Consistent group selection in high-dimensional linear regression
In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of g...
Saved in:
Published in | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 16; no. 4; p. 1369 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.11.2010
|
Online Access | Get more information |
ISSN | 1350-7265 |
DOI | 10.3150/10-bej252 |
Cover
Loading…
Abstract | In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimension is comparable with the underlying model with high probability and is estimation consistent. However, the group Lasso is, in general, not selection consistent and also tends to select groups that are not important in the model. To improve the selection results, we propose an adaptive group Lasso method which is a generalization of the adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is consistent in group selection under certain conditions if the group Lasso is used as the initial estimator. |
---|---|
AbstractList | In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimension is comparable with the underlying model with high probability and is estimation consistent. However, the group Lasso is, in general, not selection consistent and also tends to select groups that are not important in the model. To improve the selection results, we propose an adaptive group Lasso method which is a generalization of the adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is consistent in group selection under certain conditions if the group Lasso is used as the initial estimator. |
Author | Wei, Fengrong Huang, Jian |
Author_xml | – sequence: 1 givenname: Fengrong surname: Wei fullname: Wei, Fengrong organization: Department of Mathematics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, USA – sequence: 2 givenname: Jian surname: Huang fullname: Huang, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22072891$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81KxDAURrMYcX504QtIXiB6k_Y26U4ZdBQG3Oh6SJrbToY2LUln4durqKsPDocD35ot4hiJsRsJd4VEuJcgHJ0UqgVbyQJBaFXhkq1zPgHIsqrgki2VAq1MLVfsYTvGHPJMceZdGs8Tz9RTM4cx8hD5MXRH4cNA39IYbc_7EMkmnqhLlH_YFbtobZ_p-m837OP56X37IvZvu9ft4140KOtZaITKaQBPWgJaW0LRSiRjqAV06KUqykobbGpdN96UbSG1l02tCI1DcGrDbn-709kN5A9TCoNNn4f_K-oLQ4lJ1Q |
CitedBy_id | crossref_primary_10_1080_02664763_2018_1523377 crossref_primary_10_1080_01621459_2013_859617 crossref_primary_10_1007_s11425_017_9189_9 crossref_primary_10_1111_jtsa_12593 crossref_primary_10_3390_genes13040702 crossref_primary_10_1016_j_ecosta_2020_04_001 crossref_primary_10_1080_01621459_2018_1497498 crossref_primary_10_1016_j_jvcir_2014_08_001 crossref_primary_10_1016_j_jmva_2021_104782 crossref_primary_10_1080_01621459_2016_1260470 crossref_primary_10_1080_15598608_2016_1258601 crossref_primary_10_1007_s10463_018_0693_6 crossref_primary_10_1007_s00362_014_0609_3 crossref_primary_10_1111_bmsp_12224 crossref_primary_10_1177_1471082X16642560 crossref_primary_10_1214_20_AOAS1357 crossref_primary_10_1007_s10463_021_00809_z crossref_primary_10_1007_s10114_023_1665_1 crossref_primary_10_1016_j_spl_2024_110071 crossref_primary_10_1016_j_jeconom_2015_09_005 crossref_primary_10_1080_07474946_2020_1726687 crossref_primary_10_1002_cjs_11605 crossref_primary_10_1007_s11425_014_4842_y crossref_primary_10_1080_00949655_2015_1026822 crossref_primary_10_1109_TIT_2013_2290040 crossref_primary_10_1007_s11222_025_10588_9 crossref_primary_10_1093_biomet_asx037 crossref_primary_10_1080_10618600_2015_1005213 crossref_primary_10_1093_biomet_asw023 crossref_primary_10_1287_ijoc_2022_1241 crossref_primary_10_1016_j_jeconom_2018_09_018 crossref_primary_10_1214_20_AOAS1324 crossref_primary_10_1002_sta4_123 crossref_primary_10_1080_10485252_2017_1303057 crossref_primary_10_1080_00949655_2014_938241 crossref_primary_10_1109_TSP_2022_3156283 crossref_primary_10_1214_19_BA1178 crossref_primary_10_1002_bimj_202100139 crossref_primary_10_1007_s00362_016_0832_1 crossref_primary_10_1016_j_neunet_2019_05_011 crossref_primary_10_1016_j_csda_2011_08_007 crossref_primary_10_1016_j_jeconom_2015_06_017 crossref_primary_10_1093_biomet_asw059 crossref_primary_10_1016_j_csda_2012_02_017 crossref_primary_10_1080_02331888_2020_1830402 crossref_primary_10_1016_j_jkss_2018_08_006 crossref_primary_10_1007_s00180_020_01062_3 crossref_primary_10_1007_s10463_016_0571_z crossref_primary_10_1214_21_AOS2155 crossref_primary_10_1214_12_AOS1039 crossref_primary_10_1080_10485252_2015_1112009 crossref_primary_10_1080_00401706_2018_1537897 crossref_primary_10_1007_s42081_019_00052_0 crossref_primary_10_1016_j_jmva_2013_11_001 crossref_primary_10_1007_s00362_017_0882_z crossref_primary_10_1080_10618600_2022_2034638 crossref_primary_10_1111_sjos_12756 crossref_primary_10_1016_j_csda_2017_06_009 crossref_primary_10_1080_01621459_2024_2326621 crossref_primary_10_1080_24754269_2019_1633763 crossref_primary_10_1109_TIT_2014_2303121 crossref_primary_10_1214_10_BJPS129 crossref_primary_10_1214_21_AOS2085 crossref_primary_10_1093_imaiai_iav005 crossref_primary_10_1007_s00362_015_0684_0 crossref_primary_10_1007_s11009_020_09809_7 crossref_primary_10_1016_j_spl_2015_04_017 crossref_primary_10_1214_23_EJS2167 crossref_primary_10_1007_s10463_016_0563_z crossref_primary_10_1177_0962280217690769 crossref_primary_10_1214_12_STS392 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.3150/10-bej252 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 22072891 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA120988 |
GroupedDBID | 23N 2AX 2WC 5GY 6J9 AAFWJ AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ACDIW ACHJO ACMTB ACTMH ADNWM ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CAG COF CS3 DQDLB DSRWC DU5 E3Z EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HGD HQ6 HVGLF IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 PUASD RBU RNS RPE SA0 TN5 WS9 |
ID | FETCH-LOGICAL-c519t-7506b700de7105aa403f15e88ef05b5d12346785c979cd84f317d1c92e58b50b2 |
ISSN | 1350-7265 |
IngestDate | Sat May 31 02:13:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c519t-7506b700de7105aa403f15e88ef05b5d12346785c979cd84f317d1c92e58b50b2 |
OpenAccessLink | https://projecteuclid.org/journals/bernoulli/volume-16/issue-4/Consistent-group-selection-in-high-dimensional-linear-regression/10.3150/10-BEJ252.pdf |
PMID | 22072891 |
ParticipantIDs | pubmed_primary_22072891 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
PublicationTitleAlternate | Bernoulli (Andover) |
PublicationYear | 2010 |
SSID | ssj0014660 |
Score | 2.2577283 |
Snippet | In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1369 |
Title | Consistent group selection in high-dimensional linear regression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22072891 |
Volume | 16 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA2bvswH0XmZV_LgW4n2lrZ5U0QZA8WHDfY2mjYVBbvR1Rd_vV8ua2txeHkpoxmhyzlLT758OR9CF6A5RBB6gohElTBjAeGeFxOeADl8GsOaSLl9PgbDiT-a0mmn8948XVLyy-Tj23Ml_0EV7gGu8pTsH5CtOoUb8BnwhSsgDNdfYayqbQJMeWmp0xnWUlW1MemL0omYpNK9XztvWFJRxoVViGed_Jp_2dEVRT6XO0NrnSVUKkH1rWa650Pl_Sq9ReTmfu3-_FTAjKEycOvgvVApBDCU8NTmzamYZWLXoxVlTTRCZnZU0Qg9gXrUJqGr6z9UM2zQYJLfmC4dT9dpac_jHshUFVIgXLy62uK2gefiTQHqunYI60Xn59aWpfaqqYu6sLiQ1VJliMdsPfmBOVpufoi2o5JPdFU9j7SQNn20liNKlox30LZZT-AbTY5d1BF5H23VgCz7qFcjsoeua85gxRlccQa_5LjNGaw5g2vO7KPJ_d34dkhMFQ2SgDovCUjCgIe2nQoQkzSOfdvLHCqiSGQ25TQF6QIvy4gmLGRJGvkZKMrUSZgraMSpzd0DtJHPczFA2GVxCvIOumLMFzGLOKegf0OWyZhGlB2hQz0Ws4W2SpmtRul4bcsJ6tU8OkWbGfw3xRkIvZKfK2A-AW-FVAk |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistent+group+selection+in+high-dimensional+linear+regression&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Wei%2C+Fengrong&rft.au=Huang%2C+Jian&rft.date=2010-11-01&rft.issn=1350-7265&rft.volume=16&rft.issue=4&rft.spage=1369&rft_id=info:doi/10.3150%2F10-bej252&rft_id=info%3Apmid%2F22072891&rft_id=info%3Apmid%2F22072891&rft.externalDocID=22072891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon |