In-depth analysis of G-to-A hypermutation rate in HIV-1 env DNA induced by endogenous APOBEC3 proteins using massively parallel sequencing

Some APOBEC3 proteins cause G-to-A hypermutation in HIV-1 DNA when the accessory viral protein Vif is absent or non-functional. So far, cloning and sequencing has been performed to study G-to-A hypermutation. This is time-consuming and labour-intensive especially in the context of in vivo investigat...

Full description

Saved in:
Bibliographic Details
Published inJournal of virological methods Vol. 171; no. 2; pp. 329 - 338
Main Authors Knoepfel, Stefanie A., Di Giallonardo, Francesca, Däumer, Martin, Thielen, Alexander, Metzner, Karin J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.02.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Some APOBEC3 proteins cause G-to-A hypermutation in HIV-1 DNA when the accessory viral protein Vif is absent or non-functional. So far, cloning and sequencing has been performed to study G-to-A hypermutation. This is time-consuming and labour-intensive especially in the context of in vivo investigations where the number of hypermutated sequences can be very low. Thus, a massively parallel sequencing protocol has been developed for in-depth analysis of G-to-A hypermutation using the 454 pyrosequencing FLX system. Part of HIV-1 env was amplified and pyrosequenced after two rounds of infection in T cell lines and PBMCs using HIV-1 NL4-3Δvif. Specific criteria were applied to cope with major technical challenges: (1) the inclusion of hypermutated sequences, (2) the high genome diversity of HIV-1 env, and (3) the exclusion of sequences containing frameshift errors caused by pyrosequencing. In total, more than 140,000 sequences were obtained. 1.3–6.5% of guanines were mutated to adenine, most frequently in the GG dinucleotide context, the preferred deamination site of APOBEC3G. Non-G-to-A mutations occurred only in low frequencies (<0.6%). Single hypermutated sequences contained up to 24 G-to-A mutations. Overall, massively parallel sequencing is a very useful tool for in-depth analysis of G-to-A hypermutation in HIV-1 DNA induced by APOBEC3 proteins.
Bibliography:http://dx.doi.org/10.1016/j.jviromet.2010.11.016
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0166-0934
1879-0984
DOI:10.1016/j.jviromet.2010.11.016