How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems

Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 424; no. 1/2; pp. 11 - 33
Main Authors Lambers, Hans, Albornoz, Felipe, Kotula, Lukasz, Laliberté, Etienne, Ranathunge, Kosala, Teste, François P., Zemunik, Graham
Format Journal Article
LanguageEnglish
Published Cham Springer 01.03.2018
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
AbstractList BackgroundMycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence.ScopeWe surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis.ConclusionsThe absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N.sub.2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants' defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
BACKGROUND: Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. SCOPE: We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N₂-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. CONCLUSIONS: The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence. Scope We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N 2 -fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis. Conclusions The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
Audience Academic
Author Lambers, Hans
Albornoz, Felipe
Kotula, Lukasz
Ranathunge, Kosala
Laliberté, Etienne
Zemunik, Graham
Teste, François P.
Author_xml – sequence: 1
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
– sequence: 2
  givenname: Felipe
  surname: Albornoz
  fullname: Albornoz, Felipe
– sequence: 3
  givenname: Lukasz
  surname: Kotula
  fullname: Kotula, Lukasz
– sequence: 4
  givenname: Etienne
  surname: Laliberté
  fullname: Laliberté, Etienne
– sequence: 5
  givenname: Kosala
  surname: Ranathunge
  fullname: Ranathunge, Kosala
– sequence: 6
  givenname: François P.
  surname: Teste
  fullname: Teste, François P.
– sequence: 7
  givenname: Graham
  surname: Zemunik
  fullname: Zemunik, Graham
BookMark eNp9kc9u1DAQxiNUJLaFB-CAZIkLlxT_SezNsaqAVqrEBSRukeOd7HqV2MHjUMLb8KbMKqigHirLsmb0_WbG850XZyEGKIrXgl8Kzs17FELwquTClKqSppTPio2ojSprrvRZseFcyZKb5tuL4hzxyE-x0Jvi9028Zx0M8X6f4hx2zIcMybrsY0DmYsjJd3MGliPLB6AM_PSYIThgsWfj4mJKB__LDswSTVOV_-dwAucBqSpD-AEJhoVNh4h004ylH6dIWY8H2LHDMkHaeYoRGLiIC_UZ8WXxvLcDwqu_70Xx9eOHL9c35d3nT7fXV3elq0WTS-s08K5quO10rWurqkYpU22tMMZ2O9doJZ2BroemciCUsKLveqtFrbpeS6suindr3SnF7zNgbkePDobBBogztpJvK67lVhqSvn0kPcY5BZqOVJK6K7XlpLpcVXs7QOtDHzMtls4ORk-bhd5T_qqmSbdG1ifArIBLETFB3zqf7ckJAv3QCt6evG5Xr1vyuj153UoixSNySn60aXmSkSuDpA17SP8-8RT0ZoWOmGN66CK1riUXjfoD6ebMmg
CitedBy_id crossref_primary_10_3390_agronomy14030456
crossref_primary_10_1111_ejss_13571
crossref_primary_10_1007_s11104_018_3828_x
crossref_primary_10_1080_00103624_2024_2404649
crossref_primary_10_1111_nph_15200
crossref_primary_10_1071_FP21031
crossref_primary_10_1111_nph_19489
crossref_primary_10_1016_j_ecocom_2019_100787
crossref_primary_10_1038_s41559_020_01323_w
crossref_primary_10_1093_jpe_rtac058
crossref_primary_10_1111_nph_16499
crossref_primary_10_1016_j_tplants_2021_07_014
crossref_primary_10_1007_s11104_018_3616_7
crossref_primary_10_3389_fpls_2024_1371123
crossref_primary_10_1111_1365_2745_13468
crossref_primary_10_1111_aec_12759
crossref_primary_10_1515_biol_2021_0137
crossref_primary_10_1111_1365_2745_13188
crossref_primary_10_1016_j_foreco_2018_10_055
crossref_primary_10_1016_j_chemosphere_2021_130135
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_15252_embr_202255697
crossref_primary_10_1002_ecs2_3821
crossref_primary_10_1007_s11104_018_3876_2
crossref_primary_10_5632_jilaonline_16_98
crossref_primary_10_1007_s00344_022_10836_6
crossref_primary_10_1111_nph_17572
crossref_primary_10_1007_s00374_023_01709_5
crossref_primary_10_1007_s11104_020_04427_1
crossref_primary_10_1007_s00248_024_02374_3
crossref_primary_10_1002_ecs2_2716
crossref_primary_10_3390_plants11182340
crossref_primary_10_1007_s11104_021_04886_0
crossref_primary_10_1016_j_ppees_2019_04_001
crossref_primary_10_1016_j_scitotenv_2021_146136
crossref_primary_10_1088_1748_9326_aaeae7
crossref_primary_10_1016_j_tplants_2021_07_003
crossref_primary_10_1007_s11104_022_05517_y
crossref_primary_10_1007_s11104_023_05918_7
crossref_primary_10_3390_f14091919
crossref_primary_10_1093_biolinnean_blaa141
crossref_primary_10_1007_s11104_022_05347_y
crossref_primary_10_1111_pce_13991
crossref_primary_10_1071_FP19122
crossref_primary_10_1111_nph_15833
crossref_primary_10_1111_nph_17854
crossref_primary_10_3389_fpls_2022_1080014
crossref_primary_10_1007_s11104_021_05140_3
crossref_primary_10_1016_j_pld_2021_06_005
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_1038_s42003_024_05999_9
crossref_primary_10_1111_avsc_12399
crossref_primary_10_1111_nph_19501
crossref_primary_10_1093_lambio_ovaf009
crossref_primary_10_1007_s42832_020_0070_2
crossref_primary_10_1007_s11104_020_04544_x
crossref_primary_10_1016_j_ecoenv_2018_12_100
crossref_primary_10_1016_j_foreco_2021_119459
crossref_primary_10_1016_j_foreco_2020_118800
crossref_primary_10_1016_j_micres_2021_126842
crossref_primary_10_3390_f14010114
crossref_primary_10_1007_s11104_019_03982_6
crossref_primary_10_1111_ele_14309
crossref_primary_10_1071_BT23057
crossref_primary_10_1007_s00572_023_01111_x
crossref_primary_10_1007_s11104_024_06710_x
crossref_primary_10_1007_s11104_022_05479_1
crossref_primary_10_1007_s00442_020_04733_6
crossref_primary_10_1016_j_stress_2022_100104
crossref_primary_10_1016_j_pedobi_2023_150908
crossref_primary_10_1007_s11104_022_05566_3
crossref_primary_10_3390_agronomy13061570
crossref_primary_10_1007_s11104_019_04056_3
crossref_primary_10_12688_f1000research_13008_1
crossref_primary_10_1093_jpe_rtaa030
crossref_primary_10_1093_aob_mcz162
crossref_primary_10_1007_s11104_020_04641_x
crossref_primary_10_1111_1365_2435_13324
crossref_primary_10_1038_s41597_019_0141_3
crossref_primary_10_1016_j_tplants_2024_04_009
crossref_primary_10_1111_ele_13713
crossref_primary_10_1111_nph_19567
crossref_primary_10_1002_ece3_4397
crossref_primary_10_1016_j_apsoil_2023_105206
crossref_primary_10_1093_biolinnean_blaa179
crossref_primary_10_1002_ece3_7544
crossref_primary_10_1093_biolinnean_blaa213
crossref_primary_10_1111_aec_13489
crossref_primary_10_1007_s11104_018_3618_5
crossref_primary_10_1111_nph_70010
crossref_primary_10_1007_s11104_022_05559_2
crossref_primary_10_1007_s11104_023_06080_w
crossref_primary_10_1080_01448765_2021_1903556
crossref_primary_10_1111_ppl_12704
crossref_primary_10_1111_rec_13202
crossref_primary_10_1007_s00572_023_01134_4
crossref_primary_10_1016_j_soilbio_2024_109385
crossref_primary_10_1093_jxb_eraa515
crossref_primary_10_1007_s11829_023_10005_w
crossref_primary_10_1016_j_envres_2021_111924
crossref_primary_10_1016_j_tplants_2020_04_013
crossref_primary_10_3389_fmicb_2022_1036362
crossref_primary_10_1007_s11104_023_05935_6
crossref_primary_10_1007_s11104_020_04690_2
crossref_primary_10_1146_annurev_arplant_102720_125738
crossref_primary_10_1111_1365_2745_13413
crossref_primary_10_1007_s11104_024_06649_z
crossref_primary_10_1002_ecy_3259
crossref_primary_10_1038_s42003_023_04722_4
crossref_primary_10_1111_nph_15910
crossref_primary_10_1016_j_tplants_2021_08_003
crossref_primary_10_1093_aob_mcad199
crossref_primary_10_3390_plants12051110
crossref_primary_10_1007_s00253_023_12992_5
crossref_primary_10_1007_s11104_024_06740_5
crossref_primary_10_1016_j_fmre_2022_09_028
crossref_primary_10_1126_sciadv_add4468
crossref_primary_10_1007_s11104_019_03989_z
crossref_primary_10_1007_s11103_021_01143_x
crossref_primary_10_3389_fpls_2021_650616
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1111_jvs_13010
crossref_primary_10_1016_j_fecs_2024_100234
crossref_primary_10_1093_biolinnean_blaa160
crossref_primary_10_1111_1365_2745_13048
crossref_primary_10_3390_d14060493
crossref_primary_10_1007_s00572_021_01047_0
crossref_primary_10_1007_s11104_021_05079_5
crossref_primary_10_1007_s11104_018_3810_7
crossref_primary_10_1111_nph_16833
crossref_primary_10_1016_j_scitotenv_2023_166395
crossref_primary_10_1093_conphys_coae018
crossref_primary_10_1111_1365_2435_13479
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1111_1365_2435_14726
crossref_primary_10_1007_s00442_022_05262_0
crossref_primary_10_1007_s10457_025_01148_1
crossref_primary_10_1093_treephys_tpaa081
crossref_primary_10_1111_jvs_13301
crossref_primary_10_1007_s00442_022_05224_6
crossref_primary_10_1111_1365_2745_13158
crossref_primary_10_17221_254_2023_PSE
crossref_primary_10_1007_s11104_023_06382_z
crossref_primary_10_1093_biolinnean_blaa170
crossref_primary_10_1016_j_scitotenv_2020_136495
crossref_primary_10_1007_s11104_019_03972_8
crossref_primary_10_1111_jac_12514
Cites_doi 10.1016/j.plantsci.2012.02.010
10.1146/annurev-ecolsys-112414-054306
10.3732/ajb.1200277
10.1890/14-0871.1
10.1111/mec.13778
10.1046/j.1469-8137.1997.00729.x
10.1139/b97-864
10.1111/1365-2745.12758
10.2307/2403495
10.1139/b84-391
10.1146/annurev-genet-102209-163508
10.1111/j.1365-2745.2008.01373.x
10.5091/plecevo.2016.1176
10.1038/nplants.2015.109
10.1093/aob/mct035
10.1007/BF02374894
10.1016/j.pbi.2015.04.002
10.2307/2260320
10.1007/s11104-013-1750-9
10.1007/s005720050007
10.1007/s11104-004-2725-7
10.1071/WF07155
10.1006/pmpp.1998.0179
10.1046/j.1365-3040.1997.d01-20.x
10.1023/A:1015798428743
10.1094/PHYTO-98-11-1179
10.1007/s11104-004-0264-x
10.1007/978-94-017-7395-9_5
10.1139/b88-080
10.1890/05-1606
10.1038/265438a0
10.1007/s11104-015-2547-9
10.1016/j.tree.2013.02.008
10.1071/PP9760349
10.1016/j.plantsci.2016.12.010
10.1016/j.tree.2007.10.008
10.1016/j.foreco.2017.05.037
10.1016/j.foreco.2005.08.006
10.1071/BT96049
10.1093/acprof:oso/9780199679584.001.0001
10.1111/1365-2435.12270
10.1071/BT10059
10.1007/s11104-008-9877-9
10.1139/b86-248
10.1007/s11104-015-2637-8
10.1016/0169-5347(96)10044-6
10.1111/pce.12340
10.1016/j.tree.2017.02.011
10.1007/s00442-004-1501-y
10.1073/pnas.0704591104
10.1007/s11104-015-2764-2
10.1101/113308
10.1111/jbi.12429
10.1111/mec.13363
10.1007/s11104-011-0731-0
10.1086/282687
10.1126/science.1143082
10.1093/aob/mcl114
10.1111/nph.12868
10.1111/j.1469-8137.1988.tb04188.x
10.1007/s00442-004-1788-8
10.1094/PHYTO-99-12-1412
10.1002/ece3.2000
10.1023/A:1022367312851
10.1007/s11104-016-2934-x
10.1023/A:1015831610452
10.1126/science.aai8291
10.1038/nplants.2015.1050
10.1104/pp.120.3.705
10.1007/BF02860714
10.1146/annurev.py.32.090194.002213
10.1098/rstb.2013.0119
10.1128/EC.00091-08
10.1002/9781118958841.ch14
10.1111/j.2007.0030-1299.16130.x
10.1111/j.1365-2745.2012.01962.x
10.1111/j.1469-8137.1991.tb00039.x
10.1111/nph.12778
10.1016/j.pedobi.2009.10.002
10.1093/jxb/38.9.1446
10.1093/jpe/rtp015
10.1093/jexbot/53.368.525
10.1104/pp.103.035659
10.1007/BF02374754
10.1007/s00442-017-3961-x
10.1146/annurev-ecolsys-121415-032100
10.1016/S0169-5347(00)89157-0
10.1111/nph.12478
10.1111/1365-2745.12546
10.1038/sj.emboj.7600034
10.1016/j.soilbio.2015.09.021
10.1111/pce.12367
10.1007/s005720050147
10.1023/A:1026285813248
10.1007/s11104-009-0068-0
10.1111/1365-2745.12638
10.1111/j.1469-185X.2007.00017.x
10.1007/s11104-010-0444-9
10.1111/nph.13175
10.1111/j.1095-8339.1990.tb00176.x
10.1023/A:1010367501363
10.1111/nph.14057
10.2307/2261180
10.1094/Phyto-78-1070
10.1007/s00344-003-0002-2
10.1007/BF00137608
10.2307/2418500
10.1111/j.1469-8137.1984.tb03609.x
10.1071/CP13268
10.1111/1365-2745.12752
10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
10.1016/S0169-5347(03)00127-7
10.1104/pp.103.3.695
10.3732/ajb.1200474
10.1007/BF02465218
10.1111/j.1469-8137.1990.tb00451.x
10.1007/BF02912621
10.1016/j.soilbio.2013.01.013
10.1104/pp.108.134098
10.1111/1365-2745.12196
10.1111/j.1469-8137.1979.tb07567.x
10.1111/j.1365-2745.2009.01557.x
10.1111/j.1744-7909.2010.00892.x
10.1007/s00374-011-0653-2
10.1016/j.tplants.2013.06.004
10.1007/s00442-013-2747-z
10.1007/s10021-014-9830-0
10.1016/j.tplants.2014.10.007
10.1071/BT03131
10.1007/s11104-010-0311-8
10.1002/9781118958841.ch11
10.1016/j.soilbio.2008.02.017
10.1093/jexbot/52.365.2245
10.1007/s003440000027
10.1890/09-1858.1
10.1111/nph.13203
10.1111/ele.12823
10.1086/664183
10.1038/35002501
10.1002/jpln.19871500102
10.1104/pp.106.091090
10.1111/j.1365-2745.2008.01384.x
10.1126/science.1154836
10.1111/j.1469-8137.2004.01177.x
10.1016/j.fbr.2012.01.001
10.1038/415068a
10.1890/11-1927.1
10.1086/689199
10.1007/s11104-016-2998-7
10.1111/j.1365-3040.2005.01473.x
10.1126/science.aai8212
10.1111/j.1654-1103.2011.01323.x
10.1038/228083a0
10.1007/s11104-006-9099-y
10.1007/s11104-004-4336-8
10.1016/0016-7061(76)90066-5
10.1890/08-1884.1
10.1146/annurev.py.10.090172.002241
10.1002/j.1537-2197.1981.tb12374.x
10.1007/978-94-017-7395-9_4
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Springer International Publishing AG 2017
COPYRIGHT 2018 Springer
Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: Springer International Publishing AG 2017
– notice: COPYRIGHT 2018 Springer
– notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-017-3427-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database


AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 33
ExternalDocumentID A534987250
10_1007_s11104_017_3427_2
26652019
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACKIV
ADINQ
ADYPR
AEBTG
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
BBWZM
CAG
COF
EN4
GQ6
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c519t-ac6e0b490ab6565a34933748a177abdc9632c7ebfe94ce131a1fbfa6153bf62a3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Thu Jul 10 18:08:21 EDT 2025
Fri Jul 25 19:09:28 EDT 2025
Tue Jun 10 20:35:15 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 01:47:01 EDT 2025
Fri Feb 21 02:33:32 EST 2025
Thu Jun 19 23:15:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Competition
Facilitation
Mycorrhizas
Carboxylates, cluster roots
Non-mycorrhizal plants
Phosphorus
Proteaceae
Hyperdiverse ecosystems
Pathogen defence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-ac6e0b490ab6565a34933748a177abdc9632c7ebfe94ce131a1fbfa6153bf62a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
content type line 23
ORCID 0000-0002-4118-2272
OpenAccessLink https://link.springer.com/content/pdf/10.1007%2Fs11104-017-3427-2.pdf
PQID 2025653380
PQPubID 54098
PageCount 23
ParticipantIDs proquest_miscellaneous_2084062827
proquest_journals_2025653380
gale_infotracacademiconefile_A534987250
crossref_citationtrail_10_1007_s11104_017_3427_2
crossref_primary_10_1007_s11104_017_3427_2
springer_journals_10_1007_s11104_017_3427_2
jstor_primary_26652019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2018
Publisher Springer
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer International Publishing
– name: Springer Nature B.V
References HerreEAMejíaLCKylloDARojasEMaynardZButlerAVan BaelSAEcological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizaeEcology2007885505581750358110.1890/05-1606
ThomasRFangXRanathungeKAndersonTRPetersonCABernardsMASoybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojaePlant Physiol20071442993111:CAS:528:DC%2BD2sXls1Kjtbw%3D17494920191377610.1104/pp.106.091090
McIntireEJBFajardoAFacilitation as a ubiquitous driver of biodiversityNew Phytol20142014034162410226610.1111/nph.12478
PaulEASoil Microbiology, Ecology and Biochemistry2014AmsterdamElsevier Academic Press
WeisskopfLAbou-MansourEFrominNTomasiNSanteliaDEdelkottINeumannGAragnoMTabacchiRMartinoiaEWhite lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisitionPlant Cell Environ2006299199271:CAS:528:DC%2BD28Xlt1GrsrY%3D1708747510.1111/j.1365-3040.2005.01473.x
LulaiECCorsiniDLDifferential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosumL.) wound-healingPhysiol Mol Plant Pathol1998532092221:CAS:528:DyaK1MXhtVKrsbg%3D10.1006/pmpp.1998.0179
CairneyJEctomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soilsPlant Soil201134451711:CAS:528:DC%2BC3MXnsVCjt7c%3D10.1007/s11104-011-0731-0
CescoSMimmoTTononGTomasiNPintonRTerzanoRNeumannGWeisskopfLRenellaGLandiLNannipieriPPlant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A reviewBiol Fertil Soils2012481231491:CAS:528:DC%2BC38XhtFGis7Y%3D10.1007/s00374-011-0653-2
GibsonNKeigheryGJLyonsMNWebbATerrestrial flora and vegetation of the Western Australian wheatbeltRec WA Mus200467139189
BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9
SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057
TurnerBLLalibertéESoil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern AustraliaEcosystems2015182873091:CAS:528:DC%2BC2cXitFKmur7O10.1007/s10021-014-9830-0
PeñuelasJAsensioDThollDWenkeKRosenkranzMPiechullaBSchnitzlerJPBiogenic volatile emissions from the soilPlant Cell Environ201437186618912468984710.1111/pce.123401:CAS:528:DC%2BC2cXhtFOlsLjF
LiangMLiuXEtienneRSHuangFWangYYuSArbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogensEcology2015965625742624087610.1890/14-0871.1
WehnerJAntunesPMPowellJRMazukatowJRilligMCPlant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity?Pedobiologia20105319720110.1016/j.pedobi.2009.10.002
LambersHMartinoiaERentonMPlant adaptations to severely phosphorus-impoverished soilsCurr Opin Plant Biol20152523311:CAS:528:DC%2BC2MXms1yitbk%3D2591278310.1016/j.pbi.2015.04.002
DuchesneLCPetersonRLEllisBEPine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutusNew Phytol19881084714761:CAS:528:DyaL1cXktlGitbs%3D10.1111/j.1469-8137.1988.tb04188.x
AlbornozFELambersHTurnerBLTesteFPLalibertéEShifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequenceEcol Evol201662368237727066229478224510.1002/ece3.2000
KolattukudyPEEspelieKEChemistry, biochemistry and functions of suberin associated waxesNatural Products of Woody Plants I. Ed. J W Rowe1989New YorkSpringer-Verlag235287
LiX-LGeorgeEMarschnerHPhosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammoniumNew Phytol19911193974041:CAS:528:DyaK38Xot1Ogtw%3D%3D10.1111/j.1469-8137.1991.tb00039.x
MulerALOliveiraRSLambersHVeneklaasEJDoes cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?Oecologia201417423312393406410.1007/s00442-013-2747-z
PateJSBeardJSKwongan. Plant Life of the Sandplain1984NedlandsUniversity of Western Australia Press
NewshamKKFitterAHWatkinsonARMulti-functionality and biodiversity in arbuscular mycorrhizasTrends Ecol Evol1995104074111:STN:280:DC%2BC3M7itFeisg%3D%3D2123708510.1016/S0169-5347(00)89157-0
TurnerBLResource partitioning for soil phosphorus: a hypothesisJ Ecol2008966987021:CAS:528:DC%2BD1cXptFygs70%3D10.1111/j.1365-2745.2008.01384.x
WalkerTWSyersJKThe fate of phosphorus during pedogenesisGeoderma197615191:CAS:528:DyaE28Xht1Cltro%3D10.1016/0016-7061(76)90066-5
MarschnerHMineral Nutrition of Higher Plants1995LondonAcademic Press
VeneklaasEJStevensJCawthrayGRTurnerSGriggAMLambersHChickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil20032481871971:CAS:528:DC%2BD3sXhtFCqs7k%3D10.1023/A:1022367312851
AllsoppNColvilleJFVerboomGAFynbos: Ecology, Evolution, and Conservation of a Megadiverse Region2014OxfordOxford University Press10.1093/acprof:oso/9780199679584.001.0001
Png G K, Turner B L, Albornoz F E, Hayes P E, Lambers H and Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol, n/a-n/a
RichardsonSPeltzerDAllenRMcGloneMParfittRRapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequenceOecologia20041392672761475853510.1007/s00442-004-1501-y
HartMMReaderRJKlironomosJNPlant coexistence mediated by arbuscular mycorrhizal fungiTrends Ecol Evol20031841842310.1016/S0169-5347(03)00127-7
Turner B L, Laliberté E and Hayes P E (2017) A climosequence of chronosequences in southwestern Australia. bioRxiv
HopmansPBauhusJKhannaPWestonCCarbon and nitrogen in forest soils: Potential indicators for sustainable management of eucalypt forests in south-eastern AustraliaFor Ecol Manag2005220758710.1016/j.foreco.2005.08.006
OriansGHMilewskiAVEcology of Australia: The effects of nutrient-poor soils and intense firesBiol Rev2007823934231762496110.1111/j.1469-185X.2007.00017.x
Jones MD, Durall DM, Tinker PB (1992) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol 115:259–267
CowlingRMPottsAJBradshawPLColvilleJArianoutsouMFerrierSForestFFyllasNMHopperSDOjedaFProcheşŞSmithRJRundelPWVassilakisEZuttaBRVariation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stabilityJ Biogeogr20144255256410.1111/jbi.12429
Jakobsen I and Hammer E (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 91–131. Springer Netherlands
GillettJBPest pressure, an underestimated factor in evolutionSyst Assoc Publ196243746
LambersHHayesPELalibertéEOliveiraRSTurnerBLLeaf manganese accumulation and phosphorus-acquisition efficiencyTrends Plant Sci20152083901:CAS:528:DC%2BC2cXhvVGksr%2FJ2546697710.1016/j.tplants.2014.10.007
HallidayJPateJSSymbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significanceFunct Plant Biol197633493581:CAS:528:DyaE28XktFOhtro%3D
HingstonFJMalajczukNGroveTSAcetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate applicationJ Appl Ecol19821963164510.2307/2403495
Laliberté E, Kardol P, Didham R K, Teste F P, Turner B L and Wardle D A (2017) Soil fertility shapes belowground food webs across a regional climate gradient. Ecol Lett, n/a-n/a
LambersHShaneMWLalibertéESwartsNDTesteFPZemunikGLambersHPlant mineral nutritionPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing101127
PerumallaCJPetersonCAEnstoneDEA survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermisBot J Linn Soc19901039311210.1111/j.1095-8339.1990.tb00176.x
HuitemaKvan den DikkenbergJBrouwersJFHolthuisJCIdentification of a family of animal sphingomyelin synthasesEMBO J20042333441:CAS:528:DC%2BD2cXhtVequr4%3D1468526310.1038/sj.emboj.7600034
LalibertéELambersHBurgessTIWrightSJPhosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublandsNew Phytol20152065075212549468210.1111/nph.132031:CAS:528:DC%2BC2MXkvFCksLY%3D
StachowiczJJMutualism, facilitation, and the structure of ecological communitiesBioscience20015123524610.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
BurrowsNWardell-JohnsonGAbbottIBurrowsNFire and plant interactions in forested ecosystems of south-west Western AustraliaFire in Ecosystems of the South-west Western Australia: Impact and Management2003LeidenBackhuys Publishers225268
ZemunikGTurnerBLLambersHLalibertéEIncreasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspotJ Ecol201610479280510.1111/1365-2745.12546
Huang G, Hayes P E, Ryan M H, Pang J and Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration. Oecologia in press
VosCSchoutedenNvan TuinenDChatagnierOElsenADe WaeleDPanisBGianinazzi-PearsonVMycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomatoSoil Biol Biochem20136045541:CAS:528:DC%2BC3sXktlKgsL0%3D10.1016/j.soilbio.2013.01.013
TesteFPSimardSWDurallDMGuyRDJonesMDSchoonmakerALAccess to mycorrhizal networks and roots of trees: importance for seedling survival
3427_CR58
E Laliberté (3427_CR73) 2015; 206
AP Hansen (3427_CR46) 1987; 38
BL Turner (3427_CR158) 2013; 367
E Steudle (3427_CR146) 1998; 49
BK Pekin (3427_CR119) 2011; 22
SD Hopper (3427_CR54) 2009; 322
3427_CR179
M Delgado (3427_CR32) 2015; 395
ND Bonawitz (3427_CR11) 2010; 44
K Ranathunge (3427_CR126) 2008; 98
H Marschner (3427_CR97) 1995
SE Smith (3427_CR144) 2008
AV Lygin (3427_CR94) 2009; 99
H Sainz Rozas (3427_CR131) 2012; 38
FP Teste (3427_CR151) 2016; 92
L Layla Aerne-Hains (3427_CR86) 2017; 178
L Weisskopf (3427_CR173) 2006; 29
DD Cameron (3427_CR20) 2013; 18
KG Peay (3427_CR118) 2016; 47
3427_CR169
3427_CR66
EC Lulai (3427_CR93) 1998; 53
J Terborgh (3427_CR149) 2012; 179
G Zemunik (3427_CR182) 2016; 104
H Maherali (3427_CR96) 2007; 316
BL Turner (3427_CR159) 2015; 18
3427_CR164
FP Teste (3427_CR153) 2014; 28
JCMS Moura (3427_CR105) 2010; 52
3427_CR63
BL Turner (3427_CR157) 2008; 96
3427_CR62
3427_CR160
Q Yao (3427_CR180) 2001; 230
RM Cowling (3427_CR27) 2014; 42
H Lambers (3427_CR77) 2015
J Wehner (3427_CR171) 2010; 53
N Strobel (3427_CR147) 1991; 81
JF Ma (3427_CR95) 2003; 256
JJ Stachowicz (3427_CR145) 2001; 51
S Cesco (3427_CR22) 2012; 48
H Lambers (3427_CR75) 2010; 334
GH Orians (3427_CR113) 2007; 82
B Lamont (3427_CR84) 1982; 48
AJ Valentine (3427_CR161) 2017; 256
3427_CR78
RS Wittkuhn (3427_CR178) 2017; 399
K Enkerli (3427_CR38) 1997; 75
DH Marx (3427_CR99) 1972; 10
LH Clark (3427_CR23) 1981; 68
3427_CR72
MCR Campos de (3427_CR31) 2013; 111
J Halliday (3427_CR45) 1976; 3
RM Cowling (3427_CR26) 1996; 5
JD Weidenhamer (3427_CR172) 2016; 407
JA Raven (3427_CR127) 2012; 188-189
JGH Wessels (3427_CR175) 1994; 32
DH Janzen (3427_CR64) 1970; 104
FO Silveira (3427_CR140) 2016; 403
MB Branzanti (3427_CR14) 1999; 9
P Reddell (3427_CR128) 1997; 45
M Watt (3427_CR170) 1999; 120
TH DeLuca (3427_CR34) 2008; 320
E Oburger (3427_CR111) 2014; 203
SJ Pearse (3427_CR117) 2006; 288
BA Sikes (3427_CR138) 2009; 97
MW Shane (3427_CR135) 2004; 135
3427_CR143
J Cairney (3427_CR18) 2011; 344
FP Teste (3427_CR154) 2015; 38
EJB McIntire (3427_CR101) 2014; 201
P Hopmans (3427_CR53) 2005; 220
3427_CR141
3427_CR1
N Burrows (3427_CR17) 2003
EA Paul (3427_CR116) 2014
DA Wardle (3427_CR168) 2008; 117
PG Kennedy (3427_CR67) 2012; 99
DJ Coates (3427_CR24) 2014
FP Teste (3427_CR150) 2017; 355
BL Shearer (3427_CR137) 2004; 52
H Bramley (3427_CR12) 2009; 150
B Branzanti (3427_CR13) 1994; 4
R Thomas (3427_CR155) 2007; 144
WM McArthur (3427_CR100) 1991
E Laliberté (3427_CR74) 2012; 100
AR Biggs (3427_CR10) 1988; 78
BA Sikes (3427_CR139) 2010; 91
H Lambers (3427_CR82) 2006; 98
C Azcón-Aguilar (3427_CR6) 1997; 6
MM Minton (3427_CR104) 2016; 149
TW Walker (3427_CR166) 1976; 15
J Peñuelas (3427_CR120) 2014; 37
ETF Witkowski (3427_CR177) 1987; 75
FE Albornoz (3427_CR3) 2016; 6
3427_CR132
LC Duchesne (3427_CR37) 1988; 108
K Huitema (3427_CR59) 2004; 23
H Lambers (3427_CR83) 2014
FJ Hingston (3427_CR52) 1982; 19
PE Kolattukudy (3427_CR69) 1989
KK Newsham (3427_CR109) 1995; 85
N Tomasi (3427_CR156) 2008; 40
EA Herre (3427_CR51) 2007; 88
N Allsopp (3427_CR5) 2014
RB McKane (3427_CR102) 2002; 415
NC Johnson (3427_CR65) 1997; 135
E Hose (3427_CR57) 2001; 52
H Lambers (3427_CR76) 2013; 100
WK Gardner (3427_CR42) 1983; 70
N Gibson (3427_CR43) 2004; 67
H Lambers (3427_CR81) 2008; 23
JH Connell (3427_CR25) 1971
AL Muler (3427_CR106) 2014; 174
STT Cu (3427_CR30) 2005; 272
C Vos (3427_CR165) 2013; 60
H Lambers (3427_CR79) 2015; 20
G Certini (3427_CR21) 2005; 143
3427_CR123
EJ Veneklaas (3427_CR162) 2003; 248
L Li (3427_CR89) 2014; 203
KK Newsham (3427_CR110) 1995; 10
L Li (3427_CR88) 2007; 104
CJ Perumalla (3427_CR122) 1990; 103
X He (3427_CR50) 2009; 2
E Owusu-Bennoah (3427_CR114) 1979; 82
WK Gardner (3427_CR41) 1983; 70
DE Enstone (3427_CR39) 2003; 21
PE Kolattukudy (3427_CR68) 1984; 62
S Schmidt (3427_CR133) 1997; 20
MA Huston (3427_CR61) 2012; 82
3427_CR33
W Hartung (3427_CR48) 2002; 240
H Li (3427_CR87) 2013; 64
CJ Perumalla (3427_CR121) 1986; 64
M Liang (3427_CR92) 2015; 96
FE Albornoz (3427_CR2) 2017; 105
S Richardson (3427_CR129) 2004; 139
SJM McMullan-Fisher (3427_CR103) 2011; 59
(3427_CR115) 1984
LC Duchesne (3427_CR36) 1988; 66
S Nagarajah (3427_CR108) 1970; 228
MW Shane (3427_CR136) 2005; 274
WJ Horst (3427_CR56) 1987; 150
MA Huston (3427_CR60) 1994
H Lambers (3427_CR80) 2015; 25
SC Power (3427_CR124) 2010; 334
MM Hart (3427_CR47) 2003; 18
FP Teste (3427_CR152) 2009; 90
SD Hopper (3427_CR55) 2016; 403
E Laliberté (3427_CR71) 2013; 28
L Schreiber (3427_CR134) 1999; 50
JA Bennett (3427_CR8) 2017; 355
MJ Pozo (3427_CR125) 2002; 53
MC Brundrett (3427_CR16) 2009; 320
X-L Li (3427_CR90) 1991; 136
P Hayes (3427_CR49) 2014; 102
PM Vitousek (3427_CR163) 2002; 57-58
X-L Li (3427_CR91) 1991; 119
RS Oliveira (3427_CR112) 2015; 205
I Badreddine (3427_CR7) 2008; 7
DH Marx (3427_CR98) 1969; 59
RJ Williams (3427_CR176) 2008; 17
SW Simard (3427_CR142) 2012; 26
LG Wall (3427_CR167) 2000; 19
JD Bever (3427_CR9) 2015; 46
L Sun (3427_CR148) 2016; 212
3427_CR181
3427_CR40
L Weisskopf (3427_CR174) 2005; 268
IA Dickie (3427_CR35) 2004; 164
RW Brooker (3427_CR15) 2008; 96
FE Albornoz (3427_CR4) 2016; 25
M Krüger (3427_CR70) 2015; 24
RM Callaway (3427_CR19) 1995; 61
RM Cowling (3427_CR28) 1995
BB Lamont (3427_CR85) 1977; 265
G Richter (3427_CR130) 1996
N Myers (3427_CR107) 2000; 403
RM Cowling (3427_CR29) 1996; 11
JB Gillett (3427_CR44) 1962; 4
References_xml – reference: BranzantiBZambonelliAIn vitro effects of ectomycorrhizal fungi on Fusarium solani and Rhizoctonia solani damping off of pine seedlingsPetria (Italy)19944131140
– reference: JanzenDHHerbivores and the number of tree species in tropical forestsAm Nat197010450152810.1086/282687
– reference: MaheraliHKlironomosJNInfluence of phylogeny on fungal community assembly and ecosystem functioningScience2007316174617481:CAS:528:DC%2BD2sXms1Wgsb4%3D1758893010.1126/science.1143082
– reference: WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x
– reference: TesteFPSimardSWDurallDMGuyRDJonesMDSchoonmakerALAccess to mycorrhizal networks and roots of trees: importance for seedling survival and resource transferEcology200990280828221988648910.1890/08-1884.1
– reference: NewshamKKFitterAHWatkinsonARArbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the fieldJ Ecol199585991100010.2307/2261180
– reference: RichardsonSPeltzerDAllenRMcGloneMParfittRRapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequenceOecologia20041392672761475853510.1007/s00442-004-1501-y
– reference: ThomasRFangXRanathungeKAndersonTRPetersonCABernardsMASoybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojaePlant Physiol20071442993111:CAS:528:DC%2BD2sXls1Kjtbw%3D17494920191377610.1104/pp.106.091090
– reference: BiggsARMilesNWAssociation of suberin formation in uninoculated wounds with susceptibility to Leucostoma cincta and L. persoonii in various peach cultivarsPhytopathology1988781070107410.1094/Phyto-78-1070
– reference: JohnsonNCGrahamJHSmithFAFunctioning of mycorrhizal associations along the mutualism–parasitism continuumNew Phytol199713557558510.1046/j.1469-8137.1997.00729.x
– reference: VeneklaasEJStevensJCawthrayGRTurnerSGriggAMLambersHChickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil20032481871971:CAS:528:DC%2BD3sXhtFCqs7k%3D10.1023/A:1022367312851
– reference: DickieIAGuzaRCKrazewskiSEReichPBShared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlingsNew Phytol200416437538210.1111/j.1469-8137.2004.01177.x
– reference: LiX-LGeorgeEMarschnerHPhosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammoniumNew Phytol19911193974041:CAS:528:DyaK38Xot1Ogtw%3D%3D10.1111/j.1469-8137.1991.tb00039.x
– reference: MyersNMittermeierRAMittermeierCGda FonsecaGABKentJBiodiversity hotspots for conservation prioritiesNature20004038538581:CAS:528:DC%2BD3cXhs1Olsr4%3D1070627510.1038/35002501
– reference: PearseSJVeneklaasEJCawthrayGRBollandMDALambersHCarboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus statusPlant Soil20062881271391:CAS:528:DC%2BD28XhtFaksL7F10.1007/s11104-006-9099-y
– reference: ShaneMWLambersHCluster roots: a curiosity in contextPlant Soil20052741011251:CAS:528:DC%2BD2MXhtVWiurfK10.1007/s11104-004-2725-7
– reference: CoatesDJByrneMCochraneJADunnCGibsonNKeigheryGJLambersHMonksLTThieleKRYatesCJLambersHConservation of the kwongan flora: threats and challengesPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing263284
– reference: McKaneRBJohnsonLCShaverGRNadelhofferKJRastetterEBFryBGiblinAEKiellandKKwiatkowskiBLLaundreJAMurrayGResource-based niches provide a basis for plant species diversity and dominance in arctic tundraNature200241568711:CAS:528:DC%2BD38Xkt1OmsA%3D%3D1178011710.1038/415068a
– reference: OburgerEGruberBSchindleggerYSchenkeveldWDCHannSKraemerSMWenzelWWPuschenreiterMRoot exudation of phytosiderophores from soil-grown wheatNew Phytol2014203116111741:CAS:528:DC%2BC2cXht1KmtrfO24890330414395710.1111/nph.12868
– reference: PerumallaCJPetersonCAEnstoneDEA survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermisBot J Linn Soc19901039311210.1111/j.1095-8339.1990.tb00176.x
– reference: Waters EM, Soini HA, Novotny MV, Watson MA (2016) Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca. Plant Soil 407(1–2):261–274
– reference: LalibertéETurnerBLCostesTPearseSJWyrwolllK-HZemunikGLambersHExperimental assessment of nutrient limitation along a 2-million year dune chronosequence in the south-western Australia biodiversity hotspotJ Ecol201210063164210.1111/j.1365-2745.2012.01962.x1:CAS:528:DC%2BC38XptVansLo%3D
– reference: Wright A J, Wardle D A, Callaway R and Gaxiola A (2017) The overlooked role of facilitation in biodiversity experiments. Trends Ecol Evol
– reference: SilveiraFONegreirosDBarbosaNUBuissonECarmoFCarstensenDConceiçãoACornelissenTEchternachtLFernandesGWGarciaQGuerraTJacobiCLemos-FilhoJLe StradicSMorellatoLNevesFOliveiraRSchaeferCVianaPLambersHEcology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priorityPlant Soil20164031291521:CAS:528:DC%2BC2MXhtlCqtL7P10.1007/s11104-015-2637-8
– reference: Owusu-BennoahEWildAAutoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular-arbuscular mycorrhizaNew Phytol1979821331401:CAS:528:DyaL3MXlt12ksrg%3D10.1111/j.1469-8137.1979.tb07567.x
– reference: GardnerWKBarberDAParberyDGThe acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhancedPlant Soil1983701071241:CAS:528:DyaL3sXhsF2ls7k%3D10.1007/BF02374754
– reference: PozoMJCordierCDumas-GaudotEGianinazziSBareaJMAzcón-AguilarCLocalized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plantsJ Exp Bot2002535255341:CAS:528:DC%2BD38XitVegtL4%3D1184725110.1093/jexbot/53.368.525
– reference: StachowiczJJMutualism, facilitation, and the structure of ecological communitiesBioscience20015123524610.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
– reference: SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057
– reference: VitousekPMCassmanKClevelandCCrewsTFieldCBGrimmNBHowarthRWMarinoRMartinelliLRastetterEBSprentJITowards an ecological understanding of biological nitrogen fixationBiogeochemistry200257-5814510.1023/A:1015798428743
– reference: LambersHRavenJAShaverGRSmithSEPlant nutrient-acquisition strategies change with soil ageTrends Ecol Evol200823951031819128010.1016/j.tree.2007.10.008
– reference: HustonMABiological Diversity1994CambridgeCambridge University Press
– reference: PowerSCCramerMDVerboomGAChimphangoSBMDoes phosphate acquisition constrain legume persistence in the fynbos of the Cape Floristic Region?Plant Soil201033433461:CAS:528:DC%2BC3cXhtVaqur7F10.1007/s11104-010-0311-8
– reference: DelgadoMZúñiga-FeestAAlmonacidLLambersHBorieFCluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soilPlant Soil20153951892001:CAS:528:DC%2BC2MXhtVamtrbF10.1007/s11104-015-2547-9
– reference: BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9
– reference: CowlingRMRundelPWLamontBBKalin ArroyoMArianoutsouMPlant diversity in mediterranean-climate regionsTrends Ecol Evol1996113623661:STN:280:DC%2BC3M7itFGjtg%3D%3D2123788010.1016/0169-5347(96)10044-6
– reference: BurrowsNWardell-JohnsonGAbbottIBurrowsNFire and plant interactions in forested ecosystems of south-west Western AustraliaFire in Ecosystems of the South-west Western Australia: Impact and Management2003LeidenBackhuys Publishers225268
– reference: Laliberté E, Kardol P, Didham R K, Teste F P, Turner B L and Wardle D A (2017) Soil fertility shapes belowground food webs across a regional climate gradient. Ecol Lett, n/a-n/a
– reference: HallidayJPateJSSymbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significanceFunct Plant Biol197633493581:CAS:528:DyaE28XktFOhtro%3D
– reference: HingstonFJMalajczukNGroveTSAcetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate applicationJ Appl Ecol19821963164510.2307/2403495
– reference: HuitemaKvan den DikkenbergJBrouwersJFHolthuisJCIdentification of a family of animal sphingomyelin synthasesEMBO J20042333441:CAS:528:DC%2BD2cXhtVequr4%3D1468526310.1038/sj.emboj.7600034
– reference: SikesBACottenieKKlironomosJNPlant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizasJ Ecol2009971274128010.1111/j.1365-2745.2009.01557.x
– reference: StrobelNSinclairWRole of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-firPathology1991814204251:CAS:528:DyaK3MXisVCgu7Y%3D
– reference: Initiative I O C (2012) Western Australia’s Weather and Climate: a Synthesis of Indian Ocean Climate Initiative Stage 3 Research. CSIRO and BoM, Australia
– reference: CowlingRMRichardsonDMFynbos: South Africa’s Unique Floral Kingdom1995VlaebergFernwood Press
– reference: HustonMAPrecipitation, soils, NPP, and biodiversity: resurrection of Albrecht's curveEcol Monogr20128227729610.1890/11-1927.1
– reference: SchreiberLHartmannKSkrabsMZeierJApoplastic barriers in roots: chemical composition of endodermal and hypodermal cell wallsJ Exp Bot199950126712801:CAS:528:DyaK1MXltlKis78%3D
– reference: HartMMReaderRJKlironomosJNPlant coexistence mediated by arbuscular mycorrhizal fungiTrends Ecol Evol20031841842310.1016/S0169-5347(03)00127-7
– reference: Jones MD, Durall DM, Tinker PB (1992) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol 115:259–267
– reference: LiLLiS-MSunJ-HZhouL-LBaoX-GZhangH-GZhangF-SDiversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soilsProc Natl Acad Sci U S A200710411192111961:CAS:528:DC%2BD2sXnvFGgtLc%3D17592130189918710.1073/pnas.0704591104
– reference: MouraJCMSBonineCAVDe Oliveira Fernandes VianaJDornelasMCMazzaferaPAbiotic and biotic stresses and changes in the lignin content and composition in plantsJ Integr Plant Biol2010523603761:CAS:528:DC%2BC3cXmt1aqtb0%3D2037769810.1111/j.1744-7909.2010.00892.x
– reference: Zemunik G, Turner BL, Lambers H, Laliberté E (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat Plants 1. https://doi.org/10.1038/nplants.2015.1050
– reference: NewshamKKFitterAHWatkinsonARMulti-functionality and biodiversity in arbuscular mycorrhizasTrends Ecol Evol1995104074111:STN:280:DC%2BC3M7itFeisg%3D%3D2123708510.1016/S0169-5347(00)89157-0
– reference: SikesBAPowellJRRilligMCDeciphering the relative contributions of multiple functions within plant–microbe symbiosesEcology201091159115972058370110.1890/09-1858.1
– reference: HoseEClarksonDTSteudleESchreiberLHartungWThe exodermis: a variable apoplastic barrierJ Exp Bot200152224522641:CAS:528:DC%2BD3MXptVeis70%3D1170957510.1093/jexbot/52.365.2245
– reference: RanathungeKThomasRHFangXPetersonCAGijzenMBernardsMASoybean root suberin and partial resistance to root rot caused by Phytophthora sojaePhytopathology200898117911891894340610.1094/PHYTO-98-11-1179
– reference: WallLGThe actinorhizal symbiosisJ Plant Growth Regul2000191671821:CAS:528:DC%2BD3cXnvF2hu74%3D11038226
– reference: Abbott LK, Robson AD, Boer GD (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446
– reference: OriansGHMilewskiAVEcology of Australia: The effects of nutrient-poor soils and intense firesBiol Rev2007823934231762496110.1111/j.1469-185X.2007.00017.x
– reference: WeisskopfLAbou-MansourEFrominNTomasiNSanteliaDEdelkottINeumannGAragnoMTabacchiRMartinoiaEWhite lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisitionPlant Cell Environ2006299199271:CAS:528:DC%2BD28Xlt1GrsrY%3D1708747510.1111/j.1365-3040.2005.01473.x
– reference: LambersHShaneMWLalibertéESwartsNDTesteFPZemunikGLambersHPlant mineral nutritionPlant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot2014CrawleyUWA Publishing101127
– reference: Sainz RozasHEcheverriaHAngeliniHAvailable phosphorus in agricultural soils of the Pampa and Argentina ExtraPampeanaRIA, Revista de Investigaciones Agropecuarias2012383339
– reference: Huang G, Hayes P E, Ryan M H, Pang J and Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration. Oecologia in press
– reference: LambersHBrundrettMCRavenJAHopperSDPlant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategiesPlant Soil201033411311:CAS:528:DC%2BC3cXhtVaqtbnJ10.1007/s11104-010-0444-9
– reference: LiLTilmanDLambersHZhangFPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol201420363692501387610.1111/nph.127781:CAS:528:DC%2BC2cXovFWrsrw%3D
– reference: RichterGBiochemie der Pflanze1996StuttgartGeorg Thieme Verlag
– reference: LambersHClementsJCNelsonMNHow a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae)Am J Bot20131002632881:CAS:528:DC%2BC3sXktVGjtrY%3D2334797210.3732/ajb.1200474
– reference: ConnellJHOn the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest treesDynamics of Populations.. Eds. P den Boer, J, and G R Gradwell1971WageningenCentre for Agricultural Publishing and Documentation298313
– reference: LamontBMechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western AustraliaBot Rev1982485976891:CAS:528:DyaL3sXntVymtA%3D%3D10.1007/BF02860714
– reference: PerumallaCJPetersonCADeposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion rootsCan J Bot1986641873187810.1139/b86-248
– reference: LiHZhangFRengelZShenJRhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soilCrop Pasture Sci2013649769841:CAS:528:DC%2BC3sXhvFCis7vF
– reference: WitkowskiETFMitchellDTVariations in soil phosphorus in the fynbos biome, South AfricaJ Ecol1987751159117110.2307/2260320
– reference: BramleyHTurnerNCTurnerDWTyermanSDRoles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of rootsPlant Physiol20091503483641:CAS:528:DC%2BD1MXlvFahsL8%3D19321713267571410.1104/pp.108.134098
– reference: Vitousek P M, Menge D N L, Reed S C and Cleveland C C (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans R Soc B: Biol Sci 368
– reference: Esau K (1977) Anatomy of seed plants. 2nd edition. John Wiley and Sons Inc., New York
– reference: ShearerBLCraneCECochraneAQuantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomiAust J Bot20045243544310.1071/BT03131
– reference: LalibertéELambersHBurgessTIWrightSJPhosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublandsNew Phytol20152065075212549468210.1111/nph.132031:CAS:528:DC%2BC2MXkvFCksLY%3D
– reference: Png G K, Turner B L, Albornoz F E, Hayes P E, Lambers H and Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol, n/a-n/a
– reference: ZemunikGTurnerBLLambersHLalibertéEIncreasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspotJ Ecol201610479280510.1111/1365-2745.12546
– reference: PeayKGThe mutualistic niche: mycorrhizal symbiosis and community dynamicsAnnu Rev Ecol Evol Syst20164714316410.1146/annurev-ecolsys-121415-032100
– reference: DuchesneLCPetersonRLEllisBEInteraction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporumCan J Bot19886655856210.1139/b88-080
– reference: LambersHMartinoiaERentonMPlant adaptations to severely phosphorus-impoverished soilsCurr Opin Plant Biol20152523311:CAS:528:DC%2BC2MXms1yitbk%3D2591278310.1016/j.pbi.2015.04.002
– reference: AllsoppNColvilleJFVerboomGAFynbos: Ecology, Evolution, and Conservation of a Megadiverse Region2014OxfordOxford University Press10.1093/acprof:oso/9780199679584.001.0001
– reference: TomasiNWeisskopfLRenellaGLandiLPintonRVaraniniZNannipieriPTorrentJMartinoiaECescoSFlavonoids of white lupin roots participate in phosphorus mobilization from soilSoil Biol Biochem200840197119741:CAS:528:DC%2BD1cXnt1ektLw%3D10.1016/j.soilbio.2008.02.017
– reference: GibsonNKeigheryGJLyonsMNWebbATerrestrial flora and vegetation of the Western Australian wheatbeltRec WA Mus200467139189
– reference: KrügerMTesteFPLalibertéELambersHCoghlanMZemunikGBunceMThe rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogressionMol Ecol201524491249302633208410.1111/mec.13363
– reference: WeidenhamerJDPlant olfaction: using analytical chemistry to elucidate mechanisms of plant growth and interactionPlant Soil20164072752781:CAS:528:DC%2BC28Xht12nsLzN10.1007/s11104-016-2998-7
– reference: McArthurWMReference soils of south-western Australia1991South PerthDepartment of Agriculture Western Australia
– reference: ShaneMWCramerMDFunayama-NoguchiSCawthrayGRMillarAHDayDALambersHDevelopmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidasePlant Physiol20041355495601:CAS:528:DC%2BD2cXkt12ms78%3D1512203042941210.1104/pp.103.035659
– reference: MarxDHEctomycorrhizae as biological deterrents to pathogenic root infectionsAnnu Rev Phytopathol1972104294541:STN:280:DC%2BD1czhslamsA%3D%3D1847919210.1146/annurev.py.10.090172.002241
– reference: KolattukudyPEEspelieKEChemistry, biochemistry and functions of suberin associated waxesNatural Products of Woody Plants I. Ed. J W Rowe1989New YorkSpringer-Verlag235287
– reference: AlbornozFEBurgessTILambersHEtchellsHLalibertéENative soil-borne pathogens equalise differences in competitive ability between plants of contrasting nutrient-acquisition strategiesJ Ecol201710554955710.1111/1365-2745.12638
– reference: MarschnerHMineral Nutrition of Higher Plants1995LondonAcademic Press
– reference: PateJSBeardJSKwongan. Plant Life of the Sandplain1984NedlandsUniversity of Western Australia Press
– reference: TurnerBLCondronLMPedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. SyersPlant Soil20133671101:CAS:528:DC%2BC3sXnvVOitb4%3D10.1007/s11104-013-1750-9
– reference: TesteFPVeneklaasEJDixonKWLambersHIs nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?Plant Cell Environ20153850601:CAS:528:DC%2BC2cXitFSqt77O2481137010.1111/pce.12367
– reference: LyginAVLiSVittalRWidholmJMHartmanGLLozovayaVVThe importance of phenolic metabolism to limit the growth of Phakopsora pachyrhiziPhytopathology200999141214201:CAS:528:DC%2BC3cXhtFeqt78%3D1990000810.1094/PHYTO-99-12-1412
– reference: HerreEAMejíaLCKylloDARojasEMaynardZButlerAVan BaelSAEcological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizaeEcology2007885505581750358110.1890/05-1606
– reference: Layla Aerne-HainsLSimpsonMGVegetative anatomy of the Haemodoraceae and its phylogenetic significanceInt J Plant Sci201717811715610.1086/689199
– reference: TurnerBLResource partitioning for soil phosphorus: a hypothesisJ Ecol2008966987021:CAS:528:DC%2BD1cXptFygs70%3D10.1111/j.1365-2745.2008.01384.x
– reference: Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702
– reference: HeXXuMQiuGYZhouJUse of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plantsJ Plant Ecol2009210711810.1093/jpe/rtp015
– reference: CairneyJEctomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soilsPlant Soil201134451711:CAS:528:DC%2BC3MXnsVCjt7c%3D10.1007/s11104-011-0731-0
– reference: CescoSMimmoTTononGTomasiNPintonRTerzanoRNeumannGWeisskopfLRenellaGLandiLNannipieriPPlant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A reviewBiol Fertil Soils2012481231491:CAS:528:DC%2BC38XhtFGis7Y%3D10.1007/s00374-011-0653-2
– reference: WesselsJGHDevelopmental regulation of fungal cell wall formationAnnu Rev Phytopathol1994324134371:CAS:528:DyaK2cXmtVSntbY%3D10.1146/annurev.py.32.090194.002213
– reference: BadreddineILafitteCHeuxLSkandalisNSpanouZMartinezYEsquerré-TugayéM-TBuloneVDumasBBottinACell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteichesEukaryot Cell20087198019931:CAS:528:DC%2BD1cXhsVartL%2FL18806214258354010.1128/EC.00091-08
– reference: SchmidtSStewartGRWaterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum)Plant Cell Environ1997201231124110.1046/j.1365-3040.1997.d01-20.x
– reference: GillettJBPest pressure, an underestimated factor in evolutionSyst Assoc Publ196243746
– reference: OliveiraRSGalvãoHCde CamposMCREllerCBPearseSJLambersHMineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil typesNew Phytol2015205118311941:CAS:528:DC%2BC2MXnslantQ%3D%3D2542548610.1111/nph.13175
– reference: AlbornozFELambersHTurnerBLTesteFPLalibertéEShifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequenceEcol Evol201662368237727066229478224510.1002/ece3.2000
– reference: Azcón-AguilarCBareaJMArbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involvedMycorrhiza1997645746410.1007/s005720050147
– reference: LiangMLiuXEtienneRSHuangFWangYYuSArbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogensEcology2015965625742624087610.1890/14-0871.1
– reference: PeñuelasJAsensioDThollDWenkeKRosenkranzMPiechullaBSchnitzlerJPBiogenic volatile emissions from the soilPlant Cell Environ201437186618912468984710.1111/pce.123401:CAS:528:DC%2BC2cXhtFOlsLjF
– reference: MaJFUenoHUenoDRombolàADIwashitaTCharacterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubraPlant Soil20032561311371:CAS:528:DC%2BD3sXot1Clsrs%3D10.1023/A:1026285813248
– reference: WehnerJAntunesPMPowellJRMazukatowJRilligMCPlant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity?Pedobiologia20105319720110.1016/j.pedobi.2009.10.002
– reference: Lambers H, Finnegan P M, Jost R, Plaxton W C, Shane M W and Stitt M (2015b) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1
– reference: McIntireEJBFajardoAFacilitation as a ubiquitous driver of biodiversityNew Phytol20142014034162410226610.1111/nph.12478
– reference: CertiniGEffects of fire on properties of forest soils: a reviewOecologia20051431101568821210.1007/s00442-004-1788-8
– reference: Jakobsen I and Hammer E (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 91–131. Springer Netherlands
– reference: EnkerliKMimsCWHahnMGUltrastructure of compatible and incompatible interactions of soybean roots infected with the plant pathogenic oomycete Phytophthora sojaeCan J Bot1997751493150810.1139/b97-864
– reference: BonawitzNDChappleCThe genetics of lignin biosynthesis: connecting genotype to phenotypeAnnu Rev Genet2010443373631:CAS:528:DC%2BC3cXhs1SmurnF2080979910.1146/annurev-genet-102209-163508
– reference: MulerALOliveiraRSLambersHVeneklaasEJDoes cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?Oecologia201417423312393406410.1007/s00442-013-2747-z
– reference: AlbornozFETesteFPLambersHBunceMMurrayDCWhiteNELalibertéEChanges in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequenceMol Ecol201625491949291:CAS:528:DC%2BC28XhsFKjsrvP2748067910.1111/mec.13778
– reference: HayesPTurnerBLLambersHLalibertéEFoliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequenceJ Ecol20141023964101:CAS:528:DC%2BC2cXjt1Shsro%3D10.1111/1365-2745.12196
– reference: NagarajahSPosnerAMQuirkJPCompetitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfacesNature197022883851:CAS:528:DyaE3MXht1agtw%3D%3D1605841910.1038/228083a0
– reference: BennettJAMaheraliHReinhartKOLekbergYHartMMKlironomosJPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811841:CAS:528:DC%2BC2sXms12hsg%3D%3D2808259010.1126/science.aai8212
– reference: MarxDHThe influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteriaPhytopathology196959153163
– reference: BeverJDManganSAAlexanderHMMaintenance of plant species diversity by pathogensAnnu Rev Ecol Evol Syst20154630532510.1146/annurev-ecolsys-112414-054306
– reference: HartungWLeportLRatcliffeRGSauterADudaRTurnerNCAbscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soilsPlant Soil20022401911991:CAS:528:DC%2BD38XkvVajsro%3D10.1023/A:1015831610452
– reference: ValentineAJKleinertABeneditoVAAdaptive strategies for nitrogen metabolism in phosphate deficient legume nodulesPlant Sci201725646521:CAS:528:DC%2BC28XitFOhsLrP2816703710.1016/j.plantsci.2016.12.010
– reference: BranzantiMBRoccaEPisiAEffect of ectomycorrhizal fungi on chestnut ink diseaseMycorrhiza1999910310910.1007/s005720050007
– reference: HansenAPPateJSEvaluation of the 15N natural abundance method and xylem sap analysis for assessing N2 fixation of understorey legumes in Jarrah (Eucalyptus marginata Donn ex Sm.) forest in S.W. AustraliaJ Exp Bot198738144614581:CAS:528:DyaL2sXmtlGgurc%3D10.1093/jxb/38.9.1446
– reference: WilliamsRJBradstockRALarge fires and their ecological consequences: introduction to the special issueInt J Wildland Fire20081768568710.1071/WF07155
– reference: TesteFPKardolPTurnerBLWardleDAZemunikGRentonMLalibertéEPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731761:CAS:528:DC%2BC2sXms12itw%3D%3D2808258810.1126/science.aai8291
– reference: Turner B L, Laliberté E and Hayes P E (2017) A climosequence of chronosequences in southwestern Australia. bioRxiv
– reference: KolattukudyPEBiochemistry and function of cutin and suberinCan J Bot198462291829331:CAS:528:DyaL2MXht1yktbg%3D10.1139/b84-391
– reference: CuSTTHutsonJSchullerKAMixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheatPlant Soil20052721431511:CAS:528:DC%2BD2MXks1ekurY%3D10.1007/s11104-004-4336-8
– reference: PaulEASoil Microbiology, Ecology and Biochemistry2014AmsterdamElsevier Academic Press
– reference: HopperSDOCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapesPlant Soil200932249861:CAS:528:DC%2BD1MXhtVWisrnN10.1007/s11104-009-0068-0
– reference: EnstoneDEPetersonCAMaFRoot endodermis and exodermis: structure, function, and responses to the environmentJ Plant Growth Regul20032133535110.1007/s00344-003-0002-21:CAS:528:DC%2BD3sXlslWntL4%3D
– reference: LamontBBDownesSFoxJEDImportance-value curves and diversity indices applied to a species-rich heathland in Western AustraliaNature197726543844110.1038/265438a0
– reference: LiX-LGeorgeEMarschnerHExtension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soilPlant Soil1991136414810.1007/BF02465218
– reference: PekinBKWittkuhnRSBoerMMMacfarlaneCGriersonPFPlant functional traits along environmental gradients in seasonally dry and fire-prone ecosystemJ Veg Sci2011221009102010.1111/j.1654-1103.2011.01323.x
– reference: WittkuhnRSLamontBBHeTCombustion temperatures and nutrient transfers when grasstrees burnFor Ecol Manag201739917918710.1016/j.foreco.2017.05.037
– reference: DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience200832011811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836
– reference: HopperSDSilveiraFAOFiedlerPLBiodiversity hotspots and Ocbil theoryPlant Soil20164031672161:CAS:528:DC%2BC2MXitVKru7nI10.1007/s11104-015-2764-2
– reference: LambersHHayesPELalibertéEOliveiraRSTurnerBLLeaf manganese accumulation and phosphorus-acquisition efficiencyTrends Plant Sci20152083901:CAS:528:DC%2BC2cXhvVGksr%2FJ2546697710.1016/j.tplants.2014.10.007
– reference: SimardSWBeilerKJBinghamMADeslippeJRPhilipLJTesteFPMycorrhizal networks: mechanisms, ecology and modellingFungal Biol Rev201226396010.1016/j.fbr.2012.01.001
– reference: CowlingRMPottsAJBradshawPLColvilleJArianoutsouMFerrierSForestFFyllasNMHopperSDOjedaFProcheşŞSmithRJRundelPWVassilakisEZuttaBRVariation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stabilityJ Biogeogr20144255256410.1111/jbi.12429
– reference: SteudleEPetersonCAReview article. How does water get through roots?J Exp Bot1998497757881:CAS:528:DyaK1cXjs1Sjurk%3D
– reference: Simard S, Asay A, Beiler K, Bingham M, Deslippe J, He X, Philip L, Song Y and Teste F (2015) Resource transfer between plants through ectomycorrhizal fungal networks. In Mycorrhizal Networks. Ed. T R Horton. pp 133–176. Springer Netherlands
– reference: LambersHClodePLHawkinsH-JLalibertéEOliveiraRSReddellPShaneMWStittMWestonPPlaxtonWCLambersHMetabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availabilityAnnual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants2015ChicesterJohn Wiley & Sons28933610.1002/9781118958841.ch11
– reference: TesteFPLalibertéELambersHAuerYKramerSKandelerEMycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogressionSoil Biol Biochem2016921191321:CAS:528:DC%2BC2MXhs1Orsb7K10.1016/j.soilbio.2015.09.021
– reference: WattMEvansJRLinking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentrationPlant Physiol19991207057161:CAS:528:DyaK1MXks1amtL0%3D103987055930810.1104/pp.120.3.705
– reference: McMullan-FisherSJMMayTWRobinsonRMBellTLLebelTCatchesidePYorkAFungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directionsAust J Bot201159709010.1071/BT10059
– reference: VosCSchoutedenNvan TuinenDChatagnierOElsenADe WaeleDPanisBGianinazzi-PearsonVMycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomatoSoil Biol Biochem20136045541:CAS:528:DC%2BC3sXktlKgsL0%3D10.1016/j.soilbio.2013.01.013
– reference: LalibertéEGraceJBHustonMALambersHTesteFPTurnerBLWardleDAHow does pedogenesis drive plant diversity?Trends Ecol Evol2013283313402356132210.1016/j.tree.2013.02.008
– reference: HopmansPBauhusJKhannaPWestonCCarbon and nitrogen in forest soils: Potential indicators for sustainable management of eucalypt forests in south-eastern AustraliaFor Ecol Manag2005220758710.1016/j.foreco.2005.08.006
– reference: KennedyPGSmithDPHortonTRMolinaRJArbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivityAm J Bot201299169117012298608310.3732/ajb.1200277
– reference: LambersHShaneMWCramerMDPearseSJVeneklaasEJRoot structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traitsAnn Bot20069869371316769731280617510.1093/aob/mcl114
– reference: Schappe T, Albornoz F E, Turner B L, Neat A, Condit R and Jones F A (2017) The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J Ecol
– reference: BrookerRWMaestreFTCallawayRMLortieCLCavieresLAKunstlerGLiancourtPTielbörgerKTravisJMJAnthelmeFArmasCCollLCorcketEDelzonSForeyEKikvidzeZOlofssonJPugnaireFQuirozCLSacconePSchiffersKSeifanMTouzardBMichaletRFacilitation in plant communities: the past, the present, and the futureJ Ecol200896183410.1111/j.1365-2745.2008.01373.x
– reference: TurnerBLLalibertéESoil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern AustraliaEcosystems2015182873091:CAS:528:DC%2BC2cXitFKmur7O10.1007/s10021-014-9830-0
– reference: WeisskopfLFrominNTomasiNAragnoMMartinoiaESecretion activity of white lupin's cluster roots influences bacterial abundance, function and community structurePlant Soil20052681811941:CAS:528:DC%2BD2MXks1ers7Y%3D10.1007/s11104-004-0264-x
– reference: CameronDDNealALvan WeesSCMTonJMycorrhiza-induced resistance: more than the sum of its parts?Trends Plant Sci2013185395451:CAS:528:DC%2BC3sXhtFChtbfF23871659419431310.1016/j.tplants.2013.06.004
– reference: TerborghJEnemies maintain hyperdiverse tropical forestsAm Nat20121793033142232221910.1086/664183
– reference: CallawayRMPositive interactions among plantsBot Rev19956130634910.1007/BF02912621
– reference: LulaiECCorsiniDLDifferential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosumL.) wound-healingPhysiol Mol Plant Pathol1998532092221:CAS:528:DyaK1MXhtVKrsbg%3D10.1006/pmpp.1998.0179
– reference: MintonMMBarberNAGordonLLEffects of arbuscular mycorrhizal fungi on herbivory defense in two Solanum (Solanaceae) speciesPlant Ecol Evol201614915716410.5091/plecevo.2016.1176
– reference: Smith S E, Anderson I C and Smith F A (2015) Mycorrhizal associations and P acquisition: from cells to ecosystems In Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants. Eds. W C Plaxton and H Lambers pp 409–440. John Wiley & Sons
– reference: HorstWJWaschkiesCPhosphatversorgung von Sommerweizen (Triticum aestivum L.) in Mischkultur mit weißer Lupine (Lupinus albus L.)Z Pflanzenernähr Bodenkd19871501810.1002/jpln.19871500102
– reference: DuchesneLCPetersonRLEllisBEPine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutusNew Phytol19881084714761:CAS:528:DyaL1cXktlGitbs%3D10.1111/j.1469-8137.1988.tb04188.x
– reference: GardnerWKBoundyKAThe acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two speciesPlant Soil1983703914021:CAS:528:DyaL3sXktVCltLg%3D10.1007/BF02374894
– reference: RavenJAProtein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixationPlant Sci2012188-18925351:CAS:528:DC%2BC38XlvFOitb4%3D2252524110.1016/j.plantsci.2012.02.010
– reference: ReddellPYunYShiptonWACluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supplyAust J Bot199745415110.1071/BT96049
– reference: SmithSEReadDJMycorrhizal Symbiosis2008LondonAcademic Press and Elsevier
– reference: CowlingRMMacDonaldIAWSimmonsMTThe Cape Peninsula, South Africa: physiographical, biological and historical background to an extraordinary hot-spot of biodiversityBiodivers Conserv1996552755010.1007/BF00137608
– reference: TesteFPVeneklaasEJDixonKWLambersHComplementary plant nutrient-acquisition strategies facilitate growth of neighbouring speciesFunct Ecol20142881982810.1111/1365-2435.12270
– reference: de CamposMCRPearseSJOliveiraRSLambersHViminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus suppliesAnn Bot201311180180923456689363132510.1093/aob/mct0351:CAS:528:DC%2BC3sXmtlant70%3D
– reference: ClarkLHHarrisWHObservations on the root anatomy of rice (Oryza sativa L.)Am J Bot19816815416110.1002/j.1537-2197.1981.tb12374.x
– reference: YaoQLiXFengGChristiePMobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungusPlant Soil20012302792851:CAS:528:DC%2BD3MXjt12qs7Y%3D10.1023/A:1010367501363
– reference: WalkerTWSyersJKThe fate of phosphorus during pedogenesisGeoderma197615191:CAS:528:DyaE28Xht1Cltro%3D10.1016/0016-7061(76)90066-5
– volume: 188-189
  start-page: 25
  year: 2012
  ident: 3427_CR127
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2012.02.010
– volume: 46
  start-page: 305
  year: 2015
  ident: 3427_CR9
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-112414-054306
– volume: 99
  start-page: 1691
  year: 2012
  ident: 3427_CR67
  publication-title: Am J Bot
  doi: 10.3732/ajb.1200277
– volume: 96
  start-page: 562
  year: 2015
  ident: 3427_CR92
  publication-title: Ecology
  doi: 10.1890/14-0871.1
– volume: 25
  start-page: 4919
  year: 2016
  ident: 3427_CR4
  publication-title: Mol Ecol
  doi: 10.1111/mec.13778
– volume: 135
  start-page: 575
  year: 1997
  ident: 3427_CR65
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.1997.00729.x
– volume: 75
  start-page: 1493
  year: 1997
  ident: 3427_CR38
  publication-title: Can J Bot
  doi: 10.1139/b97-864
– start-page: 298
  volume-title: Dynamics of Populations.. Eds. P den Boer, J, and G R Gradwell
  year: 1971
  ident: 3427_CR25
– ident: 3427_CR123
  doi: 10.1111/1365-2745.12758
– volume: 19
  start-page: 631
  year: 1982
  ident: 3427_CR52
  publication-title: J Appl Ecol
  doi: 10.2307/2403495
– volume: 62
  start-page: 2918
  year: 1984
  ident: 3427_CR68
  publication-title: Can J Bot
  doi: 10.1139/b84-391
– volume: 44
  start-page: 337
  year: 2010
  ident: 3427_CR11
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-102209-163508
– volume: 96
  start-page: 18
  year: 2008
  ident: 3427_CR15
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2008.01373.x
– volume: 149
  start-page: 157
  year: 2016
  ident: 3427_CR104
  publication-title: Plant Ecol Evol
  doi: 10.5091/plecevo.2016.1176
– volume-title: Biological Diversity
  year: 1994
  ident: 3427_CR60
– ident: 3427_CR78
  doi: 10.1038/nplants.2015.109
– volume: 111
  start-page: 801
  year: 2013
  ident: 3427_CR31
  publication-title: Ann Bot
  doi: 10.1093/aob/mct035
– volume: 70
  start-page: 391
  year: 1983
  ident: 3427_CR42
  publication-title: Plant Soil
  doi: 10.1007/BF02374894
– volume: 25
  start-page: 23
  year: 2015
  ident: 3427_CR80
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2015.04.002
– volume: 75
  start-page: 1159
  year: 1987
  ident: 3427_CR177
  publication-title: J Ecol
  doi: 10.2307/2260320
– volume: 367
  start-page: 1
  year: 2013
  ident: 3427_CR158
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1750-9
– volume: 9
  start-page: 103
  year: 1999
  ident: 3427_CR14
  publication-title: Mycorrhiza
  doi: 10.1007/s005720050007
– volume: 38
  start-page: 33
  year: 2012
  ident: 3427_CR131
  publication-title: RIA, Revista de Investigaciones Agropecuarias
– volume: 274
  start-page: 101
  year: 2005
  ident: 3427_CR136
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2725-7
– volume: 17
  start-page: 685
  year: 2008
  ident: 3427_CR176
  publication-title: Int J Wildland Fire
  doi: 10.1071/WF07155
– volume: 53
  start-page: 209
  year: 1998
  ident: 3427_CR93
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1006/pmpp.1998.0179
– volume: 20
  start-page: 1231
  year: 1997
  ident: 3427_CR133
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1997.d01-20.x
– volume: 57-58
  start-page: 1
  year: 2002
  ident: 3427_CR163
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015798428743
– volume: 98
  start-page: 1179
  year: 2008
  ident: 3427_CR126
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-98-11-1179
– volume: 268
  start-page: 181
  year: 2005
  ident: 3427_CR174
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0264-x
– ident: 3427_CR141
  doi: 10.1007/978-94-017-7395-9_5
– volume: 66
  start-page: 558
  year: 1988
  ident: 3427_CR36
  publication-title: Can J Bot
  doi: 10.1139/b88-080
– volume: 88
  start-page: 550
  year: 2007
  ident: 3427_CR51
  publication-title: Ecology
  doi: 10.1890/05-1606
– volume: 265
  start-page: 438
  year: 1977
  ident: 3427_CR85
  publication-title: Nature
  doi: 10.1038/265438a0
– volume: 395
  start-page: 189
  year: 2015
  ident: 3427_CR32
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2547-9
– volume: 28
  start-page: 331
  year: 2013
  ident: 3427_CR71
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2013.02.008
– volume: 3
  start-page: 349
  year: 1976
  ident: 3427_CR45
  publication-title: Funct Plant Biol
  doi: 10.1071/PP9760349
– volume-title: Soil Microbiology, Ecology and Biochemistry
  year: 2014
  ident: 3427_CR116
– volume: 256
  start-page: 46
  year: 2017
  ident: 3427_CR161
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2016.12.010
– volume: 23
  start-page: 95
  year: 2008
  ident: 3427_CR81
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.10.008
– volume: 399
  start-page: 179
  year: 2017
  ident: 3427_CR178
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2017.05.037
– volume: 220
  start-page: 75
  year: 2005
  ident: 3427_CR53
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2005.08.006
– volume: 45
  start-page: 41
  year: 1997
  ident: 3427_CR128
  publication-title: Aust J Bot
  doi: 10.1071/BT96049
– volume-title: Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region
  year: 2014
  ident: 3427_CR5
  doi: 10.1093/acprof:oso/9780199679584.001.0001
– volume: 28
  start-page: 819
  year: 2014
  ident: 3427_CR153
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.12270
– volume: 59
  start-page: 70
  year: 2011
  ident: 3427_CR103
  publication-title: Aust J Bot
  doi: 10.1071/BT10059
– volume: 320
  start-page: 37
  year: 2009
  ident: 3427_CR16
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9877-9
– volume: 64
  start-page: 1873
  year: 1986
  ident: 3427_CR121
  publication-title: Can J Bot
  doi: 10.1139/b86-248
– volume: 403
  start-page: 129
  year: 2016
  ident: 3427_CR140
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2637-8
– volume: 11
  start-page: 362
  year: 1996
  ident: 3427_CR29
  publication-title: Trends Ecol Evol
  doi: 10.1016/0169-5347(96)10044-6
– volume: 81
  start-page: 420
  year: 1991
  ident: 3427_CR147
  publication-title: Pathology
– volume: 37
  start-page: 1866
  year: 2014
  ident: 3427_CR120
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12340
– ident: 3427_CR179
  doi: 10.1016/j.tree.2017.02.011
– volume: 139
  start-page: 267
  year: 2004
  ident: 3427_CR129
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1501-y
– volume: 104
  start-page: 11192
  year: 2007
  ident: 3427_CR88
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0704591104
– volume: 403
  start-page: 167
  year: 2016
  ident: 3427_CR55
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2764-2
– ident: 3427_CR160
  doi: 10.1101/113308
– volume: 42
  start-page: 552
  year: 2014
  ident: 3427_CR27
  publication-title: J Biogeogr
  doi: 10.1111/jbi.12429
– volume: 24
  start-page: 4912
  year: 2015
  ident: 3427_CR70
  publication-title: Mol Ecol
  doi: 10.1111/mec.13363
– start-page: 263
  volume-title: Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot
  year: 2014
  ident: 3427_CR24
– volume: 4
  start-page: 131
  year: 1994
  ident: 3427_CR13
  publication-title: Petria (Italy)
– volume: 344
  start-page: 51
  year: 2011
  ident: 3427_CR18
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0731-0
– volume: 104
  start-page: 501
  year: 1970
  ident: 3427_CR64
  publication-title: Am Nat
  doi: 10.1086/282687
– volume: 316
  start-page: 1746
  year: 2007
  ident: 3427_CR96
  publication-title: Science
  doi: 10.1126/science.1143082
– volume: 98
  start-page: 693
  year: 2006
  ident: 3427_CR82
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl114
– volume: 203
  start-page: 1161
  year: 2014
  ident: 3427_CR111
  publication-title: New Phytol
  doi: 10.1111/nph.12868
– volume: 108
  start-page: 471
  year: 1988
  ident: 3427_CR37
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1988.tb04188.x
– volume: 143
  start-page: 1
  year: 2005
  ident: 3427_CR21
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1788-8
– volume: 99
  start-page: 1412
  year: 2009
  ident: 3427_CR94
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-99-12-1412
– volume: 6
  start-page: 2368
  year: 2016
  ident: 3427_CR3
  publication-title: Ecol Evol
  doi: 10.1002/ece3.2000
– volume: 248
  start-page: 187
  year: 2003
  ident: 3427_CR162
  publication-title: Plant Soil
  doi: 10.1023/A:1022367312851
– ident: 3427_CR169
  doi: 10.1007/s11104-016-2934-x
– volume: 240
  start-page: 191
  year: 2002
  ident: 3427_CR48
  publication-title: Plant Soil
  doi: 10.1023/A:1015831610452
– volume: 355
  start-page: 173
  year: 2017
  ident: 3427_CR150
  publication-title: Science
  doi: 10.1126/science.aai8291
– start-page: 235
  volume-title: Natural Products of Woody Plants I. Ed. J W Rowe
  year: 1989
  ident: 3427_CR69
– ident: 3427_CR181
  doi: 10.1038/nplants.2015.1050
– volume: 120
  start-page: 705
  year: 1999
  ident: 3427_CR170
  publication-title: Plant Physiol
  doi: 10.1104/pp.120.3.705
– volume: 48
  start-page: 597
  year: 1982
  ident: 3427_CR84
  publication-title: Bot Rev
  doi: 10.1007/BF02860714
– ident: 3427_CR62
– volume: 32
  start-page: 413
  year: 1994
  ident: 3427_CR175
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.32.090194.002213
– ident: 3427_CR164
  doi: 10.1098/rstb.2013.0119
– volume: 7
  start-page: 1980
  year: 2008
  ident: 3427_CR7
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00091-08
– ident: 3427_CR143
  doi: 10.1002/9781118958841.ch14
– volume: 117
  start-page: 93
  year: 2008
  ident: 3427_CR168
  publication-title: Oikos
  doi: 10.1111/j.2007.0030-1299.16130.x
– volume: 100
  start-page: 631
  year: 2012
  ident: 3427_CR74
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2012.01962.x
– volume: 119
  start-page: 397
  year: 1991
  ident: 3427_CR91
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1991.tb00039.x
– volume: 203
  start-page: 63
  year: 2014
  ident: 3427_CR89
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– volume: 53
  start-page: 197
  year: 2010
  ident: 3427_CR171
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2009.10.002
– volume: 59
  start-page: 153
  year: 1969
  ident: 3427_CR98
  publication-title: Phytopathology
– volume: 38
  start-page: 1446
  year: 1987
  ident: 3427_CR46
  publication-title: J Exp Bot
  doi: 10.1093/jxb/38.9.1446
– volume: 2
  start-page: 107
  year: 2009
  ident: 3427_CR50
  publication-title: J Plant Ecol
  doi: 10.1093/jpe/rtp015
– volume: 53
  start-page: 525
  year: 2002
  ident: 3427_CR125
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.368.525
– volume: 135
  start-page: 549
  year: 2004
  ident: 3427_CR135
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.035659
– volume: 70
  start-page: 107
  year: 1983
  ident: 3427_CR41
  publication-title: Plant Soil
  doi: 10.1007/BF02374754
– ident: 3427_CR58
  doi: 10.1007/s00442-017-3961-x
– start-page: 225
  volume-title: Fire in Ecosystems of the South-west Western Australia: Impact and Management
  year: 2003
  ident: 3427_CR17
– volume: 47
  start-page: 143
  year: 2016
  ident: 3427_CR118
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-121415-032100
– volume: 10
  start-page: 407
  year: 1995
  ident: 3427_CR110
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(00)89157-0
– volume: 201
  start-page: 403
  year: 2014
  ident: 3427_CR101
  publication-title: New Phytol
  doi: 10.1111/nph.12478
– volume: 104
  start-page: 792
  year: 2016
  ident: 3427_CR182
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12546
– volume: 23
  start-page: 33
  year: 2004
  ident: 3427_CR59
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600034
– volume: 92
  start-page: 119
  year: 2016
  ident: 3427_CR151
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.09.021
– volume: 38
  start-page: 50
  year: 2015
  ident: 3427_CR154
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12367
– volume: 6
  start-page: 457
  year: 1997
  ident: 3427_CR6
  publication-title: Mycorrhiza
  doi: 10.1007/s005720050147
– volume: 256
  start-page: 131
  year: 2003
  ident: 3427_CR95
  publication-title: Plant Soil
  doi: 10.1023/A:1026285813248
– volume: 322
  start-page: 49
  year: 2009
  ident: 3427_CR54
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0068-0
– start-page: 101
  volume-title: Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot
  year: 2014
  ident: 3427_CR83
– volume: 105
  start-page: 549
  year: 2017
  ident: 3427_CR2
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12638
– volume: 82
  start-page: 393
  year: 2007
  ident: 3427_CR113
  publication-title: Biol Rev
  doi: 10.1111/j.1469-185X.2007.00017.x
– volume: 334
  start-page: 11
  year: 2010
  ident: 3427_CR75
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0444-9
– volume: 205
  start-page: 1183
  year: 2015
  ident: 3427_CR112
  publication-title: New Phytol
  doi: 10.1111/nph.13175
– volume: 103
  start-page: 93
  year: 1990
  ident: 3427_CR122
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.1990.tb00176.x
– volume: 230
  start-page: 279
  year: 2001
  ident: 3427_CR180
  publication-title: Plant Soil
  doi: 10.1023/A:1010367501363
– volume: 212
  start-page: 646
  year: 2016
  ident: 3427_CR148
  publication-title: New Phytol
  doi: 10.1111/nph.14057
– volume: 85
  start-page: 991
  year: 1995
  ident: 3427_CR109
  publication-title: J Ecol
  doi: 10.2307/2261180
– volume: 78
  start-page: 1070
  year: 1988
  ident: 3427_CR10
  publication-title: Phytopathology
  doi: 10.1094/Phyto-78-1070
– volume: 21
  start-page: 335
  year: 2003
  ident: 3427_CR39
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-003-0002-2
– volume: 67
  start-page: 139
  year: 2004
  ident: 3427_CR43
  publication-title: Rec WA Mus
– volume: 5
  start-page: 527
  year: 1996
  ident: 3427_CR26
  publication-title: Biodivers Conserv
  doi: 10.1007/BF00137608
– ident: 3427_CR40
  doi: 10.2307/2418500
– ident: 3427_CR1
  doi: 10.1111/j.1469-8137.1984.tb03609.x
– volume: 64
  start-page: 976
  year: 2013
  ident: 3427_CR87
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP13268
– ident: 3427_CR132
  doi: 10.1111/1365-2745.12752
– volume: 51
  start-page: 235
  year: 2001
  ident: 3427_CR145
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
– volume: 18
  start-page: 418
  year: 2003
  ident: 3427_CR47
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(03)00127-7
– ident: 3427_CR33
  doi: 10.1104/pp.103.3.695
– volume: 100
  start-page: 263
  year: 2013
  ident: 3427_CR76
  publication-title: Am J Bot
  doi: 10.3732/ajb.1200474
– volume: 136
  start-page: 41
  year: 1991
  ident: 3427_CR90
  publication-title: Plant Soil
  doi: 10.1007/BF02465218
– ident: 3427_CR66
  doi: 10.1111/j.1469-8137.1990.tb00451.x
– volume: 50
  start-page: 1267
  year: 1999
  ident: 3427_CR134
  publication-title: J Exp Bot
– volume: 61
  start-page: 306
  year: 1995
  ident: 3427_CR19
  publication-title: Bot Rev
  doi: 10.1007/BF02912621
– volume: 60
  start-page: 45
  year: 2013
  ident: 3427_CR165
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.01.013
– volume-title: Kwongan. Plant Life of the Sandplain
  year: 1984
  ident: 3427_CR115
– volume: 150
  start-page: 348
  year: 2009
  ident: 3427_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.134098
– volume: 102
  start-page: 396
  year: 2014
  ident: 3427_CR49
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12196
– volume: 82
  start-page: 133
  year: 1979
  ident: 3427_CR114
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1979.tb07567.x
– volume: 97
  start-page: 1274
  year: 2009
  ident: 3427_CR138
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2009.01557.x
– volume: 52
  start-page: 360
  year: 2010
  ident: 3427_CR105
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2010.00892.x
– volume-title: Fynbos: South Africa’s Unique Floral Kingdom
  year: 1995
  ident: 3427_CR28
– volume: 48
  start-page: 123
  year: 2012
  ident: 3427_CR22
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-011-0653-2
– volume-title: Biochemie der Pflanze
  year: 1996
  ident: 3427_CR130
– volume: 18
  start-page: 539
  year: 2013
  ident: 3427_CR20
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2013.06.004
– volume: 174
  start-page: 23
  year: 2014
  ident: 3427_CR106
  publication-title: Oecologia
  doi: 10.1007/s00442-013-2747-z
– volume: 18
  start-page: 287
  year: 2015
  ident: 3427_CR159
  publication-title: Ecosystems
  doi: 10.1007/s10021-014-9830-0
– volume: 20
  start-page: 83
  year: 2015
  ident: 3427_CR79
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.10.007
– volume-title: Reference soils of south-western Australia
  year: 1991
  ident: 3427_CR100
– volume: 52
  start-page: 435
  year: 2004
  ident: 3427_CR137
  publication-title: Aust J Bot
  doi: 10.1071/BT03131
– volume: 334
  start-page: 33
  year: 2010
  ident: 3427_CR124
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0311-8
– start-page: 289
  volume-title: Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants
  year: 2015
  ident: 3427_CR77
  doi: 10.1002/9781118958841.ch11
– volume: 40
  start-page: 1971
  year: 2008
  ident: 3427_CR156
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.02.017
– volume: 52
  start-page: 2245
  year: 2001
  ident: 3427_CR57
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/52.365.2245
– volume: 19
  start-page: 167
  year: 2000
  ident: 3427_CR167
  publication-title: J Plant Growth Regul
  doi: 10.1007/s003440000027
– volume: 91
  start-page: 1591
  year: 2010
  ident: 3427_CR139
  publication-title: Ecology
  doi: 10.1890/09-1858.1
– volume: 206
  start-page: 507
  year: 2015
  ident: 3427_CR73
  publication-title: New Phytol
  doi: 10.1111/nph.13203
– ident: 3427_CR72
  doi: 10.1111/ele.12823
– volume-title: Mineral Nutrition of Higher Plants
  year: 1995
  ident: 3427_CR97
– volume: 179
  start-page: 303
  year: 2012
  ident: 3427_CR149
  publication-title: Am Nat
  doi: 10.1086/664183
– volume: 403
  start-page: 853
  year: 2000
  ident: 3427_CR107
  publication-title: Nature
  doi: 10.1038/35002501
– volume: 150
  start-page: 1
  year: 1987
  ident: 3427_CR56
  publication-title: Z Pflanzenernähr Bodenkd
  doi: 10.1002/jpln.19871500102
– volume: 49
  start-page: 775
  year: 1998
  ident: 3427_CR146
  publication-title: J Exp Bot
– volume: 144
  start-page: 299
  year: 2007
  ident: 3427_CR155
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.091090
– volume: 96
  start-page: 698
  year: 2008
  ident: 3427_CR157
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2008.01384.x
– volume: 320
  start-page: 1181
  year: 2008
  ident: 3427_CR34
  publication-title: Science
  doi: 10.1126/science.1154836
– volume: 164
  start-page: 375
  year: 2004
  ident: 3427_CR35
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01177.x
– volume: 26
  start-page: 39
  year: 2012
  ident: 3427_CR142
  publication-title: Fungal Biol Rev
  doi: 10.1016/j.fbr.2012.01.001
– volume: 415
  start-page: 68
  year: 2002
  ident: 3427_CR102
  publication-title: Nature
  doi: 10.1038/415068a
– volume: 82
  start-page: 277
  year: 2012
  ident: 3427_CR61
  publication-title: Ecol Monogr
  doi: 10.1890/11-1927.1
– volume: 178
  start-page: 117
  year: 2017
  ident: 3427_CR86
  publication-title: Int J Plant Sci
  doi: 10.1086/689199
– volume: 407
  start-page: 275
  year: 2016
  ident: 3427_CR172
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2998-7
– volume: 29
  start-page: 919
  year: 2006
  ident: 3427_CR173
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01473.x
– volume: 355
  start-page: 181
  year: 2017
  ident: 3427_CR8
  publication-title: Science
  doi: 10.1126/science.aai8212
– volume: 22
  start-page: 1009
  year: 2011
  ident: 3427_CR119
  publication-title: J Veg Sci
  doi: 10.1111/j.1654-1103.2011.01323.x
– volume: 4
  start-page: 37
  year: 1962
  ident: 3427_CR44
  publication-title: Syst Assoc Publ
– volume: 228
  start-page: 83
  year: 1970
  ident: 3427_CR108
  publication-title: Nature
  doi: 10.1038/228083a0
– volume: 288
  start-page: 127
  year: 2006
  ident: 3427_CR117
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9099-y
– volume: 272
  start-page: 143
  year: 2005
  ident: 3427_CR30
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-4336-8
– volume: 15
  start-page: 1
  year: 1976
  ident: 3427_CR166
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 90
  start-page: 2808
  year: 2009
  ident: 3427_CR152
  publication-title: Ecology
  doi: 10.1890/08-1884.1
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: 3427_CR144
– volume: 10
  start-page: 429
  year: 1972
  ident: 3427_CR99
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.10.090172.002241
– volume: 68
  start-page: 154
  year: 1981
  ident: 3427_CR23
  publication-title: Am J Bot
  doi: 10.1002/j.1537-2197.1981.tb12374.x
– ident: 3427_CR63
  doi: 10.1007/978-94-017-7395-9_4
SSID ssj0003216
Score 2.5963757
SecondaryResourceType review_article
Snippet Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile...
Background Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile...
BackgroundMycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil....
BACKGROUND: Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Biomedical and Life Sciences
Carboxylates
Clusters
Coexistence
Ecological monitoring
Ecology
ecosystems
Environmental aspects
Exudation
Fungi
Life Sciences
MARSCHNER REVIEW
Mycorrhizae
mycorrhizal fungi
Nitrogen fixation
nitrogen-fixing trees
Nutrients
Oomycetes
Pathogens
Phosphorus
Plant Physiology
Plant Sciences
Plant species
Proteaceae
Roots
soil
Soil fertility
Soil Science & Conservation
Species
suberization
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA5yKuiDaPW41VMiCIISyP7efaxyRxH0yULfQpIm9qC3W3Zbjvrf-J_6zf5oPVHBh0LZJrMpM5N8Q2a-YexN4p0pEFkIiwhIJNotBUBsJorSUYNjmJSk4uTPX7LZPPm0SBdDHXc7ZruPV5LdTn0sdsNJRRkTcIokygX23bsphe4w4nk0PWy_cdT1O6UvQublYrzK_JOIW4fRsCX3aYm3AOdvd6Td0XP5mD0aMCOf9kp-wu64asIeTr81A2-Gm7B7H2qgvP2E3b_oaKj3T9mPWX3DjVvXN1S5US05MUM0fR1Dy7sUdep15fi25kCBeEKsmB2E5rXn13vEpc3q6jverDG7qivx6zMq0USUDakch6tr3HrPN6u6xafZteLqekPJoZRxv-QrBLswRMoAcRzxbk8f3T5j88uLrx9nYmjIICyA3lZomzlpklJqAxiY6jgpY6Kv0WGea7O0cObI5s54VybWhXGoQ2-8JkxpfBbp-JSdYLXujPEitmma5wYAEAJtomXmYy-9N4jWpdMBk6NmlB3YyqlpxlodeZZJmQrKVKRMFQXs3WHKpqfq-Nfgt6RuRW4MuVYP1QhYHRFiqWmKPwcjTmXATjuLOMiEKcPuwjJg56OJqMHxWxURhgSELjDv9eFnuCzdw-jK1Tsag6g6Q6ybB-z9aFpHEX9d8_P_Gv2CPcAqiz5f7pydbJudewkAtTWvOof5CaEjFGE
  priority: 102
  providerName: Springer Nature
Title How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems
URI https://www.jstor.org/stable/26652019
https://link.springer.com/article/10.1007/s11104-017-3427-2
https://www.proquest.com/docview/2025653380
https://www.proquest.com/docview/2084062827
Volume 424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1di9NAFB3crQ_6ILq6GF3LCIKgDKT5bJ6k1daiuIhYqE9hZjLZLnSTmrQs9d_4Tz03mbSu4D6UljS5mXDvnTkncz8YexXkRg3BLIQGAxKBNJkAiI3EMDHU4Bgm5VJy8pfzaDYPPi3ChX3hVtuwym5ObCbqrNT0jpxIOrAHCJX7bv1TUNco2l21LTSOWA9T8BDkqzeenH_9tp-Lfa9pfko_hBsni25fs0mew8pHERhwssCLhXdjZbLzcxujeAN9_rNh2qxD04fsgQWQfNRq_BG7Y4oTdn90UdkiGuaE3R2XgHy7x-z3rLzmyqzKa0reKDJOxSGqNpWh5k2UOrW7MnxTcgBBHKHCmA2K5mXOr3agptXy8hfuJ3F1URbi72OUpQmiDakc66upzGrH18uyxqfa1uLyak3xoRR0n_El-C5skYJADAflbStI10_YfDr5_n4mbE8GoYH1NkLqyLgqSFypgARD6QeJTxVs5CCOpco0_NnTsVG5SQJtBv5ADnKVS4KVKo886Z-yY4zWPGV86OswjGMFDAiBOpBulPu5m-cKhN010mFup49U24Ll1DdjlR5KLZMKU6gwJRWmnsPe7C9Zt9U6bjv5NSk5JU-GXC1tQgJGRzWx0lGIh4Mdh67DThs72MuENYdATonDzjrDSK3v1-nBUh32cv83vJa2YmRhyi2dA2Idge7GDnvbGdRBxH_H_Oz2Gz5n9zCsYRsjd8aON9XWvABo2qg-643GH8ZT-v744_Okbz2lz47m3ugPUaYaSQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UVLA-iFaLq1VHUARlYLPX7INIqi2pbYNIC3nbzk5mTSHNprsJIf4b_4C_0e_sJbGCfetDICS7Zyecy3xf5lyI3nipSTpgFlKDAUlPmaEEiA1kJzI84BgmZXNx8kk_6J15Xwf-YIN-N7UwnFbZxMQyUA8zzf-RM0kH9gChsj9NryRPjeLT1WaERmUWR2a5AGUrPh5-gX7fOs7B_unnnqynCkgNtDKTSgfGTrzIVgmwjK9cD5w-9DqqHYYqGWpYpKNDk6Qm8rRpu23VTpNUMTBK0sBRLuTeoU3PBZVp0ebefv_b91Xsd51y2Cq_kXYYDZpz1LJYDzstZ3zAqT0nlM61nbDeD6qcyGto958D2nLfO3hID2rAKrqVhT2iDTPZpvvdH3ndtMNs0929DBBz-Zh-9bKFSMw4W3CxyGQouBlFXpVOFKLMiufxWkbMMgHgiU-4EWeJ2kWWisslqHA-uviJ5yncPckm8u_PuCoUxB5SBfZzk5vxUkxHWYFXPi_kxeWU81E5yX8oRuDXsH1OOjECFLvqWF08obNb0dYOtbBa85REx9W-H4YJMCcEak_ZQeqmdpomEeKeURbZjT5iXTdI5zkd43jd2plVGEOFMaswdix6v7plWnUHuenid6zkmCMH5GpVF0BgddyDK-76-HHwG9-2aKe0g5VMeI8PpBZZtNsYRlzHmiJee4ZFr1dfI0rw0Y-amGzO14DIB6DXoUUfGoNai_jvmp_d_MBXdK93enIcHx_2j57TFpbYqfLzdqk1y-fmBQDbLHlZe4mg89t2zD-AmlQF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UVEQfRKvF1aojKIIyuNlr9kEktQ2p1VDEQt62M5tZU0izcTchxH_j3_DX-Z29JFawb30IhGT37IRzzpzvy5wL0UsvNboDZiETMCDpKTOSALGB7ESGBxzDpGwuTv4yCPqn3qehP9yi300tDKdVNntiuVGPsoT_I2eSDuwBQmW_S-u0iJOD3ofZD8kTpPiktRmnUZnIsVktQd-K90cH0PUrx-kdfvvYl_WEAZkAucylSgJjay-ylQau8ZXrgd-HXke1w1DpUQLrdJLQ6NREXmLablu1U50qBkk6DRzlQu4N2g7BiuwWbe8fDk6-ruOA65SDV_mNtMNo2JyploV7iLqc_QEH95xQOpeiYh0bqvzIS8j3n8PaMgb27tHdGryKbmVt92nLTHfoTvd7XjfwMDt0cz8D3Fw9oF_9bCm0mWRLLhyZjgQ3psirMopClBnyPGrLiHkmAELxCTflLBG8yFJxsQItzsfnP_E8hbun2VT-_RlXiILkQ6pAbDe5mazEbJwVeOWLQp5fzDg3lRP-R2IMrg0_4AQUI0C3q-7VxUM6vRZt7VILqzWPSHTcxPfDUAN_QmDiKTtI3dROUx1BlUZZZDf6iJO6WTrP7JjEmzbPrMIYKoxZhbFj0Zv1LbOqU8hVF79mJce8i0BuoupiCKyO-3HFXR8_Dj7k2xbtlnawlglP8oHaIov2GsOI632niDdeYtGL9dfYMfgYSE1NtuBrQOoDUO3QoreNQW1E_HfNj69-4HO6BYeMPx8Njp_QbaywU6Xq7VFrni_MU2C3uX5WO4mgs-v2yz9Colg6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+belowground+interactions+contribute+to+the+coexistence+of+mycorrhizal+and+non-mycorrhizal+species+in+severely+phosphorus-impoverished+hyperdiverse+ecosystems&rft.jtitle=Plant+and+soil&rft.au=Lambers%2C+Hans&rft.au=Albornoz%2C+Felipe&rft.au=Kotula%2C+Lukasz&rft.au=Lalibert%C3%A9%2C+Etienne&rft.date=2018-03-01&rft.pub=Springer&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=424&rft.issue=1%2F2&rft.spage=11&rft.epage=33&rft_id=info:doi/10.1007%2Fs11104-017-3427-2&rft.externalDocID=26652019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon