Bacterial Quorum Sensing and Microbial Community Interactions
Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many spec...
Saved in:
Published in | mBio Vol. 9; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
22.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. |
---|---|
AbstractList | Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. |
Author | Klaus, Jennifer R. Benomar, Saida Abisado, Rhea G. Dandekar, Ajai A. Chandler, Josephine R. |
Author_xml | – sequence: 1 givenname: Rhea G. surname: Abisado fullname: Abisado, Rhea G. organization: Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA – sequence: 2 givenname: Saida surname: Benomar fullname: Benomar, Saida organization: Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA – sequence: 3 givenname: Jennifer R. surname: Klaus fullname: Klaus, Jennifer R. organization: Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA – sequence: 4 givenname: Ajai A. surname: Dandekar fullname: Dandekar, Ajai A. organization: Department of Microbiology, University of Washington, Seattle, Washington, USA – sequence: 5 givenname: Josephine R. surname: Chandler fullname: Chandler, Josephine R. organization: Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29789364$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7IddupVZupma70wWCvZh9UGlFHUdksydZ8pMUpMZof-9mb5arGA2Cbm_e-7lnGN0EFMEhF4RfEYI7d5O5yGdYcoYaYl6ho4oEbhVgpCD9S1JSwnVh-i0lBtcT-U6hl-gQ6pVp5nkR-jdufUz5GDH5npJeZmarxBLiLvGxr75EnxObi1u0jQtMcx3zTZWvjaFFMtL9HywY4HTh_sEfb_4-G3zub28-rTdfLhsvSB6bpUeeiVBMnBdL_WgqKNS1DUF6ZwET9lgLaFWcMmt1lZY4bmCnoIfsKOUnaDtXrdP9sbc5jDZfGeSDeb-I-WdsXkOfgTDOGV6IIy7QXDshAWwgJ1yFFMnOla13u-1bhc3Qe8hztmOT0SfVmL4YXbplxFaciZkFXjzIJDTzwXKbKZQPIyjjZCWYijm1WdOVVfR13_Pehzyx_8KtHug-lxKhuERIdisEZs1YnMfsSGq8uwf3ofZrlnUVcP4n67fjoOqNg |
CitedBy_id | crossref_primary_10_3390_plants13182657 crossref_primary_10_3390_ijms21031061 crossref_primary_10_1007_s10123_022_00247_8 crossref_primary_10_3389_fphar_2022_988245 crossref_primary_10_29039_rusjbpc_2023_0596 crossref_primary_10_7554_eLife_46086 crossref_primary_10_1016_j_carbpol_2022_120382 crossref_primary_10_3390_ijms232415532 crossref_primary_10_1080_10934529_2019_1684120 crossref_primary_10_1007_s00253_023_12522_3 crossref_primary_10_1021_acs_est_3c08503 crossref_primary_10_1016_j_cej_2021_133048 crossref_primary_10_3389_fmicb_2019_01100 crossref_primary_10_1128_spectrum_00353_24 crossref_primary_10_1021_acsami_2c12589 crossref_primary_10_2139_ssrn_4182776 crossref_primary_10_3390_ma12213619 crossref_primary_10_3390_ijms232012486 crossref_primary_10_1021_acs_jafc_1c04751 crossref_primary_10_3389_fmicb_2018_02221 crossref_primary_10_1096_fj_202301590RR crossref_primary_10_3390_biology10060496 crossref_primary_10_1016_j_fm_2022_104144 crossref_primary_10_1016_j_heliyon_2023_e21658 crossref_primary_10_1016_j_bcab_2024_103442 crossref_primary_10_1007_s00284_024_03984_3 crossref_primary_10_2217_fmb_2019_0235 crossref_primary_10_1016_j_heliyon_2019_e03137 crossref_primary_10_1002_wer_1388 crossref_primary_10_3390_toxins14060364 crossref_primary_10_11603_1681_2727_2025_1_15155 crossref_primary_10_3389_fmed_2022_1045990 crossref_primary_10_3389_fmicb_2019_01230 crossref_primary_10_1042_ETLS20200155 crossref_primary_10_3390_fermentation9110964 crossref_primary_10_1111_mmi_14256 crossref_primary_10_1099_mic_0_001294 crossref_primary_10_1007_s40588_023_00204_7 crossref_primary_10_1111_1462_2920_15745 crossref_primary_10_3389_fmolb_2021_727070 crossref_primary_10_1001_jamasurg_2020_5557 crossref_primary_10_1111_1751_7915_14023 crossref_primary_10_3390_md18120619 crossref_primary_10_3389_fcimb_2022_999388 crossref_primary_10_3390_jof5030081 crossref_primary_10_3390_foods13131994 crossref_primary_10_3390_antibiotics9100649 crossref_primary_10_3389_fmicb_2022_844997 crossref_primary_10_1016_j_bioflm_2023_100128 crossref_primary_10_1111_jeb_13883 crossref_primary_10_1016_j_chemosphere_2021_131048 crossref_primary_10_1007_s42398_019_00079_9 crossref_primary_10_1002_jobm_202000231 crossref_primary_10_1002_pep2_24298 crossref_primary_10_3390_ijerph192114146 crossref_primary_10_3390_md17070427 crossref_primary_10_1016_j_btre_2024_e00857 crossref_primary_10_1128_mbio_03320_24 crossref_primary_10_1128_mbio_01207_23 crossref_primary_10_3389_fimmu_2020_01827 crossref_primary_10_1002_ptr_8072 crossref_primary_10_1007_s00253_022_11935_w crossref_primary_10_3390_antibiotics11040465 crossref_primary_10_1021_acsomega_2c02202 crossref_primary_10_3390_foods12010082 crossref_primary_10_1094_PBIOMES_02_20_0019_R crossref_primary_10_1021_acs_chemrev_0c01226 crossref_primary_10_1016_j_ecoenv_2021_112240 crossref_primary_10_1016_j_envpol_2019_113352 crossref_primary_10_5937_arhfarm71_34237 crossref_primary_10_3390_biomedicines11051442 crossref_primary_10_1128_aem_01143_24 crossref_primary_10_3390_metabo14050277 crossref_primary_10_1007_s00253_021_11638_8 crossref_primary_10_3390_bacteria3030008 crossref_primary_10_3390_microorganisms12040639 crossref_primary_10_7717_peerj_18541 crossref_primary_10_1007_s00284_023_03476_w crossref_primary_10_3390_md19110602 crossref_primary_10_1016_j_archoralbio_2021_105137 crossref_primary_10_1016_j_biosystems_2022_104608 crossref_primary_10_1021_acs_jnatprod_3c00672 crossref_primary_10_3390_foods12193521 crossref_primary_10_1111_1462_2920_14446 crossref_primary_10_1007_s00216_020_03040_6 crossref_primary_10_1007_s10750_020_04411_x crossref_primary_10_3389_fphar_2023_1135180 crossref_primary_10_1007_s00203_023_03528_6 crossref_primary_10_1007_s43450_020_00112_7 crossref_primary_10_1128_JB_00687_20 crossref_primary_10_1038_s41429_020_0344_z crossref_primary_10_1007_s00248_020_01574_x crossref_primary_10_1111_oik_11201 crossref_primary_10_3390_ijms241411577 crossref_primary_10_1016_j_biortech_2021_124972 crossref_primary_10_1128_mbio_02922_24 crossref_primary_10_1128_mBio_02339_18 crossref_primary_10_1080_02786826_2023_2192253 crossref_primary_10_1016_j_ijfoodmicro_2025_111091 crossref_primary_10_1080_00219266_2021_1979627 crossref_primary_10_3389_fmicb_2020_584947 crossref_primary_10_1186_s12940_024_01092_0 crossref_primary_10_1007_s00285_021_01705_z crossref_primary_10_1016_j_watres_2023_119823 crossref_primary_10_15237_gida_GD20134 crossref_primary_10_1080_07352689_2021_1901044 crossref_primary_10_3390_ijms232214259 crossref_primary_10_3389_fdmed_2022_1007753 crossref_primary_10_1080_1040841X_2020_1863329 crossref_primary_10_3390_antibiotics11020178 crossref_primary_10_1016_j_foodres_2023_113642 crossref_primary_10_3390_agronomy11112177 crossref_primary_10_3389_frwa_2021_799840 crossref_primary_10_1128_spectrum_00908_23 crossref_primary_10_1016_j_micres_2023_127414 crossref_primary_10_1016_j_tifs_2024_104832 crossref_primary_10_1186_s13068_022_02113_1 crossref_primary_10_1128_cmr_00133_23 crossref_primary_10_1002_advs_202100556 crossref_primary_10_31718_2077_1096_22_3_4_176 crossref_primary_10_1128_mbio_00390_24 crossref_primary_10_3390_ijms22168559 crossref_primary_10_3389_fphar_2022_949608 crossref_primary_10_1016_j_biortech_2021_125360 crossref_primary_10_1128_mBio_01274_18 crossref_primary_10_3390_pathogens11020147 crossref_primary_10_3389_fcimb_2025_1533768 crossref_primary_10_1021_acschembio_4c00641 crossref_primary_10_1038_s41598_020_65076_z crossref_primary_10_3389_fmicb_2022_837182 crossref_primary_10_1021_acsami_1c01902 crossref_primary_10_1007_s00203_022_02776_2 crossref_primary_10_1016_j_aninu_2021_05_008 crossref_primary_10_1016_j_scitotenv_2023_165610 crossref_primary_10_3390_antibiotics13060474 crossref_primary_10_1021_acschembio_8b00610 crossref_primary_10_1016_j_bpj_2020_09_027 crossref_primary_10_1016_j_foodcont_2023_110255 crossref_primary_10_3390_microorganisms11092228 crossref_primary_10_1186_s12915_019_0714_9 crossref_primary_10_1080_09506608_2022_2066444 crossref_primary_10_1111_mpp_13376 crossref_primary_10_3390_antibiotics11030395 crossref_primary_10_1007_s00216_024_05659_1 crossref_primary_10_3390_fermentation8120711 crossref_primary_10_3389_fbioe_2020_619055 crossref_primary_10_3390_antibiotics13010049 crossref_primary_10_1007_s00253_022_12148_x crossref_primary_10_26873_SVR_1880_2024 crossref_primary_10_3390_pathogens10080921 crossref_primary_10_1016_j_jddst_2023_104674 crossref_primary_10_1099_mic_0_001340 crossref_primary_10_3390_molecules29194534 crossref_primary_10_2174_2212796816666220330090107 crossref_primary_10_3390_fermentation9080709 crossref_primary_10_1098_rstb_2019_0454 crossref_primary_10_3389_fmicb_2021_757327 crossref_primary_10_1039_D1NP00052G crossref_primary_10_1002_ps_7661 crossref_primary_10_1080_1040841X_2024_2397359 crossref_primary_10_3389_fcimb_2024_1346565 crossref_primary_10_3389_fmicb_2018_01755 crossref_primary_10_3390_ijms252312808 crossref_primary_10_1128_aem_00635_23 crossref_primary_10_1016_j_foodres_2022_111733 crossref_primary_10_1128_msphere_00426_20 crossref_primary_10_1016_j_bpr_2023_100118 crossref_primary_10_1007_s10517_020_04775_z crossref_primary_10_3390_scipharm91030033 crossref_primary_10_1021_jacsau_4c00404 crossref_primary_10_21930_rcta_vol22_num2_art_1710 crossref_primary_10_1016_j_tifs_2021_02_051 crossref_primary_10_1128_AEM_00720_21 crossref_primary_10_21285_2227_2925_2022_12_2_299_309 crossref_primary_10_3389_fimmu_2024_1399842 crossref_primary_10_1128_JB_00101_19 crossref_primary_10_3389_fcimb_2023_1282622 crossref_primary_10_1007_s11033_023_08930_3 crossref_primary_10_1016_j_watres_2022_118238 crossref_primary_10_7717_peerj_6845 crossref_primary_10_1021_acsinfecdis_9b00097 crossref_primary_10_1038_s41598_020_71640_4 crossref_primary_10_3390_molecules26216392 crossref_primary_10_1016_j_foodres_2020_109742 crossref_primary_10_1021_acsfoodscitech_0c00069 crossref_primary_10_3390_biology11091349 crossref_primary_10_1007_s00253_023_12663_5 crossref_primary_10_17475_kastorman_1460605 crossref_primary_10_1007_s00203_021_02235_4 crossref_primary_10_3389_fbioe_2020_00834 crossref_primary_10_1128_msystems_00712_24 crossref_primary_10_1016_j_jece_2024_113725 crossref_primary_10_3390_ijms21217990 crossref_primary_10_1016_j_micres_2025_128102 crossref_primary_10_1021_acs_biochem_9b00360 crossref_primary_10_1016_j_envpol_2023_123066 crossref_primary_10_3389_fbioe_2022_895283 crossref_primary_10_1016_j_foodres_2019_108754 crossref_primary_10_3389_fmicb_2022_955459 crossref_primary_10_3390_microorganisms10122455 crossref_primary_10_5395_rde_2021_46_e38 crossref_primary_10_1038_s41564_024_01827_2 crossref_primary_10_1080_15592324_2024_2411913 crossref_primary_10_1128_mbio_00745_22 crossref_primary_10_3390_antibiotics10121546 crossref_primary_10_1111_1462_2920_15444 crossref_primary_10_1007_s10526_019_09932_6 crossref_primary_10_1186_s13568_021_01210_y crossref_primary_10_1007_s12602_021_09815_2 crossref_primary_10_1002_med_21984 crossref_primary_10_1016_j_bios_2022_114439 crossref_primary_10_3390_microorganisms9112400 crossref_primary_10_1007_s42773_020_00041_7 crossref_primary_10_1007_s10539_023_09897_y crossref_primary_10_3390_app12052500 crossref_primary_10_3389_fmicb_2024_1366760 crossref_primary_10_1007_s00248_019_01397_5 crossref_primary_10_1007_s11274_024_04232_3 crossref_primary_10_1128_spectrum_00253_24 crossref_primary_10_1016_j_ijoes_2025_100972 crossref_primary_10_1007_s11771_020_4277_2 crossref_primary_10_3390_ijms252313001 crossref_primary_10_1016_j_cej_2021_134425 crossref_primary_10_1186_s12917_024_04086_9 crossref_primary_10_1111_wrr_12867 crossref_primary_10_1007_s00253_022_11866_6 crossref_primary_10_2174_0929867331666230821110440 crossref_primary_10_3390_ani13233716 crossref_primary_10_3390_ijms21041361 crossref_primary_10_1149_2_1061908jes crossref_primary_10_3389_fmicb_2020_601788 crossref_primary_10_1016_j_jenvman_2022_116542 crossref_primary_10_1038_s41598_022_19103_w crossref_primary_10_3389_fcimb_2024_1370062 crossref_primary_10_3390_app12042066 crossref_primary_10_3390_vetsci11080349 crossref_primary_10_3389_fvets_2024_1418101 crossref_primary_10_3389_fmicb_2021_725403 crossref_primary_10_21448_ijsm_1059886 crossref_primary_10_1128_mSphere_00780_19 crossref_primary_10_3390_microorganisms11081899 crossref_primary_10_3389_fmicb_2022_977669 crossref_primary_10_3390_ph15020110 crossref_primary_10_1007_s00253_020_10349_w crossref_primary_10_1007_s13213_019_01448_9 crossref_primary_10_1016_j_foodres_2023_112612 crossref_primary_10_1002_mbo3_1094 crossref_primary_10_3389_fcimb_2022_955952 crossref_primary_10_1002_chem_201901961 crossref_primary_10_1038_s41467_019_13013_8 crossref_primary_10_1016_j_micpath_2020_104068 crossref_primary_10_33393_dti_2023_2638 crossref_primary_10_1016_j_pbiomolbio_2020_07_002 crossref_primary_10_3389_fmicb_2020_00358 crossref_primary_10_1016_j_scitotenv_2024_174121 crossref_primary_10_1128_spectrum_00681_24 crossref_primary_10_1002_aic_16848 crossref_primary_10_3390_antibiotics11010061 crossref_primary_10_1007_s13199_022_00893_6 crossref_primary_10_1186_s40168_021_01143_5 crossref_primary_10_1080_14787210_2021_1843427 crossref_primary_10_1155_2019_6154867 crossref_primary_10_3390_ph16050713 crossref_primary_10_3390_antibiotics12030441 crossref_primary_10_1080_03610470_2020_1843928 crossref_primary_10_1093_bib_bbae429 crossref_primary_10_1186_s12862_023_02112_2 crossref_primary_10_1098_rsob_220143 crossref_primary_10_1016_j_biortech_2021_126600 crossref_primary_10_1007_s00253_023_12890_w crossref_primary_10_3389_fmicb_2022_895537 crossref_primary_10_3390_medsci7020021 crossref_primary_10_1007_s10295_020_02317_0 crossref_primary_10_1021_acs_jafc_4c12351 crossref_primary_10_1007_s00203_023_03710_w crossref_primary_10_3390_membranes12070715 crossref_primary_10_1002_ccr3_3354 crossref_primary_10_2174_1570163816666191107124214 crossref_primary_10_1186_s13568_020_01045_z crossref_primary_10_1002_bab_2707 crossref_primary_10_3390_microorganisms12010039 crossref_primary_10_1007_s00203_020_02136_y crossref_primary_10_1128_mbio_03010_22 crossref_primary_10_1111_wrr_13240 crossref_primary_10_22207_JPAM_18_1_10 crossref_primary_10_1111_mmi_14312 crossref_primary_10_1080_1040841X_2025_2457670 crossref_primary_10_1055_a_2436_7394 crossref_primary_10_1007_s00253_022_12150_3 crossref_primary_10_2174_1389450120666190423161249 |
Cites_doi | 10.1073/pnas.92.26.12055 10.1128/jb.176.2.269-275.1994 10.1111/j.1365-2958.2010.07436.x 10.1021/ol902751x 10.1371/journal.pone.0089614 10.1016/j.ijmm.2006.01.036 10.7554/eLife.14712 10.1186/1471-2180-8-154 10.1128/AEM.67.7.2982-2992.2001 10.1038/ismej.2009.30 10.1073/pnas.0602138103 10.1073/pnas.93.18.9505 10.1016/j.cub.2007.06.004 10.1128/JCM.42.2.554-562.2004 10.1046/j.1365-2958.1999.01208.x 10.1073/pnas.1520615113 10.1128/IAI.02198-14 10.1146/annurev.cellbio.21.012704.131001 10.1073/pnas.91.26.12619 10.1126/science.1227289 10.1038/nature02894 10.1093/jac/30.5.615 10.1073/pnas.1316283111 10.1038/ismej.2014.52 10.1111/j.1574-6976.2001.tb00583.x 10.1128/JCM.01395-09 10.1073/pnas.0606756104 10.1046/j.1365-2958.2000.01913.x 10.1111/j.1365-2958.2007.05678.x 10.1111/j.1365-2958.2008.06132.x 10.1099/mic.0.2007/011874-0 10.1073/pnas.78.10.6324 10.1038/ismej.2014.246 10.1146/annurev-micro-092412-155635 10.1128/JB.185.24.7222-7230.2003 10.1128/JB.00482-15 10.1139/w02-068 10.1007/s00265-002-0487-x 10.1098/rspb.2012.1976 10.1016/j.cub.2014.08.049 10.1128/mBio.00202-10 10.1086/592051 10.1016/0092-8674(83)90063-6 10.1038/nsb0202-83 10.1128/JB.187.14.4908-4920.2005 10.1093/nar/29.22.e111 10.1111/j.1365-2958.2005.04960.x 10.1128/JB.00736-07 10.1016/j.cell.2004.06.009 10.1038/nature21049 10.1073/pnas.0811741106 10.1128/JB.00425-15 10.1016/j.tim.2004.11.007 10.1002/j.1460-2075.1993.tb06074.x 10.1371/journal.pbio.1002386 10.1128/JB.182.7.1779-1787.2000 10.1128/AEM.01708-06 10.1128/IAI.01554-14 10.1128/IAI.00755-09 10.3389/fmicb.2017.00439 10.1111/1574-6976.12046 10.1167/iovs.03-0980 10.1038/nature18849 10.1038/nature00833 10.1038/s41467-017-00401-1 10.1128/iai.64.8.3154-3160.1996 10.1086/656915 10.1371/journal.pone.0009998 10.1128/JB.01138-07 10.1128/IAI.74.2.1141-1147.2006 10.1038/nrmicro2977 10.1073/pnas.96.8.4360 10.1021/bi00512a013 10.1073/pnas.1500704112 10.1098/rspb.2012.0843 10.1038/nature01906 10.1038/373209a0 10.1073/pnas.1103821108 10.1111/evo.12751 10.1073/pnas.1218092109 10.1016/j.peptides.2003.11.026 10.1098/rsbl.2003.0083 10.1128/AEM.00113-17 10.1073/pnas.0511323103 10.1073/pnas.97.16.8794 10.1128/AEM.00586-15 10.1073/pnas.1114125108 10.1128/JB.185.1.274-284.2003 10.1099/00221287-143-12-3703 10.1128/JB.187.15.5267-5277.2005 10.1038/nrmicro1461 10.1016/j.celrep.2015.02.049 10.1128/IAI.00116-17 10.1042/bj0630130 10.1073/pnas.0705653104 10.1111/j.1365-2958.2012.07992.x 10.1128/AEM.01211-09 10.1146/annurev.genet.35.102401.090913 10.1007/s002650100377 10.1126/science.272.5268.1655 10.1146/annurev-genet-111212-133449 10.1073/pnas.96.24.13904 10.1002/bio.1170080506 10.1038/ismej.2012.69 10.1111/j.1365-2958.2010.07279.x 10.1073/pnas.0505545102 10.1073/pnas.81.13.4154 10.1128/mBio.00374-17 10.1038/nature06279 10.1371/journal.pcbi.1004848 10.3389/fmicb.2017.00885 10.1126/science.1128393 10.1128/IAI.01216-13 10.1128/JB.185.7.2066-2079.2003 10.1128/JB.01405-13 10.1128/mBio.00199-10 10.1111/j.1365-2958.2006.05210.x 10.1073/pnas.86.15.5688 10.1128/AEM.68.6.3152-3155.2002 10.1038/ismej.2014.98 10.1016/j.jmb.2015.09.018 10.1038/s41396-018-0047-7 10.1128/mr.43.4.496-518.1979 10.3389/fmicb.2018.00337 10.1128/JB.188.9.3169-3171.2006 10.1038/nrmicro2259 10.1111/j.1365-2958.2006.05202.x 10.1073/pnas.1319175111 10.1099/jmm.0.45617-0 10.1038/nature10244 10.1038/nrmicro.2016.89 10.1007/s002030000223 10.1128/aem.58.8.2616-2624.1992 10.1038/35007066 10.1128/JB.187.12.3980-3989.2005 10.1128/JB.00966-07 10.3389/fcimb.2017.00106 10.1016/0022-5193(64)90038-4 10.1128/AEM.01945-16 10.1128/JB.187.2.554-566.2005 10.1128/jb.177.3.815-817.1995 10.1099/mic.0.074203-0 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Abisado et al. Copyright © 2018 Abisado et al. 2018 Abisado et al. |
Copyright_xml | – notice: Copyright © 2018 Abisado et al. – notice: Copyright © 2018 Abisado et al. 2018 Abisado et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.02331-17 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Minireview |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_34239f134bf540b5aeeae0b7b202b583 PMC5964356 29789364 10_1128_mBio_02331_17 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103638 – fundername: NIGMS NIH HHS grantid: R01 GM125714 – fundername: ; grantid: Fulbright Foreign Student Program (15160174) sponsored by the U.S. Department of State, Bureau of Educational and Cultural Affairs and The Philippine-American Educational Foundation (PAEF) – fundername: ; grantid: GM125714 – fundername: ; grantid: P20GM103638 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c519t-79fd76e63eb8d69f72b265511518b6ec23faa12a5464a99a5a5c47ed2ecf0b223 |
IEDL.DBID | DOA |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:27:19 EDT 2025 Thu Aug 21 18:17:48 EDT 2025 Fri Jul 11 03:20:07 EDT 2025 Wed Feb 19 02:31:38 EST 2025 Tue Jul 01 01:52:37 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | competition coculture quorum sensing antibiotics cooperation |
Language | English |
License | Copyright © 2018 Abisado et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-79fd76e63eb8d69f72b265511518b6ec23faa12a5464a99a5a5c47ed2ecf0b223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 R.G.A., S.B., and J.R.K. contributed equally to this article. |
OpenAccessLink | https://doaj.org/article/34239f134bf540b5aeeae0b7b202b583 |
PMID | 29789364 |
PQID | 2043184278 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34239f134bf540b5aeeae0b7b202b583 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5964356 proquest_miscellaneous_2043184278 pubmed_primary_29789364 crossref_primary_10_1128_mBio_02331_17 crossref_citationtrail_10_1128_mBio_02331_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180522 |
PublicationDateYYYYMMDD | 2018-05-22 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180522 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_139_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_141_2 e_1_3_2_122_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_134_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_130_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_138_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_144_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_140_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 Moons P (e_1_3_2_142_2) 2005; 70 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_143_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_136_2 e_1_3_2_72_2 e_1_3_2_132_2 e_1_3_2_117_2 30279287 - MBio. 2018 Oct 2;9(5) |
References_xml | – ident: e_1_3_2_31_2 doi: 10.1073/pnas.92.26.12055 – ident: e_1_3_2_2_2 doi: 10.1128/jb.176.2.269-275.1994 – ident: e_1_3_2_58_2 doi: 10.1111/j.1365-2958.2010.07436.x – ident: e_1_3_2_107_2 doi: 10.1021/ol902751x – ident: e_1_3_2_129_2 doi: 10.1371/journal.pone.0089614 – ident: e_1_3_2_40_2 doi: 10.1016/j.ijmm.2006.01.036 – ident: e_1_3_2_84_2 doi: 10.7554/eLife.14712 – ident: e_1_3_2_121_2 doi: 10.1186/1471-2180-8-154 – ident: e_1_3_2_34_2 doi: 10.1128/AEM.67.7.2982-2992.2001 – ident: e_1_3_2_113_2 doi: 10.1038/ismej.2009.30 – ident: e_1_3_2_72_2 doi: 10.1073/pnas.0602138103 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.93.18.9505 – ident: e_1_3_2_82_2 doi: 10.1016/j.cub.2007.06.004 – ident: e_1_3_2_67_2 doi: 10.1128/JCM.42.2.554-562.2004 – ident: e_1_3_2_26_2 doi: 10.1046/j.1365-2958.1999.01208.x – ident: e_1_3_2_54_2 doi: 10.1073/pnas.1520615113 – ident: e_1_3_2_127_2 doi: 10.1128/IAI.02198-14 – ident: e_1_3_2_3_2 doi: 10.1146/annurev.cellbio.21.012704.131001 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.91.26.12619 – ident: e_1_3_2_47_2 doi: 10.1126/science.1227289 – volume: 70 start-page: 195 year: 2005 ident: e_1_3_2_142_2 article-title: Quorum sensing dependent production of antimicrobial component influences establishment of E. coli in dual species biofilms with Serratia plymuthica publication-title: Commun Agric Appl Biol Sci – ident: e_1_3_2_85_2 doi: 10.1038/nature02894 – ident: e_1_3_2_132_2 doi: 10.1093/jac/30.5.615 – ident: e_1_3_2_59_2 doi: 10.1073/pnas.1316283111 – ident: e_1_3_2_94_2 doi: 10.1038/ismej.2014.52 – ident: e_1_3_2_16_2 doi: 10.1111/j.1574-6976.2001.tb00583.x – ident: e_1_3_2_122_2 doi: 10.1128/JCM.01395-09 – ident: e_1_3_2_123_2 doi: 10.1073/pnas.0606756104 – ident: e_1_3_2_27_2 doi: 10.1046/j.1365-2958.2000.01913.x – ident: e_1_3_2_64_2 doi: 10.1111/j.1365-2958.2007.05678.x – ident: e_1_3_2_116_2 doi: 10.1111/j.1365-2958.2008.06132.x – ident: e_1_3_2_79_2 doi: 10.1099/mic.0.2007/011874-0 – ident: e_1_3_2_92_2 doi: 10.1073/pnas.78.10.6324 – ident: e_1_3_2_96_2 doi: 10.1038/ismej.2014.246 – ident: e_1_3_2_5_2 doi: 10.1146/annurev-micro-092412-155635 – ident: e_1_3_2_66_2 doi: 10.1128/JB.185.24.7222-7230.2003 – ident: e_1_3_2_48_2 doi: 10.1128/JB.00482-15 – ident: e_1_3_2_114_2 doi: 10.1139/w02-068 – ident: e_1_3_2_38_2 doi: 10.1007/s00265-002-0487-x – ident: e_1_3_2_57_2 doi: 10.1098/rspb.2012.1976 – ident: e_1_3_2_62_2 doi: 10.1016/j.cub.2014.08.049 – ident: e_1_3_2_139_2 doi: 10.1128/mBio.00202-10 – ident: e_1_3_2_77_2 doi: 10.1086/592051 – ident: e_1_3_2_14_2 doi: 10.1016/0092-8674(83)90063-6 – ident: e_1_3_2_118_2 doi: 10.1038/nsb0202-83 – ident: e_1_3_2_70_2 doi: 10.1128/JB.187.14.4908-4920.2005 – ident: e_1_3_2_73_2 doi: 10.1093/nar/29.22.e111 – ident: e_1_3_2_109_2 doi: 10.1111/j.1365-2958.2005.04960.x – ident: e_1_3_2_15_2 doi: 10.1128/JB.00736-07 – ident: e_1_3_2_29_2 doi: 10.1016/j.cell.2004.06.009 – ident: e_1_3_2_36_2 doi: 10.1038/nature21049 – ident: e_1_3_2_81_2 doi: 10.1073/pnas.0811741106 – ident: e_1_3_2_106_2 doi: 10.1128/JB.00425-15 – ident: e_1_3_2_97_2 doi: 10.1016/j.tim.2004.11.007 – ident: e_1_3_2_33_2 doi: 10.1002/j.1460-2075.1993.tb06074.x – ident: e_1_3_2_61_2 doi: 10.1371/journal.pbio.1002386 – ident: e_1_3_2_9_2 doi: 10.1128/JB.182.7.1779-1787.2000 – ident: e_1_3_2_141_2 doi: 10.1128/AEM.01708-06 – ident: e_1_3_2_65_2 doi: 10.1128/IAI.01554-14 – ident: e_1_3_2_74_2 doi: 10.1128/IAI.00755-09 – ident: e_1_3_2_117_2 doi: 10.3389/fmicb.2017.00439 – ident: e_1_3_2_6_2 doi: 10.1111/1574-6976.12046 – ident: e_1_3_2_75_2 doi: 10.1167/iovs.03-0980 – ident: e_1_3_2_119_2 doi: 10.1038/nature18849 – ident: e_1_3_2_22_2 doi: 10.1038/nature00833 – ident: e_1_3_2_93_2 doi: 10.1038/s41467-017-00401-1 – ident: e_1_3_2_68_2 doi: 10.1128/iai.64.8.3154-3160.1996 – ident: e_1_3_2_78_2 doi: 10.1086/656915 – ident: e_1_3_2_60_2 doi: 10.1371/journal.pone.0009998 – ident: e_1_3_2_125_2 doi: 10.1128/JB.01138-07 – ident: e_1_3_2_76_2 doi: 10.1128/IAI.74.2.1141-1147.2006 – ident: e_1_3_2_102_2 doi: 10.1038/nrmicro2977 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.96.8.4360 – ident: e_1_3_2_10_2 doi: 10.1021/bi00512a013 – ident: e_1_3_2_56_2 doi: 10.1073/pnas.1500704112 – ident: e_1_3_2_63_2 doi: 10.1098/rspb.2012.0843 – ident: e_1_3_2_45_2 doi: 10.1038/nature01906 – ident: e_1_3_2_87_2 doi: 10.1038/373209a0 – ident: e_1_3_2_112_2 doi: 10.1073/pnas.1103821108 – ident: e_1_3_2_42_2 doi: 10.1111/evo.12751 – ident: e_1_3_2_104_2 doi: 10.1073/pnas.1218092109 – ident: e_1_3_2_30_2 doi: 10.1016/j.peptides.2003.11.026 – ident: e_1_3_2_43_2 doi: 10.1098/rsbl.2003.0083 – ident: e_1_3_2_140_2 doi: 10.1128/AEM.00113-17 – ident: e_1_3_2_134_2 doi: 10.1073/pnas.0511323103 – ident: e_1_3_2_35_2 doi: 10.1073/pnas.97.16.8794 – ident: e_1_3_2_53_2 doi: 10.1128/AEM.00586-15 – ident: e_1_3_2_111_2 doi: 10.1073/pnas.1114125108 – ident: e_1_3_2_143_2 doi: 10.1128/JB.185.1.274-284.2003 – ident: e_1_3_2_108_2 doi: 10.1099/00221287-143-12-3703 – ident: e_1_3_2_124_2 doi: 10.1128/JB.187.15.5267-5277.2005 – ident: e_1_3_2_39_2 doi: 10.1038/nrmicro1461 – ident: e_1_3_2_120_2 doi: 10.1016/j.celrep.2015.02.049 – ident: e_1_3_2_136_2 doi: 10.1128/IAI.00116-17 – ident: e_1_3_2_131_2 doi: 10.1042/bj0630130 – ident: e_1_3_2_50_2 doi: 10.1073/pnas.0705653104 – ident: e_1_3_2_28_2 doi: 10.1111/j.1365-2958.2012.07992.x – ident: e_1_3_2_126_2 doi: 10.1128/AEM.01211-09 – ident: e_1_3_2_8_2 doi: 10.1146/annurev.genet.35.102401.090913 – ident: e_1_3_2_37_2 doi: 10.1007/s002650100377 – ident: e_1_3_2_20_2 doi: 10.1126/science.272.5268.1655 – ident: e_1_3_2_138_2 doi: 10.1146/annurev-genet-111212-133449 – ident: e_1_3_2_55_2 doi: 10.1073/pnas.96.24.13904 – ident: e_1_3_2_11_2 doi: 10.1002/bio.1170080506 – ident: e_1_3_2_105_2 doi: 10.1038/ismej.2012.69 – ident: e_1_3_2_24_2 doi: 10.1111/j.1365-2958.2010.07279.x – ident: e_1_3_2_137_2 doi: 10.1073/pnas.0505545102 – ident: e_1_3_2_13_2 doi: 10.1073/pnas.81.13.4154 – ident: e_1_3_2_95_2 doi: 10.1128/mBio.00374-17 – ident: e_1_3_2_49_2 doi: 10.1038/nature06279 – ident: e_1_3_2_98_2 doi: 10.1371/journal.pcbi.1004848 – ident: e_1_3_2_86_2 doi: 10.3389/fmicb.2017.00885 – ident: e_1_3_2_89_2 doi: 10.1126/science.1128393 – ident: e_1_3_2_51_2 doi: 10.1128/IAI.01216-13 – ident: e_1_3_2_133_2 doi: 10.1128/JB.185.7.2066-2079.2003 – ident: e_1_3_2_41_2 doi: 10.1128/JB.01405-13 – ident: e_1_3_2_69_2 doi: 10.1128/mBio.00199-10 – ident: e_1_3_2_110_2 doi: 10.1111/j.1365-2958.2006.05210.x – ident: e_1_3_2_23_2 doi: 10.1073/pnas.86.15.5688 – ident: e_1_3_2_80_2 doi: 10.1128/AEM.68.6.3152-3155.2002 – ident: e_1_3_2_83_2 doi: 10.1038/ismej.2014.98 – ident: e_1_3_2_115_2 doi: 10.1016/j.jmb.2015.09.018 – ident: e_1_3_2_46_2 doi: 10.1038/s41396-018-0047-7 – ident: e_1_3_2_7_2 doi: 10.1128/mr.43.4.496-518.1979 – ident: e_1_3_2_88_2 doi: 10.3389/fmicb.2018.00337 – ident: e_1_3_2_25_2 doi: 10.1128/JB.188.9.3169-3171.2006 – ident: e_1_3_2_101_2 doi: 10.1038/nrmicro2259 – ident: e_1_3_2_144_2 doi: 10.1111/j.1365-2958.2006.05202.x – ident: e_1_3_2_17_2 doi: 10.1073/pnas.1319175111 – ident: e_1_3_2_71_2 doi: 10.1099/jmm.0.45617-0 – ident: e_1_3_2_90_2 doi: 10.1038/nature10244 – ident: e_1_3_2_4_2 doi: 10.1038/nrmicro.2016.89 – ident: e_1_3_2_32_2 doi: 10.1007/s002030000223 – ident: e_1_3_2_103_2 doi: 10.1128/aem.58.8.2616-2624.1992 – ident: e_1_3_2_44_2 doi: 10.1038/35007066 – ident: e_1_3_2_99_2 doi: 10.1128/JB.187.12.3980-3989.2005 – ident: e_1_3_2_100_2 doi: 10.1128/JB.00966-07 – ident: e_1_3_2_130_2 doi: 10.3389/fcimb.2017.00106 – ident: e_1_3_2_91_2 doi: 10.1016/0022-5193(64)90038-4 – ident: e_1_3_2_52_2 doi: 10.1128/AEM.01945-16 – ident: e_1_3_2_128_2 doi: 10.1128/JB.187.2.554-566.2005 – ident: e_1_3_2_12_2 doi: 10.1128/jb.177.3.815-817.1995 – ident: e_1_3_2_135_2 doi: 10.1099/mic.0.074203-0 – reference: 30279287 - MBio. 2018 Oct 2;9(5): |
SSID | ssj0000331830 |
Score | 2.6398087 |
SecondaryResourceType | review_article |
Snippet | Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing... ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals antibiotics Bacteria - genetics Bacterial Infections - microbiology Bacterial Physiological Phenomena coculture competition cooperation Humans Microbial Interactions Minireview Quorum Sensing |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED7WjkFfxrqunbduuFD2VLe2JEvyQynLWCmDFMoa6JuQZCkNdM6WH7D89zvJTtqU9m2Pts5Y3Ol838m67wAOLTUekbzPpPYkYzbPs0o7ES55ZanARROKk_uX_GLAftyUN_eUQp0Cp0-mdqGf1GByd_z3z-IMHf60LYCRJ796o_Exxh5aZIXYgJcYlETw0X6H9ONHmYbFmy9ZNh8_tRaVInn_U4jz8cHJB5Ho_A287iBk-rW1-Ta8cM1beNU2lVzswGmvJWBGkat5oFpIf4ZD6s0w1U2d9keReQkHu9KQ2SKNu4JtgcP0HQzOv19_u8i6JgmZRfA1y0Tla8Edp87ImldeEEM4wiCM5NJwZwn1WhdEl4wzXVW61KVlwtXEWZ8bBAe7sNmMG_ceUkOc8YX1tWEyhClDtEZE5A2mhT5nRQJHSyUp2zGIh0YWdypmEkSqoFMVdaoKkcCXlfjvljrjOcFe0PhKKDBexxvjyVB1DqQiU6EvKDMeQaYptXPa5UYYkhNTSprAwdJeCj0k_PbQjRvPpypU_2IeS4RMYK-13-pVBJPoinKWgFiz7Npc1kea0W1k4S4Dk1nJP_yPyX-ELQRiMpxKIGQfNmeTufuEYGdmPsdl_A-uC_-P priority: 102 providerName: Scholars Portal |
Title | Bacterial Quorum Sensing and Microbial Community Interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29789364 https://www.proquest.com/docview/2043184278 https://pubmed.ncbi.nlm.nih.gov/PMC5964356 https://doaj.org/article/34239f134bf540b5aeeae0b7b202b583 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yEHwRv61fVBCfrGvTNEkffHCiDmGC6GBvIUkTHWgnbnvYf-8l7eYmii--BNocNNylvd-ld79D6ESnygKStxGXFkdEx3GUS8PcJc11ymDTuOLkzj1td8ldL-vNtfpyOWEVPXCluKZnqLNJSpQFcKEyaYw0sWIKonaVcc_zCT5vLpjy3-DU7dV4SqqJefOt1R-cg4NKk8g3J_tyQp6r_yeA-T1Pcs7x3Kyh1RoxhpfVStfRkik30HLVQ3KyiS5aFd8yiDyMHbNC-Ohy0svnUJZF2Ol7oiWYrCtBRpPQHwJW9QzDLdS9uX66akd1T4RIA9YaRSy3BaOGpkbxguaWYYUpoB5w3FxRo3FqpUywzAglMs9lJjNNmCmw0TZWgAW2UaMclGYXhQobZRNtC0W480oKSwkAyCqIAm1MkgCdTZUkdE0Y7vpWvAofOGAunE6F16lIWIBOZ-LvFVPGb4Itp_GZkCO49jfA7KI2u_jL7AE6ntpLwAvh_nLI0gzGQ-GKfSFsxYwHaKey3-xRGGLmPKUkQGzBsgtrWZwp-y-edDtzxGUZ3fuPxe-jFcBd3CUhYHyAGqOPsTkEbDNSR34bw3jbS2DsEP4JEEz6Mg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Quorum+Sensing+and+Microbial+Community+Interactions&rft.jtitle=mBio&rft.au=Rhea+G.+Abisado&rft.au=Saida+Benomar&rft.au=Jennifer+R.+Klaus&rft.au=Ajai+A.+Dandekar&rft.date=2018-05-22&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1128%2FmBio.02331-17&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34239f134bf540b5aeeae0b7b202b583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |