Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal

The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spati...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 6; no. 4; p. e00379
Main Authors Anderson, Jeneva K, Huang, Julie Y, Wreden, Christopher, Sweeney, Emily Goers, Goers, John, Remington, S James, Guillemin, Karen
Format Journal Article
LanguageEnglish
Published United States American Society of Microbiology 07.07.2015
American Society for Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
AbstractList UNLABELLEDThe gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCEBacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxSOP) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCE Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 ( ∆luxS strains) or are defective for chemotaxis ( ∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 ( luxS OP ) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCE Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 ( ∆luxS strains) or are defective for chemotaxis ( ∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 ( luxS OP ) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments.
Author Guillemin, Karen
Sweeney, Emily Goers
Remington, S James
Huang, Julie Y
Anderson, Jeneva K
Wreden, Christopher
Goers, John
Author_xml – sequence: 1
  givenname: Jeneva K
  surname: Anderson
  fullname: Anderson, Jeneva K
  organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
– sequence: 2
  givenname: Julie Y
  surname: Huang
  fullname: Huang, Julie Y
  organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
– sequence: 3
  givenname: Christopher
  surname: Wreden
  fullname: Wreden, Christopher
  organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
– sequence: 4
  givenname: Emily Goers
  surname: Sweeney
  fullname: Sweeney, Emily Goers
  organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
– sequence: 5
  givenname: John
  surname: Goers
  fullname: Goers, John
  organization: Department of Chemistry, California Polytechnic State University, San Luis Obispo, California, USA
– sequence: 6
  givenname: S James
  surname: Remington
  fullname: Remington, S James
  organization: Department of Physics, University of Oregon, Eugene, Oregon, USA
– sequence: 7
  givenname: Karen
  surname: Guillemin
  fullname: Guillemin, Karen
  email: guillemin@molbio.uoregon.edu
  organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA guillemin@molbio.uoregon.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26152582$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1PFTEUhhuDEUSWbk2Xbgb7Pe3GBK8oJCRC1HXTmZ7eW9KZju2MCf-egYtEujlNz5PnnPR9iw7GPAJC7yk5pZTpT0MX8ykhvDUNla_QEaOSNK2k9ODhrmjDKDOH6KTWW7Iezqnm5A06ZIpKJjU7Qt1mB0MuMC2pxjziUPKA5x3gmyWXZcA_43Z0CZ8tc46jX3ooDcPXK5RnqPgCUuxz5_oZCp7uUi4Rf4k5xDTgr7FOUKpL79Dr4FKFk6d6jH5_O_-1uWiufny_3JxdNb2kZm5a7zUhUgguhIHghZFKEMYDBE45C0p6z43viHNEBWkMOBG8kUIG0fW648focu_12d3aqcTBlTubXbSPD7lsrStz7BPYTjOmRMsI11R41WkViNHMtF4yw5VeXZ_3rmnpBvA9jHNx6YX0ZWeMO7vNf60QWhvBV8HHJ0HJfxaosx1i7SElN0JeqqXKSNq2TKsVbfZoX3KtBcLzGErsQ8x2WP_UPsZsqVz5D__v9kz_C5XfA1c_pcg
CitedBy_id crossref_primary_10_1007_s00018_019_03326_8
crossref_primary_10_1186_s12866_021_02130_4
crossref_primary_10_3748_wjg_v23_i33_6194
crossref_primary_10_1016_j_ejmech_2018_10_036
crossref_primary_10_3389_fmicb_2019_00846
crossref_primary_10_1080_19490976_2016_1145374
crossref_primary_10_3389_fmicb_2019_02473
crossref_primary_10_1111_mmi_13698
crossref_primary_10_1080_07391102_2023_2210674
crossref_primary_10_1128_mbio_00440_24
crossref_primary_10_3389_fmicb_2023_1153269
crossref_primary_10_52804_ijaas2022_313
crossref_primary_10_1038_s41467_018_04223_7
crossref_primary_10_1016_j_copbio_2016_11_021
crossref_primary_10_1099_mic_0_000567
crossref_primary_10_3389_fcimb_2022_953718
crossref_primary_10_1002_mbo3_1415
crossref_primary_10_1016_j_jbiosc_2020_09_015
crossref_primary_10_21307_PM_2017_56_3_316
crossref_primary_10_3390_antibiotics11020262
crossref_primary_10_1103_PhysRevE_97_012413
crossref_primary_10_1371_journal_pbio_3000231
crossref_primary_10_3390_ijms23084326
crossref_primary_10_3389_fcell_2021_710005
crossref_primary_10_1111_mmi_14256
crossref_primary_10_1128_CMR_00023_18
crossref_primary_10_3390_microorganisms8081222
crossref_primary_10_1016_j_micres_2018_08_015
crossref_primary_10_1016_j_jtbi_2019_110120
crossref_primary_10_1128_spectrum_00203_22
crossref_primary_10_1128_JB_00729_16
crossref_primary_10_1371_journal_pone_0215583
crossref_primary_10_3390_ijms20205156
crossref_primary_10_1002_pro_3503
crossref_primary_10_3390_ijms19123755
crossref_primary_10_1097_CM9_0000000000000523
crossref_primary_10_1007_s13253_019_00351_9
crossref_primary_10_1093_femsre_fuab038
crossref_primary_10_1128_MMBR_00033_17
crossref_primary_10_1371_journal_pbio_3000395
crossref_primary_10_3390_antibiotics12081260
crossref_primary_10_1038_nrmicro_2017_99
crossref_primary_10_1093_femsre_fux052
crossref_primary_10_1128_JB_00400_19
crossref_primary_10_1155_2022_1837850
crossref_primary_10_1002_ijch_202200080
crossref_primary_10_1128_mBio_02758_20
crossref_primary_10_1128_mSphere_00285_19
crossref_primary_10_1002_med_21647
crossref_primary_10_3389_fmed_2022_790994
crossref_primary_10_1186_s13567_023_01173_x
crossref_primary_10_1128_MMBR_00001_18
crossref_primary_10_1128_mSystems_00414_20
crossref_primary_10_1099_jmm_0_001710
crossref_primary_10_1038_s41467_021_24689_2
crossref_primary_10_1111_hel_12778
crossref_primary_10_1111_jam_15338
crossref_primary_10_3390_pathogens9121062
crossref_primary_10_3390_microorganisms9020417
crossref_primary_10_1016_j_mib_2017_11_019
crossref_primary_10_1038_s41522_020_00167_3
crossref_primary_10_1016_j_csbj_2021_03_029
crossref_primary_10_3390_antibiotics9060355
crossref_primary_10_1080_14787210_2021_1917993
crossref_primary_10_1016_j_chom_2023_03_015
crossref_primary_10_3390_microorganisms10071280
crossref_primary_10_1128_mBio_01973_18
crossref_primary_10_3390_microorganisms10101969
crossref_primary_10_1111_hel_12806
crossref_primary_10_3389_fmicb_2023_1151552
crossref_primary_10_1016_j_jia_2024_07_007
Cites_doi 10.1016/j.mib.2013.06.013
10.1083/jcb.200609116
10.1128/JB.01196-10
10.1021/cb7002048
10.1126/science.1081919
10.1016/j.tim.2008.11.001
10.1128/JB.182.14.3948-3954.2000
10.1101/cshperspect.a010306
10.3201/eid0809.020063
10.1128/JB.00976-09
10.1111/j.1365-2672.1998.tb05283.x
10.1111/j.1348-0421.2009.00161.x
10.1128/MMBR.68.2.301-319.2004
10.1128/IAI.00082-07
10.1021/cb300330v
10.1016/j.gassur.2005.10.019
10.1053/j.gastro.2015.02.049
10.1371/journal.ppat.1002050
10.1017/S1479050505001845
10.1016/j.copbio.2010.10.016
10.1128/JB.186.10.3124-3132.2004
10.1038/415545a
10.1101/cshperspect.a012427
10.1016/S0076-6879(99)10005-3
10.1371/journal.pone.0015668
10.1128/mBio.00098-11
10.1038/nrmicro733
10.1016/j.molcel.2005.04.020
10.1371/journal.ppat.1000052
10.1073/pnas.90.12.5791
10.1016/j.str.2012.04.021
10.1128/JB.185.1.325-331.2003
10.3748/wjg.v20.i19.5575
10.12703/P6-26
10.1046/j.1365-2672.1999.00481.x
10.1111/j.1365-2672.2008.03808.x
10.1053/j.gastro.2007.11.009
10.3390/s120302519
10.1016/j.tim.2004.11.004
10.1016/j.mib.2006.02.004
10.1128/MMBR.00002-06
10.1186/1471-2180-11-57
10.1038/nrmicro1146
10.3748/wjg.v20.i19.5632
10.1128/JB.183.4.1259-1268.2001
10.1038/nrmicro3178
10.1128/JB.00246-07
10.1111/1574-6941.12034
10.1177/039139880903200903
10.1016/j.gassur.2005.12.009
10.1016/j.pupt.2007.12.001
10.1038/nrmicro2415
10.1093/nar/gkg129
10.1111/j.1365-2672.2010.04911.x
10.1556/EuJMI.2.2012.1.8
10.1128/MMBR.64.4.847-867.2000
10.1371/journal.ppat.0020003
10.1038/nature13738
10.1016/j.molcel.2004.07.020
10.1177/0022034509359403
10.1111/j.1574-6976.2012.00325.x
10.1099/mic.0.049353-0
10.1016/S0167-2789(03)00029-0
10.1016/S0022-2836(05)80360-2
10.1038/nrmicro2695
ContentType Journal Article
Copyright Copyright © 2015 Anderson et al.
Copyright © 2015 Anderson et al. 2015 Anderson et al.
Copyright_xml – notice: Copyright © 2015 Anderson et al.
– notice: Copyright © 2015 Anderson et al. 2015 Anderson et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1128/mbio.00379-15
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate H. pylori AI-2 Chemorepulsion in Biofilms
EISSN 2150-7511
Editor Sperandio, Vanessa
Editor_xml – sequence: 1
  givenname: Vanessa
  surname: Sperandio
  fullname: Sperandio, Vanessa
EndPage e00379
ExternalDocumentID oai_doaj_org_article_b822647203814d6b86f098297d529368
10_1128_mBio_00379_15
26152582
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P50GM098911
– fundername: NIDDK NIH HHS
  grantid: R01 DK101314
– fundername: NIDDK NIH HHS
  grantid: R01DK101314
– fundername: NIGMS NIH HHS
  grantid: P50 GM098911
– fundername: NIGMS NIH HHS
  grantid: T32 GM007759
– fundername: NIGMS NIH HHS
  grantid: T32GM007759
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAUOK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
M~E
NPM
O5R
O5S
O9-
OK1
P2P
PGMZT
RHF
RHI
RNS
RPM
RSF
AAYXX
AFPKN
C1A
CITATION
7X8
5PM
ID FETCH-LOGICAL-c519t-7dd8005443449efd49564023fef3132f65dd39db0aa06f599ea4fd9545f4bc8b3
IEDL.DBID RPM
ISSN 2161-2129
IngestDate Tue Oct 22 15:14:14 EDT 2024
Tue Sep 17 21:12:08 EDT 2024
Fri Oct 25 02:49:19 EDT 2024
Fri Aug 23 01:11:02 EDT 2024
Wed Oct 16 00:47:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2015 Anderson et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-7dd8005443449efd49564023fef3132f65dd39db0aa06f599ea4fd9545f4bc8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488943/
PMID 26152582
PQID 1695177286
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b822647203814d6b86f098297d529368
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4488943
proquest_miscellaneous_1695177286
crossref_primary_10_1128_mBio_00379_15
pubmed_primary_26152582
PublicationCentury 2000
PublicationDate 2015-07-07
PublicationDateYYYYMMDD 2015-07-07
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2015
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
Rasband W (e_1_3_2_65_2) 2012
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_3_2
  doi: 10.1016/j.mib.2013.06.013
– ident: e_1_3_2_66_2
  doi: 10.1083/jcb.200609116
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.01196-10
– ident: e_1_3_2_44_2
  doi: 10.1021/cb7002048
– ident: e_1_3_2_47_2
  doi: 10.1126/science.1081919
– ident: e_1_3_2_20_2
  doi: 10.1016/j.tim.2008.11.001
– ident: e_1_3_2_63_2
  doi: 10.1128/JB.182.14.3948-3954.2000
– ident: e_1_3_2_7_2
  doi: 10.1101/cshperspect.a010306
– ident: e_1_3_2_5_2
  doi: 10.3201/eid0809.020063
– ident: e_1_3_2_49_2
  doi: 10.1128/JB.00976-09
– ident: e_1_3_2_32_2
  doi: 10.1111/j.1365-2672.1998.tb05283.x
– ident: e_1_3_2_59_2
  doi: 10.1111/j.1348-0421.2009.00161.x
– ident: e_1_3_2_41_2
  doi: 10.1128/MMBR.68.2.301-319.2004
– ident: e_1_3_2_54_2
  doi: 10.1128/IAI.00082-07
– ident: e_1_3_2_50_2
  doi: 10.1021/cb300330v
– ident: e_1_3_2_28_2
  doi: 10.1016/j.gassur.2005.10.019
– ident: e_1_3_2_31_2
  doi: 10.1053/j.gastro.2015.02.049
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.ppat.1002050
– ident: e_1_3_2_55_2
  doi: 10.1017/S1479050505001845
– ident: e_1_3_2_57_2
  doi: 10.1016/j.copbio.2010.10.016
– ident: e_1_3_2_25_2
  doi: 10.1128/JB.186.10.3124-3132.2004
– ident: e_1_3_2_43_2
  doi: 10.1038/415545a
– ident: e_1_3_2_12_2
  doi: 10.1101/cshperspect.a012427
– ident: e_1_3_2_16_2
  doi: 10.1016/S0076-6879(99)10005-3
– ident: e_1_3_2_52_2
  doi: 10.1371/journal.pone.0015668
– ident: e_1_3_2_27_2
  doi: 10.1128/mBio.00098-11
– ident: e_1_3_2_21_2
  doi: 10.1038/nrmicro733
– ident: e_1_3_2_48_2
  doi: 10.1016/j.molcel.2005.04.020
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.ppat.1000052
– ident: e_1_3_2_69_2
– ident: e_1_3_2_62_2
  doi: 10.1073/pnas.90.12.5791
– ident: e_1_3_2_45_2
  doi: 10.1016/j.str.2012.04.021
– ident: e_1_3_2_15_2
  doi: 10.1128/JB.185.1.325-331.2003
– ident: e_1_3_2_34_2
  doi: 10.3748/wjg.v20.i19.5575
– volume-title: ImageJ.
  year: 2012
  ident: e_1_3_2_65_2
  contributor:
    fullname: Rasband W
– ident: e_1_3_2_2_2
  doi: 10.12703/P6-26
– ident: e_1_3_2_24_2
  doi: 10.1046/j.1365-2672.1999.00481.x
– ident: e_1_3_2_56_2
  doi: 10.1111/j.1365-2672.2008.03808.x
– ident: e_1_3_2_61_2
  doi: 10.1053/j.gastro.2007.11.009
– ident: e_1_3_2_13_2
  doi: 10.3390/s120302519
– ident: e_1_3_2_11_2
  doi: 10.1016/j.tim.2004.11.004
– ident: e_1_3_2_17_2
  doi: 10.1016/j.mib.2006.02.004
– ident: e_1_3_2_14_2
  doi: 10.1128/MMBR.00002-06
– ident: e_1_3_2_33_2
  doi: 10.1186/1471-2180-11-57
– ident: e_1_3_2_39_2
  doi: 10.1038/nrmicro1146
– ident: e_1_3_2_30_2
  doi: 10.3748/wjg.v20.i19.5632
– ident: e_1_3_2_64_2
  doi: 10.1128/JB.183.4.1259-1268.2001
– ident: e_1_3_2_19_2
  doi: 10.1038/nrmicro3178
– ident: e_1_3_2_46_2
  doi: 10.1128/JB.00246-07
– ident: e_1_3_2_58_2
  doi: 10.1111/1574-6941.12034
– ident: e_1_3_2_53_2
  doi: 10.1177/039139880903200903
– ident: e_1_3_2_37_2
– ident: e_1_3_2_29_2
  doi: 10.1016/j.gassur.2005.12.009
– ident: e_1_3_2_9_2
  doi: 10.1016/j.pupt.2007.12.001
– ident: e_1_3_2_8_2
  doi: 10.1038/nrmicro2415
– ident: e_1_3_2_68_2
  doi: 10.1093/nar/gkg129
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1365-2672.2010.04911.x
– ident: e_1_3_2_36_2
  doi: 10.1556/EuJMI.2.2012.1.8
– ident: e_1_3_2_6_2
  doi: 10.1128/MMBR.64.4.847-867.2000
– ident: e_1_3_2_67_2
  doi: 10.1371/journal.ppat.0020003
– ident: e_1_3_2_60_2
  doi: 10.1038/nature13738
– ident: e_1_3_2_42_2
  doi: 10.1016/j.molcel.2004.07.020
– ident: e_1_3_2_10_2
  doi: 10.1177/0022034509359403
– ident: e_1_3_2_4_2
  doi: 10.1111/j.1574-6976.2012.00325.x
– ident: e_1_3_2_23_2
  doi: 10.1099/mic.0.049353-0
– ident: e_1_3_2_38_2
  doi: 10.1016/S0167-2789(03)00029-0
– ident: e_1_3_2_40_2
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_3_2_51_2
  doi: 10.1038/nrmicro2695
SSID ssj0000331830
Score 2.4214368
Snippet The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal...
ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum...
UNLABELLEDThe gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum...
The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal...
ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e00379
SubjectTerms Bacterial Proteins - metabolism
Biofilms - growth & development
Carbon-Sulfur Lyases - deficiency
Carbon-Sulfur Lyases - metabolism
Chemotaxis
Gene Deletion
Helicobacter pylori - genetics
Helicobacter pylori - metabolism
Helicobacter pylori - physiology
Homoserine - analogs & derivatives
Homoserine - metabolism
Lactones - metabolism
Membrane Proteins - deficiency
Membrane Proteins - metabolism
Methyl-Accepting Chemotaxis Proteins
Periplasmic Proteins - genetics
Periplasmic Proteins - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuVSnQpgVkJNRb2CT-WPsILQghgahaJG5WHNttpCVZ7SYH_j0zzu5qt6rEhWs-rRkn854984aQU1nx3EMgSishZMolLjT5kKW-YpXLWShchtXIt3fy-oHfPIrHtVZfmBM2yAMPhhtZhaWeuFmocu6kVTJkGutBnYBIJYcy30yvkan4D2Y4V7OlqGahRk8XdXuGais6xRa4a0EoavX_D2D-mye5FniuPpD3C8RIz4eR7pIt33wk74Yeks97xGLJfzvz036CC18U60UooDr6s0edBfqr_hNv77sW6Dc4cpYW9D4m4fk5hagDU8FGyWY6RfJeU3h0qCdP9EeNKuLzcrJPHq4uf3-_TheNE8Diue7SsXMKsRhnnGsfHJIg4Iks-IBKjUEK55h2NivLTAahtS95cBrAVOC2UpYdkO2mbfxnQj1uvGLz7wrMryQrUb8wz51SlYOHsIR8W1rSTAd9DBN5RaEMmtxEk5tcJOQC7by6CGWt4wFwtlk427zm7IScLL1k4DPAvY2y8W0_N7kEqAhMQcmEfBq8tnoVkERRCFUkZLzhz42xbJ5p6r9RahvIKwrUf3mLwX8lO4C2RMz1HR-S7W7W-yNANJ09jpP3BVWp8i0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-QwFA6iCL4sXtbdrhciiG9126bJJA8iXhFBcdkd8C20TeIWxnbsTEH_veekHXdHfPC1l6Q9J5fvS875Qsi-KNLYwkQUFpyLMBW40GRdFNqCFSZmLjERZiPf3IqrYXp9z-__SQr1Bpx8SO3wPKlhMzp8fno5hg5_1CXAyJ-Pp2V9iEIqKsR086UENbkwiq9H-n5QZth4ccUlAYwTwoCtZoqb70uYm6G8kP9H6PN9EOV_s9LlKvnSw0l60vl_jSzYap0sdwdMvmyQHPUA6saO2xGuilFMJqEA-eivFkUY6O_ywb_eTmvg5uDlJkzonY_QsxMKUxK0k9zrOdMxMvuSQtGuHD3S8xIlxifZ6CsZXl78ObsK-1MVwB2xmoYDYyQCtZSlqbLOIEMCEsmcdSjj6AQ3himTR1kWCceVslnqjAKk5dK8kDnbJItVXdnvhFrclcWTwQsJrEqwDMUN49hIWRgohAXkYGZJPe7EM7QnHYnUaHLtTa5jHpBTtPPbQ6h57S_UzYPuu5DOJSb94rYx1GZELoWLFGYGGw6YRciA7M28pKGP4MZHVtm6nehYAI4EGiFFQL51XnurChgkT7hMAjKY8-fct8zfqcq_XocbmC2q1__47F9ukRWAW9wH-w62yeK0ae0OQJppvusb6yvP8fOS
  priority: 102
  providerName: Scholars Portal
Title Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal
URI https://www.ncbi.nlm.nih.gov/pubmed/26152582
https://search.proquest.com/docview/1695177286
https://pubmed.ncbi.nlm.nih.gov/PMC4488943
https://doaj.org/article/b822647203814d6b86f098297d529368
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBLadOX-wgqlN68a1mPlY9N2iQEtqS0gb0J65UYdu1ld33ov--Mdh2ypadcdPBDNjNj6_ukmU-EfFZOsAADUe6kVLlQONEUYpEHx51nPJa-wGrk6Q91eSOuZnJ2QORQC5OS9p1tRu18MWqbu5RbuVy48ZAnNr6engGlQNnw8SE5hAB9QNHT75djmBaDnmapx4vTphuh0EqVM9ypBkiDLKUu94aipNj_P5j5b7bkg-Hn_Dl5tsON9Ov2_V6Qg9AekyfbnST_vCQWC_-7VVj2c5z-olg1QgHb0Z89qi3QX81tur3fdEDCwZ2rvKTXKRUvrCmMPRAQNgk30yVS-IZC17GZL-i3BrXE1_X8Fbk5__777DLfbZ8AdmfVJp94rxGRCS5EFaJHKgRskccQUa8xKuk9r7wt6rpQUVZVqEX0FUCqKKzTlr8mR23XhreEBlx-xS3AnQb6pHiNKoaMea2dh054Rr4MljTLrUqGSeyi1Aatb5L1DZMZOUU731-E4tbpQLe6NTsXG6uxuhfXh-FpXlmtYlFhCbCXAE6UzsinwUsGPgZc4ajb0PVrwxQARuALWmXkzdZr948avJ6RyZ4_995l_wzEXxLc3sXbu0ff-Z48BaAlU5rv5AM52qz68BHAzMaepEkAaC9mDNqp0CcpnP8Cwhr3xw
link.rule.ids 230,315,730,783,787,867,888,2109,24332,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQX3oXwNBLilt287HWOtFAt0K2KaFFvVhzbJWI3We0mB_j1zDibqltxgWsc20lmHH-fPfMZ4K0os9jiRBSWnIswE7TQZF0U2jItTZy6xESUjTw7FtOz7PM5P98BPuTC-KD9Ulejer4Y1dUPH1u5XJTjIU5sfDI7QEpBsuHjG3ATx2skrpB0_wNOyVGjQVEzkePFftWMSGolD2M6qwZpA0-4TLYmI6_Z_zegeT1e8soEdHgPvg-P3sed_Bx1rR6Vv6-pOv7zu92HuxtIyt73xQ9gx9YP4VZ_SOWvR6BJU6BZ2WU3p5U1RgkpDGEj-9qRkAP7Vl346l3bIL9HT1mFCTvxUX52zXBaQ1_TXhOaLWl1oGLYtKvmC_ahIpnydTF_DGeHH08PpuHmZAY0aZy34cQYSWAvS7Mst84Qy0IimjrrSArSCW5MmhsdFUUkHM9zW2TO5IjWXKZLqdM92K2b2j4FZmlnl04XLyUyM5EWJJAYx0bK0mAjaQDvBhOpZS_AoTxxSaQisypvVhXzAPbJgJc3kW62v9CsLtTmCystKXGYtp6xNyO0FC7KKbvYcMQ9QgbwZjC_wnFGmydFbZturWKBWBSpiBQBPOnd4bKrwZ0CmGw5ytazbJeg-b2W98bcz_675mu4PT2dHamjT8dfnsMdxHPcRxNPXsBuu-rsS8RMrX7lR8gfYFMXFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagCMSFvRBWIyFumaz2OEfaMipLq0FQqeJixVuJmEmimeQAv573nEk1U3HqNfGS5D3H32c_f4-Qd1zniYWJKNSM8TDnuNBkXRxanWmTZC41MZ5GPjnlx2f553N2vpXqywfta1VN6sVyUle_fGxlu9TRGCcWzU8OgVKgbHjUGhfdJLdgzMZii6j7n3CGzhqPqpqpiJYHVTNBuZUiTDBfDVAHljKR7kxIXrf_f2Dzaszk1iQ0u09-jo8_xJ78nvSdmui_V5Qdr_V-D8i9DTSlH4YiD8kNWz8it4dklX8eE4XaAs3Ktv0CV9goHkyhAB_ptx4FHej36sJX77sGeD54zCpM6dxH-9k1hekNfE55bWja4ipBRaFpVy2W9KhCufJ1uXhCzmYffxweh5sMDWDapOjCqTECQV-e5XlhnUG2BYQ0c9ahJKTjzJisMCouy5g7VhS2zJ0pALW5XGmhsn2yVze1fUaoxR1ezDKuBTA0npUolJgkRghtoJEsIO9HM8l2EOKQnsCkQqJppTetTFhADtCIl4VQP9tfaFYXcvOVpRJ4gBi3oKE3w5XgLi7wlLFhgH-4CMjb0QUkjDfcRClr2_RrmXDApEBJBA_I08ElLrsaXSog0x1n2XmW3TvgAl7Te2Py59eu-YbcmR_N5NdPp19ekLsA65gPKp6-JHvdqrevADp16rUfJP8AG3UZlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemorepulsion+from+the+Quorum+Signal+Autoinducer-2+Promotes+Helicobacter+pylori+Biofilm+Dispersal&rft.jtitle=mBio&rft.au=Anderson%2C+Jeneva+K.&rft.au=Huang%2C+Julie+Y.&rft.au=Wreden%2C+Christopher&rft.au=Sweeney%2C+Emily+Goers&rft.date=2015-07-07&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00379-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_00379_15
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon