How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems
Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at...
Saved in:
Published in | Plant and soil Vol. 424; no. 1/2; pp. 11 - 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.03.2018
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. |
---|---|
AbstractList | BackgroundMycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence.ScopeWe surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis.ConclusionsThe absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N.sub.2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. BACKGROUND: Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. SCOPE: We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N₂-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. CONCLUSIONS: The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N 2 -fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils. |
Audience | Academic |
Author | Lambers, Hans Albornoz, Felipe Kotula, Lukasz Ranathunge, Kosala Laliberté, Etienne Zemunik, Graham Teste, François P. |
Author_xml | – sequence: 1 givenname: Hans surname: Lambers fullname: Lambers, Hans – sequence: 2 givenname: Felipe surname: Albornoz fullname: Albornoz, Felipe – sequence: 3 givenname: Lukasz surname: Kotula fullname: Kotula, Lukasz – sequence: 4 givenname: Etienne surname: Laliberté fullname: Laliberté, Etienne – sequence: 5 givenname: Kosala surname: Ranathunge fullname: Ranathunge, Kosala – sequence: 6 givenname: François P. surname: Teste fullname: Teste, François P. – sequence: 7 givenname: Graham surname: Zemunik fullname: Zemunik, Graham |
BookMark | eNp9kc9u1DAQxiNUJLaFB-CAZIkLlxT_SezNsaqAVqrEBSRukeOd7HqV2MHjUMLb8KbMKqigHirLsmb0_WbG850XZyEGKIrXgl8Kzs17FELwquTClKqSppTPio2ojSprrvRZseFcyZKb5tuL4hzxyE-x0Jvi9028Zx0M8X6f4hx2zIcMybrsY0DmYsjJd3MGliPLB6AM_PSYIThgsWfj4mJKB__LDswSTVOV_-dwAucBqSpD-AEJhoVNh4h004ylH6dIWY8H2LHDMkHaeYoRGLiIC_UZ8WXxvLcDwqu_70Xx9eOHL9c35d3nT7fXV3elq0WTS-s08K5quO10rWurqkYpU22tMMZ2O9doJZ2BroemciCUsKLveqtFrbpeS6suindr3SnF7zNgbkePDobBBogztpJvK67lVhqSvn0kPcY5BZqOVJK6K7XlpLpcVXs7QOtDHzMtls4ORk-bhd5T_qqmSbdG1ifArIBLETFB3zqf7ckJAv3QCt6evG5Xr1vyuj153UoixSNySn60aXmSkSuDpA17SP8-8RT0ZoWOmGN66CK1riUXjfoD6ebMmg |
CitedBy_id | crossref_primary_10_3390_agronomy14030456 crossref_primary_10_1111_ejss_13571 crossref_primary_10_1007_s11104_018_3828_x crossref_primary_10_1080_00103624_2024_2404649 crossref_primary_10_1111_nph_15200 crossref_primary_10_1071_FP21031 crossref_primary_10_1111_nph_19489 crossref_primary_10_1016_j_ecocom_2019_100787 crossref_primary_10_1038_s41559_020_01323_w crossref_primary_10_1093_jpe_rtac058 crossref_primary_10_1111_nph_16499 crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_1007_s11104_018_3616_7 crossref_primary_10_3389_fpls_2024_1371123 crossref_primary_10_1111_1365_2745_13468 crossref_primary_10_1111_aec_12759 crossref_primary_10_1515_biol_2021_0137 crossref_primary_10_1111_1365_2745_13188 crossref_primary_10_1016_j_foreco_2018_10_055 crossref_primary_10_1016_j_chemosphere_2021_130135 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_15252_embr_202255697 crossref_primary_10_1002_ecs2_3821 crossref_primary_10_1007_s11104_018_3876_2 crossref_primary_10_5632_jilaonline_16_98 crossref_primary_10_1007_s00344_022_10836_6 crossref_primary_10_1111_nph_17572 crossref_primary_10_1007_s00374_023_01709_5 crossref_primary_10_1007_s11104_020_04427_1 crossref_primary_10_1007_s00248_024_02374_3 crossref_primary_10_1002_ecs2_2716 crossref_primary_10_3390_plants11182340 crossref_primary_10_1007_s11104_021_04886_0 crossref_primary_10_1016_j_ppees_2019_04_001 crossref_primary_10_1016_j_scitotenv_2021_146136 crossref_primary_10_1088_1748_9326_aaeae7 crossref_primary_10_1016_j_tplants_2021_07_003 crossref_primary_10_1007_s11104_022_05517_y crossref_primary_10_1007_s11104_023_05918_7 crossref_primary_10_3390_f14091919 crossref_primary_10_1093_biolinnean_blaa141 crossref_primary_10_1007_s11104_022_05347_y crossref_primary_10_1111_pce_13991 crossref_primary_10_1071_FP19122 crossref_primary_10_1111_nph_15833 crossref_primary_10_1111_nph_17854 crossref_primary_10_3389_fpls_2022_1080014 crossref_primary_10_1007_s11104_021_05140_3 crossref_primary_10_1016_j_pld_2021_06_005 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_1038_s42003_024_05999_9 crossref_primary_10_1111_avsc_12399 crossref_primary_10_1111_nph_19501 crossref_primary_10_1093_lambio_ovaf009 crossref_primary_10_1007_s42832_020_0070_2 crossref_primary_10_1007_s11104_020_04544_x crossref_primary_10_1016_j_ecoenv_2018_12_100 crossref_primary_10_1016_j_foreco_2021_119459 crossref_primary_10_1016_j_foreco_2020_118800 crossref_primary_10_1016_j_micres_2021_126842 crossref_primary_10_3390_f14010114 crossref_primary_10_1007_s11104_019_03982_6 crossref_primary_10_1111_ele_14309 crossref_primary_10_1071_BT23057 crossref_primary_10_1007_s00572_023_01111_x crossref_primary_10_1007_s11104_024_06710_x crossref_primary_10_1007_s11104_022_05479_1 crossref_primary_10_1007_s00442_020_04733_6 crossref_primary_10_1016_j_stress_2022_100104 crossref_primary_10_1016_j_pedobi_2023_150908 crossref_primary_10_1007_s11104_022_05566_3 crossref_primary_10_3390_agronomy13061570 crossref_primary_10_1007_s11104_019_04056_3 crossref_primary_10_12688_f1000research_13008_1 crossref_primary_10_1093_jpe_rtaa030 crossref_primary_10_1093_aob_mcz162 crossref_primary_10_1007_s11104_020_04641_x crossref_primary_10_1111_1365_2435_13324 crossref_primary_10_1038_s41597_019_0141_3 crossref_primary_10_1016_j_tplants_2024_04_009 crossref_primary_10_1111_ele_13713 crossref_primary_10_1111_nph_19567 crossref_primary_10_1002_ece3_4397 crossref_primary_10_1016_j_apsoil_2023_105206 crossref_primary_10_1093_biolinnean_blaa179 crossref_primary_10_1002_ece3_7544 crossref_primary_10_1093_biolinnean_blaa213 crossref_primary_10_1111_aec_13489 crossref_primary_10_1007_s11104_018_3618_5 crossref_primary_10_1111_nph_70010 crossref_primary_10_1007_s11104_022_05559_2 crossref_primary_10_1007_s11104_023_06080_w crossref_primary_10_1080_01448765_2021_1903556 crossref_primary_10_1111_ppl_12704 crossref_primary_10_1111_rec_13202 crossref_primary_10_1007_s00572_023_01134_4 crossref_primary_10_1016_j_soilbio_2024_109385 crossref_primary_10_1093_jxb_eraa515 crossref_primary_10_1007_s11829_023_10005_w crossref_primary_10_1016_j_envres_2021_111924 crossref_primary_10_1016_j_tplants_2020_04_013 crossref_primary_10_3389_fmicb_2022_1036362 crossref_primary_10_1007_s11104_023_05935_6 crossref_primary_10_1007_s11104_020_04690_2 crossref_primary_10_1146_annurev_arplant_102720_125738 crossref_primary_10_1111_1365_2745_13413 crossref_primary_10_1007_s11104_024_06649_z crossref_primary_10_1002_ecy_3259 crossref_primary_10_1038_s42003_023_04722_4 crossref_primary_10_1111_nph_15910 crossref_primary_10_1016_j_tplants_2021_08_003 crossref_primary_10_1093_aob_mcad199 crossref_primary_10_3390_plants12051110 crossref_primary_10_1007_s00253_023_12992_5 crossref_primary_10_1007_s11104_024_06740_5 crossref_primary_10_1016_j_fmre_2022_09_028 crossref_primary_10_1126_sciadv_add4468 crossref_primary_10_1007_s11104_019_03989_z crossref_primary_10_1007_s11103_021_01143_x crossref_primary_10_3389_fpls_2021_650616 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1111_jvs_13010 crossref_primary_10_1016_j_fecs_2024_100234 crossref_primary_10_1093_biolinnean_blaa160 crossref_primary_10_1111_1365_2745_13048 crossref_primary_10_3390_d14060493 crossref_primary_10_1007_s00572_021_01047_0 crossref_primary_10_1007_s11104_021_05079_5 crossref_primary_10_1007_s11104_018_3810_7 crossref_primary_10_1111_nph_16833 crossref_primary_10_1016_j_scitotenv_2023_166395 crossref_primary_10_1093_conphys_coae018 crossref_primary_10_1111_1365_2435_13479 crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1111_1365_2435_14726 crossref_primary_10_1007_s00442_022_05262_0 crossref_primary_10_1007_s10457_025_01148_1 crossref_primary_10_1093_treephys_tpaa081 crossref_primary_10_1111_jvs_13301 crossref_primary_10_1007_s00442_022_05224_6 crossref_primary_10_1111_1365_2745_13158 crossref_primary_10_17221_254_2023_PSE crossref_primary_10_1007_s11104_023_06382_z crossref_primary_10_1093_biolinnean_blaa170 crossref_primary_10_1016_j_scitotenv_2020_136495 crossref_primary_10_1007_s11104_019_03972_8 crossref_primary_10_1111_jac_12514 |
Cites_doi | 10.1016/j.plantsci.2012.02.010 10.1146/annurev-ecolsys-112414-054306 10.3732/ajb.1200277 10.1890/14-0871.1 10.1111/mec.13778 10.1046/j.1469-8137.1997.00729.x 10.1139/b97-864 10.1111/1365-2745.12758 10.2307/2403495 10.1139/b84-391 10.1146/annurev-genet-102209-163508 10.1111/j.1365-2745.2008.01373.x 10.5091/plecevo.2016.1176 10.1038/nplants.2015.109 10.1093/aob/mct035 10.1007/BF02374894 10.1016/j.pbi.2015.04.002 10.2307/2260320 10.1007/s11104-013-1750-9 10.1007/s005720050007 10.1007/s11104-004-2725-7 10.1071/WF07155 10.1006/pmpp.1998.0179 10.1046/j.1365-3040.1997.d01-20.x 10.1023/A:1015798428743 10.1094/PHYTO-98-11-1179 10.1007/s11104-004-0264-x 10.1007/978-94-017-7395-9_5 10.1139/b88-080 10.1890/05-1606 10.1038/265438a0 10.1007/s11104-015-2547-9 10.1016/j.tree.2013.02.008 10.1071/PP9760349 10.1016/j.plantsci.2016.12.010 10.1016/j.tree.2007.10.008 10.1016/j.foreco.2017.05.037 10.1016/j.foreco.2005.08.006 10.1071/BT96049 10.1093/acprof:oso/9780199679584.001.0001 10.1111/1365-2435.12270 10.1071/BT10059 10.1007/s11104-008-9877-9 10.1139/b86-248 10.1007/s11104-015-2637-8 10.1016/0169-5347(96)10044-6 10.1111/pce.12340 10.1016/j.tree.2017.02.011 10.1007/s00442-004-1501-y 10.1073/pnas.0704591104 10.1007/s11104-015-2764-2 10.1101/113308 10.1111/jbi.12429 10.1111/mec.13363 10.1007/s11104-011-0731-0 10.1086/282687 10.1126/science.1143082 10.1093/aob/mcl114 10.1111/nph.12868 10.1111/j.1469-8137.1988.tb04188.x 10.1007/s00442-004-1788-8 10.1094/PHYTO-99-12-1412 10.1002/ece3.2000 10.1023/A:1022367312851 10.1007/s11104-016-2934-x 10.1023/A:1015831610452 10.1126/science.aai8291 10.1038/nplants.2015.1050 10.1104/pp.120.3.705 10.1007/BF02860714 10.1146/annurev.py.32.090194.002213 10.1098/rstb.2013.0119 10.1128/EC.00091-08 10.1002/9781118958841.ch14 10.1111/j.2007.0030-1299.16130.x 10.1111/j.1365-2745.2012.01962.x 10.1111/j.1469-8137.1991.tb00039.x 10.1111/nph.12778 10.1016/j.pedobi.2009.10.002 10.1093/jxb/38.9.1446 10.1093/jpe/rtp015 10.1093/jexbot/53.368.525 10.1104/pp.103.035659 10.1007/BF02374754 10.1007/s00442-017-3961-x 10.1146/annurev-ecolsys-121415-032100 10.1016/S0169-5347(00)89157-0 10.1111/nph.12478 10.1111/1365-2745.12546 10.1038/sj.emboj.7600034 10.1016/j.soilbio.2015.09.021 10.1111/pce.12367 10.1007/s005720050147 10.1023/A:1026285813248 10.1007/s11104-009-0068-0 10.1111/1365-2745.12638 10.1111/j.1469-185X.2007.00017.x 10.1007/s11104-010-0444-9 10.1111/nph.13175 10.1111/j.1095-8339.1990.tb00176.x 10.1023/A:1010367501363 10.1111/nph.14057 10.2307/2261180 10.1094/Phyto-78-1070 10.1007/s00344-003-0002-2 10.1007/BF00137608 10.2307/2418500 10.1111/j.1469-8137.1984.tb03609.x 10.1071/CP13268 10.1111/1365-2745.12752 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 10.1016/S0169-5347(03)00127-7 10.1104/pp.103.3.695 10.3732/ajb.1200474 10.1007/BF02465218 10.1111/j.1469-8137.1990.tb00451.x 10.1007/BF02912621 10.1016/j.soilbio.2013.01.013 10.1104/pp.108.134098 10.1111/1365-2745.12196 10.1111/j.1469-8137.1979.tb07567.x 10.1111/j.1365-2745.2009.01557.x 10.1111/j.1744-7909.2010.00892.x 10.1007/s00374-011-0653-2 10.1016/j.tplants.2013.06.004 10.1007/s00442-013-2747-z 10.1007/s10021-014-9830-0 10.1016/j.tplants.2014.10.007 10.1071/BT03131 10.1007/s11104-010-0311-8 10.1002/9781118958841.ch11 10.1016/j.soilbio.2008.02.017 10.1093/jexbot/52.365.2245 10.1007/s003440000027 10.1890/09-1858.1 10.1111/nph.13203 10.1111/ele.12823 10.1086/664183 10.1038/35002501 10.1002/jpln.19871500102 10.1104/pp.106.091090 10.1111/j.1365-2745.2008.01384.x 10.1126/science.1154836 10.1111/j.1469-8137.2004.01177.x 10.1016/j.fbr.2012.01.001 10.1038/415068a 10.1890/11-1927.1 10.1086/689199 10.1007/s11104-016-2998-7 10.1111/j.1365-3040.2005.01473.x 10.1126/science.aai8212 10.1111/j.1654-1103.2011.01323.x 10.1038/228083a0 10.1007/s11104-006-9099-y 10.1007/s11104-004-4336-8 10.1016/0016-7061(76)90066-5 10.1890/08-1884.1 10.1146/annurev.py.10.090172.002241 10.1002/j.1537-2197.1981.tb12374.x 10.1007/978-94-017-7395-9_4 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 Springer International Publishing AG 2017 COPYRIGHT 2018 Springer Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: Springer International Publishing AG 2017 – notice: COPYRIGHT 2018 Springer – notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-017-3427-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 33 |
ExternalDocumentID | A534987250 10_1007_s11104_017_3427_2 26652019 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM CAG COF EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c519t-ac6e0b490ab6565a34933748a177abdc9632c7ebfe94ce131a1fbfa6153bf62a3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Thu Jul 10 18:08:21 EDT 2025 Fri Jul 25 19:09:28 EDT 2025 Tue Jun 10 20:35:15 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Tue Jul 01 01:47:01 EDT 2025 Fri Feb 21 02:33:32 EST 2025 Thu Jun 19 23:15:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Competition Facilitation Mycorrhizas Carboxylates, cluster roots Non-mycorrhizal plants Phosphorus Proteaceae Hyperdiverse ecosystems Pathogen defence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-ac6e0b490ab6565a34933748a177abdc9632c7ebfe94ce131a1fbfa6153bf62a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 content type line 23 |
ORCID | 0000-0002-4118-2272 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007%2Fs11104-017-3427-2.pdf |
PQID | 2025653380 |
PQPubID | 54098 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2084062827 proquest_journals_2025653380 gale_infotracacademiconefile_A534987250 crossref_citationtrail_10_1007_s11104_017_3427_2 crossref_primary_10_1007_s11104_017_3427_2 springer_journals_10_1007_s11104_017_3427_2 jstor_primary_26652019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2018 |
Publisher | Springer Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer International Publishing – name: Springer Nature B.V |
References | HerreEAMejíaLCKylloDARojasEMaynardZButlerAVan BaelSAEcological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizaeEcology2007885505581750358110.1890/05-1606 ThomasRFangXRanathungeKAndersonTRPetersonCABernardsMASoybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojaePlant Physiol20071442993111:CAS:528:DC%2BD2sXls1Kjtbw%3D17494920191377610.1104/pp.106.091090 McIntireEJBFajardoAFacilitation as a ubiquitous driver of biodiversityNew Phytol20142014034162410226610.1111/nph.12478 PaulEASoil Microbiology, Ecology and Biochemistry2014AmsterdamElsevier Academic Press WeisskopfLAbou-MansourEFrominNTomasiNSanteliaDEdelkottINeumannGAragnoMTabacchiRMartinoiaEWhite lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisitionPlant Cell Environ2006299199271:CAS:528:DC%2BD28Xlt1GrsrY%3D1708747510.1111/j.1365-3040.2005.01473.x LulaiECCorsiniDLDifferential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosumL.) wound-healingPhysiol Mol Plant Pathol1998532092221:CAS:528:DyaK1MXhtVKrsbg%3D10.1006/pmpp.1998.0179 CairneyJEctomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soilsPlant Soil201134451711:CAS:528:DC%2BC3MXnsVCjt7c%3D10.1007/s11104-011-0731-0 CescoSMimmoTTononGTomasiNPintonRTerzanoRNeumannGWeisskopfLRenellaGLandiLNannipieriPPlant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A reviewBiol Fertil Soils2012481231491:CAS:528:DC%2BC38XhtFGis7Y%3D10.1007/s00374-011-0653-2 GibsonNKeigheryGJLyonsMNWebbATerrestrial flora and vegetation of the Western Australian wheatbeltRec WA Mus200467139189 BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9 SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057 TurnerBLLalibertéESoil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern AustraliaEcosystems2015182873091:CAS:528:DC%2BC2cXitFKmur7O10.1007/s10021-014-9830-0 PeñuelasJAsensioDThollDWenkeKRosenkranzMPiechullaBSchnitzlerJPBiogenic volatile emissions from the soilPlant Cell Environ201437186618912468984710.1111/pce.123401:CAS:528:DC%2BC2cXhtFOlsLjF LiangMLiuXEtienneRSHuangFWangYYuSArbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogensEcology2015965625742624087610.1890/14-0871.1 WehnerJAntunesPMPowellJRMazukatowJRilligMCPlant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity?Pedobiologia20105319720110.1016/j.pedobi.2009.10.002 LambersHMartinoiaERentonMPlant adaptations to severely phosphorus-impoverished soilsCurr Opin Plant Biol20152523311:CAS:528:DC%2BC2MXms1yitbk%3D2591278310.1016/j.pbi.2015.04.002 DuchesneLCPetersonRLEllisBEPine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutusNew Phytol19881084714761:CAS:528:DyaL1cXktlGitbs%3D10.1111/j.1469-8137.1988.tb04188.x AlbornozFELambersHTurnerBLTesteFPLalibertéEShifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequenceEcol Evol201662368237727066229478224510.1002/ece3.2000 KolattukudyPEEspelieKEChemistry, biochemistry and functions of suberin associated waxesNatural Products of Woody Plants I. Ed. J W Rowe1989New YorkSpringer-Verlag235287 LiX-LGeorgeEMarschnerHPhosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammoniumNew Phytol19911193974041:CAS:528:DyaK38Xot1Ogtw%3D%3D10.1111/j.1469-8137.1991.tb00039.x MulerALOliveiraRSLambersHVeneklaasEJDoes cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?Oecologia201417423312393406410.1007/s00442-013-2747-z PateJSBeardJSKwongan. Plant Life of the Sandplain1984NedlandsUniversity of Western Australia Press NewshamKKFitterAHWatkinsonARMulti-functionality and biodiversity in arbuscular mycorrhizasTrends Ecol Evol1995104074111:STN:280:DC%2BC3M7itFeisg%3D%3D2123708510.1016/S0169-5347(00)89157-0 TurnerBLResource partitioning for soil phosphorus: a hypothesisJ Ecol2008966987021:CAS:528:DC%2BD1cXptFygs70%3D10.1111/j.1365-2745.2008.01384.x WalkerTWSyersJKThe fate of phosphorus during pedogenesisGeoderma197615191:CAS:528:DyaE28Xht1Cltro%3D10.1016/0016-7061(76)90066-5 MarschnerHMineral Nutrition of Higher Plants1995LondonAcademic Press VeneklaasEJStevensJCawthrayGRTurnerSGriggAMLambersHChickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil20032481871971:CAS:528:DC%2BD3sXhtFCqs7k%3D10.1023/A:1022367312851 AllsoppNColvilleJFVerboomGAFynbos: Ecology, Evolution, and Conservation of a Megadiverse Region2014OxfordOxford University Press10.1093/acprof:oso/9780199679584.001.0001 Png G K, Turner B L, Albornoz F E, Hayes P E, Lambers H and Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol, n/a-n/a RichardsonSPeltzerDAllenRMcGloneMParfittRRapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequenceOecologia20041392672761475853510.1007/s00442-004-1501-y HartMMReaderRJKlironomosJNPlant coexistence mediated by arbuscular mycorrhizal fungiTrends Ecol Evol20031841842310.1016/S0169-5347(03)00127-7 Turner B L, Laliberté E and Hayes P E (2017) A climosequence of chronosequences in southwestern Australia. bioRxiv HopmansPBauhusJKhannaPWestonCCarbon and nitrogen in forest soils: Potential indicators for sustainable management of eucalypt forests in south-eastern AustraliaFor Ecol Manag2005220758710.1016/j.foreco.2005.08.006 OriansGHMilewskiAVEcology of Australia: The effects of nutrient-poor soils and intense firesBiol Rev2007823934231762496110.1111/j.1469-185X.2007.00017.x Jones MD, Durall DM, Tinker PB (1992) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol 115:259–267 CowlingRMPottsAJBradshawPLColvilleJArianoutsouMFerrierSForestFFyllasNMHopperSDOjedaFProcheşŞSmithRJRundelPWVassilakisEZuttaBRVariation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stabilityJ Biogeogr20144255256410.1111/jbi.12429 Jakobsen I and Hammer E (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 91–131. Springer Netherlands GillettJBPest pressure, an underestimated factor in evolutionSyst Assoc Publ196243746 LambersHHayesPELalibertéEOliveiraRSTurnerBLLeaf manganese accumulation and phosphorus-acquisition efficiencyTrends Plant Sci20152083901:CAS:528:DC%2BC2cXhvVGksr%2FJ2546697710.1016/j.tplants.2014.10.007 HallidayJPateJSSymbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significanceFunct Plant Biol197633493581:CAS:528:DyaE28XktFOhtro%3D HingstonFJMalajczukNGroveTSAcetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate applicationJ Appl Ecol19821963164510.2307/2403495 Laliberté E, Kardol P, Didham R K, Teste F P, Turner B L and Wardle D A (2017) Soil fertility shapes belowground food webs across a regional climate gradient. Ecol Lett, n/a-n/a LambersHShaneMWLalibertéESwartsNDTesteFPZemunikGLambersHPlant mineral nutritionPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing101127 PerumallaCJPetersonCAEnstoneDEA survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermisBot J Linn Soc19901039311210.1111/j.1095-8339.1990.tb00176.x HuitemaKvan den DikkenbergJBrouwersJFHolthuisJCIdentification of a family of animal sphingomyelin synthasesEMBO J20042333441:CAS:528:DC%2BD2cXhtVequr4%3D1468526310.1038/sj.emboj.7600034 LalibertéELambersHBurgessTIWrightSJPhosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublandsNew Phytol20152065075212549468210.1111/nph.132031:CAS:528:DC%2BC2MXkvFCksLY%3D StachowiczJJMutualism, facilitation, and the structure of ecological communitiesBioscience20015123524610.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 BurrowsNWardell-JohnsonGAbbottIBurrowsNFire and plant interactions in forested ecosystems of south-west Western AustraliaFire in Ecosystems of the South-west Western Australia: Impact and Management2003LeidenBackhuys Publishers225268 ZemunikGTurnerBLLambersHLalibertéEIncreasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspotJ Ecol201610479280510.1111/1365-2745.12546 Huang G, Hayes P E, Ryan M H, Pang J and Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration. Oecologia in press VosCSchoutedenNvan TuinenDChatagnierOElsenADe WaeleDPanisBGianinazzi-PearsonVMycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomatoSoil Biol Biochem20136045541:CAS:528:DC%2BC3sXktlKgsL0%3D10.1016/j.soilbio.2013.01.013 TesteFPSimardSWDurallDMGuyRDJonesMDSchoonmakerALAccess to mycorrhizal networks and roots of trees: importance for seedling survival 3427_CR58 E Laliberté (3427_CR73) 2015; 206 AP Hansen (3427_CR46) 1987; 38 BL Turner (3427_CR158) 2013; 367 E Steudle (3427_CR146) 1998; 49 BK Pekin (3427_CR119) 2011; 22 SD Hopper (3427_CR54) 2009; 322 3427_CR179 M Delgado (3427_CR32) 2015; 395 ND Bonawitz (3427_CR11) 2010; 44 K Ranathunge (3427_CR126) 2008; 98 H Marschner (3427_CR97) 1995 SE Smith (3427_CR144) 2008 AV Lygin (3427_CR94) 2009; 99 H Sainz Rozas (3427_CR131) 2012; 38 FP Teste (3427_CR151) 2016; 92 L Layla Aerne-Hains (3427_CR86) 2017; 178 L Weisskopf (3427_CR173) 2006; 29 DD Cameron (3427_CR20) 2013; 18 KG Peay (3427_CR118) 2016; 47 3427_CR169 3427_CR66 EC Lulai (3427_CR93) 1998; 53 J Terborgh (3427_CR149) 2012; 179 G Zemunik (3427_CR182) 2016; 104 H Maherali (3427_CR96) 2007; 316 BL Turner (3427_CR159) 2015; 18 3427_CR164 FP Teste (3427_CR153) 2014; 28 JCMS Moura (3427_CR105) 2010; 52 3427_CR63 BL Turner (3427_CR157) 2008; 96 3427_CR62 3427_CR160 Q Yao (3427_CR180) 2001; 230 RM Cowling (3427_CR27) 2014; 42 H Lambers (3427_CR77) 2015 J Wehner (3427_CR171) 2010; 53 N Strobel (3427_CR147) 1991; 81 JF Ma (3427_CR95) 2003; 256 JJ Stachowicz (3427_CR145) 2001; 51 S Cesco (3427_CR22) 2012; 48 H Lambers (3427_CR75) 2010; 334 GH Orians (3427_CR113) 2007; 82 B Lamont (3427_CR84) 1982; 48 AJ Valentine (3427_CR161) 2017; 256 3427_CR78 RS Wittkuhn (3427_CR178) 2017; 399 K Enkerli (3427_CR38) 1997; 75 DH Marx (3427_CR99) 1972; 10 LH Clark (3427_CR23) 1981; 68 3427_CR72 MCR Campos de (3427_CR31) 2013; 111 J Halliday (3427_CR45) 1976; 3 RM Cowling (3427_CR26) 1996; 5 JD Weidenhamer (3427_CR172) 2016; 407 JA Raven (3427_CR127) 2012; 188-189 JGH Wessels (3427_CR175) 1994; 32 DH Janzen (3427_CR64) 1970; 104 FO Silveira (3427_CR140) 2016; 403 MB Branzanti (3427_CR14) 1999; 9 P Reddell (3427_CR128) 1997; 45 M Watt (3427_CR170) 1999; 120 TH DeLuca (3427_CR34) 2008; 320 E Oburger (3427_CR111) 2014; 203 SJ Pearse (3427_CR117) 2006; 288 BA Sikes (3427_CR138) 2009; 97 MW Shane (3427_CR135) 2004; 135 3427_CR143 J Cairney (3427_CR18) 2011; 344 FP Teste (3427_CR154) 2015; 38 EJB McIntire (3427_CR101) 2014; 201 P Hopmans (3427_CR53) 2005; 220 3427_CR141 3427_CR1 N Burrows (3427_CR17) 2003 EA Paul (3427_CR116) 2014 DA Wardle (3427_CR168) 2008; 117 PG Kennedy (3427_CR67) 2012; 99 DJ Coates (3427_CR24) 2014 FP Teste (3427_CR150) 2017; 355 BL Shearer (3427_CR137) 2004; 52 H Bramley (3427_CR12) 2009; 150 B Branzanti (3427_CR13) 1994; 4 R Thomas (3427_CR155) 2007; 144 WM McArthur (3427_CR100) 1991 E Laliberté (3427_CR74) 2012; 100 AR Biggs (3427_CR10) 1988; 78 BA Sikes (3427_CR139) 2010; 91 H Lambers (3427_CR82) 2006; 98 C Azcón-Aguilar (3427_CR6) 1997; 6 MM Minton (3427_CR104) 2016; 149 TW Walker (3427_CR166) 1976; 15 J Peñuelas (3427_CR120) 2014; 37 ETF Witkowski (3427_CR177) 1987; 75 FE Albornoz (3427_CR3) 2016; 6 3427_CR132 LC Duchesne (3427_CR37) 1988; 108 K Huitema (3427_CR59) 2004; 23 H Lambers (3427_CR83) 2014 FJ Hingston (3427_CR52) 1982; 19 PE Kolattukudy (3427_CR69) 1989 KK Newsham (3427_CR109) 1995; 85 N Tomasi (3427_CR156) 2008; 40 EA Herre (3427_CR51) 2007; 88 N Allsopp (3427_CR5) 2014 RB McKane (3427_CR102) 2002; 415 NC Johnson (3427_CR65) 1997; 135 E Hose (3427_CR57) 2001; 52 H Lambers (3427_CR76) 2013; 100 WK Gardner (3427_CR42) 1983; 70 N Gibson (3427_CR43) 2004; 67 H Lambers (3427_CR81) 2008; 23 JH Connell (3427_CR25) 1971 AL Muler (3427_CR106) 2014; 174 STT Cu (3427_CR30) 2005; 272 C Vos (3427_CR165) 2013; 60 H Lambers (3427_CR79) 2015; 20 G Certini (3427_CR21) 2005; 143 3427_CR123 EJ Veneklaas (3427_CR162) 2003; 248 L Li (3427_CR89) 2014; 203 KK Newsham (3427_CR110) 1995; 10 L Li (3427_CR88) 2007; 104 CJ Perumalla (3427_CR122) 1990; 103 X He (3427_CR50) 2009; 2 E Owusu-Bennoah (3427_CR114) 1979; 82 WK Gardner (3427_CR41) 1983; 70 DE Enstone (3427_CR39) 2003; 21 PE Kolattukudy (3427_CR68) 1984; 62 S Schmidt (3427_CR133) 1997; 20 MA Huston (3427_CR61) 2012; 82 3427_CR33 W Hartung (3427_CR48) 2002; 240 H Li (3427_CR87) 2013; 64 CJ Perumalla (3427_CR121) 1986; 64 M Liang (3427_CR92) 2015; 96 FE Albornoz (3427_CR2) 2017; 105 S Richardson (3427_CR129) 2004; 139 SJM McMullan-Fisher (3427_CR103) 2011; 59 (3427_CR115) 1984 LC Duchesne (3427_CR36) 1988; 66 S Nagarajah (3427_CR108) 1970; 228 MW Shane (3427_CR136) 2005; 274 WJ Horst (3427_CR56) 1987; 150 MA Huston (3427_CR60) 1994 H Lambers (3427_CR80) 2015; 25 SC Power (3427_CR124) 2010; 334 MM Hart (3427_CR47) 2003; 18 FP Teste (3427_CR152) 2009; 90 SD Hopper (3427_CR55) 2016; 403 E Laliberté (3427_CR71) 2013; 28 L Schreiber (3427_CR134) 1999; 50 JA Bennett (3427_CR8) 2017; 355 MJ Pozo (3427_CR125) 2002; 53 MC Brundrett (3427_CR16) 2009; 320 X-L Li (3427_CR90) 1991; 136 P Hayes (3427_CR49) 2014; 102 PM Vitousek (3427_CR163) 2002; 57-58 X-L Li (3427_CR91) 1991; 119 RS Oliveira (3427_CR112) 2015; 205 I Badreddine (3427_CR7) 2008; 7 DH Marx (3427_CR98) 1969; 59 RJ Williams (3427_CR176) 2008; 17 SW Simard (3427_CR142) 2012; 26 LG Wall (3427_CR167) 2000; 19 JD Bever (3427_CR9) 2015; 46 L Sun (3427_CR148) 2016; 212 3427_CR181 3427_CR40 L Weisskopf (3427_CR174) 2005; 268 IA Dickie (3427_CR35) 2004; 164 RW Brooker (3427_CR15) 2008; 96 FE Albornoz (3427_CR4) 2016; 25 M Krüger (3427_CR70) 2015; 24 RM Callaway (3427_CR19) 1995; 61 RM Cowling (3427_CR28) 1995 BB Lamont (3427_CR85) 1977; 265 G Richter (3427_CR130) 1996 N Myers (3427_CR107) 2000; 403 RM Cowling (3427_CR29) 1996; 11 JB Gillett (3427_CR44) 1962; 4 |
References_xml | – reference: BranzantiBZambonelliAIn vitro effects of ectomycorrhizal fungi on Fusarium solani and Rhizoctonia solani damping off of pine seedlingsPetria (Italy)19944131140 – reference: JanzenDHHerbivores and the number of tree species in tropical forestsAm Nat197010450152810.1086/282687 – reference: MaheraliHKlironomosJNInfluence of phylogeny on fungal community assembly and ecosystem functioningScience2007316174617481:CAS:528:DC%2BD2sXms1Wgsb4%3D1758893010.1126/science.1143082 – reference: WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x – reference: TesteFPSimardSWDurallDMGuyRDJonesMDSchoonmakerALAccess to mycorrhizal networks and roots of trees: importance for seedling survival and resource transferEcology200990280828221988648910.1890/08-1884.1 – reference: NewshamKKFitterAHWatkinsonARArbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the fieldJ Ecol199585991100010.2307/2261180 – reference: RichardsonSPeltzerDAllenRMcGloneMParfittRRapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequenceOecologia20041392672761475853510.1007/s00442-004-1501-y – reference: ThomasRFangXRanathungeKAndersonTRPetersonCABernardsMASoybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojaePlant Physiol20071442993111:CAS:528:DC%2BD2sXls1Kjtbw%3D17494920191377610.1104/pp.106.091090 – reference: BiggsARMilesNWAssociation of suberin formation in uninoculated wounds with susceptibility to Leucostoma cincta and L. persoonii in various peach cultivarsPhytopathology1988781070107410.1094/Phyto-78-1070 – reference: JohnsonNCGrahamJHSmithFAFunctioning of mycorrhizal associations along the mutualism–parasitism continuumNew Phytol199713557558510.1046/j.1469-8137.1997.00729.x – reference: VeneklaasEJStevensJCawthrayGRTurnerSGriggAMLambersHChickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil20032481871971:CAS:528:DC%2BD3sXhtFCqs7k%3D10.1023/A:1022367312851 – reference: DickieIAGuzaRCKrazewskiSEReichPBShared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlingsNew Phytol200416437538210.1111/j.1469-8137.2004.01177.x – reference: LiX-LGeorgeEMarschnerHPhosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammoniumNew Phytol19911193974041:CAS:528:DyaK38Xot1Ogtw%3D%3D10.1111/j.1469-8137.1991.tb00039.x – reference: MyersNMittermeierRAMittermeierCGda FonsecaGABKentJBiodiversity hotspots for conservation prioritiesNature20004038538581:CAS:528:DC%2BD3cXhs1Olsr4%3D1070627510.1038/35002501 – reference: PearseSJVeneklaasEJCawthrayGRBollandMDALambersHCarboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus statusPlant Soil20062881271391:CAS:528:DC%2BD28XhtFaksL7F10.1007/s11104-006-9099-y – reference: ShaneMWLambersHCluster roots: a curiosity in contextPlant Soil20052741011251:CAS:528:DC%2BD2MXhtVWiurfK10.1007/s11104-004-2725-7 – reference: CoatesDJByrneMCochraneJADunnCGibsonNKeigheryGJLambersHMonksLTThieleKRYatesCJLambersHConservation of the kwongan flora: threats and challengesPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing263284 – reference: McKaneRBJohnsonLCShaverGRNadelhofferKJRastetterEBFryBGiblinAEKiellandKKwiatkowskiBLLaundreJAMurrayGResource-based niches provide a basis for plant species diversity and dominance in arctic tundraNature200241568711:CAS:528:DC%2BD38Xkt1OmsA%3D%3D1178011710.1038/415068a – reference: OburgerEGruberBSchindleggerYSchenkeveldWDCHannSKraemerSMWenzelWWPuschenreiterMRoot exudation of phytosiderophores from soil-grown wheatNew Phytol2014203116111741:CAS:528:DC%2BC2cXht1KmtrfO24890330414395710.1111/nph.12868 – reference: PerumallaCJPetersonCAEnstoneDEA survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermisBot J Linn Soc19901039311210.1111/j.1095-8339.1990.tb00176.x – reference: Waters EM, Soini HA, Novotny MV, Watson MA (2016) Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca. Plant Soil 407(1–2):261–274 – reference: LalibertéETurnerBLCostesTPearseSJWyrwolllK-HZemunikGLambersHExperimental assessment of nutrient limitation along a 2-million year dune chronosequence in the south-western Australia biodiversity hotspotJ Ecol201210063164210.1111/j.1365-2745.2012.01962.x1:CAS:528:DC%2BC38XptVansLo%3D – reference: Wright A J, Wardle D A, Callaway R and Gaxiola A (2017) The overlooked role of facilitation in biodiversity experiments. Trends Ecol Evol – reference: SilveiraFONegreirosDBarbosaNUBuissonECarmoFCarstensenDConceiçãoACornelissenTEchternachtLFernandesGWGarciaQGuerraTJacobiCLemos-FilhoJLe StradicSMorellatoLNevesFOliveiraRSchaeferCVianaPLambersHEcology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priorityPlant Soil20164031291521:CAS:528:DC%2BC2MXhtlCqtL7P10.1007/s11104-015-2637-8 – reference: Owusu-BennoahEWildAAutoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular-arbuscular mycorrhizaNew Phytol1979821331401:CAS:528:DyaL3MXlt12ksrg%3D10.1111/j.1469-8137.1979.tb07567.x – reference: GardnerWKBarberDAParberyDGThe acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhancedPlant Soil1983701071241:CAS:528:DyaL3sXhsF2ls7k%3D10.1007/BF02374754 – reference: PozoMJCordierCDumas-GaudotEGianinazziSBareaJMAzcón-AguilarCLocalized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plantsJ Exp Bot2002535255341:CAS:528:DC%2BD38XitVegtL4%3D1184725110.1093/jexbot/53.368.525 – reference: StachowiczJJMutualism, facilitation, and the structure of ecological communitiesBioscience20015123524610.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 – reference: SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057 – reference: VitousekPMCassmanKClevelandCCrewsTFieldCBGrimmNBHowarthRWMarinoRMartinelliLRastetterEBSprentJITowards an ecological understanding of biological nitrogen fixationBiogeochemistry200257-5814510.1023/A:1015798428743 – reference: LambersHRavenJAShaverGRSmithSEPlant nutrient-acquisition strategies change with soil ageTrends Ecol Evol200823951031819128010.1016/j.tree.2007.10.008 – reference: HustonMABiological Diversity1994CambridgeCambridge University Press – reference: PowerSCCramerMDVerboomGAChimphangoSBMDoes phosphate acquisition constrain legume persistence in the fynbos of the Cape Floristic Region?Plant Soil201033433461:CAS:528:DC%2BC3cXhtVaqur7F10.1007/s11104-010-0311-8 – reference: DelgadoMZúñiga-FeestAAlmonacidLLambersHBorieFCluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soilPlant Soil20153951892001:CAS:528:DC%2BC2MXhtVamtrbF10.1007/s11104-015-2547-9 – reference: BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9 – reference: CowlingRMRundelPWLamontBBKalin ArroyoMArianoutsouMPlant diversity in mediterranean-climate regionsTrends Ecol Evol1996113623661:STN:280:DC%2BC3M7itFGjtg%3D%3D2123788010.1016/0169-5347(96)10044-6 – reference: BurrowsNWardell-JohnsonGAbbottIBurrowsNFire and plant interactions in forested ecosystems of south-west Western AustraliaFire in Ecosystems of the South-west Western Australia: Impact and Management2003LeidenBackhuys Publishers225268 – reference: Laliberté E, Kardol P, Didham R K, Teste F P, Turner B L and Wardle D A (2017) Soil fertility shapes belowground food webs across a regional climate gradient. Ecol Lett, n/a-n/a – reference: HallidayJPateJSSymbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significanceFunct Plant Biol197633493581:CAS:528:DyaE28XktFOhtro%3D – reference: HingstonFJMalajczukNGroveTSAcetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate applicationJ Appl Ecol19821963164510.2307/2403495 – reference: HuitemaKvan den DikkenbergJBrouwersJFHolthuisJCIdentification of a family of animal sphingomyelin synthasesEMBO J20042333441:CAS:528:DC%2BD2cXhtVequr4%3D1468526310.1038/sj.emboj.7600034 – reference: SikesBACottenieKKlironomosJNPlant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizasJ Ecol2009971274128010.1111/j.1365-2745.2009.01557.x – reference: StrobelNSinclairWRole of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-firPathology1991814204251:CAS:528:DyaK3MXisVCgu7Y%3D – reference: Initiative I O C (2012) Western Australia’s Weather and Climate: a Synthesis of Indian Ocean Climate Initiative Stage 3 Research. CSIRO and BoM, Australia – reference: CowlingRMRichardsonDMFynbos: South Africa’s Unique Floral Kingdom1995VlaebergFernwood Press – reference: HustonMAPrecipitation, soils, NPP, and biodiversity: resurrection of Albrecht's curveEcol Monogr20128227729610.1890/11-1927.1 – reference: SchreiberLHartmannKSkrabsMZeierJApoplastic barriers in roots: chemical composition of endodermal and hypodermal cell wallsJ Exp Bot199950126712801:CAS:528:DyaK1MXltlKis78%3D – reference: HartMMReaderRJKlironomosJNPlant coexistence mediated by arbuscular mycorrhizal fungiTrends Ecol Evol20031841842310.1016/S0169-5347(03)00127-7 – reference: Jones MD, Durall DM, Tinker PB (1992) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol 115:259–267 – reference: LiLLiS-MSunJ-HZhouL-LBaoX-GZhangH-GZhangF-SDiversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soilsProc Natl Acad Sci U S A200710411192111961:CAS:528:DC%2BD2sXnvFGgtLc%3D17592130189918710.1073/pnas.0704591104 – reference: MouraJCMSBonineCAVDe Oliveira Fernandes VianaJDornelasMCMazzaferaPAbiotic and biotic stresses and changes in the lignin content and composition in plantsJ Integr Plant Biol2010523603761:CAS:528:DC%2BC3cXmt1aqtb0%3D2037769810.1111/j.1744-7909.2010.00892.x – reference: Zemunik G, Turner BL, Lambers H, Laliberté E (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat Plants 1. https://doi.org/10.1038/nplants.2015.1050 – reference: NewshamKKFitterAHWatkinsonARMulti-functionality and biodiversity in arbuscular mycorrhizasTrends Ecol Evol1995104074111:STN:280:DC%2BC3M7itFeisg%3D%3D2123708510.1016/S0169-5347(00)89157-0 – reference: SikesBAPowellJRRilligMCDeciphering the relative contributions of multiple functions within plant–microbe symbiosesEcology201091159115972058370110.1890/09-1858.1 – reference: HoseEClarksonDTSteudleESchreiberLHartungWThe exodermis: a variable apoplastic barrierJ Exp Bot200152224522641:CAS:528:DC%2BD3MXptVeis70%3D1170957510.1093/jexbot/52.365.2245 – reference: RanathungeKThomasRHFangXPetersonCAGijzenMBernardsMASoybean root suberin and partial resistance to root rot caused by Phytophthora sojaePhytopathology200898117911891894340610.1094/PHYTO-98-11-1179 – reference: WallLGThe actinorhizal symbiosisJ Plant Growth Regul2000191671821:CAS:528:DC%2BD3cXnvF2hu74%3D11038226 – reference: Abbott LK, Robson AD, Boer GD (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446 – reference: OriansGHMilewskiAVEcology of Australia: The effects of nutrient-poor soils and intense firesBiol Rev2007823934231762496110.1111/j.1469-185X.2007.00017.x – reference: WeisskopfLAbou-MansourEFrominNTomasiNSanteliaDEdelkottINeumannGAragnoMTabacchiRMartinoiaEWhite lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisitionPlant Cell Environ2006299199271:CAS:528:DC%2BD28Xlt1GrsrY%3D1708747510.1111/j.1365-3040.2005.01473.x – reference: LambersHShaneMWLalibertéESwartsNDTesteFPZemunikGLambersHPlant mineral nutritionPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing101127 – reference: Sainz RozasHEcheverriaHAngeliniHAvailable phosphorus in agricultural soils of the Pampa and Argentina ExtraPampeanaRIA, Revista de Investigaciones Agropecuarias2012383339 – reference: Huang G, Hayes P E, Ryan M H, Pang J and Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration. Oecologia in press – reference: LambersHBrundrettMCRavenJAHopperSDPlant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategiesPlant Soil201033411311:CAS:528:DC%2BC3cXhtVaqtbnJ10.1007/s11104-010-0444-9 – reference: LiLTilmanDLambersHZhangFPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol201420363692501387610.1111/nph.127781:CAS:528:DC%2BC2cXovFWrsrw%3D – reference: RichterGBiochemie der Pflanze1996StuttgartGeorg Thieme Verlag – reference: LambersHClementsJCNelsonMNHow a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae)Am J Bot20131002632881:CAS:528:DC%2BC3sXktVGjtrY%3D2334797210.3732/ajb.1200474 – reference: ConnellJHOn the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest treesDynamics of Populations.. Eds. P den Boer, J, and G R Gradwell1971WageningenCentre for Agricultural Publishing and Documentation298313 – reference: LamontBMechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western AustraliaBot Rev1982485976891:CAS:528:DyaL3sXntVymtA%3D%3D10.1007/BF02860714 – reference: PerumallaCJPetersonCADeposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion rootsCan J Bot1986641873187810.1139/b86-248 – reference: LiHZhangFRengelZShenJRhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soilCrop Pasture Sci2013649769841:CAS:528:DC%2BC3sXhvFCis7vF – reference: WitkowskiETFMitchellDTVariations in soil phosphorus in the fynbos biome, South AfricaJ Ecol1987751159117110.2307/2260320 – reference: BramleyHTurnerNCTurnerDWTyermanSDRoles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of rootsPlant Physiol20091503483641:CAS:528:DC%2BD1MXlvFahsL8%3D19321713267571410.1104/pp.108.134098 – reference: Vitousek P M, Menge D N L, Reed S C and Cleveland C C (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans R Soc B: Biol Sci 368 – reference: Esau K (1977) Anatomy of seed plants. 2nd edition. John Wiley and Sons Inc., New York – reference: ShearerBLCraneCECochraneAQuantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomiAust J Bot20045243544310.1071/BT03131 – reference: LalibertéELambersHBurgessTIWrightSJPhosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublandsNew Phytol20152065075212549468210.1111/nph.132031:CAS:528:DC%2BC2MXkvFCksLY%3D – reference: Png G K, Turner B L, Albornoz F E, Hayes P E, Lambers H and Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol, n/a-n/a – reference: ZemunikGTurnerBLLambersHLalibertéEIncreasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspotJ Ecol201610479280510.1111/1365-2745.12546 – reference: PeayKGThe mutualistic niche: mycorrhizal symbiosis and community dynamicsAnnu Rev Ecol Evol Syst20164714316410.1146/annurev-ecolsys-121415-032100 – reference: DuchesneLCPetersonRLEllisBEInteraction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporumCan J Bot19886655856210.1139/b88-080 – reference: LambersHMartinoiaERentonMPlant adaptations to severely phosphorus-impoverished soilsCurr Opin Plant Biol20152523311:CAS:528:DC%2BC2MXms1yitbk%3D2591278310.1016/j.pbi.2015.04.002 – reference: AllsoppNColvilleJFVerboomGAFynbos: Ecology, Evolution, and Conservation of a Megadiverse Region2014OxfordOxford University Press10.1093/acprof:oso/9780199679584.001.0001 – reference: TomasiNWeisskopfLRenellaGLandiLPintonRVaraniniZNannipieriPTorrentJMartinoiaECescoSFlavonoids of white lupin roots participate in phosphorus mobilization from soilSoil Biol Biochem200840197119741:CAS:528:DC%2BD1cXnt1ektLw%3D10.1016/j.soilbio.2008.02.017 – reference: GibsonNKeigheryGJLyonsMNWebbATerrestrial flora and vegetation of the Western Australian wheatbeltRec WA Mus200467139189 – reference: KrügerMTesteFPLalibertéELambersHCoghlanMZemunikGBunceMThe rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogressionMol Ecol201524491249302633208410.1111/mec.13363 – reference: WeidenhamerJDPlant olfaction: using analytical chemistry to elucidate mechanisms of plant growth and interactionPlant Soil20164072752781:CAS:528:DC%2BC28Xht12nsLzN10.1007/s11104-016-2998-7 – reference: McArthurWMReference soils of south-western Australia1991South PerthDepartment of Agriculture Western Australia – reference: ShaneMWCramerMDFunayama-NoguchiSCawthrayGRMillarAHDayDALambersHDevelopmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidasePlant Physiol20041355495601:CAS:528:DC%2BD2cXkt12ms78%3D1512203042941210.1104/pp.103.035659 – reference: MarxDHEctomycorrhizae as biological deterrents to pathogenic root infectionsAnnu Rev Phytopathol1972104294541:STN:280:DC%2BD1czhslamsA%3D%3D1847919210.1146/annurev.py.10.090172.002241 – reference: KolattukudyPEEspelieKEChemistry, biochemistry and functions of suberin associated waxesNatural Products of Woody Plants I. Ed. J W Rowe1989New YorkSpringer-Verlag235287 – reference: AlbornozFEBurgessTILambersHEtchellsHLalibertéENative soil-borne pathogens equalise differences in competitive ability between plants of contrasting nutrient-acquisition strategiesJ Ecol201710554955710.1111/1365-2745.12638 – reference: MarschnerHMineral Nutrition of Higher Plants1995LondonAcademic Press – reference: PateJSBeardJSKwongan. Plant Life of the Sandplain1984NedlandsUniversity of Western Australia Press – reference: TurnerBLCondronLMPedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. SyersPlant Soil20133671101:CAS:528:DC%2BC3sXnvVOitb4%3D10.1007/s11104-013-1750-9 – reference: TesteFPVeneklaasEJDixonKWLambersHIs nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?Plant Cell Environ20153850601:CAS:528:DC%2BC2cXitFSqt77O2481137010.1111/pce.12367 – reference: LyginAVLiSVittalRWidholmJMHartmanGLLozovayaVVThe importance of phenolic metabolism to limit the growth of Phakopsora pachyrhiziPhytopathology200999141214201:CAS:528:DC%2BC3cXhtFeqt78%3D1990000810.1094/PHYTO-99-12-1412 – reference: HerreEAMejíaLCKylloDARojasEMaynardZButlerAVan BaelSAEcological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizaeEcology2007885505581750358110.1890/05-1606 – reference: Layla Aerne-HainsLSimpsonMGVegetative anatomy of the Haemodoraceae and its phylogenetic significanceInt J Plant Sci201717811715610.1086/689199 – reference: TurnerBLResource partitioning for soil phosphorus: a hypothesisJ Ecol2008966987021:CAS:528:DC%2BD1cXptFygs70%3D10.1111/j.1365-2745.2008.01384.x – reference: Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702 – reference: HeXXuMQiuGYZhouJUse of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plantsJ Plant Ecol2009210711810.1093/jpe/rtp015 – reference: CairneyJEctomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soilsPlant Soil201134451711:CAS:528:DC%2BC3MXnsVCjt7c%3D10.1007/s11104-011-0731-0 – reference: CescoSMimmoTTononGTomasiNPintonRTerzanoRNeumannGWeisskopfLRenellaGLandiLNannipieriPPlant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A reviewBiol Fertil Soils2012481231491:CAS:528:DC%2BC38XhtFGis7Y%3D10.1007/s00374-011-0653-2 – reference: WesselsJGHDevelopmental regulation of fungal cell wall formationAnnu Rev Phytopathol1994324134371:CAS:528:DyaK2cXmtVSntbY%3D10.1146/annurev.py.32.090194.002213 – reference: BadreddineILafitteCHeuxLSkandalisNSpanouZMartinezYEsquerré-TugayéM-TBuloneVDumasBBottinACell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteichesEukaryot Cell20087198019931:CAS:528:DC%2BD1cXhsVartL%2FL18806214258354010.1128/EC.00091-08 – reference: SchmidtSStewartGRWaterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum)Plant Cell Environ1997201231124110.1046/j.1365-3040.1997.d01-20.x – reference: GillettJBPest pressure, an underestimated factor in evolutionSyst Assoc Publ196243746 – reference: OliveiraRSGalvãoHCde CamposMCREllerCBPearseSJLambersHMineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil typesNew Phytol2015205118311941:CAS:528:DC%2BC2MXnslantQ%3D%3D2542548610.1111/nph.13175 – reference: AlbornozFELambersHTurnerBLTesteFPLalibertéEShifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequenceEcol Evol201662368237727066229478224510.1002/ece3.2000 – reference: Azcón-AguilarCBareaJMArbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involvedMycorrhiza1997645746410.1007/s005720050147 – reference: LiangMLiuXEtienneRSHuangFWangYYuSArbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogensEcology2015965625742624087610.1890/14-0871.1 – reference: PeñuelasJAsensioDThollDWenkeKRosenkranzMPiechullaBSchnitzlerJPBiogenic volatile emissions from the soilPlant Cell Environ201437186618912468984710.1111/pce.123401:CAS:528:DC%2BC2cXhtFOlsLjF – reference: MaJFUenoHUenoDRombolàADIwashitaTCharacterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubraPlant Soil20032561311371:CAS:528:DC%2BD3sXot1Clsrs%3D10.1023/A:1026285813248 – reference: WehnerJAntunesPMPowellJRMazukatowJRilligMCPlant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity?Pedobiologia20105319720110.1016/j.pedobi.2009.10.002 – reference: Lambers H, Finnegan P M, Jost R, Plaxton W C, Shane M W and Stitt M (2015b) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1 – reference: McIntireEJBFajardoAFacilitation as a ubiquitous driver of biodiversityNew Phytol20142014034162410226610.1111/nph.12478 – reference: CertiniGEffects of fire on properties of forest soils: a reviewOecologia20051431101568821210.1007/s00442-004-1788-8 – reference: Jakobsen I and Hammer E (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 91–131. Springer Netherlands – reference: EnkerliKMimsCWHahnMGUltrastructure of compatible and incompatible interactions of soybean roots infected with the plant pathogenic oomycete Phytophthora sojaeCan J Bot1997751493150810.1139/b97-864 – reference: BonawitzNDChappleCThe genetics of lignin biosynthesis: connecting genotype to phenotypeAnnu Rev Genet2010443373631:CAS:528:DC%2BC3cXhs1SmurnF2080979910.1146/annurev-genet-102209-163508 – reference: MulerALOliveiraRSLambersHVeneklaasEJDoes cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?Oecologia201417423312393406410.1007/s00442-013-2747-z – reference: AlbornozFETesteFPLambersHBunceMMurrayDCWhiteNELalibertéEChanges in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequenceMol Ecol201625491949291:CAS:528:DC%2BC28XhsFKjsrvP2748067910.1111/mec.13778 – reference: HayesPTurnerBLLambersHLalibertéEFoliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequenceJ Ecol20141023964101:CAS:528:DC%2BC2cXjt1Shsro%3D10.1111/1365-2745.12196 – reference: NagarajahSPosnerAMQuirkJPCompetitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfacesNature197022883851:CAS:528:DyaE3MXht1agtw%3D%3D1605841910.1038/228083a0 – reference: BennettJAMaheraliHReinhartKOLekbergYHartMMKlironomosJPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811841:CAS:528:DC%2BC2sXms12hsg%3D%3D2808259010.1126/science.aai8212 – reference: MarxDHThe influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteriaPhytopathology196959153163 – reference: BeverJDManganSAAlexanderHMMaintenance of plant species diversity by pathogensAnnu Rev Ecol Evol Syst20154630532510.1146/annurev-ecolsys-112414-054306 – reference: HartungWLeportLRatcliffeRGSauterADudaRTurnerNCAbscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soilsPlant Soil20022401911991:CAS:528:DC%2BD38XkvVajsro%3D10.1023/A:1015831610452 – reference: ValentineAJKleinertABeneditoVAAdaptive strategies for nitrogen metabolism in phosphate deficient legume nodulesPlant Sci201725646521:CAS:528:DC%2BC28XitFOhsLrP2816703710.1016/j.plantsci.2016.12.010 – reference: BranzantiMBRoccaEPisiAEffect of ectomycorrhizal fungi on chestnut ink diseaseMycorrhiza1999910310910.1007/s005720050007 – reference: HansenAPPateJSEvaluation of the 15N natural abundance method and xylem sap analysis for assessing N2 fixation of understorey legumes in Jarrah (Eucalyptus marginata Donn ex Sm.) forest in S.W. AustraliaJ Exp Bot198738144614581:CAS:528:DyaL2sXmtlGgurc%3D10.1093/jxb/38.9.1446 – reference: WilliamsRJBradstockRALarge fires and their ecological consequences: introduction to the special issueInt J Wildland Fire20081768568710.1071/WF07155 – reference: TesteFPKardolPTurnerBLWardleDAZemunikGRentonMLalibertéEPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731761:CAS:528:DC%2BC2sXms12itw%3D%3D2808258810.1126/science.aai8291 – reference: Turner B L, Laliberté E and Hayes P E (2017) A climosequence of chronosequences in southwestern Australia. bioRxiv – reference: KolattukudyPEBiochemistry and function of cutin and suberinCan J Bot198462291829331:CAS:528:DyaL2MXht1yktbg%3D10.1139/b84-391 – reference: CuSTTHutsonJSchullerKAMixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheatPlant Soil20052721431511:CAS:528:DC%2BD2MXks1ekurY%3D10.1007/s11104-004-4336-8 – reference: PaulEASoil Microbiology, Ecology and Biochemistry2014AmsterdamElsevier Academic Press – reference: HopperSDOCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapesPlant Soil200932249861:CAS:528:DC%2BD1MXhtVWisrnN10.1007/s11104-009-0068-0 – reference: EnstoneDEPetersonCAMaFRoot endodermis and exodermis: structure, function, and responses to the environmentJ Plant Growth Regul20032133535110.1007/s00344-003-0002-21:CAS:528:DC%2BD3sXlslWntL4%3D – reference: LamontBBDownesSFoxJEDImportance-value curves and diversity indices applied to a species-rich heathland in Western AustraliaNature197726543844110.1038/265438a0 – reference: LiX-LGeorgeEMarschnerHExtension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soilPlant Soil1991136414810.1007/BF02465218 – reference: PekinBKWittkuhnRSBoerMMMacfarlaneCGriersonPFPlant functional traits along environmental gradients in seasonally dry and fire-prone ecosystemJ Veg Sci2011221009102010.1111/j.1654-1103.2011.01323.x – reference: WittkuhnRSLamontBBHeTCombustion temperatures and nutrient transfers when grasstrees burnFor Ecol Manag201739917918710.1016/j.foreco.2017.05.037 – reference: DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience200832011811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836 – reference: HopperSDSilveiraFAOFiedlerPLBiodiversity hotspots and Ocbil theoryPlant Soil20164031672161:CAS:528:DC%2BC2MXitVKru7nI10.1007/s11104-015-2764-2 – reference: LambersHHayesPELalibertéEOliveiraRSTurnerBLLeaf manganese accumulation and phosphorus-acquisition efficiencyTrends Plant Sci20152083901:CAS:528:DC%2BC2cXhvVGksr%2FJ2546697710.1016/j.tplants.2014.10.007 – reference: SimardSWBeilerKJBinghamMADeslippeJRPhilipLJTesteFPMycorrhizal networks: mechanisms, ecology and modellingFungal Biol Rev201226396010.1016/j.fbr.2012.01.001 – reference: CowlingRMPottsAJBradshawPLColvilleJArianoutsouMFerrierSForestFFyllasNMHopperSDOjedaFProcheşŞSmithRJRundelPWVassilakisEZuttaBRVariation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stabilityJ Biogeogr20144255256410.1111/jbi.12429 – reference: SteudleEPetersonCAReview article. How does water get through roots?J Exp Bot1998497757881:CAS:528:DyaK1cXjs1Sjurk%3D – reference: Simard S, Asay A, Beiler K, Bingham M, Deslippe J, He X, Philip L, Song Y and Teste F (2015) Resource transfer between plants through ectomycorrhizal fungal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 133–176. Springer Netherlands – reference: LambersHClodePLHawkinsH-JLalibertéEOliveiraRSReddellPShaneMWStittMWestonPPlaxtonWCLambersHMetabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availabilityAnnual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants2015ChicesterJohn Wiley & Sons28933610.1002/9781118958841.ch11 – reference: TesteFPLalibertéELambersHAuerYKramerSKandelerEMycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogressionSoil Biol Biochem2016921191321:CAS:528:DC%2BC2MXhs1Orsb7K10.1016/j.soilbio.2015.09.021 – reference: WattMEvansJRLinking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentrationPlant Physiol19991207057161:CAS:528:DyaK1MXks1amtL0%3D103987055930810.1104/pp.120.3.705 – reference: McMullan-FisherSJMMayTWRobinsonRMBellTLLebelTCatchesidePYorkAFungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directionsAust J Bot201159709010.1071/BT10059 – reference: VosCSchoutedenNvan TuinenDChatagnierOElsenADe WaeleDPanisBGianinazzi-PearsonVMycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomatoSoil Biol Biochem20136045541:CAS:528:DC%2BC3sXktlKgsL0%3D10.1016/j.soilbio.2013.01.013 – reference: LalibertéEGraceJBHustonMALambersHTesteFPTurnerBLWardleDAHow does pedogenesis drive plant diversity?Trends Ecol Evol2013283313402356132210.1016/j.tree.2013.02.008 – reference: HopmansPBauhusJKhannaPWestonCCarbon and nitrogen in forest soils: Potential indicators for sustainable management of eucalypt forests in south-eastern AustraliaFor Ecol Manag2005220758710.1016/j.foreco.2005.08.006 – reference: KennedyPGSmithDPHortonTRMolinaRJArbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivityAm J Bot201299169117012298608310.3732/ajb.1200277 – reference: LambersHShaneMWCramerMDPearseSJVeneklaasEJRoot structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traitsAnn Bot20069869371316769731280617510.1093/aob/mcl114 – reference: Schappe T, Albornoz F E, Turner B L, Neat A, Condit R and Jones F A (2017) The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J Ecol – reference: BrookerRWMaestreFTCallawayRMLortieCLCavieresLAKunstlerGLiancourtPTielbörgerKTravisJMJAnthelmeFArmasCCollLCorcketEDelzonSForeyEKikvidzeZOlofssonJPugnaireFQuirozCLSacconePSchiffersKSeifanMTouzardBMichaletRFacilitation in plant communities: the past, the present, and the futureJ Ecol200896183410.1111/j.1365-2745.2008.01373.x – reference: TurnerBLLalibertéESoil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern AustraliaEcosystems2015182873091:CAS:528:DC%2BC2cXitFKmur7O10.1007/s10021-014-9830-0 – reference: WeisskopfLFrominNTomasiNAragnoMMartinoiaESecretion activity of white lupin's cluster roots influences bacterial abundance, function and community structurePlant Soil20052681811941:CAS:528:DC%2BD2MXks1ers7Y%3D10.1007/s11104-004-0264-x – reference: CameronDDNealALvan WeesSCMTonJMycorrhiza-induced resistance: more than the sum of its parts?Trends Plant Sci2013185395451:CAS:528:DC%2BC3sXhtFChtbfF23871659419431310.1016/j.tplants.2013.06.004 – reference: TerborghJEnemies maintain hyperdiverse tropical forestsAm Nat20121793033142232221910.1086/664183 – reference: CallawayRMPositive interactions among plantsBot Rev19956130634910.1007/BF02912621 – reference: LulaiECCorsiniDLDifferential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosumL.) wound-healingPhysiol Mol Plant Pathol1998532092221:CAS:528:DyaK1MXhtVKrsbg%3D10.1006/pmpp.1998.0179 – reference: MintonMMBarberNAGordonLLEffects of arbuscular mycorrhizal fungi on herbivory defense in two Solanum (Solanaceae) speciesPlant Ecol Evol201614915716410.5091/plecevo.2016.1176 – reference: Smith S E, Anderson I C and Smith F A (2015) Mycorrhizal associations and P acquisition: from cells to ecosystems In Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants. Eds. W C Plaxton and H Lambers pp 409–440. John Wiley & Sons – reference: HorstWJWaschkiesCPhosphatversorgung von Sommerweizen (Triticum aestivum L.) in Mischkultur mit weißer Lupine (Lupinus albus L.)Z Pflanzenernähr Bodenkd19871501810.1002/jpln.19871500102 – reference: DuchesneLCPetersonRLEllisBEPine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutusNew Phytol19881084714761:CAS:528:DyaL1cXktlGitbs%3D10.1111/j.1469-8137.1988.tb04188.x – reference: GardnerWKBoundyKAThe acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two speciesPlant Soil1983703914021:CAS:528:DyaL3sXktVCltLg%3D10.1007/BF02374894 – reference: RavenJAProtein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixationPlant Sci2012188-18925351:CAS:528:DC%2BC38XlvFOitb4%3D2252524110.1016/j.plantsci.2012.02.010 – reference: ReddellPYunYShiptonWACluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supplyAust J Bot199745415110.1071/BT96049 – reference: SmithSEReadDJMycorrhizal Symbiosis2008LondonAcademic Press and Elsevier – reference: CowlingRMMacDonaldIAWSimmonsMTThe Cape Peninsula, South Africa: physiographical, biological and historical background to an extraordinary hot-spot of biodiversityBiodivers Conserv1996552755010.1007/BF00137608 – reference: TesteFPVeneklaasEJDixonKWLambersHComplementary plant nutrient-acquisition strategies facilitate growth of neighbouring speciesFunct Ecol20142881982810.1111/1365-2435.12270 – reference: de CamposMCRPearseSJOliveiraRSLambersHViminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus suppliesAnn Bot201311180180923456689363132510.1093/aob/mct0351:CAS:528:DC%2BC3sXmtlant70%3D – reference: ClarkLHHarrisWHObservations on the root anatomy of rice (Oryza sativa L.)Am J Bot19816815416110.1002/j.1537-2197.1981.tb12374.x – reference: YaoQLiXFengGChristiePMobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungusPlant Soil20012302792851:CAS:528:DC%2BD3MXjt12qs7Y%3D10.1023/A:1010367501363 – reference: WalkerTWSyersJKThe fate of phosphorus during pedogenesisGeoderma197615191:CAS:528:DyaE28Xht1Cltro%3D10.1016/0016-7061(76)90066-5 – volume: 188-189 start-page: 25 year: 2012 ident: 3427_CR127 publication-title: Plant Sci doi: 10.1016/j.plantsci.2012.02.010 – volume: 46 start-page: 305 year: 2015 ident: 3427_CR9 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-112414-054306 – volume: 99 start-page: 1691 year: 2012 ident: 3427_CR67 publication-title: Am J Bot doi: 10.3732/ajb.1200277 – volume: 96 start-page: 562 year: 2015 ident: 3427_CR92 publication-title: Ecology doi: 10.1890/14-0871.1 – volume: 25 start-page: 4919 year: 2016 ident: 3427_CR4 publication-title: Mol Ecol doi: 10.1111/mec.13778 – volume: 135 start-page: 575 year: 1997 ident: 3427_CR65 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00729.x – volume: 75 start-page: 1493 year: 1997 ident: 3427_CR38 publication-title: Can J Bot doi: 10.1139/b97-864 – start-page: 298 volume-title: Dynamics of Populations.. Eds. P den Boer, J, and G R Gradwell year: 1971 ident: 3427_CR25 – ident: 3427_CR123 doi: 10.1111/1365-2745.12758 – volume: 19 start-page: 631 year: 1982 ident: 3427_CR52 publication-title: J Appl Ecol doi: 10.2307/2403495 – volume: 62 start-page: 2918 year: 1984 ident: 3427_CR68 publication-title: Can J Bot doi: 10.1139/b84-391 – volume: 44 start-page: 337 year: 2010 ident: 3427_CR11 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102209-163508 – volume: 96 start-page: 18 year: 2008 ident: 3427_CR15 publication-title: J Ecol doi: 10.1111/j.1365-2745.2008.01373.x – volume: 149 start-page: 157 year: 2016 ident: 3427_CR104 publication-title: Plant Ecol Evol doi: 10.5091/plecevo.2016.1176 – volume-title: Biological Diversity year: 1994 ident: 3427_CR60 – ident: 3427_CR78 doi: 10.1038/nplants.2015.109 – volume: 111 start-page: 801 year: 2013 ident: 3427_CR31 publication-title: Ann Bot doi: 10.1093/aob/mct035 – volume: 70 start-page: 391 year: 1983 ident: 3427_CR42 publication-title: Plant Soil doi: 10.1007/BF02374894 – volume: 25 start-page: 23 year: 2015 ident: 3427_CR80 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2015.04.002 – volume: 75 start-page: 1159 year: 1987 ident: 3427_CR177 publication-title: J Ecol doi: 10.2307/2260320 – volume: 367 start-page: 1 year: 2013 ident: 3427_CR158 publication-title: Plant Soil doi: 10.1007/s11104-013-1750-9 – volume: 9 start-page: 103 year: 1999 ident: 3427_CR14 publication-title: Mycorrhiza doi: 10.1007/s005720050007 – volume: 38 start-page: 33 year: 2012 ident: 3427_CR131 publication-title: RIA, Revista de Investigaciones Agropecuarias – volume: 274 start-page: 101 year: 2005 ident: 3427_CR136 publication-title: Plant Soil doi: 10.1007/s11104-004-2725-7 – volume: 17 start-page: 685 year: 2008 ident: 3427_CR176 publication-title: Int J Wildland Fire doi: 10.1071/WF07155 – volume: 53 start-page: 209 year: 1998 ident: 3427_CR93 publication-title: Physiol Mol Plant Pathol doi: 10.1006/pmpp.1998.0179 – volume: 20 start-page: 1231 year: 1997 ident: 3427_CR133 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1997.d01-20.x – volume: 57-58 start-page: 1 year: 2002 ident: 3427_CR163 publication-title: Biogeochemistry doi: 10.1023/A:1015798428743 – volume: 98 start-page: 1179 year: 2008 ident: 3427_CR126 publication-title: Phytopathology doi: 10.1094/PHYTO-98-11-1179 – volume: 268 start-page: 181 year: 2005 ident: 3427_CR174 publication-title: Plant Soil doi: 10.1007/s11104-004-0264-x – ident: 3427_CR141 doi: 10.1007/978-94-017-7395-9_5 – volume: 66 start-page: 558 year: 1988 ident: 3427_CR36 publication-title: Can J Bot doi: 10.1139/b88-080 – volume: 88 start-page: 550 year: 2007 ident: 3427_CR51 publication-title: Ecology doi: 10.1890/05-1606 – volume: 265 start-page: 438 year: 1977 ident: 3427_CR85 publication-title: Nature doi: 10.1038/265438a0 – volume: 395 start-page: 189 year: 2015 ident: 3427_CR32 publication-title: Plant Soil doi: 10.1007/s11104-015-2547-9 – volume: 28 start-page: 331 year: 2013 ident: 3427_CR71 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2013.02.008 – volume: 3 start-page: 349 year: 1976 ident: 3427_CR45 publication-title: Funct Plant Biol doi: 10.1071/PP9760349 – volume-title: Soil Microbiology, Ecology and Biochemistry year: 2014 ident: 3427_CR116 – volume: 256 start-page: 46 year: 2017 ident: 3427_CR161 publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.12.010 – volume: 23 start-page: 95 year: 2008 ident: 3427_CR81 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2007.10.008 – volume: 399 start-page: 179 year: 2017 ident: 3427_CR178 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2017.05.037 – volume: 220 start-page: 75 year: 2005 ident: 3427_CR53 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2005.08.006 – volume: 45 start-page: 41 year: 1997 ident: 3427_CR128 publication-title: Aust J Bot doi: 10.1071/BT96049 – volume-title: Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region year: 2014 ident: 3427_CR5 doi: 10.1093/acprof:oso/9780199679584.001.0001 – volume: 28 start-page: 819 year: 2014 ident: 3427_CR153 publication-title: Funct Ecol doi: 10.1111/1365-2435.12270 – volume: 59 start-page: 70 year: 2011 ident: 3427_CR103 publication-title: Aust J Bot doi: 10.1071/BT10059 – volume: 320 start-page: 37 year: 2009 ident: 3427_CR16 publication-title: Plant Soil doi: 10.1007/s11104-008-9877-9 – volume: 64 start-page: 1873 year: 1986 ident: 3427_CR121 publication-title: Can J Bot doi: 10.1139/b86-248 – volume: 403 start-page: 129 year: 2016 ident: 3427_CR140 publication-title: Plant Soil doi: 10.1007/s11104-015-2637-8 – volume: 11 start-page: 362 year: 1996 ident: 3427_CR29 publication-title: Trends Ecol Evol doi: 10.1016/0169-5347(96)10044-6 – volume: 81 start-page: 420 year: 1991 ident: 3427_CR147 publication-title: Pathology – volume: 37 start-page: 1866 year: 2014 ident: 3427_CR120 publication-title: Plant Cell Environ doi: 10.1111/pce.12340 – ident: 3427_CR179 doi: 10.1016/j.tree.2017.02.011 – volume: 139 start-page: 267 year: 2004 ident: 3427_CR129 publication-title: Oecologia doi: 10.1007/s00442-004-1501-y – volume: 104 start-page: 11192 year: 2007 ident: 3427_CR88 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0704591104 – volume: 403 start-page: 167 year: 2016 ident: 3427_CR55 publication-title: Plant Soil doi: 10.1007/s11104-015-2764-2 – ident: 3427_CR160 doi: 10.1101/113308 – volume: 42 start-page: 552 year: 2014 ident: 3427_CR27 publication-title: J Biogeogr doi: 10.1111/jbi.12429 – volume: 24 start-page: 4912 year: 2015 ident: 3427_CR70 publication-title: Mol Ecol doi: 10.1111/mec.13363 – start-page: 263 volume-title: Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot year: 2014 ident: 3427_CR24 – volume: 4 start-page: 131 year: 1994 ident: 3427_CR13 publication-title: Petria (Italy) – volume: 344 start-page: 51 year: 2011 ident: 3427_CR18 publication-title: Plant Soil doi: 10.1007/s11104-011-0731-0 – volume: 104 start-page: 501 year: 1970 ident: 3427_CR64 publication-title: Am Nat doi: 10.1086/282687 – volume: 316 start-page: 1746 year: 2007 ident: 3427_CR96 publication-title: Science doi: 10.1126/science.1143082 – volume: 98 start-page: 693 year: 2006 ident: 3427_CR82 publication-title: Ann Bot doi: 10.1093/aob/mcl114 – volume: 203 start-page: 1161 year: 2014 ident: 3427_CR111 publication-title: New Phytol doi: 10.1111/nph.12868 – volume: 108 start-page: 471 year: 1988 ident: 3427_CR37 publication-title: New Phytol doi: 10.1111/j.1469-8137.1988.tb04188.x – volume: 143 start-page: 1 year: 2005 ident: 3427_CR21 publication-title: Oecologia doi: 10.1007/s00442-004-1788-8 – volume: 99 start-page: 1412 year: 2009 ident: 3427_CR94 publication-title: Phytopathology doi: 10.1094/PHYTO-99-12-1412 – volume: 6 start-page: 2368 year: 2016 ident: 3427_CR3 publication-title: Ecol Evol doi: 10.1002/ece3.2000 – volume: 248 start-page: 187 year: 2003 ident: 3427_CR162 publication-title: Plant Soil doi: 10.1023/A:1022367312851 – ident: 3427_CR169 doi: 10.1007/s11104-016-2934-x – volume: 240 start-page: 191 year: 2002 ident: 3427_CR48 publication-title: Plant Soil doi: 10.1023/A:1015831610452 – volume: 355 start-page: 173 year: 2017 ident: 3427_CR150 publication-title: Science doi: 10.1126/science.aai8291 – start-page: 235 volume-title: Natural Products of Woody Plants I. Ed. J W Rowe year: 1989 ident: 3427_CR69 – ident: 3427_CR181 doi: 10.1038/nplants.2015.1050 – volume: 120 start-page: 705 year: 1999 ident: 3427_CR170 publication-title: Plant Physiol doi: 10.1104/pp.120.3.705 – volume: 48 start-page: 597 year: 1982 ident: 3427_CR84 publication-title: Bot Rev doi: 10.1007/BF02860714 – ident: 3427_CR62 – volume: 32 start-page: 413 year: 1994 ident: 3427_CR175 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.py.32.090194.002213 – ident: 3427_CR164 doi: 10.1098/rstb.2013.0119 – volume: 7 start-page: 1980 year: 2008 ident: 3427_CR7 publication-title: Eukaryot Cell doi: 10.1128/EC.00091-08 – ident: 3427_CR143 doi: 10.1002/9781118958841.ch14 – volume: 117 start-page: 93 year: 2008 ident: 3427_CR168 publication-title: Oikos doi: 10.1111/j.2007.0030-1299.16130.x – volume: 100 start-page: 631 year: 2012 ident: 3427_CR74 publication-title: J Ecol doi: 10.1111/j.1365-2745.2012.01962.x – volume: 119 start-page: 397 year: 1991 ident: 3427_CR91 publication-title: New Phytol doi: 10.1111/j.1469-8137.1991.tb00039.x – volume: 203 start-page: 63 year: 2014 ident: 3427_CR89 publication-title: New Phytol doi: 10.1111/nph.12778 – volume: 53 start-page: 197 year: 2010 ident: 3427_CR171 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2009.10.002 – volume: 59 start-page: 153 year: 1969 ident: 3427_CR98 publication-title: Phytopathology – volume: 38 start-page: 1446 year: 1987 ident: 3427_CR46 publication-title: J Exp Bot doi: 10.1093/jxb/38.9.1446 – volume: 2 start-page: 107 year: 2009 ident: 3427_CR50 publication-title: J Plant Ecol doi: 10.1093/jpe/rtp015 – volume: 53 start-page: 525 year: 2002 ident: 3427_CR125 publication-title: J Exp Bot doi: 10.1093/jexbot/53.368.525 – volume: 135 start-page: 549 year: 2004 ident: 3427_CR135 publication-title: Plant Physiol doi: 10.1104/pp.103.035659 – volume: 70 start-page: 107 year: 1983 ident: 3427_CR41 publication-title: Plant Soil doi: 10.1007/BF02374754 – ident: 3427_CR58 doi: 10.1007/s00442-017-3961-x – start-page: 225 volume-title: Fire in Ecosystems of the South-west Western Australia: Impact and Management year: 2003 ident: 3427_CR17 – volume: 47 start-page: 143 year: 2016 ident: 3427_CR118 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-121415-032100 – volume: 10 start-page: 407 year: 1995 ident: 3427_CR110 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(00)89157-0 – volume: 201 start-page: 403 year: 2014 ident: 3427_CR101 publication-title: New Phytol doi: 10.1111/nph.12478 – volume: 104 start-page: 792 year: 2016 ident: 3427_CR182 publication-title: J Ecol doi: 10.1111/1365-2745.12546 – volume: 23 start-page: 33 year: 2004 ident: 3427_CR59 publication-title: EMBO J doi: 10.1038/sj.emboj.7600034 – volume: 92 start-page: 119 year: 2016 ident: 3427_CR151 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.09.021 – volume: 38 start-page: 50 year: 2015 ident: 3427_CR154 publication-title: Plant Cell Environ doi: 10.1111/pce.12367 – volume: 6 start-page: 457 year: 1997 ident: 3427_CR6 publication-title: Mycorrhiza doi: 10.1007/s005720050147 – volume: 256 start-page: 131 year: 2003 ident: 3427_CR95 publication-title: Plant Soil doi: 10.1023/A:1026285813248 – volume: 322 start-page: 49 year: 2009 ident: 3427_CR54 publication-title: Plant Soil doi: 10.1007/s11104-009-0068-0 – start-page: 101 volume-title: Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot year: 2014 ident: 3427_CR83 – volume: 105 start-page: 549 year: 2017 ident: 3427_CR2 publication-title: J Ecol doi: 10.1111/1365-2745.12638 – volume: 82 start-page: 393 year: 2007 ident: 3427_CR113 publication-title: Biol Rev doi: 10.1111/j.1469-185X.2007.00017.x – volume: 334 start-page: 11 year: 2010 ident: 3427_CR75 publication-title: Plant Soil doi: 10.1007/s11104-010-0444-9 – volume: 205 start-page: 1183 year: 2015 ident: 3427_CR112 publication-title: New Phytol doi: 10.1111/nph.13175 – volume: 103 start-page: 93 year: 1990 ident: 3427_CR122 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.1990.tb00176.x – volume: 230 start-page: 279 year: 2001 ident: 3427_CR180 publication-title: Plant Soil doi: 10.1023/A:1010367501363 – volume: 212 start-page: 646 year: 2016 ident: 3427_CR148 publication-title: New Phytol doi: 10.1111/nph.14057 – volume: 85 start-page: 991 year: 1995 ident: 3427_CR109 publication-title: J Ecol doi: 10.2307/2261180 – volume: 78 start-page: 1070 year: 1988 ident: 3427_CR10 publication-title: Phytopathology doi: 10.1094/Phyto-78-1070 – volume: 21 start-page: 335 year: 2003 ident: 3427_CR39 publication-title: J Plant Growth Regul doi: 10.1007/s00344-003-0002-2 – volume: 67 start-page: 139 year: 2004 ident: 3427_CR43 publication-title: Rec WA Mus – volume: 5 start-page: 527 year: 1996 ident: 3427_CR26 publication-title: Biodivers Conserv doi: 10.1007/BF00137608 – ident: 3427_CR40 doi: 10.2307/2418500 – ident: 3427_CR1 doi: 10.1111/j.1469-8137.1984.tb03609.x – volume: 64 start-page: 976 year: 2013 ident: 3427_CR87 publication-title: Crop Pasture Sci doi: 10.1071/CP13268 – ident: 3427_CR132 doi: 10.1111/1365-2745.12752 – volume: 51 start-page: 235 year: 2001 ident: 3427_CR145 publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 – volume: 18 start-page: 418 year: 2003 ident: 3427_CR47 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(03)00127-7 – ident: 3427_CR33 doi: 10.1104/pp.103.3.695 – volume: 100 start-page: 263 year: 2013 ident: 3427_CR76 publication-title: Am J Bot doi: 10.3732/ajb.1200474 – volume: 136 start-page: 41 year: 1991 ident: 3427_CR90 publication-title: Plant Soil doi: 10.1007/BF02465218 – ident: 3427_CR66 doi: 10.1111/j.1469-8137.1990.tb00451.x – volume: 50 start-page: 1267 year: 1999 ident: 3427_CR134 publication-title: J Exp Bot – volume: 61 start-page: 306 year: 1995 ident: 3427_CR19 publication-title: Bot Rev doi: 10.1007/BF02912621 – volume: 60 start-page: 45 year: 2013 ident: 3427_CR165 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.01.013 – volume-title: Kwongan. Plant Life of the Sandplain year: 1984 ident: 3427_CR115 – volume: 150 start-page: 348 year: 2009 ident: 3427_CR12 publication-title: Plant Physiol doi: 10.1104/pp.108.134098 – volume: 102 start-page: 396 year: 2014 ident: 3427_CR49 publication-title: J Ecol doi: 10.1111/1365-2745.12196 – volume: 82 start-page: 133 year: 1979 ident: 3427_CR114 publication-title: New Phytol doi: 10.1111/j.1469-8137.1979.tb07567.x – volume: 97 start-page: 1274 year: 2009 ident: 3427_CR138 publication-title: J Ecol doi: 10.1111/j.1365-2745.2009.01557.x – volume: 52 start-page: 360 year: 2010 ident: 3427_CR105 publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2010.00892.x – volume-title: Fynbos: South Africa’s Unique Floral Kingdom year: 1995 ident: 3427_CR28 – volume: 48 start-page: 123 year: 2012 ident: 3427_CR22 publication-title: Biol Fertil Soils doi: 10.1007/s00374-011-0653-2 – volume-title: Biochemie der Pflanze year: 1996 ident: 3427_CR130 – volume: 18 start-page: 539 year: 2013 ident: 3427_CR20 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2013.06.004 – volume: 174 start-page: 23 year: 2014 ident: 3427_CR106 publication-title: Oecologia doi: 10.1007/s00442-013-2747-z – volume: 18 start-page: 287 year: 2015 ident: 3427_CR159 publication-title: Ecosystems doi: 10.1007/s10021-014-9830-0 – volume: 20 start-page: 83 year: 2015 ident: 3427_CR79 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.10.007 – volume-title: Reference soils of south-western Australia year: 1991 ident: 3427_CR100 – volume: 52 start-page: 435 year: 2004 ident: 3427_CR137 publication-title: Aust J Bot doi: 10.1071/BT03131 – volume: 334 start-page: 33 year: 2010 ident: 3427_CR124 publication-title: Plant Soil doi: 10.1007/s11104-010-0311-8 – start-page: 289 volume-title: Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants year: 2015 ident: 3427_CR77 doi: 10.1002/9781118958841.ch11 – volume: 40 start-page: 1971 year: 2008 ident: 3427_CR156 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.02.017 – volume: 52 start-page: 2245 year: 2001 ident: 3427_CR57 publication-title: J Exp Bot doi: 10.1093/jexbot/52.365.2245 – volume: 19 start-page: 167 year: 2000 ident: 3427_CR167 publication-title: J Plant Growth Regul doi: 10.1007/s003440000027 – volume: 91 start-page: 1591 year: 2010 ident: 3427_CR139 publication-title: Ecology doi: 10.1890/09-1858.1 – volume: 206 start-page: 507 year: 2015 ident: 3427_CR73 publication-title: New Phytol doi: 10.1111/nph.13203 – ident: 3427_CR72 doi: 10.1111/ele.12823 – volume-title: Mineral Nutrition of Higher Plants year: 1995 ident: 3427_CR97 – volume: 179 start-page: 303 year: 2012 ident: 3427_CR149 publication-title: Am Nat doi: 10.1086/664183 – volume: 403 start-page: 853 year: 2000 ident: 3427_CR107 publication-title: Nature doi: 10.1038/35002501 – volume: 150 start-page: 1 year: 1987 ident: 3427_CR56 publication-title: Z Pflanzenernähr Bodenkd doi: 10.1002/jpln.19871500102 – volume: 49 start-page: 775 year: 1998 ident: 3427_CR146 publication-title: J Exp Bot – volume: 144 start-page: 299 year: 2007 ident: 3427_CR155 publication-title: Plant Physiol doi: 10.1104/pp.106.091090 – volume: 96 start-page: 698 year: 2008 ident: 3427_CR157 publication-title: J Ecol doi: 10.1111/j.1365-2745.2008.01384.x – volume: 320 start-page: 1181 year: 2008 ident: 3427_CR34 publication-title: Science doi: 10.1126/science.1154836 – volume: 164 start-page: 375 year: 2004 ident: 3427_CR35 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01177.x – volume: 26 start-page: 39 year: 2012 ident: 3427_CR142 publication-title: Fungal Biol Rev doi: 10.1016/j.fbr.2012.01.001 – volume: 415 start-page: 68 year: 2002 ident: 3427_CR102 publication-title: Nature doi: 10.1038/415068a – volume: 82 start-page: 277 year: 2012 ident: 3427_CR61 publication-title: Ecol Monogr doi: 10.1890/11-1927.1 – volume: 178 start-page: 117 year: 2017 ident: 3427_CR86 publication-title: Int J Plant Sci doi: 10.1086/689199 – volume: 407 start-page: 275 year: 2016 ident: 3427_CR172 publication-title: Plant Soil doi: 10.1007/s11104-016-2998-7 – volume: 29 start-page: 919 year: 2006 ident: 3427_CR173 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01473.x – volume: 355 start-page: 181 year: 2017 ident: 3427_CR8 publication-title: Science doi: 10.1126/science.aai8212 – volume: 22 start-page: 1009 year: 2011 ident: 3427_CR119 publication-title: J Veg Sci doi: 10.1111/j.1654-1103.2011.01323.x – volume: 4 start-page: 37 year: 1962 ident: 3427_CR44 publication-title: Syst Assoc Publ – volume: 228 start-page: 83 year: 1970 ident: 3427_CR108 publication-title: Nature doi: 10.1038/228083a0 – volume: 288 start-page: 127 year: 2006 ident: 3427_CR117 publication-title: Plant Soil doi: 10.1007/s11104-006-9099-y – volume: 272 start-page: 143 year: 2005 ident: 3427_CR30 publication-title: Plant Soil doi: 10.1007/s11104-004-4336-8 – volume: 15 start-page: 1 year: 1976 ident: 3427_CR166 publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 90 start-page: 2808 year: 2009 ident: 3427_CR152 publication-title: Ecology doi: 10.1890/08-1884.1 – volume-title: Mycorrhizal Symbiosis year: 2008 ident: 3427_CR144 – volume: 10 start-page: 429 year: 1972 ident: 3427_CR99 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.py.10.090172.002241 – volume: 68 start-page: 154 year: 1981 ident: 3427_CR23 publication-title: Am J Bot doi: 10.1002/j.1537-2197.1981.tb12374.x – ident: 3427_CR63 doi: 10.1007/978-94-017-7395-9_4 |
SSID | ssj0003216 |
Score | 2.5963757 |
SecondaryResourceType | review_article |
Snippet | Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile... Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile... BackgroundMycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil.... BACKGROUND: Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Biomedical and Life Sciences Carboxylates Clusters Coexistence Ecological monitoring Ecology ecosystems Environmental aspects Exudation Fungi Life Sciences MARSCHNER REVIEW Mycorrhizae mycorrhizal fungi Nitrogen fixation nitrogen-fixing trees Nutrients Oomycetes Pathogens Phosphorus Plant Physiology Plant Sciences Plant species Proteaceae Roots soil Soil fertility Soil Science & Conservation Species suberization |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA5yKuiDaPW41VMiCIISyP7efaxyRxH0yULfQpIm9qC3W3Zbjvrf-J_6zf5oPVHBh0LZJrMpM5N8Q2a-YexN4p0pEFkIiwhIJNotBUBsJorSUYNjmJSk4uTPX7LZPPm0SBdDHXc7ZruPV5LdTn0sdsNJRRkTcIokygX23bsphe4w4nk0PWy_cdT1O6UvQublYrzK_JOIW4fRsCX3aYm3AOdvd6Td0XP5mD0aMCOf9kp-wu64asIeTr81A2-Gm7B7H2qgvP2E3b_oaKj3T9mPWX3DjVvXN1S5US05MUM0fR1Dy7sUdep15fi25kCBeEKsmB2E5rXn13vEpc3q6jverDG7qivx6zMq0USUDakch6tr3HrPN6u6xafZteLqekPJoZRxv-QrBLswRMoAcRzxbk8f3T5j88uLrx9nYmjIICyA3lZomzlpklJqAxiY6jgpY6Kv0WGea7O0cObI5s54VybWhXGoQ2-8JkxpfBbp-JSdYLXujPEitmma5wYAEAJtomXmYy-9N4jWpdMBk6NmlB3YyqlpxlodeZZJmQrKVKRMFQXs3WHKpqfq-Nfgt6RuRW4MuVYP1QhYHRFiqWmKPwcjTmXATjuLOMiEKcPuwjJg56OJqMHxWxURhgSELjDv9eFnuCzdw-jK1Tsag6g6Q6ybB-z9aFpHEX9d8_P_Gv2CPcAqiz5f7pydbJudewkAtTWvOof5CaEjFGE priority: 102 providerName: Springer Nature |
Title | How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems |
URI | https://www.jstor.org/stable/26652019 https://link.springer.com/article/10.1007/s11104-017-3427-2 https://www.proquest.com/docview/2025653380 https://www.proquest.com/docview/2084062827 |
Volume | 424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1di9NAFB3crQ_6ILq6GF3LCIKgDKT5bJ6k1daiuIhYqE9hZjLZLnSTmrQs9d_4Tz03mbSu4D6UljS5mXDvnTkncz8YexXkRg3BLIQGAxKBNJkAiI3EMDHU4Bgm5VJy8pfzaDYPPi3ChX3hVtuwym5ObCbqrNT0jpxIOrAHCJX7bv1TUNco2l21LTSOWA9T8BDkqzeenH_9tp-Lfa9pfko_hBsni25fs0mew8pHERhwssCLhXdjZbLzcxujeAN9_rNh2qxD04fsgQWQfNRq_BG7Y4oTdn90UdkiGuaE3R2XgHy7x-z3rLzmyqzKa0reKDJOxSGqNpWh5k2UOrW7MnxTcgBBHKHCmA2K5mXOr3agptXy8hfuJ3F1URbi72OUpQmiDakc66upzGrH18uyxqfa1uLyak3xoRR0n_El-C5skYJADAflbStI10_YfDr5_n4mbE8GoYH1NkLqyLgqSFypgARD6QeJTxVs5CCOpco0_NnTsVG5SQJtBv5ADnKVS4KVKo886Z-yY4zWPGV86OswjGMFDAiBOpBulPu5m-cKhN010mFup49U24Ll1DdjlR5KLZMKU6gwJRWmnsPe7C9Zt9U6bjv5NSk5JU-GXC1tQgJGRzWx0lGIh4Mdh67DThs72MuENYdATonDzjrDSK3v1-nBUh32cv83vJa2YmRhyi2dA2Idge7GDnvbGdRBxH_H_Oz2Gz5n9zCsYRsjd8aON9XWvABo2qg-643GH8ZT-v744_Okbz2lz47m3ugPUaYaSQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UVLA-iFaLq1VHUARlYLPX7INIqi2pbYNIC3nbzk5mTSHNprsJIf4b_4C_0e_sJbGCfetDICS7Zyecy3xf5lyI3nipSTpgFlKDAUlPmaEEiA1kJzI84BgmZXNx8kk_6J15Xwf-YIN-N7UwnFbZxMQyUA8zzf-RM0kH9gChsj9NryRPjeLT1WaERmUWR2a5AGUrPh5-gX7fOs7B_unnnqynCkgNtDKTSgfGTrzIVgmwjK9cD5w-9DqqHYYqGWpYpKNDk6Qm8rRpu23VTpNUMTBK0sBRLuTeoU3PBZVp0ebefv_b91Xsd51y2Cq_kXYYDZpz1LJYDzstZ3zAqT0nlM61nbDeD6qcyGto958D2nLfO3hID2rAKrqVhT2iDTPZpvvdH3ndtMNs0929DBBz-Zh-9bKFSMw4W3CxyGQouBlFXpVOFKLMiufxWkbMMgHgiU-4EWeJ2kWWisslqHA-uviJ5yncPckm8u_PuCoUxB5SBfZzk5vxUkxHWYFXPi_kxeWU81E5yX8oRuDXsH1OOjECFLvqWF08obNb0dYOtbBa85REx9W-H4YJMCcEak_ZQeqmdpomEeKeURbZjT5iXTdI5zkd43jd2plVGEOFMaswdix6v7plWnUHuenid6zkmCMH5GpVF0BgddyDK-76-HHwG9-2aKe0g5VMeI8PpBZZtNsYRlzHmiJee4ZFr1dfI0rw0Y-amGzO14DIB6DXoUUfGoNai_jvmp_d_MBXdK93enIcHx_2j57TFpbYqfLzdqk1y-fmBQDbLHlZe4mg89t2zD-AmlQF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UVEQfRKvF1aojKIIyuNlr9kEktQ2p1VDEQt62M5tZU0izcTchxH_j3_DX-Z29JFawb30IhGT37IRzzpzvy5wL0UsvNboDZiETMCDpKTOSALGB7ESGBxzDpGwuTv4yCPqn3qehP9yi300tDKdVNntiuVGPsoT_I2eSDuwBQmW_S-u0iJOD3ofZD8kTpPiktRmnUZnIsVktQd-K90cH0PUrx-kdfvvYl_WEAZkAucylSgJjay-ylQau8ZXrgd-HXke1w1DpUQLrdJLQ6NREXmLablu1U50qBkk6DRzlQu4N2g7BiuwWbe8fDk6-ruOA65SDV_mNtMNo2JyploV7iLqc_QEH95xQOpeiYh0bqvzIS8j3n8PaMgb27tHdGryKbmVt92nLTHfoTvd7XjfwMDt0cz8D3Fw9oF_9bCm0mWRLLhyZjgQ3psirMopClBnyPGrLiHkmAELxCTflLBG8yFJxsQItzsfnP_E8hbun2VT-_RlXiILkQ6pAbDe5mazEbJwVeOWLQp5fzDg3lRP-R2IMrg0_4AQUI0C3q-7VxUM6vRZt7VILqzWPSHTcxPfDUAN_QmDiKTtI3dROUx1BlUZZZDf6iJO6WTrP7JjEmzbPrMIYKoxZhbFj0Zv1LbOqU8hVF79mJce8i0BuoupiCKyO-3HFXR8_Dj7k2xbtlnawlglP8oHaIov2GsOI632niDdeYtGL9dfYMfgYSE1NtuBrQOoDUO3QoreNQW1E_HfNj69-4HO6BYeMPx8Njp_QbaywU6Xq7VFrni_MU2C3uX5WO4mgs-v2yz9Colg6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+belowground+interactions+contribute+to+the+coexistence+of+mycorrhizal+and+non-mycorrhizal+species+in+severely+phosphorus-impoverished+hyperdiverse+ecosystems&rft.jtitle=Plant+and+soil&rft.au=Lambers%2C+Hans&rft.au=Albornoz%2C+Felipe&rft.au=Kotula%2C+Lukasz&rft.au=Lalibert%C3%A9%2C+Etienne&rft.date=2018-03-01&rft.pub=Springer&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=424&rft.issue=1%2F2&rft.spage=11&rft.epage=33&rft_id=info:doi/10.1007%2Fs11104-017-3427-2&rft.externalDocID=26652019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |