Absence of equifinality of hand position in a double-step unloading task

Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, appl...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 205; no. 2; pp. 167 - 182
Main Authors Norouzi-Gheidari, Nahid, Archambault, Philippe
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.08.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0014-4819
1432-1106
1432-1106
DOI10.1007/s00221-010-2350-z

Cover

Abstract Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
AbstractList Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. Keywords Equifinality * Unloading * EMG * Equilibrium point hypothesis * Perturbation * Motor control
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.[PUBLICATION ABSTRACT]
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
Audience Academic
Author Norouzi-Gheidari, Nahid
Archambault, Philippe
Author_xml – sequence: 1
  givenname: Nahid
  surname: Norouzi-Gheidari
  fullname: Norouzi-Gheidari, Nahid
  email: Nahid.Norouzi@mail.mcgill.ca
  organization: School of Physical and Occupational Therapy, McGill University
– sequence: 2
  givenname: Philippe
  surname: Archambault
  fullname: Archambault, Philippe
  organization: School of Physical and Occupational Therapy, McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20623112$$D View this record in MEDLINE/PubMed
BookMark eNqF0klr3DAYBmBRUppJ2h_QSzEtdDk41b4ch5A0gUChy1nI9ucZpR5pYsnQ5NdXZtJlShf7YGQ_r4Sl9wgdhBgAoacEnxCM1duEMaWkxgTXlAlc3z1AC8IZrQnB8gAtMCa85pqYQ3SU0vU8ZAo_QocUS8oIoQt0sWwShBaq2FdwM_neBzf4fDuP1y501TYmn30MlQ-Vq7o4NQPUKcO2msIQXefDqsoufXmMHvZuSPDk_nmMPp-ffTq9qK_ev7s8XV7VrSAm14Jy00IPvdbaSCIaY0BBL9uWaUoFM1I2bP5kBG2l1LrTtCHCKe06QZhgx-jVbt7tGG8mSNlufGphGFyAOCVrBBfK6GL_JxXXhhnFeJGv_ymJKReRUrBCn_9Gr-M0lj1LVmPFKddSFfRih1ZuAOtDH_Po2nlOu-RYSKWFnFc9-YMqdwcb35aT7n15vxd4sxcoJsPXvHJTSvby44d9-_IXuwY35HWKwzQfZdqHz-5_aGo20Nnt6DduvLXfK1IA2YF2jCmN0P8gBNu5hnZXQ1tqaOca2ruSobtMKjasYPy5S38PfQOM0diC
Cites_doi 10.1113/jphysiol.2002.033845
10.1007/s00221-002-1049-1
10.1016/S0959-4388(99)00028-8
10.1126/science.7569931
10.1007/s00221-004-2202-9
10.1152/jn.1994.72.1.299
10.1152/jn.2000.84.5.2670
10.1017/S0140525X0004070X
10.1139/y95-039
10.1007/s00221-003-1624-0
10.1152/jn.2002.88.2.1059
10.1016/0006-8993(86)90874-7
10.1007/s00221-006-0652-y
10.1016/0006-8993(90)91135-4
10.1016/0006-8993(82)91144-1
10.1123/mcj.2.3.189
10.1152/jn.00966.2003
10.1152/jn.1976.39.5.925
10.1093/mnras/225.1.155
10.1152/jn.1980.43.5.1183
10.1007/s002210050605
10.1007/s00221-004-2049-0
10.1113/jphysiol.1989.sp017544
10.1523/JNEUROSCI.06-11-03120.1986
10.1163/1568568054089366
10.2466/PMS.107.6.407-418
10.1007/BF00231251
10.1152/jn.1996.76.5.3207
10.1007/s00221-006-0613-5
10.1152/jn.2001.85.2.784
10.1152/jn.1976.39.1.119
10.1007/978-0-387-77064-2_38
10.1007/BF00199890
10.1080/00222895.1980.10735215
10.1007/s00221-004-1864-7
10.1007/BF00201447
10.1523/JNEUROSCI.23-27-09032.2003
10.1016/0006-8993(81)91224-5
10.1007/s00221-005-2245-6
10.1152/jn.00833.2002
10.3109/08990229509093667
10.1016/S0165-0173(98)00039-3
10.1007/s004220050543
10.1007/PL00005757
10.1016/S0167-9457(98)00033-5
10.1016/0306-4522(91)90328-L
10.1007/s00221-002-1001-4
ContentType Journal Article
Copyright Springer-Verlag 2010
COPYRIGHT 2010 Springer
Copyright_xml – notice: Springer-Verlag 2010
– notice: COPYRIGHT 2010 Springer
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
RC3
7S9
L.6
7X8
DOI 10.1007/s00221-010-2350-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Social Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


ProQuest One Psychology


Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1432-1106
EndPage 182
ExternalDocumentID 2192488381
A405678564
20623112
10_1007_s00221_010_2350_z
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-XW
-Y2
-~C
-~X
.55
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P2P
PF-
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PRQQA
AEIIB
PMFND
7QP
7QR
7TK
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
RC3
7S9
L.6
PUEGO
7X8
ID FETCH-LOGICAL-c519t-5249cefef8889615b99e7ef6cc382253966b38896952c6688d82b15a78ad51353
IEDL.DBID AGYKE
ISSN 0014-4819
1432-1106
IngestDate Fri Sep 05 03:51:00 EDT 2025
Fri Sep 05 08:48:47 EDT 2025
Thu Sep 04 21:02:30 EDT 2025
Sat Aug 23 14:12:29 EDT 2025
Tue Jun 17 21:44:33 EDT 2025
Tue Jun 10 20:38:55 EDT 2025
Fri Jun 27 04:39:59 EDT 2025
Thu May 22 21:16:43 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Tue Jul 01 03:27:43 EDT 2025
Fri Feb 21 02:37:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Equilibrium point hypothesis
Unloading
Equifinality
Perturbation
Motor control
EMG
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-5249cefef8889615b99e7ef6cc382253966b38896952c6688d82b15a78ad51353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20623112
PQID 807424867
PQPubID 47176
PageCount 16
ParticipantIDs proquest_miscellaneous_954579851
proquest_miscellaneous_748939734
proquest_miscellaneous_1999916653
proquest_journals_807424867
gale_infotracmisc_A405678564
gale_infotracacademiconefile_A405678564
gale_incontextgauss_ISR_A405678564
gale_healthsolutions_A405678564
pubmed_primary_20623112
crossref_primary_10_1007_s00221_010_2350_z
springer_journals_10_1007_s00221_010_2350_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100800
2010-8-00
2010-Aug
20100801
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 8
  year: 2010
  text: 20100800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAbbrev Exp Brain Res
PublicationTitleAlternate Exp Brain Res
PublicationYear 2010
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References PopescuFRymerWEnd points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinalityJ Neurophysiol200084267026791:STN:280:DC%2BD3M%2FmvFOhsQ%3D%3D11068008
MilnerTEAdaptation to destabilizing dynamics by means of muscle cocontractionExp Brain Res200214340641610.1007/s00221-002-1001-411914785
MilnerTEContribution of geometry and joint stiffness to mechanical stability of the human armExp Brain Res200214351551910.1007/s00221-002-1049-111914798
FeldmanAGOstryDJLevinMFGribblePLMitnitskiABRecent tests of the equilibrium-point hypothesis (lambda model)Mot Control199821892051:STN:280:DyaK1czgvF2itA%3D%3D
LatashMGottliebGReconstruction of shifting elbow joint compliant characteristics during fast and slow movementsNeuroscience19914369771210.1016/0306-4522(91)90328-L1:STN:280:DyaK38%2FhvVyntg%3D%3D1922790
HinderMRMilnerTEThe case for an internal dynamics model versus equilibrium point control in human movementJ Physiol (Lond)200354995396310.1113/jphysiol.2002.0338451:CAS:528:DC%2BD3sXmtVyqsb8%3D
BrownSCookeJResponses to force perturbations preceding voluntary human arm movementsBrain Res198122035035510.1016/0006-8993(81)91224-51:STN:280:DyaL38%2FisVylsQ%3D%3D7284760
BurgessPCooperTGottliebGLatashMThe sense of effort and two models of single-joint motor controlSomatosens Mot Res19951234335810.3109/089902295090936671:STN:280:DyaK28vjtFahtw%3D%3D8834307
Fasano GFranceschiniAA multidimensional version of the Kolmogorov–Smirnov testMon Not R Astron Soc1987225155170
ForgetRLamarreYAnticipatory postural adjustment in the absence of normal peripheral feedbackBrain Res199050817617910.1016/0006-8993(90)91135-41:STN:280:DyaK3c3kvVOltg%3D%3D2337787
Mihaltchev P, Archambault PS, Feldman AG, Levin MF (2005) Control of double-joint arm posture in adults with unilateral brain damage. Exp Brain Res
FishbachARoySABastianenCMillerLEHoukJCDeciding when and how to correct a movement: discrete submovements as a decision making processExp Brain Res2007177456310.1007/s00221-006-0652-y16944111
CragoPEHoukJCHasanZRegulatory actions of human stretch reflexJ Neurophysiol1976399259351:STN:280:DyaE2s%2FjtVOitg%3D%3D978238
OstryDJFeldmanAGA critical evaluation of the force control hypothesis in motor controlExp Brain Res200315327528810.1007/s00221-003-1624-014610628
LacknerJRDiZioPAdaptation in a rotating artificial gravity environmentBrain Res Brain Res Rev19982819420210.1016/S0165-0173(98)00039-31:STN:280:DyaK1M%2Fhtlymtw%3D%3D9795214
OstryDJGribblePLLevinMFFeldmanAGPhasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener musclesExp Brain Res199711629930810.1007/PL000057571:STN:280:DyaK1c%2Fgs1emsw%3D%3D9348128
KelsoJHoltKExploring a vibratory systems analysis of human movement productionJ Neurophysiol198043118311961:STN:280:DyaL3c7osVWmsw%3D%3D7373360
SimonDALeeTDCullenJDWin-shift, lose-stay: contingent switching and contextual interference in motor learningPercept Mot Skills200810740741810.2466/PMS.107.6.407-41819093603
FlashTMussa-IvaldiFHuman arm stiffness characteristics during the maintenance of postureExp Brain Res19908231532610.1007/BF002312511:STN:280:DyaK3M7jvVKqsQ%3D%3D2286234
TsujiTMorassoPGGotoKItoKHuman hand impedance characteristics during maintained postureBiol Cybern19957247548510.1007/BF001998901:STN:280:DyaK2Mzjslajtg%3D%3D7612720
BedardPProteauLMovement planning of video and of manual aiming movementsSpat Vis20051827529610.1163/156856805408936616060228
MichaudMArsenaultABGravelDTremblayGSimardTGMuscular compensatory mechanism in the presence of a tendinitis of the supraspinatusAm J Phys Med1987661091201:STN:280:DyaL2s3msl2qsw%3D%3D3605314
PerreaultEJKirschRFCragoPEMultijoint dynamics and postural stability of the human armExp Brain Res200415750751710.1007/s00221-004-1864-715112115
RothwellJCTraubMMMarsdenCDAutomatic and ‘voluntary’ responses compensating for disturbances of human thumb movementsBrain Res1982248334110.1016/0006-8993(82)91144-11:STN:280:DyaL3s%2FisVeisA%3D%3D7127140
SanesJKinematics and end-point control of arm movements are modified by unexpected changes in viscous loadingJ Neurosci1986631201:STN:280:DyaL2s%2FjsFOltw%3D%3D3772424
ArchambaultPSMihaltchevPLevinMFFeldmanAGBasic elements of arm postural control analyzed by unloadingExp Brain Res200516422524110.1007/s00221-005-2245-615856209
NicholsTRThe organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate catJ Physiol19894104634771:STN:280:DyaK3c%2FhtFymtA%3D%3D2795487
WilminkRJHNicholsTRDistribution of Heterogenic Reflexes Among the Quadriceps and Triceps Surae Muscles of the Cat Hind LimbJ Neurophysiol2003902310232410.1152/jn.00833.200212826657
BiryukovaEVRoschinVYFrolovAAIoffeMEMassionJDufosseMForearm postural control during unloading: anticipatory changes in elbow stiffnessExp Brain Res199912410711710.1007/s0022100506051:STN:280:DyaK1M7isFyktw%3D%3D9928795
FeldmanAGLevinMFThe equilibrium-point hypothesis—past, present and futureAdv Exp Med Biol200962969972610.1007/978-0-387-77064-2_3819227529
SherringtonCSThe integrative action of the nervous system1906New HavenYale University Press
MoritaniTdeVriesHAReexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contractionAm J Phys Med1978572632771:STN:280:DyaE1M7it1Witw%3D%3D742657
DiZioPLacknerJRCoriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjectsJ Neurophysiol2001857847891:STN:280:DC%2BD3M3htlygtg%3D%3D11160512
FeldmanAGLatashMLTesting hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesisExp Brain Res20051619110310.1007/s00221-004-2049-015490137
Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2001) Parametric control of the arm analysed by unloading using a double-joint manipulandum. In: Society for Neuroscience, Program No. 941.911
BhushanNShadmehrRComputational nature of human adaptive control during learning of reaching movements in force fieldsBiol Cybern199981396010.1007/s0042200505431:STN:280:DyaK1Mzmtlagtg%3D%3D10434390
FeldmanAGLevinMFThe origin and use of positional frames of reference in motor controlBehav Brain Sci19951872380610.1017/S0140525X0004070X
SarlegnaFRSainburgRLThe effect of target modality on visual and proprioceptive contributions to the control of movement distanceExp Brain Res200717626728010.1007/s00221-006-0613-516896981
BrownSCookeJInitial agonist burst is modified by perturbations preceding movementBrain Res198637731132210.1016/0006-8993(86)90874-71:STN:280:DyaL283ntFWltw%3D%3D3730866
LacknerJRDizioPRapid adaptation to Coriolis force perturbations of arm trajectoryJ Neurophysiol1994722993131:STN:280:DyaK2M%2FlsVehtQ%3D%3D7965013
NicholsTRHoukJCImprovement in linearity and regulation of stiffness that results from actions of stretch reflexJ Neurophysiol1976391191421:STN:280:DyaE287itF2ktg%3D%3D1249597
AsatryanDFeldmanAFunctional tuning of the nervous system with control of movement or maintenance of a steady posture-I. Mechanographic analysis of the work of the joint or execution of a postural taskBiophysics196510925934
ForgetRLamarreYPostural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivationCan J Physiol Pharmacol1995732852941:CAS:528:DyaK2MXlsF2jsb0%3D7621367
JaricSMilanovicSBlesicSLatashMLChanges in movement kinematics during single-joint movements against expectedly and unexpectedly changed inertial loadsHum Mov Sci199918496610.1016/S0167-9457(98)00033-5
WolpertDMGhahramaniZJordanMIAn internal model for sensorimotor integrationScience19952691880188210.1126/science.75699311:CAS:528:DyaK2MXotlKqtbw%3D7569931
LatashMLGottliebGLCompliant characteristics of single joints: preservation of equifinality with phasic reactionsBiol Cybern19906233133610.1007/BF002014471:STN:280:DyaK3c7otFGjtw%3D%3D2310787
GottliebGOn the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanismsJ Neurophysiol19967632071:STN:280:DyaK2s%2Fotl2hsQ%3D%3D8930267
KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol1999971872710.1016/S0959-4388(99)00028-81:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637
DonchinOFrancisJTShadmehrRQuantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor controlJ Neurosci200323903290451:CAS:528:DC%2BD3sXotFOms70%3D14534237
ShapiroMGottliebGCorcosDEMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement timeJ Neurophysiol200491213510.1152/jn.00966.200314724262
SchmidtRMcGownCTerminal accuracy of unexpectedly loaded rapid movements: evidence for a mass-spring mechanism in programmingJ Mot Behav1980121491611:STN:280:DC%2BD2czhtlOiug%3D%3D15215060
ShapiroMGottliebGMooreCCorcosDElectromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexesJ Neurophysiol200288105912163554
AG Feldman (2350_CR17) 1998; 2
FR Sarlegna (2350_CR44) 2007; 176
TR Nichols (2350_CR37) 1976; 39
D Asatryan (2350_CR3) 1965; 10
PE Crago (2350_CR10) 1976; 39
DA Simon (2350_CR49) 2008; 107
EV Biryukova (2350_CR6) 1999; 124
S Brown (2350_CR8) 1986; 377
R Forget (2350_CR20) 1990; 508
ML Latash (2350_CR29) 1990; 62
F Popescu (2350_CR41) 2000; 84
G Fasano (2350_CR13) 1987; 225
A Fishbach (2350_CR18) 2007; 177
PS Archambault (2350_CR2) 2005; 164
P Burgess (2350_CR9) 1995; 12
AG Feldman (2350_CR14) 2005; 161
TR Nichols (2350_CR36) 1989; 410
G Gottlieb (2350_CR22) 1996; 76
T Moritani (2350_CR35) 1978; 57
MR Hinder (2350_CR23) 2003; 549
P Bedard (2350_CR4) 2005; 18
TE Milner (2350_CR33) 2002; 143
DJ Ostry (2350_CR39) 1997; 116
JC Rothwell (2350_CR42) 1982; 248
CS Sherrington (2350_CR48) 1906
M Latash (2350_CR30) 1991; 43
S Jaric (2350_CR24) 1999; 18
TE Milner (2350_CR34) 2002; 143
M Shapiro (2350_CR47) 2004; 91
JR Lackner (2350_CR28) 1998; 28
M Kawato (2350_CR25) 1999; 9
AG Feldman (2350_CR15) 1995; 18
JR Lackner (2350_CR27) 1994; 72
P DiZio (2350_CR11) 2001; 85
O Donchin (2350_CR12) 2003; 23
EJ Perreault (2350_CR40) 2004; 157
M Michaud (2350_CR31) 1987; 66
J Sanes (2350_CR43) 1986; 6
T Tsuji (2350_CR50) 1995; 72
RJH Wilmink (2350_CR51) 2003; 90
J Kelso (2350_CR26) 1980; 43
2350_CR1
R Forget (2350_CR21) 1995; 73
DM Wolpert (2350_CR52) 1995; 269
S Brown (2350_CR7) 1981; 220
T Flash (2350_CR19) 1990; 82
M Shapiro (2350_CR46) 2002; 88
N Bhushan (2350_CR5) 1999; 81
DJ Ostry (2350_CR38) 2003; 153
AG Feldman (2350_CR16) 2009; 629
R Schmidt (2350_CR45) 1980; 12
2350_CR32
16944111 - Exp Brain Res. 2007 Feb;177(1):45-63
14534237 - J Neurosci. 2003 Oct 8;23(27):9032-45
3605314 - Am J Phys Med. 1987 Jun;66(3):109-20
15856209 - Exp Brain Res. 2005 Jul;164(2):225-41
7621367 - Can J Physiol Pharmacol. 1995 Feb;73(2):285-94
14724262 - J Neurophysiol. 2004 May;91(5):2135-47
16060228 - Spat Vis. 2005;18(3):275-96
11914798 - Exp Brain Res. 2002 Apr;143(4):515-9
19093603 - Percept Mot Skills. 2008 Oct;107(2):407-18
15112115 - Exp Brain Res. 2004 Aug;157(4):507-17
12826657 - J Neurophysiol. 2003 Oct;90(4):2310-24
9348128 - Exp Brain Res. 1997 Sep;116(2):299-308
10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
3772424 - J Neurosci. 1986 Nov;6(11):3120-7
2795487 - J Physiol. 1989 Mar;410:463-77
9795214 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):194-202
3730866 - Brain Res. 1986 Jul 9;377(2):311-22
7569931 - Science. 1995 Sep 29;269(5232):1880-2
7612720 - Biol Cybern. 1995;72(6):475-85
742657 - Am J Phys Med. 1978 Dec;57(6):263-77
1249597 - J Neurophysiol. 1976 Jan;39(1):119-42
15690154 - Exp Brain Res. 2005 Jun;163(4):468-86
14610628 - Exp Brain Res. 2003 Dec;153(3):275-88
1922790 - Neuroscience. 1991;43(2-3):697-712
7284760 - Brain Res. 1981 Sep 14;220(2):350-5
7965013 - J Neurophysiol. 1994 Jul;72(1):299-313
11160512 - J Neurophysiol. 2001 Feb;85(2):784-9
9644289 - Motor Control. 1998 Jul;2(3):189-205
2286234 - Exp Brain Res. 1990;82(2):315-26
7373360 - J Neurophysiol. 1980 May;43(5):1183-96
10434390 - Biol Cybern. 1999 Jul;81(1):39-60
15215060 - J Mot Behav. 1980 Jun;12(2):149-61
12717002 - J Physiol. 2003 Jun 15;549(Pt 3):953-63
978238 - J Neurophysiol. 1976 Sep;39(5):925-35
7127140 - Brain Res. 1982 Sep 23;248(1):33-41
19227529 - Adv Exp Med Biol. 2009;629:699-726
2310787 - Biol Cybern. 1990;62(4):331-6
15490137 - Exp Brain Res. 2005 Feb;161(1):91-103
2337787 - Brain Res. 1990 Jan 29;508(1):176-9
9928795 - Exp Brain Res. 1999 Jan;124(1):107-17
12163554 - J Neurophysiol. 2002 Aug;88(2):1059-63
8834307 - Somatosens Mot Res. 1995;12(3-4):343-58
11068008 - J Neurophysiol. 2000 Nov;84(5):2670-9
16896981 - Exp Brain Res. 2007 Jan;176(2):267-80
8930267 - J Neurophysiol. 1996 Nov;76(5):3207-29
11914785 - Exp Brain Res. 2002 Apr;143(4):406-16
References_xml – reference: BrownSCookeJInitial agonist burst is modified by perturbations preceding movementBrain Res198637731132210.1016/0006-8993(86)90874-71:STN:280:DyaL283ntFWltw%3D%3D3730866
– reference: MilnerTEContribution of geometry and joint stiffness to mechanical stability of the human armExp Brain Res200214351551910.1007/s00221-002-1049-111914798
– reference: FishbachARoySABastianenCMillerLEHoukJCDeciding when and how to correct a movement: discrete submovements as a decision making processExp Brain Res2007177456310.1007/s00221-006-0652-y16944111
– reference: OstryDJFeldmanAGA critical evaluation of the force control hypothesis in motor controlExp Brain Res200315327528810.1007/s00221-003-1624-014610628
– reference: GottliebGOn the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanismsJ Neurophysiol19967632071:STN:280:DyaK2s%2Fotl2hsQ%3D%3D8930267
– reference: BurgessPCooperTGottliebGLatashMThe sense of effort and two models of single-joint motor controlSomatosens Mot Res19951234335810.3109/089902295090936671:STN:280:DyaK28vjtFahtw%3D%3D8834307
– reference: SchmidtRMcGownCTerminal accuracy of unexpectedly loaded rapid movements: evidence for a mass-spring mechanism in programmingJ Mot Behav1980121491611:STN:280:DC%2BD2czhtlOiug%3D%3D15215060
– reference: ForgetRLamarreYPostural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivationCan J Physiol Pharmacol1995732852941:CAS:528:DyaK2MXlsF2jsb0%3D7621367
– reference: LatashMLGottliebGLCompliant characteristics of single joints: preservation of equifinality with phasic reactionsBiol Cybern19906233133610.1007/BF002014471:STN:280:DyaK3c7otFGjtw%3D%3D2310787
– reference: RothwellJCTraubMMMarsdenCDAutomatic and ‘voluntary’ responses compensating for disturbances of human thumb movementsBrain Res1982248334110.1016/0006-8993(82)91144-11:STN:280:DyaL3s%2FisVeisA%3D%3D7127140
– reference: Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2001) Parametric control of the arm analysed by unloading using a double-joint manipulandum. In: Society for Neuroscience, Program No. 941.911
– reference: NicholsTRHoukJCImprovement in linearity and regulation of stiffness that results from actions of stretch reflexJ Neurophysiol1976391191421:STN:280:DyaE287itF2ktg%3D%3D1249597
– reference: JaricSMilanovicSBlesicSLatashMLChanges in movement kinematics during single-joint movements against expectedly and unexpectedly changed inertial loadsHum Mov Sci199918496610.1016/S0167-9457(98)00033-5
– reference: PopescuFRymerWEnd points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinalityJ Neurophysiol200084267026791:STN:280:DC%2BD3M%2FmvFOhsQ%3D%3D11068008
– reference: BiryukovaEVRoschinVYFrolovAAIoffeMEMassionJDufosseMForearm postural control during unloading: anticipatory changes in elbow stiffnessExp Brain Res199912410711710.1007/s0022100506051:STN:280:DyaK1M7isFyktw%3D%3D9928795
– reference: MoritaniTdeVriesHAReexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contractionAm J Phys Med1978572632771:STN:280:DyaE1M7it1Witw%3D%3D742657
– reference: SherringtonCSThe integrative action of the nervous system1906New HavenYale University Press
– reference: ArchambaultPSMihaltchevPLevinMFFeldmanAGBasic elements of arm postural control analyzed by unloadingExp Brain Res200516422524110.1007/s00221-005-2245-615856209
– reference: LacknerJRDizioPRapid adaptation to Coriolis force perturbations of arm trajectoryJ Neurophysiol1994722993131:STN:280:DyaK2M%2FlsVehtQ%3D%3D7965013
– reference: LatashMGottliebGReconstruction of shifting elbow joint compliant characteristics during fast and slow movementsNeuroscience19914369771210.1016/0306-4522(91)90328-L1:STN:280:DyaK38%2FhvVyntg%3D%3D1922790
– reference: BrownSCookeJResponses to force perturbations preceding voluntary human arm movementsBrain Res198122035035510.1016/0006-8993(81)91224-51:STN:280:DyaL38%2FisVylsQ%3D%3D7284760
– reference: DiZioPLacknerJRCoriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjectsJ Neurophysiol2001857847891:STN:280:DC%2BD3M3htlygtg%3D%3D11160512
– reference: ForgetRLamarreYAnticipatory postural adjustment in the absence of normal peripheral feedbackBrain Res199050817617910.1016/0006-8993(90)91135-41:STN:280:DyaK3c3kvVOltg%3D%3D2337787
– reference: DonchinOFrancisJTShadmehrRQuantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor controlJ Neurosci200323903290451:CAS:528:DC%2BD3sXotFOms70%3D14534237
– reference: NicholsTRThe organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate catJ Physiol19894104634771:STN:280:DyaK3c%2FhtFymtA%3D%3D2795487
– reference: HinderMRMilnerTEThe case for an internal dynamics model versus equilibrium point control in human movementJ Physiol (Lond)200354995396310.1113/jphysiol.2002.0338451:CAS:528:DC%2BD3sXmtVyqsb8%3D
– reference: FeldmanAGLatashMLTesting hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesisExp Brain Res20051619110310.1007/s00221-004-2049-015490137
– reference: ShapiroMGottliebGCorcosDEMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement timeJ Neurophysiol200491213510.1152/jn.00966.200314724262
– reference: LacknerJRDiZioPAdaptation in a rotating artificial gravity environmentBrain Res Brain Res Rev19982819420210.1016/S0165-0173(98)00039-31:STN:280:DyaK1M%2Fhtlymtw%3D%3D9795214
– reference: OstryDJGribblePLLevinMFFeldmanAGPhasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener musclesExp Brain Res199711629930810.1007/PL000057571:STN:280:DyaK1c%2Fgs1emsw%3D%3D9348128
– reference: SanesJKinematics and end-point control of arm movements are modified by unexpected changes in viscous loadingJ Neurosci1986631201:STN:280:DyaL2s%2FjsFOltw%3D%3D3772424
– reference: FeldmanAGLevinMFThe equilibrium-point hypothesis—past, present and futureAdv Exp Med Biol200962969972610.1007/978-0-387-77064-2_3819227529
– reference: MilnerTEAdaptation to destabilizing dynamics by means of muscle cocontractionExp Brain Res200214340641610.1007/s00221-002-1001-411914785
– reference: ShapiroMGottliebGMooreCCorcosDElectromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexesJ Neurophysiol200288105912163554
– reference: WolpertDMGhahramaniZJordanMIAn internal model for sensorimotor integrationScience19952691880188210.1126/science.75699311:CAS:528:DyaK2MXotlKqtbw%3D7569931
– reference: SimonDALeeTDCullenJDWin-shift, lose-stay: contingent switching and contextual interference in motor learningPercept Mot Skills200810740741810.2466/PMS.107.6.407-41819093603
– reference: Fasano GFranceschiniAA multidimensional version of the Kolmogorov–Smirnov testMon Not R Astron Soc1987225155170
– reference: AsatryanDFeldmanAFunctional tuning of the nervous system with control of movement or maintenance of a steady posture-I. Mechanographic analysis of the work of the joint or execution of a postural taskBiophysics196510925934
– reference: SarlegnaFRSainburgRLThe effect of target modality on visual and proprioceptive contributions to the control of movement distanceExp Brain Res200717626728010.1007/s00221-006-0613-516896981
– reference: KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol1999971872710.1016/S0959-4388(99)00028-81:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637
– reference: FeldmanAGOstryDJLevinMFGribblePLMitnitskiABRecent tests of the equilibrium-point hypothesis (lambda model)Mot Control199821892051:STN:280:DyaK1czgvF2itA%3D%3D
– reference: KelsoJHoltKExploring a vibratory systems analysis of human movement productionJ Neurophysiol198043118311961:STN:280:DyaL3c7osVWmsw%3D%3D7373360
– reference: FlashTMussa-IvaldiFHuman arm stiffness characteristics during the maintenance of postureExp Brain Res19908231532610.1007/BF002312511:STN:280:DyaK3M7jvVKqsQ%3D%3D2286234
– reference: FeldmanAGLevinMFThe origin and use of positional frames of reference in motor controlBehav Brain Sci19951872380610.1017/S0140525X0004070X
– reference: PerreaultEJKirschRFCragoPEMultijoint dynamics and postural stability of the human armExp Brain Res200415750751710.1007/s00221-004-1864-715112115
– reference: BedardPProteauLMovement planning of video and of manual aiming movementsSpat Vis20051827529610.1163/156856805408936616060228
– reference: BhushanNShadmehrRComputational nature of human adaptive control during learning of reaching movements in force fieldsBiol Cybern199981396010.1007/s0042200505431:STN:280:DyaK1Mzmtlagtg%3D%3D10434390
– reference: WilminkRJHNicholsTRDistribution of Heterogenic Reflexes Among the Quadriceps and Triceps Surae Muscles of the Cat Hind LimbJ Neurophysiol2003902310232410.1152/jn.00833.200212826657
– reference: TsujiTMorassoPGGotoKItoKHuman hand impedance characteristics during maintained postureBiol Cybern19957247548510.1007/BF001998901:STN:280:DyaK2Mzjslajtg%3D%3D7612720
– reference: MichaudMArsenaultABGravelDTremblayGSimardTGMuscular compensatory mechanism in the presence of a tendinitis of the supraspinatusAm J Phys Med1987661091201:STN:280:DyaL2s3msl2qsw%3D%3D3605314
– reference: Mihaltchev P, Archambault PS, Feldman AG, Levin MF (2005) Control of double-joint arm posture in adults with unilateral brain damage. Exp Brain Res
– reference: CragoPEHoukJCHasanZRegulatory actions of human stretch reflexJ Neurophysiol1976399259351:STN:280:DyaE2s%2FjtVOitg%3D%3D978238
– volume: 549
  start-page: 953
  year: 2003
  ident: 2350_CR23
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.2002.033845
– volume: 143
  start-page: 515
  year: 2002
  ident: 2350_CR34
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1049-1
– volume: 9
  start-page: 718
  year: 1999
  ident: 2350_CR25
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(99)00028-8
– volume: 269
  start-page: 1880
  year: 1995
  ident: 2350_CR52
  publication-title: Science
  doi: 10.1126/science.7569931
– ident: 2350_CR32
  doi: 10.1007/s00221-004-2202-9
– volume: 72
  start-page: 299
  year: 1994
  ident: 2350_CR27
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.72.1.299
– volume: 84
  start-page: 2670
  year: 2000
  ident: 2350_CR41
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.84.5.2670
– volume: 18
  start-page: 723
  year: 1995
  ident: 2350_CR15
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X0004070X
– volume: 73
  start-page: 285
  year: 1995
  ident: 2350_CR21
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y95-039
– volume: 153
  start-page: 275
  year: 2003
  ident: 2350_CR38
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1624-0
– volume: 88
  start-page: 1059
  year: 2002
  ident: 2350_CR46
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2002.88.2.1059
– volume: 377
  start-page: 311
  year: 1986
  ident: 2350_CR8
  publication-title: Brain Res
  doi: 10.1016/0006-8993(86)90874-7
– ident: 2350_CR1
– volume: 177
  start-page: 45
  year: 2007
  ident: 2350_CR18
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0652-y
– volume: 508
  start-page: 176
  year: 1990
  ident: 2350_CR20
  publication-title: Brain Res
  doi: 10.1016/0006-8993(90)91135-4
– volume: 248
  start-page: 33
  year: 1982
  ident: 2350_CR42
  publication-title: Brain Res
  doi: 10.1016/0006-8993(82)91144-1
– volume: 2
  start-page: 189
  year: 1998
  ident: 2350_CR17
  publication-title: Mot Control
  doi: 10.1123/mcj.2.3.189
– volume: 91
  start-page: 2135
  year: 2004
  ident: 2350_CR47
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00966.2003
– volume: 39
  start-page: 925
  year: 1976
  ident: 2350_CR10
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1976.39.5.925
– volume: 225
  start-page: 155
  year: 1987
  ident: 2350_CR13
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/225.1.155
– volume: 43
  start-page: 1183
  year: 1980
  ident: 2350_CR26
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1980.43.5.1183
– volume: 124
  start-page: 107
  year: 1999
  ident: 2350_CR6
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050605
– volume: 161
  start-page: 91
  year: 2005
  ident: 2350_CR14
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2049-0
– volume: 410
  start-page: 463
  year: 1989
  ident: 2350_CR36
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1989.sp017544
– volume: 6
  start-page: 3120
  year: 1986
  ident: 2350_CR43
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.06-11-03120.1986
– volume: 18
  start-page: 275
  year: 2005
  ident: 2350_CR4
  publication-title: Spat Vis
  doi: 10.1163/1568568054089366
– volume: 107
  start-page: 407
  year: 2008
  ident: 2350_CR49
  publication-title: Percept Mot Skills
  doi: 10.2466/PMS.107.6.407-418
– volume: 82
  start-page: 315
  year: 1990
  ident: 2350_CR19
  publication-title: Exp Brain Res
  doi: 10.1007/BF00231251
– volume: 76
  start-page: 3207
  year: 1996
  ident: 2350_CR22
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.76.5.3207
– volume: 176
  start-page: 267
  year: 2007
  ident: 2350_CR44
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0613-5
– volume: 85
  start-page: 784
  year: 2001
  ident: 2350_CR11
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.2.784
– volume: 39
  start-page: 119
  year: 1976
  ident: 2350_CR37
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1976.39.1.119
– volume: 629
  start-page: 699
  year: 2009
  ident: 2350_CR16
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-0-387-77064-2_38
– volume: 66
  start-page: 109
  year: 1987
  ident: 2350_CR31
  publication-title: Am J Phys Med
– volume: 72
  start-page: 475
  year: 1995
  ident: 2350_CR50
  publication-title: Biol Cybern
  doi: 10.1007/BF00199890
– volume: 12
  start-page: 149
  year: 1980
  ident: 2350_CR45
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1980.10735215
– volume: 157
  start-page: 507
  year: 2004
  ident: 2350_CR40
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-1864-7
– volume: 62
  start-page: 331
  year: 1990
  ident: 2350_CR29
  publication-title: Biol Cybern
  doi: 10.1007/BF00201447
– volume-title: The integrative action of the nervous system
  year: 1906
  ident: 2350_CR48
– volume: 23
  start-page: 9032
  year: 2003
  ident: 2350_CR12
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-27-09032.2003
– volume: 220
  start-page: 350
  year: 1981
  ident: 2350_CR7
  publication-title: Brain Res
  doi: 10.1016/0006-8993(81)91224-5
– volume: 164
  start-page: 225
  year: 2005
  ident: 2350_CR2
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-005-2245-6
– volume: 90
  start-page: 2310
  year: 2003
  ident: 2350_CR51
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00833.2002
– volume: 12
  start-page: 343
  year: 1995
  ident: 2350_CR9
  publication-title: Somatosens Mot Res
  doi: 10.3109/08990229509093667
– volume: 28
  start-page: 194
  year: 1998
  ident: 2350_CR28
  publication-title: Brain Res Brain Res Rev
  doi: 10.1016/S0165-0173(98)00039-3
– volume: 81
  start-page: 39
  year: 1999
  ident: 2350_CR5
  publication-title: Biol Cybern
  doi: 10.1007/s004220050543
– volume: 57
  start-page: 263
  year: 1978
  ident: 2350_CR35
  publication-title: Am J Phys Med
– volume: 116
  start-page: 299
  year: 1997
  ident: 2350_CR39
  publication-title: Exp Brain Res
  doi: 10.1007/PL00005757
– volume: 10
  start-page: 925
  year: 1965
  ident: 2350_CR3
  publication-title: Biophysics
– volume: 18
  start-page: 49
  year: 1999
  ident: 2350_CR24
  publication-title: Hum Mov Sci
  doi: 10.1016/S0167-9457(98)00033-5
– volume: 43
  start-page: 697
  year: 1991
  ident: 2350_CR30
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(91)90328-L
– volume: 143
  start-page: 406
  year: 2002
  ident: 2350_CR33
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1001-4
– reference: 11160512 - J Neurophysiol. 2001 Feb;85(2):784-9
– reference: 11068008 - J Neurophysiol. 2000 Nov;84(5):2670-9
– reference: 15112115 - Exp Brain Res. 2004 Aug;157(4):507-17
– reference: 16896981 - Exp Brain Res. 2007 Jan;176(2):267-80
– reference: 16944111 - Exp Brain Res. 2007 Feb;177(1):45-63
– reference: 14724262 - J Neurophysiol. 2004 May;91(5):2135-47
– reference: 7284760 - Brain Res. 1981 Sep 14;220(2):350-5
– reference: 12826657 - J Neurophysiol. 2003 Oct;90(4):2310-24
– reference: 7612720 - Biol Cybern. 1995;72(6):475-85
– reference: 19093603 - Percept Mot Skills. 2008 Oct;107(2):407-18
– reference: 15215060 - J Mot Behav. 1980 Jun;12(2):149-61
– reference: 7127140 - Brain Res. 1982 Sep 23;248(1):33-41
– reference: 12717002 - J Physiol. 2003 Jun 15;549(Pt 3):953-63
– reference: 10434390 - Biol Cybern. 1999 Jul;81(1):39-60
– reference: 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103
– reference: 8834307 - Somatosens Mot Res. 1995;12(3-4):343-58
– reference: 9795214 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):194-202
– reference: 2310787 - Biol Cybern. 1990;62(4):331-6
– reference: 7373360 - J Neurophysiol. 1980 May;43(5):1183-96
– reference: 9644289 - Motor Control. 1998 Jul;2(3):189-205
– reference: 1249597 - J Neurophysiol. 1976 Jan;39(1):119-42
– reference: 3730866 - Brain Res. 1986 Jul 9;377(2):311-22
– reference: 978238 - J Neurophysiol. 1976 Sep;39(5):925-35
– reference: 3772424 - J Neurosci. 1986 Nov;6(11):3120-7
– reference: 7621367 - Can J Physiol Pharmacol. 1995 Feb;73(2):285-94
– reference: 9928795 - Exp Brain Res. 1999 Jan;124(1):107-17
– reference: 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
– reference: 3605314 - Am J Phys Med. 1987 Jun;66(3):109-20
– reference: 14534237 - J Neurosci. 2003 Oct 8;23(27):9032-45
– reference: 9348128 - Exp Brain Res. 1997 Sep;116(2):299-308
– reference: 15690154 - Exp Brain Res. 2005 Jun;163(4):468-86
– reference: 742657 - Am J Phys Med. 1978 Dec;57(6):263-77
– reference: 12163554 - J Neurophysiol. 2002 Aug;88(2):1059-63
– reference: 2337787 - Brain Res. 1990 Jan 29;508(1):176-9
– reference: 19227529 - Adv Exp Med Biol. 2009;629:699-726
– reference: 7965013 - J Neurophysiol. 1994 Jul;72(1):299-313
– reference: 11914798 - Exp Brain Res. 2002 Apr;143(4):515-9
– reference: 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88
– reference: 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41
– reference: 2286234 - Exp Brain Res. 1990;82(2):315-26
– reference: 2795487 - J Physiol. 1989 Mar;410:463-77
– reference: 1922790 - Neuroscience. 1991;43(2-3):697-712
– reference: 11914785 - Exp Brain Res. 2002 Apr;143(4):406-16
– reference: 16060228 - Spat Vis. 2005;18(3):275-96
– reference: 8930267 - J Neurophysiol. 1996 Nov;76(5):3207-29
– reference: 7569931 - Science. 1995 Sep 29;269(5232):1880-2
SSID ssj0014370
Score 1.943586
Snippet Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 167
SubjectTerms Adolescent
Adult
Arm
Arm - physiology
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedicine
Control theory
Coriolis force
Data Interpretation, Statistical
Elbow
Electromyography
Equilibrium
Experiments
Female
Hand - physiology
Humans
Hypotheses
Individuality
Joints
Male
Motor ability
Motor task performance
Movement - physiology
Muscle, Skeletal - physiology
Muscles
Nervous system
Neurology
neuromuscular system
Neuromuscular transmission
Neurosciences
Physiological research
Psychomotor Performance - physiology
Reflexes
Research Article
Robotics
Shoulder
Space Perception - physiology
Stretch reflex
Unloading
Velocity
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BufSC-uARWsAgBBLIIk3sJD6hFaJakOAAVNqbZSdOtaIk2yY5tL-eGecBqbQcV55I2cl45puHPwO8ShD1GpNaXqpQcnR4khsa-ysKQX0cZaWj0sDXb8nyTHxZydUwm9MMY5WjT_SOuqhzqpG_J9KWiOjhPmwuOV0aRc3V4QaNu3DPM5ehOaerKd9CJJD2J1BOBBcY-camZug5RKOI8uiQR7EM-c0sLN12zv9Ep1vtUh-FTvfg_gAf2aL_3vtwx1UHcLioMHX-fc1eMz_Q6SvlB7A7ObfrQ1gubEObmNUlc5fdulz3CJx-U_GcjdNbbF0xw4q6sxeOowlsWFdd1H7SnrWm-fUAzk4__fy45MMtCjxHdNZipilU7kpXYq6rEL9YpVzqyiTPYwQHMsZ8x8a0pGSUJ0mWFVlkT6RJM1NIuhXjIexUdeUeAzPUpBFZUZZUOrLCJEJlDiO-cAhkwjyAt6MS9aYny9ATLbLXuEaNa9K4vgngOalZ9-c9p42mFwghMYLKRATw0ksQTUVFczDnpmsa_fnH95nQm0GorNsrk5vhWAG-MTFbzSSPZ5K4j_LZ8tH4vfWwjxs9WV0AL6ZVepBG0ypXd40mHgfE2ImMA2BbZDzFj0pjsV0EzVemCvFvAI96Y5tUGIWIUREXB_ButL6_b7hVv0_--3-OYLefg6BRxmPYaa869xThVWuf-U30BzVoHKE
  priority: 102
  providerName: ProQuest
Title Absence of equifinality of hand position in a double-step unloading task
URI https://link.springer.com/article/10.1007/s00221-010-2350-z
https://www.ncbi.nlm.nih.gov/pubmed/20623112
https://www.proquest.com/docview/807424867
https://www.proquest.com/docview/1999916653
https://www.proquest.com/docview/748939734
https://www.proquest.com/docview/954579851
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9NILj5aH21IWhEACuXLsXdt7NCglgKhQaaRwWq3tNYpa7La2D82vZ8YvSEQOPUXJjq3NeHfmm51vxgCvfUS9WgexnUlH2GjwhK2J9pemnPI4MhaGjga-nfrTGf8yF_Oujrvs2e59SrKx1EOxG7kbCn0d2_WEYy-3YFuMQxmOYDv69PPrZEgecC9oK0_G3Obo8fpk5v9usuKO1o3yP15pLU3aeJ-TB3Dez7slnVwc11V8nCzXWjre8Y89hPsdGmVRu3wewT2T78JelGMk_vuWvWENP7Q5eN-FncFW3u7BNIpLsgmsyJi5rhfZogX09J3O4llPBmOLnGmWFnV8aWxcUVeszi-LhrjPKl1ePIbZyeT849TuXspgJwj2KgxcuUxMZjIMnSXCoVhKE5jMTxIPsYbwMHyKPRqSwk18PwzT0I3HQgehTgW9ZOMJjPIiN8-Aacr58DDNMjqJirn2uQwNAghuEBc5iQXv-mejrtreG2rostwoTaHSFClNLS14QU9PteWjw75VESJSdMjC5xa8aiSo60VOtJpfui5L9fnH2YrQ204oK6obneiuSgFnTI2yViQPVyRxWyYrwwf9MlKdWSgVdR5yqcehBS-HUbqQmG65KepSUVsIhOy-8CxgG2SajkEy8PhmEYnIOJAIpy142q7hQYWug5AXYbYF7_v1-HeGG_W7fyfpA9hpaRbElDyEUXVTm-eI3qr4CLaCeXDU7Vn8_DA5_X6Gv87c6A_RKTpJ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-Q40FejIIfFZTV-JFoGku723YfjDkVcidwMQgJb-u23ZIL2B60jTn-J_9HZ_qlR3K-8djsNGlnZ2d-87kAL31EvVoHkZ1KR9io8IStqewvSTjlcWQkDIUGDif-6IR_PRWnK_C764WhsspOJ9aKOsljipG_p6EtLo2H-zi7tOnSKEqudjdoNFKxb-a_0GMrPoy_4Pa-ct293ePPI7u9VMCOEayU6HhxGZvUpOj6STTnkZQmMKkfxx7aSuEh_I88WpLCjX0_DJPQjXaEDkKdiOaSCNT4q5waWgew-ml38u2oT1twL2h6Xna4zdHWdmlUp55a6rrkuTu26wnHvl4whDfNwT_28EaCtrZ7e_fgbgtY2bCRsPuwYrJ12Bhm6Kz_nLPXrC4hrWPz67DWq9P5BoyGUUFqg-UpM5fVNJ02mJ-eKVzPunoxNs2YZkleRRfGRqGbsSq7yOvaflbq4vwBnNwKix_CIMsz8xiYprQQD5M0pWBVxLXPZWgQY3CD0MmJLXjbMVHNmvEcqh_EXHNcIccVcVxdW7BNbFZNh2l_tNUQQSvabOFzC17UFDQYI6PKmzNdFYUafz9aIHrTEqV5eaVj3TYy4BfTLK0Fyq0FSjy58cLyZrffqtUcherl3ILn_Sq9SMVwmcmrQtHkCET1vvAsYEto6qFCMvD4chKJ4DmQiLgteNQIW89C10FUjEjcgned9P39wqX8ffLf_9mGO6PjwwN1MJ7sb8JaU4VBhZRbMCivKvMUwV0ZPWuPFIMft32K_wATDVkE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCtIXsa2X2GpH8QLK0DSZXOZBZLEuu1aLqIV9m06SiSy2ybZJkO0_8995Tm6awvrWxzAnkJw5l-9c5gzAcx9Rr9ZBxFNpexwNnsc1tf0liaA6jow8Q6mBz8f-5ER8nHmzNfjdnYWhtsrOJtaGOsljypHv09AWh8bD7adtV8SXw_G7xQWnC6So0NrdptFIyJFZ_sLorXg7PcStfuE44w_f3094e8EAjxG4lBiECRmb1KQYBkp07ZGUJjCpH8cu-k3PxVAgcmlJek7s-2GYhE504Okg1InXXBiB1v9W4CKoQlUKZn2shygkaE6_HAgu0Ot2BVW7nl_qOBTD29zBN_nVwCVedwz_eMZrpdraA47vwp0WurJRI2ubsGayLdgeZRi2ny_ZS1Y3k9ZZ-i3Y6A3rchsmo6ggA8LylJmLap7OG_RPz5S4Z13nGJtnTLMkr6Izw1H8FqzKzvK6y5-Vuvh5D05uhMH3YT3LM_MQmKYCkQiTNKW0VSS0L2RoEG0IgyDKji143TFRLZpBHaofyVxzXCHHFXFcXVmwR2xWzVnTXsnVCOErem_PFxY8qyloREZG0vZDV0Whpt--DohetURpXl7qWLdHGvCLaarWgHJ3QIk6HA-Wd7r9Vq0NKVQv8RY87VfpRWqLy0xeFYpmSCC-9z3XAraCph4vJANXrCaRCKMDidjbggeNsPUsdGzEx4jJLXjTSd_fL1zJ30f__Z89uI26qz5Nj492YKNpx6COyl1YLy8r8xhRXhk9qfWJwelNK_AfiDBbyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absence+of+equifinality+of+hand+position+in+a+double-step+unloading+task&rft.jtitle=Experimental+brain+research&rft.au=Norouzi-Gheidari%2C+Nahid&rft.au=Archambault%2C+Philippe&rft.date=2010-08-01&rft.pub=Springer-Verlag&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=205&rft.issue=2&rft.spage=167&rft.epage=182&rft_id=info:doi/10.1007%2Fs00221-010-2350-z&rft.externalDocID=10_1007_s00221_010_2350_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon