Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai–Tibetan Plateau

To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau. The a...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 77; pp. 338 - 347
Main Authors Kato, Tomomichi, Yamada, Keita, Tang, Yanhong, Yoshida, Naohiro, Wada, Eitaro
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau. The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer. The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn. •Stable carbon isotope ratio in soil CH4 was examined in alpine ecosystems in China.•Alpine meadow and shrub showed different fractionation factors in methane oxidation.•In alpine wetland, acetate fermentation was major contributor on methane production.•Hummocks showed plant-mediated transport of CH4 from deep soil to the atmosphere.•In hollows, fractional oxidation rate on methane production was estimated at 7–36%.
AbstractList To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau. The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer. The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn. •Stable carbon isotope ratio in soil CH4 was examined in alpine ecosystems in China.•Alpine meadow and shrub showed different fractionation factors in methane oxidation.•In alpine wetland, acetate fermentation was major contributor on methane production.•Hummocks showed plant-mediated transport of CH4 from deep soil to the atmosphere.•In hollows, fractional oxidation rate on methane production was estimated at 7–36%.
To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau.The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer.The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn.
Author Kato, Tomomichi
Tang, Yanhong
Yamada, Keita
Wada, Eitaro
Yoshida, Naohiro
Author_xml – sequence: 1
  givenname: Tomomichi
  surname: Kato
  fullname: Kato, Tomomichi
  email: tomomichi.kato@lsce.ipsl.fr
  organization: Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa 236-0001, Japan
– sequence: 2
  givenname: Keita
  surname: Yamada
  fullname: Yamada, Keita
  organization: Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
– sequence: 3
  givenname: Yanhong
  surname: Tang
  fullname: Tang, Yanhong
  organization: National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
– sequence: 4
  givenname: Naohiro
  surname: Yoshida
  fullname: Yoshida, Naohiro
  organization: Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
– sequence: 5
  givenname: Eitaro
  surname: Wada
  fullname: Wada, Eitaro
  organization: Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa 236-0001, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681119$$DView record in Pascal Francis
https://hal.science/hal-03208280$$DView record in HAL
BookMark eNqFkc9u1DAQxiNUJNrCKyBfkOCQxX-S2JE4UFWFIq0EiHK2JvaE9SqxF9u7Um_wDLwhT4LDthy49GR7_PtmNN93Vp344LGqnjO6YpR1r7cryHNI6A8rTplY0XZFGX1UnTIlRc1V05yUu2h5zQWjT6qzlLaUUiF7eVr9_JJhmJAYiEPwxKWQw84Zggdn0RskYSQz5g34wgSf9vMuuwKCt2QXg92bv0_nSd5ERALTzhUUTUi3KeOcSFi-kHx2_tsG3O8fv27cgBk8-TRBRtg_rR6PMCV8dneeV1_fXd1cXtfrj-8_XF6sa9OyPteK9xSYsDBaM4Di1MqOCdaoRrVSCMkNbwejetGPgx0tk6prG9v3FiRnY8vEefXq2HcDk95FN0O81QGcvr5Y66VGBaeKK3pY2JdHtqz4fY8p69klg9NUbAj7pJmkbSM6yWVBX9yhkAxMYwRvXPo3gMtOMcb6wr05ciaGlCKO2rgMi3k5gps0o3pJU2_1fZp6SVPTVpc0i7z7T34_4UHh26MQi7cHh1En45ZkrYtosrbBPdTiD0VSwlQ
CitedBy_id crossref_primary_10_1002_2015JG002974
crossref_primary_10_1029_2019JG005011
crossref_primary_10_1016_j_agrformet_2020_107982
crossref_primary_10_3390_ijerph19042437
crossref_primary_10_1029_2022JG006948
crossref_primary_10_1002_2015JG003043
crossref_primary_10_1038_ncomms5631
crossref_primary_10_1038_s41598_020_63054_z
crossref_primary_10_1007_s11631_021_00477_z
crossref_primary_10_1002_glr2_12048
crossref_primary_10_1016_j_soilbio_2014_02_023
crossref_primary_10_1080_10256016_2017_1326916
crossref_primary_10_1016_j_soilbio_2016_07_009
crossref_primary_10_1016_j_uclim_2021_101073
crossref_primary_10_1016_j_envres_2022_113767
crossref_primary_10_5194_bg_17_1261_2020
crossref_primary_10_1088_1748_9326_10_8_085007
crossref_primary_10_3390_atmos13060854
crossref_primary_10_1016_j_apsoil_2021_104061
Cites_doi 10.1016/S0016-7037(97)00277-9
10.1029/1998GB900021
10.1016/j.soilbio.2009.01.007
10.1016/j.atmosenv.2011.03.010
10.1038/ngeo939
10.1038/293289a0
10.5194/bg-7-3893-2010
10.1098/rsbl.2008.0373
10.1016/j.soilbio.2003.12.009
10.1023/A:1005866403120
10.1016/j.orggeochem.2004.10.007
10.1029/1999GB900089
10.1029/97JD03738
10.1029/2000GB001384
10.1046/j.1365-2486.2002.00476.x
10.1016/S0048-9697(01)01100-7
10.5194/bg-7-1207-2010
10.1007/s10661-009-0871-3
10.1016/S1352-2310(03)00030-X
10.1111/j.1365-2745.2011.01823.x
10.1016/j.atmosenv.2005.05.036
10.1016/j.orggeochem.2004.09.006
10.1029/95GB02582
10.1006/anbo.2000.1172
10.1029/92GB00710
10.1111/j.1365-2486.2006.01197.x
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7S9
L.6
1XC
DOI 10.1016/j.atmosenv.2013.05.010
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
EndPage 347
ExternalDocumentID oai_HAL_hal_03208280v1
27681119
10_1016_j_atmosenv_2013_05_010
S1352231013003531
GeographicLocations Far East
Asia
China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7S9
L.6
1XC
ID FETCH-LOGICAL-c519t-8290a13dafdcba820d761314848573372c25bc8939fbdfd178654d99da721f513
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Fri May 09 12:25:34 EDT 2025
Fri Jul 11 07:19:59 EDT 2025
Wed Apr 02 07:25:23 EDT 2025
Tue Jul 01 03:38:03 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Fri Feb 23 02:35:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Acetate fermentation
Fractionation factor
Plant-mediated CH4 transport
CO2/H2 reduction
Terrestrial environment
stable isotopes
geomorphology
Carbon dioxide
H
carbon cycle
transport
Source sink relationship
CO
Carbon isotopes
greenhouse gas
Transport process
Plant-mediated CH
Alpine vegetation
Air biosphere interaction
Acetic fermentation
ecosystems
methane
Hydrogen molecules
reduction
seasonal variations
Material balance
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-8290a13dafdcba820d761314848573372c25bc8939fbdfd178654d99da721f513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3757-3243
0000-0003-0454-3849
PQID 1705436727
PQPubID 24069
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03208280v1
proquest_miscellaneous_1705436727
pascalfrancis_primary_27681119
crossref_citationtrail_10_1016_j_atmosenv_2013_05_010
crossref_primary_10_1016_j_atmosenv_2013_05_010
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2013_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Atmospheric environment (1994)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Galand, Yrjala, Conrad (bib11) 2010; 7
Bellisario, Bubier, Moore, Chanton (bib2) 1999; 13
Conrad (bib9) 2005; 36
Chanton (bib6) 2005; 36
Krüger, Gundula, Conrad, Frenzel (bib19) 2002; 8
Liebner, Zeyer, Wagner, Schubert, Pfeiffer, Knoblauch (bib22) 2011; 99
Snover, Quay (bib26) 2000; 14
Cao, Xu, Long, Wang, Wang, Du, Zhao (bib5) 2008; 4
Kato, Hirota, Tang, Wada (bib16) 2011; 45
Wang, Qian, Cheng, Lai (bib27) 2002; 291
Bergamaschi, Harris (bib3) 1995; 9
Whiting, Chanton (bib28) 1992; 6
Yamada, Ozaki, Nakagawa, Tanaka, Yoshida (bib29) 2003; 37
IPCC (bib15) 2007
Barker, Fritz (bib1) 1981; 293
Kelker, Chanton (bib17) 1997; 39
Lin, Wang, Ma, Xu, Luo, Li, Jiang, Xie (bib23) 2009; 41
Kip, van Winden, Pan, Bodrossy, Reichart, Smolders, Jetten, Sinninghe Damsté, op den Camp (bib18) 2010; 3
Chen, Wu, Yao, Gao, Wang, Tian, Yuan (bib8) 2010; 164
Bergamaschi, Brenninkmeijer, Hahn, Röckmann, Scharffe, Crutzen, Elansky, Belikov, Trivett, Worthy (bib4) 1998; 103
Hirota, Tang, Hu, Kato, Hirata, Mo, Cao, Mariko (bib14) 2005; 39
Gonfiantini, Stichler, Rozanski (bib12) 1995
Li, Zhao, Zhao, Wang, Shen (bib21) 2001; 25
Nakagawa, Yoshida, Nojiri, Makarov (bib24) 2002; 16
Zyakun, Bondar, Mshenskiy, Zakharchenko, Gayazov, Shishkina (bib32) 1988; 5
Chasar, Chanton, Glaser, Siegel (bib7) 2000; 86
Reeburgh, Hirsch, Sansone, Popp, Rust (bib25) 1997; 61
Zhao, Li, Xu, Zhou, Li, Gu, Zhao (bib31) 2010; 7
Hirota, Tang, Hu, Hirata, Kato, Mo, Cao, Mariko (bib13) 2004; 36
Zhao, Li, Xu, Zhou, Gu, Yu, Zhao (bib30) 2006; 10
(bib20) 1998
Coplen (bib10) 1995
Hirota (10.1016/j.atmosenv.2013.05.010_bib14) 2005; 39
Zhao (10.1016/j.atmosenv.2013.05.010_bib30) 2006; 10
Chen (10.1016/j.atmosenv.2013.05.010_bib8) 2010; 164
Gonfiantini (10.1016/j.atmosenv.2013.05.010_bib12) 1995
Kato (10.1016/j.atmosenv.2013.05.010_bib16) 2011; 45
Zyakun (10.1016/j.atmosenv.2013.05.010_bib32) 1988; 5
Conrad (10.1016/j.atmosenv.2013.05.010_bib9) 2005; 36
(10.1016/j.atmosenv.2013.05.010_bib20) 1998
Coplen (10.1016/j.atmosenv.2013.05.010_bib10) 1995
Wang (10.1016/j.atmosenv.2013.05.010_bib27) 2002; 291
Whiting (10.1016/j.atmosenv.2013.05.010_bib28) 1992; 6
Cao (10.1016/j.atmosenv.2013.05.010_bib5) 2008; 4
Krüger (10.1016/j.atmosenv.2013.05.010_bib19) 2002; 8
Lin (10.1016/j.atmosenv.2013.05.010_bib23) 2009; 41
Bellisario (10.1016/j.atmosenv.2013.05.010_bib2) 1999; 13
Hirota (10.1016/j.atmosenv.2013.05.010_bib13) 2004; 36
Li (10.1016/j.atmosenv.2013.05.010_bib21) 2001; 25
Bergamaschi (10.1016/j.atmosenv.2013.05.010_bib3) 1995; 9
Zhao (10.1016/j.atmosenv.2013.05.010_bib31) 2010; 7
Galand (10.1016/j.atmosenv.2013.05.010_bib11) 2010; 7
Snover (10.1016/j.atmosenv.2013.05.010_bib26) 2000; 14
Kelker (10.1016/j.atmosenv.2013.05.010_bib17) 1997; 39
Bergamaschi (10.1016/j.atmosenv.2013.05.010_bib4) 1998; 103
Chanton (10.1016/j.atmosenv.2013.05.010_bib6) 2005; 36
Liebner (10.1016/j.atmosenv.2013.05.010_bib22) 2011; 99
Barker (10.1016/j.atmosenv.2013.05.010_bib1) 1981; 293
Kip (10.1016/j.atmosenv.2013.05.010_bib18) 2010; 3
Chasar (10.1016/j.atmosenv.2013.05.010_bib7) 2000; 86
Reeburgh (10.1016/j.atmosenv.2013.05.010_bib25) 1997; 61
IPCC (10.1016/j.atmosenv.2013.05.010_bib15) 2007
Nakagawa (10.1016/j.atmosenv.2013.05.010_bib24) 2002; 16
Yamada (10.1016/j.atmosenv.2013.05.010_bib29) 2003; 37
References_xml – start-page: 31
  year: 1995
  end-page: 34
  ident: bib10
  article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances
  publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825
– volume: 25
  start-page: 243
  year: 2001
  end-page: 249
  ident: bib21
  article-title: Analysis of vegetation succession and climate change in Haibei alpine march in the Qinlian mountains
  publication-title: Journal of Glaciology and Geocryology
– volume: 3
  start-page: 617
  year: 2010
  end-page: 621
  ident: bib18
  article-title: Global prevalence of methane oxidation by symbiotic bacteria in peat moss ecosystems
  publication-title: Nature Geoscience
– volume: 41
  start-page: 718
  year: 2009
  end-page: 725
  ident: bib23
  article-title: Fluxes of CO
  publication-title: Soil Biology and Biochemistry
– volume: 103
  year: 1998
  ident: bib4
  article-title: Isotope analysis based source identification for atmospheric CH
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 81
  year: 1999
  end-page: 91
  ident: bib2
  article-title: Controls on CH
  publication-title: Global Biogeochemical Cycles
– volume: 164
  start-page: 21
  year: 2010
  end-page: 28
  ident: bib8
  article-title: Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai–Tibetan Plateau
  publication-title: Environment Monitoring and Assessment
– volume: 5
  start-page: 84
  year: 1988
  end-page: 90
  ident: bib32
  article-title: Carbon-isotope fraction by the methane-oxidizing bacteria methylomonas methanica during its continuous growth
  publication-title: Geochem. Int
– volume: 291
  start-page: 207
  year: 2002
  end-page: 217
  ident: bib27
  article-title: Soil organic carbon pool of grassland soils on the Qinghai–Tibetan Plateau and its global implication
  publication-title: The Science of The Total Environment
– year: 2007
  ident: bib15
  article-title: Climate change 2007: the physical science basis
  publication-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 86
  start-page: 655
  year: 2000
  end-page: 663
  ident: bib7
  article-title: Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz peatland complex
  publication-title: Ann Botany
– volume: 7
  start-page: 3893
  year: 2010
  end-page: 3900
  ident: bib11
  article-title: Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems
  publication-title: Biogeosciences
– volume: 293
  start-page: 289
  year: 1981
  ident: bib1
  article-title: Carbon isotope fractionation during microbial methane oxidation
  publication-title: Nature
– volume: 10
  start-page: 1940
  year: 2006
  end-page: 1953
  ident: bib30
  article-title: Diurnal, seasonal and annual variation in net ecosystem CO
  publication-title: Global Change Biology
– volume: 37
  start-page: 1975
  year: 2003
  end-page: 1982
  ident: bib29
  article-title: An improved method for measurement of the hydrogen isotope ratio of atmospheric methane and its application to a Japanese urban atmosphere
  publication-title: Atmospheric Environment
– volume: 36
  start-page: 753
  year: 2005
  end-page: 768
  ident: bib6
  article-title: The effect of gas transport mechanism on the isotope signature of methane in wetlands
  publication-title: Organic Geochemistry
– volume: 45
  start-page: 5632
  year: 2011
  end-page: 5639
  ident: bib16
  article-title: Spatial variability of CH
  publication-title: Atmospheric Environment
– volume: 6
  start-page: 225
  year: 1992
  end-page: 231
  ident: bib28
  article-title: Plant-dependent CH
  publication-title: Global Biogeochemical Cycles
– volume: 14
  start-page: 25
  year: 2000
  end-page: 39
  ident: bib26
  article-title: Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane
  publication-title: Global Biogeochemical Cycles
– volume: 99
  start-page: 914
  year: 2011
  end-page: 922
  ident: bib22
  article-title: Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra
  publication-title: Journal of Ecology
– volume: 39
  start-page: 37
  year: 1997
  end-page: 44
  ident: bib17
  article-title: The effect of clipping on methane emission from Carex aquatilis
  publication-title: Biogeochemistry
– volume: 16
  start-page: 1041
  year: 2002
  ident: bib24
  article-title: Production of methane from alasses in eastern Siberia: implications from its
  publication-title: Global Biogeochemical Cycles
– volume: 36
  start-page: 739
  year: 2005
  end-page: 752
  ident: bib9
  article-title: Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal
  publication-title: Organic Geochemistry
– volume: 61
  start-page: 4761
  year: 1997
  end-page: 4767
  ident: bib25
  article-title: Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils
  publication-title: Geochimica et Cosmochimica Acta
– volume: 4
  start-page: 681
  year: 2008
  end-page: 684
  ident: bib5
  article-title: Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau
  publication-title: Biology Letters
– volume: 36
  start-page: 737
  year: 2004
  end-page: 748
  ident: bib13
  article-title: Methane emissions from different vegetation zones in a Qinghai–Tibetan plateau wetland
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 439
  year: 1995
  end-page: 447
  ident: bib3
  article-title: Measurements of stable isotope ratios (
  publication-title: Global Biogeochemical Cycles
– volume: 8
  start-page: 265
  year: 2002
  end-page: 280
  ident: bib19
  article-title: Seasonal variation in pathways of CH
  publication-title: Global Change Biology
– year: 1998
  ident: bib20
  publication-title: Ecosystems of Qinghai-Xizang (Tibetan) Plateau and Approach for Their Sustainable Management
– start-page: 13
  year: 1995
  end-page: 29
  ident: bib12
  article-title: Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurements
  publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825
– volume: 39
  start-page: 5255
  year: 2005
  end-page: 5259
  ident: bib14
  article-title: The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai–Tibetan Plateau
  publication-title: Atmospheric Environment
– volume: 7
  start-page: 1207
  year: 2010
  end-page: 1221
  ident: bib31
  article-title: Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai–Tibetan Plateau
  publication-title: Biogeosciences
– volume: 61
  start-page: 4761
  year: 1997
  ident: 10.1016/j.atmosenv.2013.05.010_bib25
  article-title: Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(97)00277-9
– volume: 13
  start-page: 81
  issue: 1
  year: 1999
  ident: 10.1016/j.atmosenv.2013.05.010_bib2
  article-title: Controls on CH4 emissions from a northern peatland
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/1998GB900021
– volume: 41
  start-page: 718
  year: 2009
  ident: 10.1016/j.atmosenv.2013.05.010_bib23
  article-title: Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai–Tibetan plateau during summer grazing periods
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.01.007
– volume: 45
  start-page: 5632
  year: 2011
  ident: 10.1016/j.atmosenv.2013.05.010_bib16
  article-title: Spatial variability of CH4 and CH4 fluxes in alpine ecosystems on the Qinghai–Tibetan Plateau
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2011.03.010
– volume: 3
  start-page: 617
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.010_bib18
  article-title: Global prevalence of methane oxidation by symbiotic bacteria in peat moss ecosystems
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo939
– volume: 293
  start-page: 289
  year: 1981
  ident: 10.1016/j.atmosenv.2013.05.010_bib1
  article-title: Carbon isotope fractionation during microbial methane oxidation
  publication-title: Nature
  doi: 10.1038/293289a0
– volume: 7
  start-page: 3893
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.010_bib11
  article-title: Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-3893-2010
– volume: 4
  start-page: 681
  year: 2008
  ident: 10.1016/j.atmosenv.2013.05.010_bib5
  article-title: Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2008.0373
– volume: 36
  start-page: 737
  year: 2004
  ident: 10.1016/j.atmosenv.2013.05.010_bib13
  article-title: Methane emissions from different vegetation zones in a Qinghai–Tibetan plateau wetland
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2003.12.009
– volume: 39
  start-page: 37
  year: 1997
  ident: 10.1016/j.atmosenv.2013.05.010_bib17
  article-title: The effect of clipping on methane emission from Carex aquatilis
  publication-title: Biogeochemistry
  doi: 10.1023/A:1005866403120
– volume: 36
  start-page: 753
  issue: 5
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.010_bib6
  article-title: The effect of gas transport mechanism on the isotope signature of methane in wetlands
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2004.10.007
– volume: 14
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.atmosenv.2013.05.010_bib26
  article-title: Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/1999GB900089
– volume: 103
  issn: 0148-0227
  issue: D7
  year: 1998
  ident: 10.1016/j.atmosenv.2013.05.010_bib4
  article-title: Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian railroad
  publication-title: Journal of Geophysical Research
  doi: 10.1029/97JD03738
– start-page: 13
  year: 1995
  ident: 10.1016/j.atmosenv.2013.05.010_bib12
  article-title: Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurements
– volume: 16
  start-page: 1041
  issue: 3
  year: 2002
  ident: 10.1016/j.atmosenv.2013.05.010_bib24
  article-title: Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2000GB001384
– volume: 5
  start-page: 84
  year: 1988
  ident: 10.1016/j.atmosenv.2013.05.010_bib32
  article-title: Carbon-isotope fraction by the methane-oxidizing bacteria methylomonas methanica during its continuous growth
  publication-title: Geochem. Int
– volume: 8
  start-page: 265
  issue: 3
  year: 2002
  ident: 10.1016/j.atmosenv.2013.05.010_bib19
  article-title: Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.2002.00476.x
– volume: 291
  start-page: 207
  year: 2002
  ident: 10.1016/j.atmosenv.2013.05.010_bib27
  article-title: Soil organic carbon pool of grassland soils on the Qinghai–Tibetan Plateau and its global implication
  publication-title: The Science of The Total Environment
  doi: 10.1016/S0048-9697(01)01100-7
– volume: 7
  start-page: 1207
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.010_bib31
  article-title: Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai–Tibetan Plateau
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-1207-2010
– volume: 164
  start-page: 21
  issue: 1–4
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.010_bib8
  article-title: Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai–Tibetan Plateau
  publication-title: Environment Monitoring and Assessment
  doi: 10.1007/s10661-009-0871-3
– volume: 37
  start-page: 1975
  year: 2003
  ident: 10.1016/j.atmosenv.2013.05.010_bib29
  article-title: An improved method for measurement of the hydrogen isotope ratio of atmospheric methane and its application to a Japanese urban atmosphere
  publication-title: Atmospheric Environment
  doi: 10.1016/S1352-2310(03)00030-X
– year: 2007
  ident: 10.1016/j.atmosenv.2013.05.010_bib15
  article-title: Climate change 2007: the physical science basis
– volume: 99
  start-page: 914
  issue: 4
  year: 2011
  ident: 10.1016/j.atmosenv.2013.05.010_bib22
  article-title: Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2011.01823.x
– volume: 39
  start-page: 5255
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.010_bib14
  article-title: The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai–Tibetan Plateau
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2005.05.036
– year: 1998
  ident: 10.1016/j.atmosenv.2013.05.010_bib20
– volume: 36
  start-page: 739
  issue: 5
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.010_bib9
  article-title: Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2004.09.006
– volume: 9
  start-page: 439
  issue: 4
  year: 1995
  ident: 10.1016/j.atmosenv.2013.05.010_bib3
  article-title: Measurements of stable isotope ratios (13CH4/12CH4; 12CH3D/12CH4) in landfill methane using a tunable diode laser absorption spectrometer
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/95GB02582
– volume: 86
  start-page: 655
  year: 2000
  ident: 10.1016/j.atmosenv.2013.05.010_bib7
  article-title: Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz peatland complex
  publication-title: Ann Botany
  doi: 10.1006/anbo.2000.1172
– start-page: 31
  year: 1995
  ident: 10.1016/j.atmosenv.2013.05.010_bib10
  article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances
– volume: 25
  start-page: 243
  year: 2001
  ident: 10.1016/j.atmosenv.2013.05.010_bib21
  article-title: Analysis of vegetation succession and climate change in Haibei alpine march in the Qinlian mountains
  publication-title: Journal of Glaciology and Geocryology
– volume: 6
  start-page: 225
  year: 1992
  ident: 10.1016/j.atmosenv.2013.05.010_bib28
  article-title: Plant-dependent CH4 emission in a subarctic Canadian fen
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/92GB00710
– volume: 10
  start-page: 1940
  year: 2006
  ident: 10.1016/j.atmosenv.2013.05.010_bib30
  article-title: Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai–Tibetan Plateau
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2006.01197.x
SSID ssj0003797
Score 2.2095
Snippet To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4...
To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 338
SubjectTerms absorption
Acetate fermentation
acetates
alpine meadows
Animal and plant ecology
Animal, plant and microbial ecology
atmospheric chemistry
autumn
Biological and medical sciences
carbon
Chemical composition and interactions. Ionic interactions and processes
China
CO2/H2 reduction
Continental interfaces, environment
Earth, ocean, space
ecosystems
Exact sciences and technology
External geophysics
fermentation
Fractionation factor
Fundamental and applied biological sciences. Psychology
Meteorology
methane
methane production
Ocean, Atmosphere
oxidation
Plant-mediated CH4 transport
Sciences of the Universe
shrubs
soil pore water
soil profiles
soil types
stable isotopes
summer
Synecology
Terrestrial ecosystems
vascular plants
wetlands
Title Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai–Tibetan Plateau
URI https://dx.doi.org/10.1016/j.atmosenv.2013.05.010
https://www.proquest.com/docview/1705436727
https://hal.science/hal-03208280
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgEhBIWqW2BlENewedhxc1xVrZZXBaKVerP8SNRUSxI12R4r-A38Q34JM3GybYVQDxyTjBXLMx5_I898A_B2LzWp5okNrAt5wDF2C4xL0sCiL3ShsJHsSZI-H6WLE_7hVJxuwP5YC0NplYPv9z6999bDm9mwmrOmLGffIsIOiE7oQiYRfS0155Ks_N3VdZpHIn2DFRQOSPpGlfA5auR73ebVJaV4JZ7BM_zXAXXvjDIlHzW6xcUrfNeLvxx4fyodPoHHA5xkcz_jp7CRV1vw8AbJ4BZsH1zXsqHosJnbZ_ATgaZZ5szqC1NXrGzrrm5Ky_Kh0SirC0YNpnWFMn2lZu9emK4cazxRLD2WFevQIHKmlw3-lWE86-mhW1bTp5x9xXmc6fL3j1_HpckRjbIvS4S4evUcTg4PjvcXwdCRIbCI9LqAbl11lDhdOGs0ggcnEQ5gRMX3iFdRxjYWxiIEygrjCkeKFtxlmdMYaBYiSrZhs6qrfAdYLDMXpdrGLjQIKqxOnYgkEc4JV1gpJyBGNSg70JVT14ylGvPSztWoPkXqU6FQqL4JzNbjGk_YceeIbNSyumV6Ck-VO8e-QbNY_4i4uhfzT4reUWd6DGfDy2gC01tWsxaPMdbDsyabwOvRjBTubrqyQdXWq1YR2RFP6LZ89z9m-QIe0JPPQXwJm93FKn-FWKoz036zTOH-_P3HxdEfAk0hxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V7QEQqqBQsVCKQVyjzZ-T5riqWqV0uwKxlXqz_JOoqbZJ1GR7hmfgDXkSZhJnaVVVPXCMY8uWZzz-Rp75BuDLfqQiGQba0cYNnRB9N0eZIHI02kLjcu3FHUnS6TxKz8Kv5_x8Aw6GXBgKq7S2v7fpnbW2LRO7m5O6KCY_PMIOiE7oQSbglEu9SexUfASb0-OTdL42yEHc11jB_g4NuJUofIlCuaqarLyhKK-gJ_F0H7qjnlxQsOSLWja4f3lf-OKeDe8upqOXsGURJZv2i34FG1m5Dc9v8Qxuw87hv3Q27GrPc_MafiHWVMuMaXmtqpIVTdVWdaFZZmuNsipnVGNaltinS9bsLAyTpWF1zxVLn0XJWtSJjMlljbMydGl7huiGVfQrY99xHRey-PPz96JQGQJS9m2JKFeu3sDZ0eHiIHVsUQZHI9hrHXp4lV5gZG60kogfTIyIAJ2qcJ-oFWNf-1xpREFJrkxuSNY8NEliJPqaOfeCHRiVVZm9BebHifEiqX3jKsQVWkaGezFxznGT6zgeAx_EILRlLKfCGUsxhKZdikF8gsQnXC5QfGOYrMfVPWfHoyOSQcrijvYJvFgeHfsZ1WI9EdF1p9OZoDYqTo8erXvjjWHvjtasu_vo7uF1k4zh06BGAg84vdqgaKtVI4jvKAzowfzdf6zyIzxNF6czMTuen7yHZ_SnD0nchVF7vco-ILRq1Z49On8B0rEkdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+carbon+isotopic+evidence+of+methane+consumption+and+production+in+three+alpine+ecosystems+on+the+Qinghai%E2%80%93Tibetan+Plateau&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Kato%2C+Tomomichi&rft.au=Yamada%2C+Keita&rft.au=Tang%2C+Yanhong&rft.au=Yoshida%2C+Naohiro&rft.date=2013-10-01&rft.issn=1352-2310&rft.volume=77&rft.spage=338&rft.epage=347&rft_id=info:doi/10.1016%2Fj.atmosenv.2013.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2013_05_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon