Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal
The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spati...
Saved in:
Published in | mBio Vol. 6; no. 4; p. e00379 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Microbiology
07.07.2015
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal.
Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. |
---|---|
AbstractList | UNLABELLEDThe gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCEBacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxSOP) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCE Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxS(OP)) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 ( ∆luxS strains) or are defective for chemotaxis ( ∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 ( luxS OP ) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. IMPORTANCE Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 ( ∆luxS strains) or are defective for chemotaxis ( ∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 ( luxS OP ) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. Bacterial biofilms are ubiquitous in nature, but the mechanisms governing their assembly and spatial organization are not fully understood. Bacterial communication through quorum sensing has been shown to influence biofilm growth through the regulation of biofilm genes. Our study revealed a new role for quorum sensing in biofilms through rapid chemotactic responses to quorum signals. Specifically, we studied how chemorepulsion of Helicobacter pylori from the universal quorum signal autoinducer-2 (AI-2) shapes the spatial organization of its biofilms. We demonstrate that the chemorepulsive response of H. pylori to AI-2 is necessary to promote its dispersal from biofilms grown on both abiotic and biotic surfaces and is sufficient to promote dispersal in a chemotaxis-dependent manner. This work has broad implications for understanding the mechanisms by which endogenously produced microbial compounds shape the assembly and spatial organization of microbial communities in their environments. |
Author | Guillemin, Karen Sweeney, Emily Goers Remington, S James Huang, Julie Y Anderson, Jeneva K Wreden, Christopher Goers, John |
Author_xml | – sequence: 1 givenname: Jeneva K surname: Anderson fullname: Anderson, Jeneva K organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA – sequence: 2 givenname: Julie Y surname: Huang fullname: Huang, Julie Y organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA – sequence: 3 givenname: Christopher surname: Wreden fullname: Wreden, Christopher organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA – sequence: 4 givenname: Emily Goers surname: Sweeney fullname: Sweeney, Emily Goers organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA – sequence: 5 givenname: John surname: Goers fullname: Goers, John organization: Department of Chemistry, California Polytechnic State University, San Luis Obispo, California, USA – sequence: 6 givenname: S James surname: Remington fullname: Remington, S James organization: Department of Physics, University of Oregon, Eugene, Oregon, USA – sequence: 7 givenname: Karen surname: Guillemin fullname: Guillemin, Karen email: guillemin@molbio.uoregon.edu organization: Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA guillemin@molbio.uoregon.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26152582$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1PFTEUhhuDEUSWbk2Xbgb7Pe3GBK8oJCRC1HXTmZ7eW9KZju2MCf-egYtEujlNz5PnnPR9iw7GPAJC7yk5pZTpT0MX8ykhvDUNla_QEaOSNK2k9ODhrmjDKDOH6KTWW7Iezqnm5A06ZIpKJjU7Qt1mB0MuMC2pxjziUPKA5x3gmyWXZcA_43Z0CZ8tc46jX3ooDcPXK5RnqPgCUuxz5_oZCp7uUi4Rf4k5xDTgr7FOUKpL79Dr4FKFk6d6jH5_O_-1uWiufny_3JxdNb2kZm5a7zUhUgguhIHghZFKEMYDBE45C0p6z43viHNEBWkMOBG8kUIG0fW648focu_12d3aqcTBlTubXbSPD7lsrStz7BPYTjOmRMsI11R41WkViNHMtF4yw5VeXZ_3rmnpBvA9jHNx6YX0ZWeMO7vNf60QWhvBV8HHJ0HJfxaosx1i7SElN0JeqqXKSNq2TKsVbfZoX3KtBcLzGErsQ8x2WP_UPsZsqVz5D__v9kz_C5XfA1c_pcg |
CitedBy_id | crossref_primary_10_1007_s00018_019_03326_8 crossref_primary_10_1186_s12866_021_02130_4 crossref_primary_10_3748_wjg_v23_i33_6194 crossref_primary_10_1016_j_ejmech_2018_10_036 crossref_primary_10_3389_fmicb_2019_00846 crossref_primary_10_1080_19490976_2016_1145374 crossref_primary_10_3389_fmicb_2019_02473 crossref_primary_10_1111_mmi_13698 crossref_primary_10_1080_07391102_2023_2210674 crossref_primary_10_1128_mbio_00440_24 crossref_primary_10_3389_fmicb_2023_1153269 crossref_primary_10_52804_ijaas2022_313 crossref_primary_10_1038_s41467_018_04223_7 crossref_primary_10_1016_j_copbio_2016_11_021 crossref_primary_10_1099_mic_0_000567 crossref_primary_10_3389_fcimb_2022_953718 crossref_primary_10_1002_mbo3_1415 crossref_primary_10_1016_j_jbiosc_2020_09_015 crossref_primary_10_21307_PM_2017_56_3_316 crossref_primary_10_3390_antibiotics11020262 crossref_primary_10_1103_PhysRevE_97_012413 crossref_primary_10_1371_journal_pbio_3000231 crossref_primary_10_3390_ijms23084326 crossref_primary_10_3389_fcell_2021_710005 crossref_primary_10_1111_mmi_14256 crossref_primary_10_1128_CMR_00023_18 crossref_primary_10_3390_microorganisms8081222 crossref_primary_10_1016_j_micres_2018_08_015 crossref_primary_10_1016_j_jtbi_2019_110120 crossref_primary_10_1128_spectrum_00203_22 crossref_primary_10_1128_JB_00729_16 crossref_primary_10_1371_journal_pone_0215583 crossref_primary_10_3390_ijms20205156 crossref_primary_10_1002_pro_3503 crossref_primary_10_3390_ijms19123755 crossref_primary_10_1097_CM9_0000000000000523 crossref_primary_10_1007_s13253_019_00351_9 crossref_primary_10_1093_femsre_fuab038 crossref_primary_10_1128_MMBR_00033_17 crossref_primary_10_1371_journal_pbio_3000395 crossref_primary_10_3390_antibiotics12081260 crossref_primary_10_1038_nrmicro_2017_99 crossref_primary_10_1093_femsre_fux052 crossref_primary_10_1128_JB_00400_19 crossref_primary_10_1155_2022_1837850 crossref_primary_10_1002_ijch_202200080 crossref_primary_10_1128_mBio_02758_20 crossref_primary_10_1128_mSphere_00285_19 crossref_primary_10_1002_med_21647 crossref_primary_10_3389_fmed_2022_790994 crossref_primary_10_1186_s13567_023_01173_x crossref_primary_10_1128_MMBR_00001_18 crossref_primary_10_1128_mSystems_00414_20 crossref_primary_10_1099_jmm_0_001710 crossref_primary_10_1038_s41467_021_24689_2 crossref_primary_10_1111_hel_12778 crossref_primary_10_1111_jam_15338 crossref_primary_10_3390_pathogens9121062 crossref_primary_10_3390_microorganisms9020417 crossref_primary_10_1016_j_mib_2017_11_019 crossref_primary_10_1038_s41522_020_00167_3 crossref_primary_10_1016_j_csbj_2021_03_029 crossref_primary_10_3390_antibiotics9060355 crossref_primary_10_1080_14787210_2021_1917993 crossref_primary_10_1016_j_chom_2023_03_015 crossref_primary_10_3390_microorganisms10071280 crossref_primary_10_1128_mBio_01973_18 crossref_primary_10_3390_microorganisms10101969 crossref_primary_10_1111_hel_12806 crossref_primary_10_3389_fmicb_2023_1151552 crossref_primary_10_1016_j_jia_2024_07_007 |
Cites_doi | 10.1016/j.mib.2013.06.013 10.1083/jcb.200609116 10.1128/JB.01196-10 10.1021/cb7002048 10.1126/science.1081919 10.1016/j.tim.2008.11.001 10.1128/JB.182.14.3948-3954.2000 10.1101/cshperspect.a010306 10.3201/eid0809.020063 10.1128/JB.00976-09 10.1111/j.1365-2672.1998.tb05283.x 10.1111/j.1348-0421.2009.00161.x 10.1128/MMBR.68.2.301-319.2004 10.1128/IAI.00082-07 10.1021/cb300330v 10.1016/j.gassur.2005.10.019 10.1053/j.gastro.2015.02.049 10.1371/journal.ppat.1002050 10.1017/S1479050505001845 10.1016/j.copbio.2010.10.016 10.1128/JB.186.10.3124-3132.2004 10.1038/415545a 10.1101/cshperspect.a012427 10.1016/S0076-6879(99)10005-3 10.1371/journal.pone.0015668 10.1128/mBio.00098-11 10.1038/nrmicro733 10.1016/j.molcel.2005.04.020 10.1371/journal.ppat.1000052 10.1073/pnas.90.12.5791 10.1016/j.str.2012.04.021 10.1128/JB.185.1.325-331.2003 10.3748/wjg.v20.i19.5575 10.12703/P6-26 10.1046/j.1365-2672.1999.00481.x 10.1111/j.1365-2672.2008.03808.x 10.1053/j.gastro.2007.11.009 10.3390/s120302519 10.1016/j.tim.2004.11.004 10.1016/j.mib.2006.02.004 10.1128/MMBR.00002-06 10.1186/1471-2180-11-57 10.1038/nrmicro1146 10.3748/wjg.v20.i19.5632 10.1128/JB.183.4.1259-1268.2001 10.1038/nrmicro3178 10.1128/JB.00246-07 10.1111/1574-6941.12034 10.1177/039139880903200903 10.1016/j.gassur.2005.12.009 10.1016/j.pupt.2007.12.001 10.1038/nrmicro2415 10.1093/nar/gkg129 10.1111/j.1365-2672.2010.04911.x 10.1556/EuJMI.2.2012.1.8 10.1128/MMBR.64.4.847-867.2000 10.1371/journal.ppat.0020003 10.1038/nature13738 10.1016/j.molcel.2004.07.020 10.1177/0022034509359403 10.1111/j.1574-6976.2012.00325.x 10.1099/mic.0.049353-0 10.1016/S0167-2789(03)00029-0 10.1016/S0022-2836(05)80360-2 10.1038/nrmicro2695 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Anderson et al. Copyright © 2015 Anderson et al. 2015 Anderson et al. |
Copyright_xml | – notice: Copyright © 2015 Anderson et al. – notice: Copyright © 2015 Anderson et al. 2015 Anderson et al. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1128/mbio.00379-15 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | H. pylori AI-2 Chemorepulsion in Biofilms |
EISSN | 2150-7511 |
Editor | Sperandio, Vanessa |
Editor_xml | – sequence: 1 givenname: Vanessa surname: Sperandio fullname: Sperandio, Vanessa |
EndPage | e00379 |
ExternalDocumentID | oai_doaj_org_article_b822647203814d6b86f098297d529368 10_1128_mBio_00379_15 26152582 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P50GM098911 – fundername: NIDDK NIH HHS grantid: R01 DK101314 – fundername: NIDDK NIH HHS grantid: R01DK101314 – fundername: NIGMS NIH HHS grantid: P50 GM098911 – fundername: NIGMS NIH HHS grantid: T32 GM007759 – fundername: NIGMS NIH HHS grantid: T32GM007759 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAUOK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CGR CUY CVF DIK E3Z EBS ECM EIF EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 M~E NPM O5R O5S O9- OK1 P2P PGMZT RHF RHI RNS RPM RSF AAYXX AFPKN C1A CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c519t-7dd8005443449efd49564023fef3132f65dd39db0aa06f599ea4fd9545f4bc8b3 |
IEDL.DBID | RPM |
ISSN | 2161-2129 |
IngestDate | Tue Oct 22 15:14:14 EDT 2024 Tue Sep 17 21:12:08 EDT 2024 Fri Oct 25 02:49:19 EDT 2024 Fri Aug 23 01:11:02 EDT 2024 Wed Oct 16 00:47:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2015 Anderson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-7dd8005443449efd49564023fef3132f65dd39db0aa06f599ea4fd9545f4bc8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488943/ |
PMID | 26152582 |
PQID | 1695177286 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b822647203814d6b86f098297d529368 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4488943 proquest_miscellaneous_1695177286 crossref_primary_10_1128_mBio_00379_15 pubmed_primary_26152582 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-07 |
PublicationDateYYYYMMDD | 2015-07-07 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2015 |
Publisher | American Society of Microbiology American Society for Microbiology |
Publisher_xml | – name: American Society of Microbiology – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 Rasband W (e_1_3_2_65_2) 2012 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_3_2 doi: 10.1016/j.mib.2013.06.013 – ident: e_1_3_2_66_2 doi: 10.1083/jcb.200609116 – ident: e_1_3_2_22_2 doi: 10.1128/JB.01196-10 – ident: e_1_3_2_44_2 doi: 10.1021/cb7002048 – ident: e_1_3_2_47_2 doi: 10.1126/science.1081919 – ident: e_1_3_2_20_2 doi: 10.1016/j.tim.2008.11.001 – ident: e_1_3_2_63_2 doi: 10.1128/JB.182.14.3948-3954.2000 – ident: e_1_3_2_7_2 doi: 10.1101/cshperspect.a010306 – ident: e_1_3_2_5_2 doi: 10.3201/eid0809.020063 – ident: e_1_3_2_49_2 doi: 10.1128/JB.00976-09 – ident: e_1_3_2_32_2 doi: 10.1111/j.1365-2672.1998.tb05283.x – ident: e_1_3_2_59_2 doi: 10.1111/j.1348-0421.2009.00161.x – ident: e_1_3_2_41_2 doi: 10.1128/MMBR.68.2.301-319.2004 – ident: e_1_3_2_54_2 doi: 10.1128/IAI.00082-07 – ident: e_1_3_2_50_2 doi: 10.1021/cb300330v – ident: e_1_3_2_28_2 doi: 10.1016/j.gassur.2005.10.019 – ident: e_1_3_2_31_2 doi: 10.1053/j.gastro.2015.02.049 – ident: e_1_3_2_26_2 doi: 10.1371/journal.ppat.1002050 – ident: e_1_3_2_55_2 doi: 10.1017/S1479050505001845 – ident: e_1_3_2_57_2 doi: 10.1016/j.copbio.2010.10.016 – ident: e_1_3_2_25_2 doi: 10.1128/JB.186.10.3124-3132.2004 – ident: e_1_3_2_43_2 doi: 10.1038/415545a – ident: e_1_3_2_12_2 doi: 10.1101/cshperspect.a012427 – ident: e_1_3_2_16_2 doi: 10.1016/S0076-6879(99)10005-3 – ident: e_1_3_2_52_2 doi: 10.1371/journal.pone.0015668 – ident: e_1_3_2_27_2 doi: 10.1128/mBio.00098-11 – ident: e_1_3_2_21_2 doi: 10.1038/nrmicro733 – ident: e_1_3_2_48_2 doi: 10.1016/j.molcel.2005.04.020 – ident: e_1_3_2_18_2 doi: 10.1371/journal.ppat.1000052 – ident: e_1_3_2_69_2 – ident: e_1_3_2_62_2 doi: 10.1073/pnas.90.12.5791 – ident: e_1_3_2_45_2 doi: 10.1016/j.str.2012.04.021 – ident: e_1_3_2_15_2 doi: 10.1128/JB.185.1.325-331.2003 – ident: e_1_3_2_34_2 doi: 10.3748/wjg.v20.i19.5575 – volume-title: ImageJ. year: 2012 ident: e_1_3_2_65_2 contributor: fullname: Rasband W – ident: e_1_3_2_2_2 doi: 10.12703/P6-26 – ident: e_1_3_2_24_2 doi: 10.1046/j.1365-2672.1999.00481.x – ident: e_1_3_2_56_2 doi: 10.1111/j.1365-2672.2008.03808.x – ident: e_1_3_2_61_2 doi: 10.1053/j.gastro.2007.11.009 – ident: e_1_3_2_13_2 doi: 10.3390/s120302519 – ident: e_1_3_2_11_2 doi: 10.1016/j.tim.2004.11.004 – ident: e_1_3_2_17_2 doi: 10.1016/j.mib.2006.02.004 – ident: e_1_3_2_14_2 doi: 10.1128/MMBR.00002-06 – ident: e_1_3_2_33_2 doi: 10.1186/1471-2180-11-57 – ident: e_1_3_2_39_2 doi: 10.1038/nrmicro1146 – ident: e_1_3_2_30_2 doi: 10.3748/wjg.v20.i19.5632 – ident: e_1_3_2_64_2 doi: 10.1128/JB.183.4.1259-1268.2001 – ident: e_1_3_2_19_2 doi: 10.1038/nrmicro3178 – ident: e_1_3_2_46_2 doi: 10.1128/JB.00246-07 – ident: e_1_3_2_58_2 doi: 10.1111/1574-6941.12034 – ident: e_1_3_2_53_2 doi: 10.1177/039139880903200903 – ident: e_1_3_2_37_2 – ident: e_1_3_2_29_2 doi: 10.1016/j.gassur.2005.12.009 – ident: e_1_3_2_9_2 doi: 10.1016/j.pupt.2007.12.001 – ident: e_1_3_2_8_2 doi: 10.1038/nrmicro2415 – ident: e_1_3_2_68_2 doi: 10.1093/nar/gkg129 – ident: e_1_3_2_35_2 doi: 10.1111/j.1365-2672.2010.04911.x – ident: e_1_3_2_36_2 doi: 10.1556/EuJMI.2.2012.1.8 – ident: e_1_3_2_6_2 doi: 10.1128/MMBR.64.4.847-867.2000 – ident: e_1_3_2_67_2 doi: 10.1371/journal.ppat.0020003 – ident: e_1_3_2_60_2 doi: 10.1038/nature13738 – ident: e_1_3_2_42_2 doi: 10.1016/j.molcel.2004.07.020 – ident: e_1_3_2_10_2 doi: 10.1177/0022034509359403 – ident: e_1_3_2_4_2 doi: 10.1111/j.1574-6976.2012.00325.x – ident: e_1_3_2_23_2 doi: 10.1099/mic.0.049353-0 – ident: e_1_3_2_38_2 doi: 10.1016/S0167-2789(03)00029-0 – ident: e_1_3_2_40_2 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_3_2_51_2 doi: 10.1038/nrmicro2695 |
SSID | ssj0000331830 |
Score | 2.4214368 |
Snippet | The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal... ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum... UNLABELLEDThe gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum... The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal... ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e00379 |
SubjectTerms | Bacterial Proteins - metabolism Biofilms - growth & development Carbon-Sulfur Lyases - deficiency Carbon-Sulfur Lyases - metabolism Chemotaxis Gene Deletion Helicobacter pylori - genetics Helicobacter pylori - metabolism Helicobacter pylori - physiology Homoserine - analogs & derivatives Homoserine - metabolism Lactones - metabolism Membrane Proteins - deficiency Membrane Proteins - metabolism Methyl-Accepting Chemotaxis Proteins Periplasmic Proteins - genetics Periplasmic Proteins - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuVSnQpgVkJNRb2CT-WPsILQghgahaJG5WHNttpCVZ7SYH_j0zzu5qt6rEhWs-rRkn854984aQU1nx3EMgSishZMolLjT5kKW-YpXLWShchtXIt3fy-oHfPIrHtVZfmBM2yAMPhhtZhaWeuFmocu6kVTJkGutBnYBIJYcy30yvkan4D2Y4V7OlqGahRk8XdXuGais6xRa4a0EoavX_D2D-mye5FniuPpD3C8RIz4eR7pIt33wk74Yeks97xGLJfzvz036CC18U60UooDr6s0edBfqr_hNv77sW6Dc4cpYW9D4m4fk5hagDU8FGyWY6RfJeU3h0qCdP9EeNKuLzcrJPHq4uf3-_TheNE8Diue7SsXMKsRhnnGsfHJIg4Iks-IBKjUEK55h2NivLTAahtS95cBrAVOC2UpYdkO2mbfxnQj1uvGLz7wrMryQrUb8wz51SlYOHsIR8W1rSTAd9DBN5RaEMmtxEk5tcJOQC7by6CGWt4wFwtlk427zm7IScLL1k4DPAvY2y8W0_N7kEqAhMQcmEfBq8tnoVkERRCFUkZLzhz42xbJ5p6r9RahvIKwrUf3mLwX8lO4C2RMz1HR-S7W7W-yNANJ09jpP3BVWp8i0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-QwFA6iCL4sXtbdrhciiG9126bJJA8iXhFBcdkd8C20TeIWxnbsTEH_veekHXdHfPC1l6Q9J5fvS875Qsi-KNLYwkQUFpyLMBW40GRdFNqCFSZmLjERZiPf3IqrYXp9z-__SQr1Bpx8SO3wPKlhMzp8fno5hg5_1CXAyJ-Pp2V9iEIqKsR086UENbkwiq9H-n5QZth4ccUlAYwTwoCtZoqb70uYm6G8kP9H6PN9EOV_s9LlKvnSw0l60vl_jSzYap0sdwdMvmyQHPUA6saO2xGuilFMJqEA-eivFkUY6O_ywb_eTmvg5uDlJkzonY_QsxMKUxK0k9zrOdMxMvuSQtGuHD3S8xIlxifZ6CsZXl78ObsK-1MVwB2xmoYDYyQCtZSlqbLOIEMCEsmcdSjj6AQ3himTR1kWCceVslnqjAKk5dK8kDnbJItVXdnvhFrclcWTwQsJrEqwDMUN49hIWRgohAXkYGZJPe7EM7QnHYnUaHLtTa5jHpBTtPPbQ6h57S_UzYPuu5DOJSb94rYx1GZELoWLFGYGGw6YRciA7M28pKGP4MZHVtm6nehYAI4EGiFFQL51XnurChgkT7hMAjKY8-fct8zfqcq_XocbmC2q1__47F9ukRWAW9wH-w62yeK0ae0OQJppvusb6yvP8fOS priority: 102 providerName: Scholars Portal |
Title | Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26152582 https://search.proquest.com/docview/1695177286 https://pubmed.ncbi.nlm.nih.gov/PMC4488943 https://doaj.org/article/b822647203814d6b86f098297d529368 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBLadOX-wgqlN68a1mPlY9N2iQEtqS0gb0J65UYdu1ld33ov--Mdh2ypadcdPBDNjNj6_ukmU-EfFZOsAADUe6kVLlQONEUYpEHx51nPJa-wGrk6Q91eSOuZnJ2QORQC5OS9p1tRu18MWqbu5RbuVy48ZAnNr6engGlQNnw8SE5hAB9QNHT75djmBaDnmapx4vTphuh0EqVM9ypBkiDLKUu94aipNj_P5j5b7bkg-Hn_Dl5tsON9Ov2_V6Qg9AekyfbnST_vCQWC_-7VVj2c5z-olg1QgHb0Z89qi3QX81tur3fdEDCwZ2rvKTXKRUvrCmMPRAQNgk30yVS-IZC17GZL-i3BrXE1_X8Fbk5__777DLfbZ8AdmfVJp94rxGRCS5EFaJHKgRskccQUa8xKuk9r7wt6rpQUVZVqEX0FUCqKKzTlr8mR23XhreEBlx-xS3AnQb6pHiNKoaMea2dh054Rr4MljTLrUqGSeyi1Aatb5L1DZMZOUU731-E4tbpQLe6NTsXG6uxuhfXh-FpXlmtYlFhCbCXAE6UzsinwUsGPgZc4ajb0PVrwxQARuALWmXkzdZr948avJ6RyZ4_995l_wzEXxLc3sXbu0ff-Z48BaAlU5rv5AM52qz68BHAzMaepEkAaC9mDNqp0CcpnP8Cwhr3xw |
link.rule.ids | 230,315,730,783,787,867,888,2109,24332,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQX3oXwNBLilt287HWOtFAt0K2KaFFvVhzbJWI3We0mB_j1zDibqltxgWsc20lmHH-fPfMZ4K0os9jiRBSWnIswE7TQZF0U2jItTZy6xESUjTw7FtOz7PM5P98BPuTC-KD9Ulejer4Y1dUPH1u5XJTjIU5sfDI7QEpBsuHjG3ATx2skrpB0_wNOyVGjQVEzkePFftWMSGolD2M6qwZpA0-4TLYmI6_Z_zegeT1e8soEdHgPvg-P3sed_Bx1rR6Vv6-pOv7zu92HuxtIyt73xQ9gx9YP4VZ_SOWvR6BJU6BZ2WU3p5U1RgkpDGEj-9qRkAP7Vl346l3bIL9HT1mFCTvxUX52zXBaQ1_TXhOaLWl1oGLYtKvmC_ahIpnydTF_DGeHH08PpuHmZAY0aZy34cQYSWAvS7Mst84Qy0IimjrrSArSCW5MmhsdFUUkHM9zW2TO5IjWXKZLqdM92K2b2j4FZmlnl04XLyUyM5EWJJAYx0bK0mAjaQDvBhOpZS_AoTxxSaQisypvVhXzAPbJgJc3kW62v9CsLtTmCystKXGYtp6xNyO0FC7KKbvYcMQ9QgbwZjC_wnFGmydFbZturWKBWBSpiBQBPOnd4bKrwZ0CmGw5ytazbJeg-b2W98bcz_675mu4PT2dHamjT8dfnsMdxHPcRxNPXsBuu-rsS8RMrX7lR8gfYFMXFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagCMSFvRBWIyFumaz2OEfaMipLq0FQqeJixVuJmEmimeQAv573nEk1U3HqNfGS5D3H32c_f4-Qd1zniYWJKNSM8TDnuNBkXRxanWmTZC41MZ5GPjnlx2f553N2vpXqywfta1VN6sVyUle_fGxlu9TRGCcWzU8OgVKgbHjUGhfdJLdgzMZii6j7n3CGzhqPqpqpiJYHVTNBuZUiTDBfDVAHljKR7kxIXrf_f2Dzaszk1iQ0u09-jo8_xJ78nvSdmui_V5Qdr_V-D8i9DTSlH4YiD8kNWz8it4dklX8eE4XaAs3Ktv0CV9goHkyhAB_ptx4FHej36sJX77sGeD54zCpM6dxH-9k1hekNfE55bWja4ipBRaFpVy2W9KhCufJ1uXhCzmYffxweh5sMDWDapOjCqTECQV-e5XlhnUG2BYQ0c9ahJKTjzJisMCouy5g7VhS2zJ0pALW5XGmhsn2yVze1fUaoxR1ezDKuBTA0npUolJgkRghtoJEsIO9HM8l2EOKQnsCkQqJppTetTFhADtCIl4VQP9tfaFYXcvOVpRJ4gBi3oKE3w5XgLi7wlLFhgH-4CMjb0QUkjDfcRClr2_RrmXDApEBJBA_I08ElLrsaXSog0x1n2XmW3TvgAl7Te2Py59eu-YbcmR_N5NdPp19ekLsA65gPKp6-JHvdqrevADp16rUfJP8AG3UZlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemorepulsion+from+the+Quorum+Signal+Autoinducer-2+Promotes+Helicobacter+pylori+Biofilm+Dispersal&rft.jtitle=mBio&rft.au=Anderson%2C+Jeneva+K.&rft.au=Huang%2C+Julie+Y.&rft.au=Wreden%2C+Christopher&rft.au=Sweeney%2C+Emily+Goers&rft.date=2015-07-07&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00379-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_00379_15 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |