Consistent group selection in high-dimensional linear regression

In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of g...

Full description

Saved in:
Bibliographic Details
Published inBernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 16; no. 4; p. 1369
Main Authors Wei, Fengrong, Huang, Jian
Format Journal Article
LanguageEnglish
Published England 01.11.2010
Online AccessGet more information
ISSN1350-7265
DOI10.3150/10-bej252

Cover

Loading…
Abstract In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimension is comparable with the underlying model with high probability and is estimation consistent. However, the group Lasso is, in general, not selection consistent and also tends to select groups that are not important in the model. To improve the selection results, we propose an adaptive group Lasso method which is a generalization of the adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is consistent in group selection under certain conditions if the group Lasso is used as the initial estimator.
AbstractList In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimension is comparable with the underlying model with high probability and is estimation consistent. However, the group Lasso is, in general, not selection consistent and also tends to select groups that are not important in the model. To improve the selection results, we propose an adaptive group Lasso method which is a generalization of the adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is consistent in group selection under certain conditions if the group Lasso is used as the initial estimator.
Author Wei, Fengrong
Huang, Jian
Author_xml – sequence: 1
  givenname: Fengrong
  surname: Wei
  fullname: Wei, Fengrong
  organization: Department of Mathematics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, USA
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22072891$$D View this record in MEDLINE/PubMed
BookMark eNo1j81KxDAURrMYcX504QtIXiB6k_Y26U4ZdBQG3Oh6SJrbToY2LUln4durqKsPDocD35ot4hiJsRsJd4VEuJcgHJ0UqgVbyQJBaFXhkq1zPgHIsqrgki2VAq1MLVfsYTvGHPJMceZdGs8Tz9RTM4cx8hD5MXRH4cNA39IYbc_7EMkmnqhLlH_YFbtobZ_p-m837OP56X37IvZvu9ft4140KOtZaITKaQBPWgJaW0LRSiRjqAV06KUqykobbGpdN96UbSG1l02tCI1DcGrDbn-709kN5A9TCoNNn4f_K-oLQ4lJ1Q
CitedBy_id crossref_primary_10_1080_02664763_2018_1523377
crossref_primary_10_1080_01621459_2013_859617
crossref_primary_10_1007_s11425_017_9189_9
crossref_primary_10_1111_jtsa_12593
crossref_primary_10_3390_genes13040702
crossref_primary_10_1016_j_ecosta_2020_04_001
crossref_primary_10_1080_01621459_2018_1497498
crossref_primary_10_1016_j_jvcir_2014_08_001
crossref_primary_10_1016_j_jmva_2021_104782
crossref_primary_10_1080_01621459_2016_1260470
crossref_primary_10_1080_15598608_2016_1258601
crossref_primary_10_1007_s10463_018_0693_6
crossref_primary_10_1007_s00362_014_0609_3
crossref_primary_10_1111_bmsp_12224
crossref_primary_10_1177_1471082X16642560
crossref_primary_10_1214_20_AOAS1357
crossref_primary_10_1007_s10463_021_00809_z
crossref_primary_10_1007_s10114_023_1665_1
crossref_primary_10_1016_j_spl_2024_110071
crossref_primary_10_1016_j_jeconom_2015_09_005
crossref_primary_10_1080_07474946_2020_1726687
crossref_primary_10_1002_cjs_11605
crossref_primary_10_1007_s11425_014_4842_y
crossref_primary_10_1080_00949655_2015_1026822
crossref_primary_10_1109_TIT_2013_2290040
crossref_primary_10_1007_s11222_025_10588_9
crossref_primary_10_1093_biomet_asx037
crossref_primary_10_1080_10618600_2015_1005213
crossref_primary_10_1093_biomet_asw023
crossref_primary_10_1287_ijoc_2022_1241
crossref_primary_10_1016_j_jeconom_2018_09_018
crossref_primary_10_1214_20_AOAS1324
crossref_primary_10_1002_sta4_123
crossref_primary_10_1080_10485252_2017_1303057
crossref_primary_10_1080_00949655_2014_938241
crossref_primary_10_1109_TSP_2022_3156283
crossref_primary_10_1214_19_BA1178
crossref_primary_10_1002_bimj_202100139
crossref_primary_10_1007_s00362_016_0832_1
crossref_primary_10_1016_j_neunet_2019_05_011
crossref_primary_10_1016_j_csda_2011_08_007
crossref_primary_10_1016_j_jeconom_2015_06_017
crossref_primary_10_1093_biomet_asw059
crossref_primary_10_1016_j_csda_2012_02_017
crossref_primary_10_1080_02331888_2020_1830402
crossref_primary_10_1016_j_jkss_2018_08_006
crossref_primary_10_1007_s00180_020_01062_3
crossref_primary_10_1007_s10463_016_0571_z
crossref_primary_10_1214_21_AOS2155
crossref_primary_10_1214_12_AOS1039
crossref_primary_10_1080_10485252_2015_1112009
crossref_primary_10_1080_00401706_2018_1537897
crossref_primary_10_1007_s42081_019_00052_0
crossref_primary_10_1016_j_jmva_2013_11_001
crossref_primary_10_1007_s00362_017_0882_z
crossref_primary_10_1080_10618600_2022_2034638
crossref_primary_10_1111_sjos_12756
crossref_primary_10_1016_j_csda_2017_06_009
crossref_primary_10_1080_01621459_2024_2326621
crossref_primary_10_1080_24754269_2019_1633763
crossref_primary_10_1109_TIT_2014_2303121
crossref_primary_10_1214_10_BJPS129
crossref_primary_10_1214_21_AOS2085
crossref_primary_10_1093_imaiai_iav005
crossref_primary_10_1007_s00362_015_0684_0
crossref_primary_10_1007_s11009_020_09809_7
crossref_primary_10_1016_j_spl_2015_04_017
crossref_primary_10_1214_23_EJS2167
crossref_primary_10_1007_s10463_016_0563_z
crossref_primary_10_1177_0962280217690769
crossref_primary_10_1214_12_STS392
ContentType Journal Article
DBID NPM
DOI 10.3150/10-bej252
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 22072891
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA120988
GroupedDBID 23N
2AX
2WC
5GY
6J9
AAFWJ
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ACDIW
ACHJO
ACMTB
ACTMH
ADNWM
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CAG
COF
CS3
DQDLB
DSRWC
DU5
E3Z
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HGD
HQ6
HVGLF
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
PUASD
RBU
RNS
RPE
SA0
TN5
WS9
ID FETCH-LOGICAL-c519t-7506b700de7105aa403f15e88ef05b5d12346785c979cd84f317d1c92e58b50b2
ISSN 1350-7265
IngestDate Sat May 31 02:13:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-7506b700de7105aa403f15e88ef05b5d12346785c979cd84f317d1c92e58b50b2
OpenAccessLink https://projecteuclid.org/journals/bernoulli/volume-16/issue-4/Consistent-group-selection-in-high-dimensional-linear-regression/10.3150/10-BEJ252.pdf
PMID 22072891
ParticipantIDs pubmed_primary_22072891
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
PublicationTitleAlternate Bernoulli (Andover)
PublicationYear 2010
SSID ssj0014660
Score 2.2577283
Snippet In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping...
SourceID pubmed
SourceType Index Database
StartPage 1369
Title Consistent group selection in high-dimensional linear regression
URI https://www.ncbi.nlm.nih.gov/pubmed/22072891
Volume 16
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA2bvswH0XmZV_LgW4n2lrZ5U0QZA8WHDfY2mjYVBbvR1Rd_vV8ua2txeHkpoxmhyzlLT758OR9CF6A5RBB6gohElTBjAeGeFxOeADl8GsOaSLl9PgbDiT-a0mmn8948XVLyy-Tj23Ml_0EV7gGu8pTsH5CtOoUb8BnwhSsgDNdfYayqbQJMeWmp0xnWUlW1MemL0omYpNK9XztvWFJRxoVViGed_Jp_2dEVRT6XO0NrnSVUKkH1rWa650Pl_Sq9ReTmfu3-_FTAjKEycOvgvVApBDCU8NTmzamYZWLXoxVlTTRCZnZU0Qg9gXrUJqGr6z9UM2zQYJLfmC4dT9dpac_jHshUFVIgXLy62uK2gefiTQHqunYI60Xn59aWpfaqqYu6sLiQ1VJliMdsPfmBOVpufoi2o5JPdFU9j7SQNn20liNKlox30LZZT-AbTY5d1BF5H23VgCz7qFcjsoeua85gxRlccQa_5LjNGaw5g2vO7KPJ_d34dkhMFQ2SgDovCUjCgIe2nQoQkzSOfdvLHCqiSGQ25TQF6QIvy4gmLGRJGvkZKMrUSZgraMSpzd0DtJHPczFA2GVxCvIOumLMFzGLOKegf0OWyZhGlB2hQz0Ws4W2SpmtRul4bcsJ6tU8OkWbGfw3xRkIvZKfK2A-AW-FVAk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistent+group+selection+in+high-dimensional+linear+regression&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Wei%2C+Fengrong&rft.au=Huang%2C+Jian&rft.date=2010-11-01&rft.issn=1350-7265&rft.volume=16&rft.issue=4&rft.spage=1369&rft_id=info:doi/10.3150%2F10-bej252&rft_id=info%3Apmid%2F22072891&rft_id=info%3Apmid%2F22072891&rft.externalDocID=22072891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon