Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai–Tibetan Plateau
To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau. The a...
Saved in:
Published in | Atmospheric environment (1994) Vol. 77; pp. 338 - 347 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau.
The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer.
The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn.
•Stable carbon isotope ratio in soil CH4 was examined in alpine ecosystems in China.•Alpine meadow and shrub showed different fractionation factors in methane oxidation.•In alpine wetland, acetate fermentation was major contributor on methane production.•Hummocks showed plant-mediated transport of CH4 from deep soil to the atmosphere.•In hollows, fractional oxidation rate on methane production was estimated at 7–36%. |
---|---|
AbstractList | To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau.
The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer.
The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn.
•Stable carbon isotope ratio in soil CH4 was examined in alpine ecosystems in China.•Alpine meadow and shrub showed different fractionation factors in methane oxidation.•In alpine wetland, acetate fermentation was major contributor on methane production.•Hummocks showed plant-mediated transport of CH4 from deep soil to the atmosphere.•In hollows, fractional oxidation rate on methane production was estimated at 7–36%. To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4 (δ13C–CH4) at three major grassland vegetation types, alpine meadow, alpine shrub, and alpine wetland, on the Qinghai–Tibetan Plateau.The alpine meadow and shrub showed net CH4 absorption in their vertical profiles of CH4 concentration in summer, but a difference in their processes. Whereas the alpine shrub was dominated by CH4 consumption in its soil profile, CH4 production in the alpine meadow could slightly cancel consumed CH4 in shallow soil from −0.3 to −0.1 m. This potential CH4 production can be attributed to the relatively wet soil type of that ecosystem, which might allow methanogenesis to act in moist soil lumps in the shallow layer.The alpine wetland differed in methane production, consumption, and transport pathways between hummock and hollow plots. In summer, both plots were enriched in 13C–CH4 in dissolved CH4 in soil pore water, suggesting that CH4 production was conducted mainly by acetate fermentation. In autumn, CH4 production was shifted toward CO2/H2 reduction. Furthermore, in hummocks, plant-mediated transport of CH4 by vascular plants appeared to perform passive CH4 flow from deep soil to atmosphere, which allowed the produced CH4 to bypass the oxidation zone in shallow soil. In hollows, however, CH4 produced in shallow soil was subject to simultaneous oxidation. The fractional oxidation rate on gross CH4 production in hollows was estimated by simple mass balance model at 7–17% in summer and 35–36% in autumn. |
Author | Kato, Tomomichi Tang, Yanhong Yamada, Keita Wada, Eitaro Yoshida, Naohiro |
Author_xml | – sequence: 1 givenname: Tomomichi surname: Kato fullname: Kato, Tomomichi email: tomomichi.kato@lsce.ipsl.fr organization: Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa 236-0001, Japan – sequence: 2 givenname: Keita surname: Yamada fullname: Yamada, Keita organization: Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan – sequence: 3 givenname: Yanhong surname: Tang fullname: Tang, Yanhong organization: National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan – sequence: 4 givenname: Naohiro surname: Yoshida fullname: Yoshida, Naohiro organization: Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan – sequence: 5 givenname: Eitaro surname: Wada fullname: Wada, Eitaro organization: Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa 236-0001, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681119$$DView record in Pascal Francis https://hal.science/hal-03208280$$DView record in HAL |
BookMark | eNqFkc9u1DAQxiNUJNrCKyBfkOCQxX-S2JE4UFWFIq0EiHK2JvaE9SqxF9u7Um_wDLwhT4LDthy49GR7_PtmNN93Vp344LGqnjO6YpR1r7cryHNI6A8rTplY0XZFGX1UnTIlRc1V05yUu2h5zQWjT6qzlLaUUiF7eVr9_JJhmJAYiEPwxKWQw84Zggdn0RskYSQz5g34wgSf9vMuuwKCt2QXg92bv0_nSd5ERALTzhUUTUi3KeOcSFi-kHx2_tsG3O8fv27cgBk8-TRBRtg_rR6PMCV8dneeV1_fXd1cXtfrj-8_XF6sa9OyPteK9xSYsDBaM4Di1MqOCdaoRrVSCMkNbwejetGPgx0tk6prG9v3FiRnY8vEefXq2HcDk95FN0O81QGcvr5Y66VGBaeKK3pY2JdHtqz4fY8p69klg9NUbAj7pJmkbSM6yWVBX9yhkAxMYwRvXPo3gMtOMcb6wr05ciaGlCKO2rgMi3k5gps0o3pJU2_1fZp6SVPTVpc0i7z7T34_4UHh26MQi7cHh1En45ZkrYtosrbBPdTiD0VSwlQ |
CitedBy_id | crossref_primary_10_1002_2015JG002974 crossref_primary_10_1029_2019JG005011 crossref_primary_10_1016_j_agrformet_2020_107982 crossref_primary_10_3390_ijerph19042437 crossref_primary_10_1029_2022JG006948 crossref_primary_10_1002_2015JG003043 crossref_primary_10_1038_ncomms5631 crossref_primary_10_1038_s41598_020_63054_z crossref_primary_10_1007_s11631_021_00477_z crossref_primary_10_1002_glr2_12048 crossref_primary_10_1016_j_soilbio_2014_02_023 crossref_primary_10_1080_10256016_2017_1326916 crossref_primary_10_1016_j_soilbio_2016_07_009 crossref_primary_10_1016_j_uclim_2021_101073 crossref_primary_10_1016_j_envres_2022_113767 crossref_primary_10_5194_bg_17_1261_2020 crossref_primary_10_1088_1748_9326_10_8_085007 crossref_primary_10_3390_atmos13060854 crossref_primary_10_1016_j_apsoil_2021_104061 |
Cites_doi | 10.1016/S0016-7037(97)00277-9 10.1029/1998GB900021 10.1016/j.soilbio.2009.01.007 10.1016/j.atmosenv.2011.03.010 10.1038/ngeo939 10.1038/293289a0 10.5194/bg-7-3893-2010 10.1098/rsbl.2008.0373 10.1016/j.soilbio.2003.12.009 10.1023/A:1005866403120 10.1016/j.orggeochem.2004.10.007 10.1029/1999GB900089 10.1029/97JD03738 10.1029/2000GB001384 10.1046/j.1365-2486.2002.00476.x 10.1016/S0048-9697(01)01100-7 10.5194/bg-7-1207-2010 10.1007/s10661-009-0871-3 10.1016/S1352-2310(03)00030-X 10.1111/j.1365-2745.2011.01823.x 10.1016/j.atmosenv.2005.05.036 10.1016/j.orggeochem.2004.09.006 10.1029/95GB02582 10.1006/anbo.2000.1172 10.1029/92GB00710 10.1111/j.1365-2486.2006.01197.x |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 7S9 L.6 1XC |
DOI | 10.1016/j.atmosenv.2013.05.010 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2844 |
EndPage | 347 |
ExternalDocumentID | oai_HAL_hal_03208280v1 27681119 10_1016_j_atmosenv_2013_05_010 S1352231013003531 |
GeographicLocations | Far East Asia China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -DZ -~X ..I .DC .HR .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K T9H TAE VH1 WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c519t-8290a13dafdcba820d761314848573372c25bc8939fbdfd178654d99da721f513 |
IEDL.DBID | .~1 |
ISSN | 1352-2310 |
IngestDate | Fri May 09 12:25:34 EDT 2025 Fri Jul 11 07:19:59 EDT 2025 Wed Apr 02 07:25:23 EDT 2025 Tue Jul 01 03:38:03 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Fri Feb 23 02:35:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acetate fermentation Fractionation factor Plant-mediated CH4 transport CO2/H2 reduction Terrestrial environment stable isotopes geomorphology Carbon dioxide H carbon cycle transport Source sink relationship CO Carbon isotopes greenhouse gas Transport process Plant-mediated CH Alpine vegetation Air biosphere interaction Acetic fermentation ecosystems methane Hydrogen molecules reduction seasonal variations Material balance |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-8290a13dafdcba820d761314848573372c25bc8939fbdfd178654d99da721f513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3757-3243 0000-0003-0454-3849 |
PQID | 1705436727 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_03208280v1 proquest_miscellaneous_1705436727 pascalfrancis_primary_27681119 crossref_citationtrail_10_1016_j_atmosenv_2013_05_010 crossref_primary_10_1016_j_atmosenv_2013_05_010 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2013_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Atmospheric environment (1994) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Galand, Yrjala, Conrad (bib11) 2010; 7 Bellisario, Bubier, Moore, Chanton (bib2) 1999; 13 Conrad (bib9) 2005; 36 Chanton (bib6) 2005; 36 Krüger, Gundula, Conrad, Frenzel (bib19) 2002; 8 Liebner, Zeyer, Wagner, Schubert, Pfeiffer, Knoblauch (bib22) 2011; 99 Snover, Quay (bib26) 2000; 14 Cao, Xu, Long, Wang, Wang, Du, Zhao (bib5) 2008; 4 Kato, Hirota, Tang, Wada (bib16) 2011; 45 Wang, Qian, Cheng, Lai (bib27) 2002; 291 Bergamaschi, Harris (bib3) 1995; 9 Whiting, Chanton (bib28) 1992; 6 Yamada, Ozaki, Nakagawa, Tanaka, Yoshida (bib29) 2003; 37 IPCC (bib15) 2007 Barker, Fritz (bib1) 1981; 293 Kelker, Chanton (bib17) 1997; 39 Lin, Wang, Ma, Xu, Luo, Li, Jiang, Xie (bib23) 2009; 41 Kip, van Winden, Pan, Bodrossy, Reichart, Smolders, Jetten, Sinninghe Damsté, op den Camp (bib18) 2010; 3 Chen, Wu, Yao, Gao, Wang, Tian, Yuan (bib8) 2010; 164 Bergamaschi, Brenninkmeijer, Hahn, Röckmann, Scharffe, Crutzen, Elansky, Belikov, Trivett, Worthy (bib4) 1998; 103 Hirota, Tang, Hu, Kato, Hirata, Mo, Cao, Mariko (bib14) 2005; 39 Gonfiantini, Stichler, Rozanski (bib12) 1995 Li, Zhao, Zhao, Wang, Shen (bib21) 2001; 25 Nakagawa, Yoshida, Nojiri, Makarov (bib24) 2002; 16 Zyakun, Bondar, Mshenskiy, Zakharchenko, Gayazov, Shishkina (bib32) 1988; 5 Chasar, Chanton, Glaser, Siegel (bib7) 2000; 86 Reeburgh, Hirsch, Sansone, Popp, Rust (bib25) 1997; 61 Zhao, Li, Xu, Zhou, Li, Gu, Zhao (bib31) 2010; 7 Hirota, Tang, Hu, Hirata, Kato, Mo, Cao, Mariko (bib13) 2004; 36 Zhao, Li, Xu, Zhou, Gu, Yu, Zhao (bib30) 2006; 10 (bib20) 1998 Coplen (bib10) 1995 Hirota (10.1016/j.atmosenv.2013.05.010_bib14) 2005; 39 Zhao (10.1016/j.atmosenv.2013.05.010_bib30) 2006; 10 Chen (10.1016/j.atmosenv.2013.05.010_bib8) 2010; 164 Gonfiantini (10.1016/j.atmosenv.2013.05.010_bib12) 1995 Kato (10.1016/j.atmosenv.2013.05.010_bib16) 2011; 45 Zyakun (10.1016/j.atmosenv.2013.05.010_bib32) 1988; 5 Conrad (10.1016/j.atmosenv.2013.05.010_bib9) 2005; 36 (10.1016/j.atmosenv.2013.05.010_bib20) 1998 Coplen (10.1016/j.atmosenv.2013.05.010_bib10) 1995 Wang (10.1016/j.atmosenv.2013.05.010_bib27) 2002; 291 Whiting (10.1016/j.atmosenv.2013.05.010_bib28) 1992; 6 Cao (10.1016/j.atmosenv.2013.05.010_bib5) 2008; 4 Krüger (10.1016/j.atmosenv.2013.05.010_bib19) 2002; 8 Lin (10.1016/j.atmosenv.2013.05.010_bib23) 2009; 41 Bellisario (10.1016/j.atmosenv.2013.05.010_bib2) 1999; 13 Hirota (10.1016/j.atmosenv.2013.05.010_bib13) 2004; 36 Li (10.1016/j.atmosenv.2013.05.010_bib21) 2001; 25 Bergamaschi (10.1016/j.atmosenv.2013.05.010_bib3) 1995; 9 Zhao (10.1016/j.atmosenv.2013.05.010_bib31) 2010; 7 Galand (10.1016/j.atmosenv.2013.05.010_bib11) 2010; 7 Snover (10.1016/j.atmosenv.2013.05.010_bib26) 2000; 14 Kelker (10.1016/j.atmosenv.2013.05.010_bib17) 1997; 39 Bergamaschi (10.1016/j.atmosenv.2013.05.010_bib4) 1998; 103 Chanton (10.1016/j.atmosenv.2013.05.010_bib6) 2005; 36 Liebner (10.1016/j.atmosenv.2013.05.010_bib22) 2011; 99 Barker (10.1016/j.atmosenv.2013.05.010_bib1) 1981; 293 Kip (10.1016/j.atmosenv.2013.05.010_bib18) 2010; 3 Chasar (10.1016/j.atmosenv.2013.05.010_bib7) 2000; 86 Reeburgh (10.1016/j.atmosenv.2013.05.010_bib25) 1997; 61 IPCC (10.1016/j.atmosenv.2013.05.010_bib15) 2007 Nakagawa (10.1016/j.atmosenv.2013.05.010_bib24) 2002; 16 Yamada (10.1016/j.atmosenv.2013.05.010_bib29) 2003; 37 |
References_xml | – start-page: 31 year: 1995 end-page: 34 ident: bib10 article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825 – volume: 25 start-page: 243 year: 2001 end-page: 249 ident: bib21 article-title: Analysis of vegetation succession and climate change in Haibei alpine march in the Qinlian mountains publication-title: Journal of Glaciology and Geocryology – volume: 3 start-page: 617 year: 2010 end-page: 621 ident: bib18 article-title: Global prevalence of methane oxidation by symbiotic bacteria in peat moss ecosystems publication-title: Nature Geoscience – volume: 41 start-page: 718 year: 2009 end-page: 725 ident: bib23 article-title: Fluxes of CO publication-title: Soil Biology and Biochemistry – volume: 103 year: 1998 ident: bib4 article-title: Isotope analysis based source identification for atmospheric CH publication-title: Journal of Geophysical Research – volume: 13 start-page: 81 year: 1999 end-page: 91 ident: bib2 article-title: Controls on CH publication-title: Global Biogeochemical Cycles – volume: 164 start-page: 21 year: 2010 end-page: 28 ident: bib8 article-title: Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai–Tibetan Plateau publication-title: Environment Monitoring and Assessment – volume: 5 start-page: 84 year: 1988 end-page: 90 ident: bib32 article-title: Carbon-isotope fraction by the methane-oxidizing bacteria methylomonas methanica during its continuous growth publication-title: Geochem. Int – volume: 291 start-page: 207 year: 2002 end-page: 217 ident: bib27 article-title: Soil organic carbon pool of grassland soils on the Qinghai–Tibetan Plateau and its global implication publication-title: The Science of The Total Environment – year: 2007 ident: bib15 article-title: Climate change 2007: the physical science basis publication-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 86 start-page: 655 year: 2000 end-page: 663 ident: bib7 article-title: Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz peatland complex publication-title: Ann Botany – volume: 7 start-page: 3893 year: 2010 end-page: 3900 ident: bib11 article-title: Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems publication-title: Biogeosciences – volume: 293 start-page: 289 year: 1981 ident: bib1 article-title: Carbon isotope fractionation during microbial methane oxidation publication-title: Nature – volume: 10 start-page: 1940 year: 2006 end-page: 1953 ident: bib30 article-title: Diurnal, seasonal and annual variation in net ecosystem CO publication-title: Global Change Biology – volume: 37 start-page: 1975 year: 2003 end-page: 1982 ident: bib29 article-title: An improved method for measurement of the hydrogen isotope ratio of atmospheric methane and its application to a Japanese urban atmosphere publication-title: Atmospheric Environment – volume: 36 start-page: 753 year: 2005 end-page: 768 ident: bib6 article-title: The effect of gas transport mechanism on the isotope signature of methane in wetlands publication-title: Organic Geochemistry – volume: 45 start-page: 5632 year: 2011 end-page: 5639 ident: bib16 article-title: Spatial variability of CH publication-title: Atmospheric Environment – volume: 6 start-page: 225 year: 1992 end-page: 231 ident: bib28 article-title: Plant-dependent CH publication-title: Global Biogeochemical Cycles – volume: 14 start-page: 25 year: 2000 end-page: 39 ident: bib26 article-title: Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane publication-title: Global Biogeochemical Cycles – volume: 99 start-page: 914 year: 2011 end-page: 922 ident: bib22 article-title: Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra publication-title: Journal of Ecology – volume: 39 start-page: 37 year: 1997 end-page: 44 ident: bib17 article-title: The effect of clipping on methane emission from Carex aquatilis publication-title: Biogeochemistry – volume: 16 start-page: 1041 year: 2002 ident: bib24 article-title: Production of methane from alasses in eastern Siberia: implications from its publication-title: Global Biogeochemical Cycles – volume: 36 start-page: 739 year: 2005 end-page: 752 ident: bib9 article-title: Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal publication-title: Organic Geochemistry – volume: 61 start-page: 4761 year: 1997 end-page: 4767 ident: bib25 article-title: Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils publication-title: Geochimica et Cosmochimica Acta – volume: 4 start-page: 681 year: 2008 end-page: 684 ident: bib5 article-title: Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau publication-title: Biology Letters – volume: 36 start-page: 737 year: 2004 end-page: 748 ident: bib13 article-title: Methane emissions from different vegetation zones in a Qinghai–Tibetan plateau wetland publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 439 year: 1995 end-page: 447 ident: bib3 article-title: Measurements of stable isotope ratios ( publication-title: Global Biogeochemical Cycles – volume: 8 start-page: 265 year: 2002 end-page: 280 ident: bib19 article-title: Seasonal variation in pathways of CH publication-title: Global Change Biology – year: 1998 ident: bib20 publication-title: Ecosystems of Qinghai-Xizang (Tibetan) Plateau and Approach for Their Sustainable Management – start-page: 13 year: 1995 end-page: 29 ident: bib12 article-title: Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurements publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825 – volume: 39 start-page: 5255 year: 2005 end-page: 5259 ident: bib14 article-title: The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai–Tibetan Plateau publication-title: Atmospheric Environment – volume: 7 start-page: 1207 year: 2010 end-page: 1221 ident: bib31 article-title: Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai–Tibetan Plateau publication-title: Biogeosciences – volume: 61 start-page: 4761 year: 1997 ident: 10.1016/j.atmosenv.2013.05.010_bib25 article-title: Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(97)00277-9 – volume: 13 start-page: 81 issue: 1 year: 1999 ident: 10.1016/j.atmosenv.2013.05.010_bib2 article-title: Controls on CH4 emissions from a northern peatland publication-title: Global Biogeochemical Cycles doi: 10.1029/1998GB900021 – volume: 41 start-page: 718 year: 2009 ident: 10.1016/j.atmosenv.2013.05.010_bib23 article-title: Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai–Tibetan plateau during summer grazing periods publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.01.007 – volume: 45 start-page: 5632 year: 2011 ident: 10.1016/j.atmosenv.2013.05.010_bib16 article-title: Spatial variability of CH4 and CH4 fluxes in alpine ecosystems on the Qinghai–Tibetan Plateau publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2011.03.010 – volume: 3 start-page: 617 year: 2010 ident: 10.1016/j.atmosenv.2013.05.010_bib18 article-title: Global prevalence of methane oxidation by symbiotic bacteria in peat moss ecosystems publication-title: Nature Geoscience doi: 10.1038/ngeo939 – volume: 293 start-page: 289 year: 1981 ident: 10.1016/j.atmosenv.2013.05.010_bib1 article-title: Carbon isotope fractionation during microbial methane oxidation publication-title: Nature doi: 10.1038/293289a0 – volume: 7 start-page: 3893 year: 2010 ident: 10.1016/j.atmosenv.2013.05.010_bib11 article-title: Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems publication-title: Biogeosciences doi: 10.5194/bg-7-3893-2010 – volume: 4 start-page: 681 year: 2008 ident: 10.1016/j.atmosenv.2013.05.010_bib5 article-title: Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau publication-title: Biology Letters doi: 10.1098/rsbl.2008.0373 – volume: 36 start-page: 737 year: 2004 ident: 10.1016/j.atmosenv.2013.05.010_bib13 article-title: Methane emissions from different vegetation zones in a Qinghai–Tibetan plateau wetland publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2003.12.009 – volume: 39 start-page: 37 year: 1997 ident: 10.1016/j.atmosenv.2013.05.010_bib17 article-title: The effect of clipping on methane emission from Carex aquatilis publication-title: Biogeochemistry doi: 10.1023/A:1005866403120 – volume: 36 start-page: 753 issue: 5 year: 2005 ident: 10.1016/j.atmosenv.2013.05.010_bib6 article-title: The effect of gas transport mechanism on the isotope signature of methane in wetlands publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2004.10.007 – volume: 14 start-page: 25 issue: 1 year: 2000 ident: 10.1016/j.atmosenv.2013.05.010_bib26 article-title: Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane publication-title: Global Biogeochemical Cycles doi: 10.1029/1999GB900089 – volume: 103 issn: 0148-0227 issue: D7 year: 1998 ident: 10.1016/j.atmosenv.2013.05.010_bib4 article-title: Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian railroad publication-title: Journal of Geophysical Research doi: 10.1029/97JD03738 – start-page: 13 year: 1995 ident: 10.1016/j.atmosenv.2013.05.010_bib12 article-title: Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurements – volume: 16 start-page: 1041 issue: 3 year: 2002 ident: 10.1016/j.atmosenv.2013.05.010_bib24 article-title: Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions publication-title: Global Biogeochemical Cycles doi: 10.1029/2000GB001384 – volume: 5 start-page: 84 year: 1988 ident: 10.1016/j.atmosenv.2013.05.010_bib32 article-title: Carbon-isotope fraction by the methane-oxidizing bacteria methylomonas methanica during its continuous growth publication-title: Geochem. Int – volume: 8 start-page: 265 issue: 3 year: 2002 ident: 10.1016/j.atmosenv.2013.05.010_bib19 article-title: Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors publication-title: Global Change Biology doi: 10.1046/j.1365-2486.2002.00476.x – volume: 291 start-page: 207 year: 2002 ident: 10.1016/j.atmosenv.2013.05.010_bib27 article-title: Soil organic carbon pool of grassland soils on the Qinghai–Tibetan Plateau and its global implication publication-title: The Science of The Total Environment doi: 10.1016/S0048-9697(01)01100-7 – volume: 7 start-page: 1207 year: 2010 ident: 10.1016/j.atmosenv.2013.05.010_bib31 article-title: Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai–Tibetan Plateau publication-title: Biogeosciences doi: 10.5194/bg-7-1207-2010 – volume: 164 start-page: 21 issue: 1–4 year: 2010 ident: 10.1016/j.atmosenv.2013.05.010_bib8 article-title: Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai–Tibetan Plateau publication-title: Environment Monitoring and Assessment doi: 10.1007/s10661-009-0871-3 – volume: 37 start-page: 1975 year: 2003 ident: 10.1016/j.atmosenv.2013.05.010_bib29 article-title: An improved method for measurement of the hydrogen isotope ratio of atmospheric methane and its application to a Japanese urban atmosphere publication-title: Atmospheric Environment doi: 10.1016/S1352-2310(03)00030-X – year: 2007 ident: 10.1016/j.atmosenv.2013.05.010_bib15 article-title: Climate change 2007: the physical science basis – volume: 99 start-page: 914 issue: 4 year: 2011 ident: 10.1016/j.atmosenv.2013.05.010_bib22 article-title: Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2011.01823.x – volume: 39 start-page: 5255 year: 2005 ident: 10.1016/j.atmosenv.2013.05.010_bib14 article-title: The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai–Tibetan Plateau publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2005.05.036 – year: 1998 ident: 10.1016/j.atmosenv.2013.05.010_bib20 – volume: 36 start-page: 739 issue: 5 year: 2005 ident: 10.1016/j.atmosenv.2013.05.010_bib9 article-title: Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2004.09.006 – volume: 9 start-page: 439 issue: 4 year: 1995 ident: 10.1016/j.atmosenv.2013.05.010_bib3 article-title: Measurements of stable isotope ratios (13CH4/12CH4; 12CH3D/12CH4) in landfill methane using a tunable diode laser absorption spectrometer publication-title: Global Biogeochemical Cycles doi: 10.1029/95GB02582 – volume: 86 start-page: 655 year: 2000 ident: 10.1016/j.atmosenv.2013.05.010_bib7 article-title: Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz peatland complex publication-title: Ann Botany doi: 10.1006/anbo.2000.1172 – start-page: 31 year: 1995 ident: 10.1016/j.atmosenv.2013.05.010_bib10 article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances – volume: 25 start-page: 243 year: 2001 ident: 10.1016/j.atmosenv.2013.05.010_bib21 article-title: Analysis of vegetation succession and climate change in Haibei alpine march in the Qinlian mountains publication-title: Journal of Glaciology and Geocryology – volume: 6 start-page: 225 year: 1992 ident: 10.1016/j.atmosenv.2013.05.010_bib28 article-title: Plant-dependent CH4 emission in a subarctic Canadian fen publication-title: Global Biogeochemical Cycles doi: 10.1029/92GB00710 – volume: 10 start-page: 1940 year: 2006 ident: 10.1016/j.atmosenv.2013.05.010_bib30 article-title: Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai–Tibetan Plateau publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2006.01197.x |
SSID | ssj0003797 |
Score | 2.2095 |
Snippet | To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4... To understand the mechanisms of soil CH4 consumption and production in alpine ecosystems, we for the first time examined the stable carbon isotope ratio of CH4... |
SourceID | hal proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 338 |
SubjectTerms | absorption Acetate fermentation acetates alpine meadows Animal and plant ecology Animal, plant and microbial ecology atmospheric chemistry autumn Biological and medical sciences carbon Chemical composition and interactions. Ionic interactions and processes China CO2/H2 reduction Continental interfaces, environment Earth, ocean, space ecosystems Exact sciences and technology External geophysics fermentation Fractionation factor Fundamental and applied biological sciences. Psychology Meteorology methane methane production Ocean, Atmosphere oxidation Plant-mediated CH4 transport Sciences of the Universe shrubs soil pore water soil profiles soil types stable isotopes summer Synecology Terrestrial ecosystems vascular plants wetlands |
Title | Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai–Tibetan Plateau |
URI | https://dx.doi.org/10.1016/j.atmosenv.2013.05.010 https://www.proquest.com/docview/1705436727 https://hal.science/hal-03208280 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgEhBIWqW2BlENewedhxc1xVrZZXBaKVerP8SNRUSxI12R4r-A38Q34JM3GybYVQDxyTjBXLMx5_I898A_B2LzWp5okNrAt5wDF2C4xL0sCiL3ShsJHsSZI-H6WLE_7hVJxuwP5YC0NplYPv9z6999bDm9mwmrOmLGffIsIOiE7oQiYRfS0155Ks_N3VdZpHIn2DFRQOSPpGlfA5auR73ebVJaV4JZ7BM_zXAXXvjDIlHzW6xcUrfNeLvxx4fyodPoHHA5xkcz_jp7CRV1vw8AbJ4BZsH1zXsqHosJnbZ_ATgaZZ5szqC1NXrGzrrm5Ky_Kh0SirC0YNpnWFMn2lZu9emK4cazxRLD2WFevQIHKmlw3-lWE86-mhW1bTp5x9xXmc6fL3j1_HpckRjbIvS4S4evUcTg4PjvcXwdCRIbCI9LqAbl11lDhdOGs0ggcnEQ5gRMX3iFdRxjYWxiIEygrjCkeKFtxlmdMYaBYiSrZhs6qrfAdYLDMXpdrGLjQIKqxOnYgkEc4JV1gpJyBGNSg70JVT14ylGvPSztWoPkXqU6FQqL4JzNbjGk_YceeIbNSyumV6Ck-VO8e-QbNY_4i4uhfzT4reUWd6DGfDy2gC01tWsxaPMdbDsyabwOvRjBTubrqyQdXWq1YR2RFP6LZ89z9m-QIe0JPPQXwJm93FKn-FWKoz036zTOH-_P3HxdEfAk0hxA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V7QEQqqBQsVCKQVyjzZ-T5riqWqV0uwKxlXqz_JOoqbZJ1GR7hmfgDXkSZhJnaVVVPXCMY8uWZzz-Rp75BuDLfqQiGQba0cYNnRB9N0eZIHI02kLjcu3FHUnS6TxKz8Kv5_x8Aw6GXBgKq7S2v7fpnbW2LRO7m5O6KCY_PMIOiE7oQSbglEu9SexUfASb0-OTdL42yEHc11jB_g4NuJUofIlCuaqarLyhKK-gJ_F0H7qjnlxQsOSLWja4f3lf-OKeDe8upqOXsGURJZv2i34FG1m5Dc9v8Qxuw87hv3Q27GrPc_MafiHWVMuMaXmtqpIVTdVWdaFZZmuNsipnVGNaltinS9bsLAyTpWF1zxVLn0XJWtSJjMlljbMydGl7huiGVfQrY99xHRey-PPz96JQGQJS9m2JKFeu3sDZ0eHiIHVsUQZHI9hrHXp4lV5gZG60kogfTIyIAJ2qcJ-oFWNf-1xpREFJrkxuSNY8NEliJPqaOfeCHRiVVZm9BebHifEiqX3jKsQVWkaGezFxznGT6zgeAx_EILRlLKfCGUsxhKZdikF8gsQnXC5QfGOYrMfVPWfHoyOSQcrijvYJvFgeHfsZ1WI9EdF1p9OZoDYqTo8erXvjjWHvjtasu_vo7uF1k4zh06BGAg84vdqgaKtVI4jvKAzowfzdf6zyIzxNF6czMTuen7yHZ_SnD0nchVF7vco-ILRq1Z49On8B0rEkdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+carbon+isotopic+evidence+of+methane+consumption+and+production+in+three+alpine+ecosystems+on+the+Qinghai%E2%80%93Tibetan+Plateau&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Kato%2C+Tomomichi&rft.au=Yamada%2C+Keita&rft.au=Tang%2C+Yanhong&rft.au=Yoshida%2C+Naohiro&rft.date=2013-10-01&rft.issn=1352-2310&rft.volume=77&rft.spage=338&rft.epage=347&rft_id=info:doi/10.1016%2Fj.atmosenv.2013.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2013_05_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |