volume: 1 start-page: 17 year: 2018 end-page: 20 ident: CR31 article-title: The tennlab exploratory neuromorphic computing framework publication-title: IEEE Lett. Comput. Soc. doi: 10.1109/LOCS.2018.2885976 contributor: fullname: Rose – ident: CR34 – volume: 51 start-page: 1854 year: 2015 end-page: 1855 ident: CR24 article-title: Built-in parasitic-diode-based charge injection technique enhancing data retention of gain cell dram publication-title: Electron. Lett. doi: 10.1049/el.2015.2237 contributor: fullname: Das – year: 2007 ident: CR35 publication-title: Uci Machine Learning Repository contributor: fullname: Newman – volume: 18 start-page: 507 year: 1971 end-page: 519 ident: CR25 article-title: Memristor-the missing circuit element publication-title: IEEE Trans. Circ. Theory doi: 10.1109/TCT.1971.1083337 contributor: fullname: Chua – ident: CR7 – volume: 21 start-page: 4462 year: 2021 ident: CR8 article-title: A low-power spiking neural network chip based on a compact lif neuron and binary exponential charge injector synapse circuits publication-title: Sensors doi: 10.3390/s21134462 contributor: fullname: Kim – volume: 6 start-page: 5698 year: 2014 end-page: 5702 ident: CR44 article-title: Multi-level control of conductive nano-filament evolution in hfo 2 reram by pulse-train operations publication-title: Nanoscale doi: 10.1039/C4NR00500G contributor: fullname: PhilipáWong – ident: 58947_CR19 – ident: 58947_CR34 doi: 10.1145/3381755.3381758 – volume: 30 start-page: 015102 year: 2018 ident: 58947_CR22 publication-title: Nanotechnology doi: 10.1088/1361-6528/aae81c contributor: fullname: S Brivio – volume: 1 start-page: 17 year: 2018 ident: 58947_CR31 publication-title: IEEE Lett. Comput. Soc. doi: 10.1109/LOCS.2018.2885976 contributor: fullname: JS Plank – volume-title: Uci Machine Learning Repository year: 2007 ident: 58947_CR35 contributor: fullname: A Asuncion – ident: 58947_CR17 doi: 10.1109/MWSCAS57524.2023.10406066 – volume: 11 start-page: 1 year: 2015 ident: 58947_CR9 publication-title: J. Emerg. Technol. Comput. Syst. doi: 10.1145/2700234 contributor: fullname: Y Kim – ident: 58947_CR13 doi: 10.1145/3583781.3590283 – volume: 17 start-page: 1 year: 2021 ident: 58947_CR2 publication-title: J. Emerg. Technol. Comput. Syst. doi: 10.1145/3451210 contributor: fullname: MM Adnan – volume: 24 start-page: 384011 year: 2013 ident: 58947_CR20 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/384011 contributor: fullname: JM Cruz-Albrecht – volume: 214 start-page: 1700570 year: 2017 ident: 58947_CR45 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700570 contributor: fullname: M Tsigkourakos – volume: 21 start-page: 4462 year: 2021 ident: 58947_CR8 publication-title: Sensors doi: 10.3390/s21134462 contributor: fullname: M Asghar – volume: 31 start-page: 2050073 year: 2020 ident: 58947_CR5 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065720500732 contributor: fullname: P Rashvand – volume: 31 start-page: 204 year: 2010 ident: 58947_CR40 publication-title: IEEE Electron. Dev. Lett. doi: 10.1109/LED.2009.2039021 contributor: fullname: M Terai – volume: 13 start-page: 889 year: 2023 ident: 58947_CR28 publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst. doi: 10.1109/JETCAS.2023.3312163 contributor: fullname: H Das – volume: 6 start-page: 17867 year: 2016 ident: 58947_CR43 publication-title: RSC Adv. doi: 10.1039/C5RA22728C contributor: fullname: Y Huang – ident: 58947_CR7 doi: 10.1109/CICC.2011.6055294 – ident: 58947_CR14 doi: 10.1109/MWSCAS54063.2022.9859294 – volume: 18 start-page: 507 year: 1971 ident: 58947_CR25 publication-title: IEEE Trans. Circ. Theory doi: 10.1109/TCT.1971.1083337 contributor: fullname: L Chua – ident: 58947_CR38 – volume: 2019 start-page: 145 year: 2019 ident: 58947_CR36 publication-title: Complexity doi: 10.1155/2019/4316548 contributor: fullname: JJ Bird – ident: 58947_CR23 doi: 10.1109/EDSSC.2015.7285053 – volume: 21 start-page: 644 year: 2021 ident: 58947_CR26 publication-title: Sensors doi: 10.3390/s21020644 contributor: fullname: ZI Mannan – ident: 58947_CR32 doi: 10.1145/3583781.3590211 – volume: 6 start-page: 5698 year: 2014 ident: 58947_CR44 publication-title: Nanoscale doi: 10.1039/C4NR00500G contributor: fullname: H-S PhilipáWong – ident: 58947_CR10 doi: 10.1145/3526241.3530381 – ident: 58947_CR15 doi: 10.1109/MWSCAS57524.2023.10406099 – ident: 58947_CR16 doi: 10.1109/MWSCAS57524.2023.10406136 – ident: 58947_CR37 doi: 10.1109/IS.2018.8710576 – volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 58947_CR1 contributor: fullname: A Krizhevsky – volume: 51 start-page: 1854 year: 2015 ident: 58947_CR24 publication-title: Electron. Lett. doi: 10.1049/el.2015.2237 contributor: fullname: Y Chung – ident: 58947_CR11 doi: 10.1109/ISVLSI51109.2021.00023 – volume: 70 start-page: 4804 year: 2023 ident: 58947_CR18 publication-title: IEEE Trans. Circ. Syst. I Regul. Pap. doi: 10.1109/TCSI.2023.3301020 contributor: fullname: H Das – volume: 9 start-page: 40420 year: 2017 ident: 58947_CR4 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11191 contributor: fullname: S Kim – ident: 58947_CR33 – volume: 121 start-page: 094501 year: 2017 ident: 58947_CR41 publication-title: J. Appl. Phys. doi: 10.1063/1.4977063 contributor: fullname: P Bousoulas – ident: 58947_CR30 doi: 10.1109/MWSCAS57524.2023.10406062 – ident: 58947_CR12 doi: 10.1109/IEEECONF59524.2023.10477027 – volume: 8 start-page: 125 year: 2018 ident: 58947_CR46 publication-title: IEEE J. Emerg. Sel. Top. Circ. Syst. doi: 10.1109/JETCAS.2017.2777181 contributor: fullname: G Chakma – volume: 30 start-page: 256 year: 2020 ident: 58947_CR21 publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2018.2890383 contributor: fullname: Y Xu – volume: 30 start-page: 075002 year: 2015 ident: 58947_CR42 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/30/7/075002 contributor: fullname: W Chen – volume: 19 start-page: 129 year: 2019 ident: 58947_CR3 publication-title: J. Semicond. Technol. Sci. doi: 10.5573/JSTS.2019.19.1.129 contributor: fullname: K Lee – ident: 58947_CR27 doi: 10.1109/IIRW47491.2019.8989872 – ident: 58947_CR6 doi: 10.1145/3583781.3590210 – ident: 58947_CR39 – ident: 58947_CR29 doi: 10.1109/ISCAS45731.2020.9180808 |
SSID | ssj0000529419 |
Score | 2.4695873 |
Snippet | The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device. Memristive... Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device.... Abstract The synapse is a key element circuit in any memristor-based neuromorphic computing system. A memristor is a two-terminal analog memory device.... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8897 |
SubjectTerms | 639/166/987 639/925/927/1007 Accuracy Current-controlled Design Firing pattern High voltage Humanities and Social Sciences Low power multidisciplinary Nervous system Neural networks READ current resolution Read failure Science Science (multidisciplinary) Signal processing Spiking Neural Network Voltage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG_SBzISN4ia2E5iH2nVqkKiF6hUcbEcP-geml01u0j998zY2aVbQFy4JFKc5zwy33jszwDvGull7RG5KV1LTFBqdCkdVdn6xiPAblUvaaLw5_P27EJ-umwu7yz1RWPCMj1wFtxh6Lz3GtOoxBTeV31Q0jYiRuIOt9qnv2-l7yRTmdWba1nraZZMJdThiJGKZpNxWTZ4p67kW5EoEfbjbo6O9Sew-fuYyXuF0xSPTp_A4wlIso_5A57CgzA8g4d5acnb5_DtZLhKxX2GqJA2axtjs4GlLDjOvq9uaOIUuw7XydV_BDbeDnYxhpEhlmVfFjPqSGdE4IGPOs8jxscXcHF68vX4rJzWUSgd4rNl2SNK6KzuO8ttXVnUAtUibUtQTfaiii5laT26ehCdjM5qZ6Xj1tWxbTFTfQk7w3wIr4Fp3grBY9d4XkmnPbG_OyUqpzX3SsQC3q9lahaZLsOkMrdQJmvAoAZM0oDhBRyR2DdnEtV1OoAGYCYDMP8ygAL2SGkGEQPR3joaH-SWhgu8omsK2F_r0kzeORqBfy5az5yrAt5umtGvqFhihzBfpXMwqEsEXAW8yqrfvKdQraDO9ALUllFsfch2yzC7StzdiLYQM9V46Ye1_fx6r79Lavd_SGoPHnGyf2Kq7PZhZ3mzCgcIqZb9m-Q9PwHgpxti priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXivJMW5CRuEHUxHYS-4QAtaqQ6AUqrbhYju20e2iybHYr9d93xkm2WqBcEikPxfHM2N88_BngfSG9zD0iN6VziQ5KjialG5WWvvAIsEtVS1oo_P2sPD2X32bFbAy49WNZ5TQmxoHad45i5EfodhPPCQ6nnxa_U9o1irKr4xYaD-FRzrOSSrqqWbWJsVAWS-Z6XCuTCXXU43xFa8q4TAuliaRgaz6KtP146tC8_gU5_66c_CN9Gmelk6ewO8JJ9nmQ_x48CO0zeDxsMHnzHH4dt5cxxc8QG9Jh0jQ2b1n0hZv5xXpJy6fYVbiKBn8dWH_T2kUfeoaIlv1YzCmczojGAz91NtSN9y_g_OT459fTdNxNIXWI0lZpjVihsrquLLd5ZlEWlJG0JQE2WYuscdFXq9Hgg6hk46x2VjpuXd6UJfqrL2Gn7drwGpjmpRC8qQrPM-m0Jw54p0TmtOZeiSaBD1OfmsVAmmFislsoM0jAoARMlIDhCXyhbt88SYTX8UK3vDCj_ZhQee81etORML7O6qCkLUTTEIW81T6BAxKaQdxA5LeOqoTcynCBb1RFAoeTLM1oo72506gE3m1uo3VRysS2oVvHZ3Bqlwi7Eng1iH7TTqFKQSH1BNSWUmz9yPaddn4ZGbwRcyFyyvHVj5P-3LXr_p7a__9vHMATTppNTJTVIeysluvwBiHTqn4b7eIWZV4Scg priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BERIXVD6btiAjcYOIxHYc-9iuWlVI9AKVKi6WYzt0D82uml2k_vvOONmtAuXAJZFiW3E8nswbj-cZ4GMlgywDIjdtSokOSokqZVqdq1AFBNhKN5IShb-dq7ML-fWyuhxpcigXZhK_F_pLjwaGksC4zCttiFXgMTxBG6xp-9ZMzbbrKRSxkqUZ82IebjqxPYmiH28LVKWH4OXfuyT_CJUmC3S6C89H6MiOBlm_gEexewlPh8Mkb1_Bz5PuKoXzGeJAumxmFZt3LPm97fzX-oZSpdh1vE7K_Tuy_rZzyz72DNEr-76c09I5I8oOfNX5sEe8fw0Xpyc_Zmf5eHJC7hGRrfIGcUHtTFM77srC4bhT9NEpAmeyEUXrk1_WoHJHUcvWO-Od9Nz5slUKfdM3sNMturgHzHAlBG_rKvBCehOI791rUXhjeNCizeDTZkztciDIsCmwLbQdJGBRAjZJwPIMjmnYtzWJ3Do9QJnbUVdsrEMIBj3nRA7fFE3U0lWibYku3pmQwQEJzSJGIKJbTzuC_MpygS3qKoPDjSztqI-9FfivohPMuc7gw7YYNYnCI66Li3Wqg2ZcIsTK4O0g-m0_hVaCls8z0JNJMfmQaUk3v0ps3YivECWV2PTzZv7c9-vfI7X_f9UP4BmnmU4slPUh7Kxu1vEdwqVV8z7pyR1k1wuY priority: 102 providerName: Springer Nature |
Title | Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural Networks |
URI | https://link.springer.com/article/10.1038/s41598-024-58947-2 https://www.ncbi.nlm.nih.gov/pubmed/38632304 https://www.proquest.com/docview/3040146128 https://www.proquest.com/docview/3041234741 https://www.osti.gov/biblio/2337975 https://pubmed.ncbi.nlm.nih.gov/PMC11024114 https://doaj.org/article/e7ddd983798943b0be84a53ff0298a9d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajo2-jH3PbRc82NuWxpZkW3pcQ0oZNJRthbAXIUt2a1icECeD_ve9k-1s2cfLXmz8hWXdHfc73d3PAO8S4UTsELlJFQsMUGI0KVXKYeoShwA7lbmgRuHLaXpxLT7NktkepH0vjC_at3l1Wn-fn9bVra-tXM7tqK8TG11djtFloeOJxWgf9lFDf4nRW0ZvpkSsug6ZiMtRg16KOsmYGCZSETXBITziMuW0IrrjkDxvP-4WaF9_w5x_lk7-lj_1bun8CTzu8GT4sR33U9gr6mfwsP3D5N1z-Dapb32OP0RwSJte1cKqDn0wXFY3mxX1T4XzYu4t_kcRNne1WTZFEyKkDb8sK1pPD4nHA181bQvHmxdwfT75Or4Ydr9TGFqEaethjmAhMyrPDDNxZFAYlJI0KSE2kfOotD5Yy9HiC56J0hpljbDM2LhMUwxYX8JBvaiL1xAqlnLOyixxLBJWOSKBt5JHVinmJC8DeN_PqV62rBnaZ7u51K0wNApDe2FoFsAZTfv2TmK89icWqxvdyV0XmXNOYTjtGePzKC-kMAkvS-KQN8oFcExC0wgciP3WUpmQXWvG8YksCeCkl6XujLTRKHyizkEPHcDb7WU0L8qZmLpYbPw96NsF4q4AXrWi346z16AA5I5S7HzI7hXUaE_h3WtwAB96_fk5rn_P1NH_v-kYDhkZANFUZidwsF5tijeIp9b5AI1olg3gwdlkevUZj8bpeODXJgbesO4BifogDw |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4k3aAkbiBlGT2EnsEwLUaoF2L7TSiovl2E67hybLZrdS_z0zTrLV8rokUh6K45mxv5mxvwF4mwsnUofITapUoIOSokmpWsaFyx0C7EJWgjYKn0yLyZn4OstnQ8CtG5ZVjmNiGKhdaylGfoBuN_Gc4HD6YfEzpqpRlF0dSmjchjvEw0UVDMpZuYmxUBZLpGrYK5NwedDhfEV7yjIR51IRScHWfBRo-_HUonn9DXL-uXLyt_RpmJWOHsKDAU6yj738H8Et3zyGu32Byesn8OOwuQgpfobYkA6jprF5w4IvXM_P10vaPsUu_WUw-CvPuuvGLDrfMUS07PtiTuF0RjQe-Klpv268ewpnR4ennyfxUE0htojSVnGFWKE0qipNZtLEoCwoI2kKAmyi4kltg69WocF7XoraGmWNsJmxaV0U6K8-g52mbfwLYCorsLfrMndZIqxyxAFvJU-sUpmTvI7g3dinetGTZuiQ7OZS9xLQKAEdJKCzCD5Rt2-eJMLrcKFdnuvBfrQvnXMKvelAGF8llZfC5LyuiULeKBfBHglNI24g8ltLq4TsSmcc3yjzCPZHWerBRjt9o1ERvNncRuuilIlpfLsOz-DULhB2RfC8F_2mnVwWnELqEcgtpdj6ke07zfwiMHgj5kLklOKr70f9uWnXv3tq9_-_8RruTU5PjvXxl-m3PbifkZYTK2W5Dzur5dq_RPi0ql4FG_kFWv8VWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuFc8SWiBI3CDaxHYS-4Qo7Kq8VhVQqeJiOXbS7qHJstmt1H_PjJNstbwuWSkPbeKZz_7GM_4M8DIVTiQOmZtUicAAJUFIqUpGmUsdEuxMFoIWCn-ZZUcn4uNpetrXP7V9WeXQJ_qO2jWW5sjHGHaTzgl2p-OqL4s4fj99s_gZ0Q5SlGntt9O4CTu5yHg8gp3Dyez462bGhXJaIlH9ypmYy3GLoxetMGMiSqUiyYKt0cmL-ONPg2D7GwH9s47yt2SqH6Omd2G3J5fh284b7sGNsr4Pt7rtJq8ewI9Jfe4T_iEyRToMfhfO69BHxtX8bL2kxVThRXnh4X9Zhu1VbRZt2YbIb8NvizlNrock6oF_NeuqyNuHcDKdfH93FPV7K0QWOdsqKpA55EYVuWEmiQ1ahvKTJiP6JgoeV9ZHbgXCv-S5qKxR1gjLjE2qLMPo9RGM6qYuH0OoWMY5q_LUsVhY5UgR3koeW6WYk7wK4NXQpnrRSWhon_rmUncW0GgB7S2gWQCH1OybO0n-2p9olme6R5Muc-ecwtjay8cXcVFKYVJeVSQob5QLYJ-MppFFkBSupZohu9KM4xN5GsDBYEvdI7bV1_4VwIvNZcQaJVBMXTZrfw8O9AJJWAB7nek378llxmmCPQC55RRbH7J9pZ6fez1vZGDIoxJ89PXgP9fv9e-WevL_z3gOtxEg-vOH2ad9uMPIyUmiMj-A0Wq5Lp8il1oVz3qQ_AJInRr2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+read+resolution+in+reconfigurable+memristive+synapses+for+Spiking+Neural+Networks&rft.jtitle=Scientific+reports&rft.au=Hritom+Das&rft.au=Catherine+Schuman&rft.au=Nishith+N.+Chakraborty&rft.au=Garrett+S.+Rose&rft.date=2024-04-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-58947-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e7ddd983798943b0be84a53ff0298a9d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |