Absence of equifinality of hand position in a double-step unloading task
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, appl...
Saved in:
Published in | Experimental brain research Vol. 205; no. 2; pp. 167 - 182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.08.2010
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0014-4819 1432-1106 1432-1106 |
DOI | 10.1007/s00221-010-2350-z |
Cover
Abstract | Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. |
---|---|
AbstractList | Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. Keywords Equifinality * Unloading * EMG * Equilibrium point hypothesis * Perturbation * Motor control Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.[PUBLICATION ABSTRACT] Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces. |
Audience | Academic |
Author | Norouzi-Gheidari, Nahid Archambault, Philippe |
Author_xml | – sequence: 1 givenname: Nahid surname: Norouzi-Gheidari fullname: Norouzi-Gheidari, Nahid email: Nahid.Norouzi@mail.mcgill.ca organization: School of Physical and Occupational Therapy, McGill University – sequence: 2 givenname: Philippe surname: Archambault fullname: Archambault, Philippe organization: School of Physical and Occupational Therapy, McGill University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20623112$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0klr3DAYBmBRUppJ2h_QSzEtdDk41b4ch5A0gUChy1nI9ucZpR5pYsnQ5NdXZtJlShf7YGQ_r4Sl9wgdhBgAoacEnxCM1duEMaWkxgTXlAlc3z1AC8IZrQnB8gAtMCa85pqYQ3SU0vU8ZAo_QocUS8oIoQt0sWwShBaq2FdwM_neBzf4fDuP1y501TYmn30MlQ-Vq7o4NQPUKcO2msIQXefDqsoufXmMHvZuSPDk_nmMPp-ffTq9qK_ev7s8XV7VrSAm14Jy00IPvdbaSCIaY0BBL9uWaUoFM1I2bP5kBG2l1LrTtCHCKe06QZhgx-jVbt7tGG8mSNlufGphGFyAOCVrBBfK6GL_JxXXhhnFeJGv_ymJKReRUrBCn_9Gr-M0lj1LVmPFKddSFfRih1ZuAOtDH_Po2nlOu-RYSKWFnFc9-YMqdwcb35aT7n15vxd4sxcoJsPXvHJTSvby44d9-_IXuwY35HWKwzQfZdqHz-5_aGo20Nnt6DduvLXfK1IA2YF2jCmN0P8gBNu5hnZXQ1tqaOca2ruSobtMKjasYPy5S38PfQOM0diC |
Cites_doi | 10.1113/jphysiol.2002.033845 10.1007/s00221-002-1049-1 10.1016/S0959-4388(99)00028-8 10.1126/science.7569931 10.1007/s00221-004-2202-9 10.1152/jn.1994.72.1.299 10.1152/jn.2000.84.5.2670 10.1017/S0140525X0004070X 10.1139/y95-039 10.1007/s00221-003-1624-0 10.1152/jn.2002.88.2.1059 10.1016/0006-8993(86)90874-7 10.1007/s00221-006-0652-y 10.1016/0006-8993(90)91135-4 10.1016/0006-8993(82)91144-1 10.1123/mcj.2.3.189 10.1152/jn.00966.2003 10.1152/jn.1976.39.5.925 10.1093/mnras/225.1.155 10.1152/jn.1980.43.5.1183 10.1007/s002210050605 10.1007/s00221-004-2049-0 10.1113/jphysiol.1989.sp017544 10.1523/JNEUROSCI.06-11-03120.1986 10.1163/1568568054089366 10.2466/PMS.107.6.407-418 10.1007/BF00231251 10.1152/jn.1996.76.5.3207 10.1007/s00221-006-0613-5 10.1152/jn.2001.85.2.784 10.1152/jn.1976.39.1.119 10.1007/978-0-387-77064-2_38 10.1007/BF00199890 10.1080/00222895.1980.10735215 10.1007/s00221-004-1864-7 10.1007/BF00201447 10.1523/JNEUROSCI.23-27-09032.2003 10.1016/0006-8993(81)91224-5 10.1007/s00221-005-2245-6 10.1152/jn.00833.2002 10.3109/08990229509093667 10.1016/S0165-0173(98)00039-3 10.1007/s004220050543 10.1007/PL00005757 10.1016/S0167-9457(98)00033-5 10.1016/0306-4522(91)90328-L 10.1007/s00221-002-1001-4 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2010 COPYRIGHT 2010 Springer |
Copyright_xml | – notice: Springer-Verlag 2010 – notice: COPYRIGHT 2010 Springer |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7S9 L.6 7X8 |
DOI | 10.1007/s00221-010-2350-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA ProQuest One Psychology Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1432-1106 |
EndPage | 182 |
ExternalDocumentID | 2192488381 A405678564 20623112 10_1007_s00221_010_2350_z |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PKN PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PRQQA AEIIB PMFND 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI PRINS Q9U RC3 7S9 L.6 PUEGO 7X8 |
ID | FETCH-LOGICAL-c519t-5249cefef8889615b99e7ef6cc382253966b38896952c6688d82b15a78ad51353 |
IEDL.DBID | AGYKE |
ISSN | 0014-4819 1432-1106 |
IngestDate | Fri Sep 05 03:51:00 EDT 2025 Fri Sep 05 08:48:47 EDT 2025 Thu Sep 04 21:02:30 EDT 2025 Sat Aug 23 14:12:29 EDT 2025 Tue Jun 17 21:44:33 EDT 2025 Tue Jun 10 20:38:55 EDT 2025 Fri Jun 27 04:39:59 EDT 2025 Thu May 22 21:16:43 EDT 2025 Mon Jul 21 06:03:32 EDT 2025 Tue Jul 01 03:27:43 EDT 2025 Fri Feb 21 02:37:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Equilibrium point hypothesis Unloading Equifinality Perturbation Motor control EMG |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-5249cefef8889615b99e7ef6cc382253966b38896952c6688d82b15a78ad51353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20623112 |
PQID | 807424867 |
PQPubID | 47176 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_954579851 proquest_miscellaneous_748939734 proquest_miscellaneous_1999916653 proquest_journals_807424867 gale_infotracmisc_A405678564 gale_infotracacademiconefile_A405678564 gale_incontextgauss_ISR_A405678564 gale_healthsolutions_A405678564 pubmed_primary_20623112 crossref_primary_10_1007_s00221_010_2350_z springer_journals_10_1007_s00221_010_2350_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100800 2010-8-00 2010-Aug 20100801 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 8 year: 2010 text: 20100800 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAbbrev | Exp Brain Res |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 2010 |
Publisher | Springer-Verlag Springer Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
References | PopescuFRymerWEnd points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinalityJ Neurophysiol200084267026791:STN:280:DC%2BD3M%2FmvFOhsQ%3D%3D11068008 MilnerTEAdaptation to destabilizing dynamics by means of muscle cocontractionExp Brain Res200214340641610.1007/s00221-002-1001-411914785 MilnerTEContribution of geometry and joint stiffness to mechanical stability of the human armExp Brain Res200214351551910.1007/s00221-002-1049-111914798 FeldmanAGOstryDJLevinMFGribblePLMitnitskiABRecent tests of the equilibrium-point hypothesis (lambda model)Mot Control199821892051:STN:280:DyaK1czgvF2itA%3D%3D LatashMGottliebGReconstruction of shifting elbow joint compliant characteristics during fast and slow movementsNeuroscience19914369771210.1016/0306-4522(91)90328-L1:STN:280:DyaK38%2FhvVyntg%3D%3D1922790 HinderMRMilnerTEThe case for an internal dynamics model versus equilibrium point control in human movementJ Physiol (Lond)200354995396310.1113/jphysiol.2002.0338451:CAS:528:DC%2BD3sXmtVyqsb8%3D BrownSCookeJResponses to force perturbations preceding voluntary human arm movementsBrain Res198122035035510.1016/0006-8993(81)91224-51:STN:280:DyaL38%2FisVylsQ%3D%3D7284760 BurgessPCooperTGottliebGLatashMThe sense of effort and two models of single-joint motor controlSomatosens Mot Res19951234335810.3109/089902295090936671:STN:280:DyaK28vjtFahtw%3D%3D8834307 Fasano GFranceschiniAA multidimensional version of the Kolmogorov–Smirnov testMon Not R Astron Soc1987225155170 ForgetRLamarreYAnticipatory postural adjustment in the absence of normal peripheral feedbackBrain Res199050817617910.1016/0006-8993(90)91135-41:STN:280:DyaK3c3kvVOltg%3D%3D2337787 Mihaltchev P, Archambault PS, Feldman AG, Levin MF (2005) Control of double-joint arm posture in adults with unilateral brain damage. Exp Brain Res FishbachARoySABastianenCMillerLEHoukJCDeciding when and how to correct a movement: discrete submovements as a decision making processExp Brain Res2007177456310.1007/s00221-006-0652-y16944111 CragoPEHoukJCHasanZRegulatory actions of human stretch reflexJ Neurophysiol1976399259351:STN:280:DyaE2s%2FjtVOitg%3D%3D978238 OstryDJFeldmanAGA critical evaluation of the force control hypothesis in motor controlExp Brain Res200315327528810.1007/s00221-003-1624-014610628 LacknerJRDiZioPAdaptation in a rotating artificial gravity environmentBrain Res Brain Res Rev19982819420210.1016/S0165-0173(98)00039-31:STN:280:DyaK1M%2Fhtlymtw%3D%3D9795214 OstryDJGribblePLLevinMFFeldmanAGPhasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener musclesExp Brain Res199711629930810.1007/PL000057571:STN:280:DyaK1c%2Fgs1emsw%3D%3D9348128 KelsoJHoltKExploring a vibratory systems analysis of human movement productionJ Neurophysiol198043118311961:STN:280:DyaL3c7osVWmsw%3D%3D7373360 SimonDALeeTDCullenJDWin-shift, lose-stay: contingent switching and contextual interference in motor learningPercept Mot Skills200810740741810.2466/PMS.107.6.407-41819093603 FlashTMussa-IvaldiFHuman arm stiffness characteristics during the maintenance of postureExp Brain Res19908231532610.1007/BF002312511:STN:280:DyaK3M7jvVKqsQ%3D%3D2286234 TsujiTMorassoPGGotoKItoKHuman hand impedance characteristics during maintained postureBiol Cybern19957247548510.1007/BF001998901:STN:280:DyaK2Mzjslajtg%3D%3D7612720 BedardPProteauLMovement planning of video and of manual aiming movementsSpat Vis20051827529610.1163/156856805408936616060228 MichaudMArsenaultABGravelDTremblayGSimardTGMuscular compensatory mechanism in the presence of a tendinitis of the supraspinatusAm J Phys Med1987661091201:STN:280:DyaL2s3msl2qsw%3D%3D3605314 PerreaultEJKirschRFCragoPEMultijoint dynamics and postural stability of the human armExp Brain Res200415750751710.1007/s00221-004-1864-715112115 RothwellJCTraubMMMarsdenCDAutomatic and ‘voluntary’ responses compensating for disturbances of human thumb movementsBrain Res1982248334110.1016/0006-8993(82)91144-11:STN:280:DyaL3s%2FisVeisA%3D%3D7127140 SanesJKinematics and end-point control of arm movements are modified by unexpected changes in viscous loadingJ Neurosci1986631201:STN:280:DyaL2s%2FjsFOltw%3D%3D3772424 ArchambaultPSMihaltchevPLevinMFFeldmanAGBasic elements of arm postural control analyzed by unloadingExp Brain Res200516422524110.1007/s00221-005-2245-615856209 NicholsTRThe organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate catJ Physiol19894104634771:STN:280:DyaK3c%2FhtFymtA%3D%3D2795487 WilminkRJHNicholsTRDistribution of Heterogenic Reflexes Among the Quadriceps and Triceps Surae Muscles of the Cat Hind LimbJ Neurophysiol2003902310232410.1152/jn.00833.200212826657 BiryukovaEVRoschinVYFrolovAAIoffeMEMassionJDufosseMForearm postural control during unloading: anticipatory changes in elbow stiffnessExp Brain Res199912410711710.1007/s0022100506051:STN:280:DyaK1M7isFyktw%3D%3D9928795 FeldmanAGLevinMFThe equilibrium-point hypothesis—past, present and futureAdv Exp Med Biol200962969972610.1007/978-0-387-77064-2_3819227529 SherringtonCSThe integrative action of the nervous system1906New HavenYale University Press MoritaniTdeVriesHAReexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contractionAm J Phys Med1978572632771:STN:280:DyaE1M7it1Witw%3D%3D742657 DiZioPLacknerJRCoriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjectsJ Neurophysiol2001857847891:STN:280:DC%2BD3M3htlygtg%3D%3D11160512 FeldmanAGLatashMLTesting hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesisExp Brain Res20051619110310.1007/s00221-004-2049-015490137 Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2001) Parametric control of the arm analysed by unloading using a double-joint manipulandum. In: Society for Neuroscience, Program No. 941.911 BhushanNShadmehrRComputational nature of human adaptive control during learning of reaching movements in force fieldsBiol Cybern199981396010.1007/s0042200505431:STN:280:DyaK1Mzmtlagtg%3D%3D10434390 FeldmanAGLevinMFThe origin and use of positional frames of reference in motor controlBehav Brain Sci19951872380610.1017/S0140525X0004070X SarlegnaFRSainburgRLThe effect of target modality on visual and proprioceptive contributions to the control of movement distanceExp Brain Res200717626728010.1007/s00221-006-0613-516896981 BrownSCookeJInitial agonist burst is modified by perturbations preceding movementBrain Res198637731132210.1016/0006-8993(86)90874-71:STN:280:DyaL283ntFWltw%3D%3D3730866 LacknerJRDizioPRapid adaptation to Coriolis force perturbations of arm trajectoryJ Neurophysiol1994722993131:STN:280:DyaK2M%2FlsVehtQ%3D%3D7965013 NicholsTRHoukJCImprovement in linearity and regulation of stiffness that results from actions of stretch reflexJ Neurophysiol1976391191421:STN:280:DyaE287itF2ktg%3D%3D1249597 AsatryanDFeldmanAFunctional tuning of the nervous system with control of movement or maintenance of a steady posture-I. Mechanographic analysis of the work of the joint or execution of a postural taskBiophysics196510925934 ForgetRLamarreYPostural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivationCan J Physiol Pharmacol1995732852941:CAS:528:DyaK2MXlsF2jsb0%3D7621367 JaricSMilanovicSBlesicSLatashMLChanges in movement kinematics during single-joint movements against expectedly and unexpectedly changed inertial loadsHum Mov Sci199918496610.1016/S0167-9457(98)00033-5 WolpertDMGhahramaniZJordanMIAn internal model for sensorimotor integrationScience19952691880188210.1126/science.75699311:CAS:528:DyaK2MXotlKqtbw%3D7569931 LatashMLGottliebGLCompliant characteristics of single joints: preservation of equifinality with phasic reactionsBiol Cybern19906233133610.1007/BF002014471:STN:280:DyaK3c7otFGjtw%3D%3D2310787 GottliebGOn the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanismsJ Neurophysiol19967632071:STN:280:DyaK2s%2Fotl2hsQ%3D%3D8930267 KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol1999971872710.1016/S0959-4388(99)00028-81:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637 DonchinOFrancisJTShadmehrRQuantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor controlJ Neurosci200323903290451:CAS:528:DC%2BD3sXotFOms70%3D14534237 ShapiroMGottliebGCorcosDEMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement timeJ Neurophysiol200491213510.1152/jn.00966.200314724262 SchmidtRMcGownCTerminal accuracy of unexpectedly loaded rapid movements: evidence for a mass-spring mechanism in programmingJ Mot Behav1980121491611:STN:280:DC%2BD2czhtlOiug%3D%3D15215060 ShapiroMGottliebGMooreCCorcosDElectromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexesJ Neurophysiol200288105912163554 AG Feldman (2350_CR17) 1998; 2 FR Sarlegna (2350_CR44) 2007; 176 TR Nichols (2350_CR37) 1976; 39 D Asatryan (2350_CR3) 1965; 10 PE Crago (2350_CR10) 1976; 39 DA Simon (2350_CR49) 2008; 107 EV Biryukova (2350_CR6) 1999; 124 S Brown (2350_CR8) 1986; 377 R Forget (2350_CR20) 1990; 508 ML Latash (2350_CR29) 1990; 62 F Popescu (2350_CR41) 2000; 84 G Fasano (2350_CR13) 1987; 225 A Fishbach (2350_CR18) 2007; 177 PS Archambault (2350_CR2) 2005; 164 P Burgess (2350_CR9) 1995; 12 AG Feldman (2350_CR14) 2005; 161 TR Nichols (2350_CR36) 1989; 410 G Gottlieb (2350_CR22) 1996; 76 T Moritani (2350_CR35) 1978; 57 MR Hinder (2350_CR23) 2003; 549 P Bedard (2350_CR4) 2005; 18 TE Milner (2350_CR33) 2002; 143 DJ Ostry (2350_CR39) 1997; 116 JC Rothwell (2350_CR42) 1982; 248 CS Sherrington (2350_CR48) 1906 M Latash (2350_CR30) 1991; 43 S Jaric (2350_CR24) 1999; 18 TE Milner (2350_CR34) 2002; 143 M Shapiro (2350_CR47) 2004; 91 JR Lackner (2350_CR28) 1998; 28 M Kawato (2350_CR25) 1999; 9 AG Feldman (2350_CR15) 1995; 18 JR Lackner (2350_CR27) 1994; 72 P DiZio (2350_CR11) 2001; 85 O Donchin (2350_CR12) 2003; 23 EJ Perreault (2350_CR40) 2004; 157 M Michaud (2350_CR31) 1987; 66 J Sanes (2350_CR43) 1986; 6 T Tsuji (2350_CR50) 1995; 72 RJH Wilmink (2350_CR51) 2003; 90 J Kelso (2350_CR26) 1980; 43 2350_CR1 R Forget (2350_CR21) 1995; 73 DM Wolpert (2350_CR52) 1995; 269 S Brown (2350_CR7) 1981; 220 T Flash (2350_CR19) 1990; 82 M Shapiro (2350_CR46) 2002; 88 N Bhushan (2350_CR5) 1999; 81 DJ Ostry (2350_CR38) 2003; 153 AG Feldman (2350_CR16) 2009; 629 R Schmidt (2350_CR45) 1980; 12 2350_CR32 16944111 - Exp Brain Res. 2007 Feb;177(1):45-63 14534237 - J Neurosci. 2003 Oct 8;23(27):9032-45 3605314 - Am J Phys Med. 1987 Jun;66(3):109-20 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41 7621367 - Can J Physiol Pharmacol. 1995 Feb;73(2):285-94 14724262 - J Neurophysiol. 2004 May;91(5):2135-47 16060228 - Spat Vis. 2005;18(3):275-96 11914798 - Exp Brain Res. 2002 Apr;143(4):515-9 19093603 - Percept Mot Skills. 2008 Oct;107(2):407-18 15112115 - Exp Brain Res. 2004 Aug;157(4):507-17 12826657 - J Neurophysiol. 2003 Oct;90(4):2310-24 9348128 - Exp Brain Res. 1997 Sep;116(2):299-308 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27 3772424 - J Neurosci. 1986 Nov;6(11):3120-7 2795487 - J Physiol. 1989 Mar;410:463-77 9795214 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):194-202 3730866 - Brain Res. 1986 Jul 9;377(2):311-22 7569931 - Science. 1995 Sep 29;269(5232):1880-2 7612720 - Biol Cybern. 1995;72(6):475-85 742657 - Am J Phys Med. 1978 Dec;57(6):263-77 1249597 - J Neurophysiol. 1976 Jan;39(1):119-42 15690154 - Exp Brain Res. 2005 Jun;163(4):468-86 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88 1922790 - Neuroscience. 1991;43(2-3):697-712 7284760 - Brain Res. 1981 Sep 14;220(2):350-5 7965013 - J Neurophysiol. 1994 Jul;72(1):299-313 11160512 - J Neurophysiol. 2001 Feb;85(2):784-9 9644289 - Motor Control. 1998 Jul;2(3):189-205 2286234 - Exp Brain Res. 1990;82(2):315-26 7373360 - J Neurophysiol. 1980 May;43(5):1183-96 10434390 - Biol Cybern. 1999 Jul;81(1):39-60 15215060 - J Mot Behav. 1980 Jun;12(2):149-61 12717002 - J Physiol. 2003 Jun 15;549(Pt 3):953-63 978238 - J Neurophysiol. 1976 Sep;39(5):925-35 7127140 - Brain Res. 1982 Sep 23;248(1):33-41 19227529 - Adv Exp Med Biol. 2009;629:699-726 2310787 - Biol Cybern. 1990;62(4):331-6 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103 2337787 - Brain Res. 1990 Jan 29;508(1):176-9 9928795 - Exp Brain Res. 1999 Jan;124(1):107-17 12163554 - J Neurophysiol. 2002 Aug;88(2):1059-63 8834307 - Somatosens Mot Res. 1995;12(3-4):343-58 11068008 - J Neurophysiol. 2000 Nov;84(5):2670-9 16896981 - Exp Brain Res. 2007 Jan;176(2):267-80 8930267 - J Neurophysiol. 1996 Nov;76(5):3207-29 11914785 - Exp Brain Res. 2002 Apr;143(4):406-16 |
References_xml | – reference: BrownSCookeJInitial agonist burst is modified by perturbations preceding movementBrain Res198637731132210.1016/0006-8993(86)90874-71:STN:280:DyaL283ntFWltw%3D%3D3730866 – reference: MilnerTEContribution of geometry and joint stiffness to mechanical stability of the human armExp Brain Res200214351551910.1007/s00221-002-1049-111914798 – reference: FishbachARoySABastianenCMillerLEHoukJCDeciding when and how to correct a movement: discrete submovements as a decision making processExp Brain Res2007177456310.1007/s00221-006-0652-y16944111 – reference: OstryDJFeldmanAGA critical evaluation of the force control hypothesis in motor controlExp Brain Res200315327528810.1007/s00221-003-1624-014610628 – reference: GottliebGOn the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanismsJ Neurophysiol19967632071:STN:280:DyaK2s%2Fotl2hsQ%3D%3D8930267 – reference: BurgessPCooperTGottliebGLatashMThe sense of effort and two models of single-joint motor controlSomatosens Mot Res19951234335810.3109/089902295090936671:STN:280:DyaK28vjtFahtw%3D%3D8834307 – reference: SchmidtRMcGownCTerminal accuracy of unexpectedly loaded rapid movements: evidence for a mass-spring mechanism in programmingJ Mot Behav1980121491611:STN:280:DC%2BD2czhtlOiug%3D%3D15215060 – reference: ForgetRLamarreYPostural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivationCan J Physiol Pharmacol1995732852941:CAS:528:DyaK2MXlsF2jsb0%3D7621367 – reference: LatashMLGottliebGLCompliant characteristics of single joints: preservation of equifinality with phasic reactionsBiol Cybern19906233133610.1007/BF002014471:STN:280:DyaK3c7otFGjtw%3D%3D2310787 – reference: RothwellJCTraubMMMarsdenCDAutomatic and ‘voluntary’ responses compensating for disturbances of human thumb movementsBrain Res1982248334110.1016/0006-8993(82)91144-11:STN:280:DyaL3s%2FisVeisA%3D%3D7127140 – reference: Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2001) Parametric control of the arm analysed by unloading using a double-joint manipulandum. In: Society for Neuroscience, Program No. 941.911 – reference: NicholsTRHoukJCImprovement in linearity and regulation of stiffness that results from actions of stretch reflexJ Neurophysiol1976391191421:STN:280:DyaE287itF2ktg%3D%3D1249597 – reference: JaricSMilanovicSBlesicSLatashMLChanges in movement kinematics during single-joint movements against expectedly and unexpectedly changed inertial loadsHum Mov Sci199918496610.1016/S0167-9457(98)00033-5 – reference: PopescuFRymerWEnd points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinalityJ Neurophysiol200084267026791:STN:280:DC%2BD3M%2FmvFOhsQ%3D%3D11068008 – reference: BiryukovaEVRoschinVYFrolovAAIoffeMEMassionJDufosseMForearm postural control during unloading: anticipatory changes in elbow stiffnessExp Brain Res199912410711710.1007/s0022100506051:STN:280:DyaK1M7isFyktw%3D%3D9928795 – reference: MoritaniTdeVriesHAReexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contractionAm J Phys Med1978572632771:STN:280:DyaE1M7it1Witw%3D%3D742657 – reference: SherringtonCSThe integrative action of the nervous system1906New HavenYale University Press – reference: ArchambaultPSMihaltchevPLevinMFFeldmanAGBasic elements of arm postural control analyzed by unloadingExp Brain Res200516422524110.1007/s00221-005-2245-615856209 – reference: LacknerJRDizioPRapid adaptation to Coriolis force perturbations of arm trajectoryJ Neurophysiol1994722993131:STN:280:DyaK2M%2FlsVehtQ%3D%3D7965013 – reference: LatashMGottliebGReconstruction of shifting elbow joint compliant characteristics during fast and slow movementsNeuroscience19914369771210.1016/0306-4522(91)90328-L1:STN:280:DyaK38%2FhvVyntg%3D%3D1922790 – reference: BrownSCookeJResponses to force perturbations preceding voluntary human arm movementsBrain Res198122035035510.1016/0006-8993(81)91224-51:STN:280:DyaL38%2FisVylsQ%3D%3D7284760 – reference: DiZioPLacknerJRCoriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjectsJ Neurophysiol2001857847891:STN:280:DC%2BD3M3htlygtg%3D%3D11160512 – reference: ForgetRLamarreYAnticipatory postural adjustment in the absence of normal peripheral feedbackBrain Res199050817617910.1016/0006-8993(90)91135-41:STN:280:DyaK3c3kvVOltg%3D%3D2337787 – reference: DonchinOFrancisJTShadmehrRQuantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor controlJ Neurosci200323903290451:CAS:528:DC%2BD3sXotFOms70%3D14534237 – reference: NicholsTRThe organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate catJ Physiol19894104634771:STN:280:DyaK3c%2FhtFymtA%3D%3D2795487 – reference: HinderMRMilnerTEThe case for an internal dynamics model versus equilibrium point control in human movementJ Physiol (Lond)200354995396310.1113/jphysiol.2002.0338451:CAS:528:DC%2BD3sXmtVyqsb8%3D – reference: FeldmanAGLatashMLTesting hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesisExp Brain Res20051619110310.1007/s00221-004-2049-015490137 – reference: ShapiroMGottliebGCorcosDEMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement timeJ Neurophysiol200491213510.1152/jn.00966.200314724262 – reference: LacknerJRDiZioPAdaptation in a rotating artificial gravity environmentBrain Res Brain Res Rev19982819420210.1016/S0165-0173(98)00039-31:STN:280:DyaK1M%2Fhtlymtw%3D%3D9795214 – reference: OstryDJGribblePLLevinMFFeldmanAGPhasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener musclesExp Brain Res199711629930810.1007/PL000057571:STN:280:DyaK1c%2Fgs1emsw%3D%3D9348128 – reference: SanesJKinematics and end-point control of arm movements are modified by unexpected changes in viscous loadingJ Neurosci1986631201:STN:280:DyaL2s%2FjsFOltw%3D%3D3772424 – reference: FeldmanAGLevinMFThe equilibrium-point hypothesis—past, present and futureAdv Exp Med Biol200962969972610.1007/978-0-387-77064-2_3819227529 – reference: MilnerTEAdaptation to destabilizing dynamics by means of muscle cocontractionExp Brain Res200214340641610.1007/s00221-002-1001-411914785 – reference: ShapiroMGottliebGMooreCCorcosDElectromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexesJ Neurophysiol200288105912163554 – reference: WolpertDMGhahramaniZJordanMIAn internal model for sensorimotor integrationScience19952691880188210.1126/science.75699311:CAS:528:DyaK2MXotlKqtbw%3D7569931 – reference: SimonDALeeTDCullenJDWin-shift, lose-stay: contingent switching and contextual interference in motor learningPercept Mot Skills200810740741810.2466/PMS.107.6.407-41819093603 – reference: Fasano GFranceschiniAA multidimensional version of the Kolmogorov–Smirnov testMon Not R Astron Soc1987225155170 – reference: AsatryanDFeldmanAFunctional tuning of the nervous system with control of movement or maintenance of a steady posture-I. Mechanographic analysis of the work of the joint or execution of a postural taskBiophysics196510925934 – reference: SarlegnaFRSainburgRLThe effect of target modality on visual and proprioceptive contributions to the control of movement distanceExp Brain Res200717626728010.1007/s00221-006-0613-516896981 – reference: KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol1999971872710.1016/S0959-4388(99)00028-81:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637 – reference: FeldmanAGOstryDJLevinMFGribblePLMitnitskiABRecent tests of the equilibrium-point hypothesis (lambda model)Mot Control199821892051:STN:280:DyaK1czgvF2itA%3D%3D – reference: KelsoJHoltKExploring a vibratory systems analysis of human movement productionJ Neurophysiol198043118311961:STN:280:DyaL3c7osVWmsw%3D%3D7373360 – reference: FlashTMussa-IvaldiFHuman arm stiffness characteristics during the maintenance of postureExp Brain Res19908231532610.1007/BF002312511:STN:280:DyaK3M7jvVKqsQ%3D%3D2286234 – reference: FeldmanAGLevinMFThe origin and use of positional frames of reference in motor controlBehav Brain Sci19951872380610.1017/S0140525X0004070X – reference: PerreaultEJKirschRFCragoPEMultijoint dynamics and postural stability of the human armExp Brain Res200415750751710.1007/s00221-004-1864-715112115 – reference: BedardPProteauLMovement planning of video and of manual aiming movementsSpat Vis20051827529610.1163/156856805408936616060228 – reference: BhushanNShadmehrRComputational nature of human adaptive control during learning of reaching movements in force fieldsBiol Cybern199981396010.1007/s0042200505431:STN:280:DyaK1Mzmtlagtg%3D%3D10434390 – reference: WilminkRJHNicholsTRDistribution of Heterogenic Reflexes Among the Quadriceps and Triceps Surae Muscles of the Cat Hind LimbJ Neurophysiol2003902310232410.1152/jn.00833.200212826657 – reference: TsujiTMorassoPGGotoKItoKHuman hand impedance characteristics during maintained postureBiol Cybern19957247548510.1007/BF001998901:STN:280:DyaK2Mzjslajtg%3D%3D7612720 – reference: MichaudMArsenaultABGravelDTremblayGSimardTGMuscular compensatory mechanism in the presence of a tendinitis of the supraspinatusAm J Phys Med1987661091201:STN:280:DyaL2s3msl2qsw%3D%3D3605314 – reference: Mihaltchev P, Archambault PS, Feldman AG, Levin MF (2005) Control of double-joint arm posture in adults with unilateral brain damage. Exp Brain Res – reference: CragoPEHoukJCHasanZRegulatory actions of human stretch reflexJ Neurophysiol1976399259351:STN:280:DyaE2s%2FjtVOitg%3D%3D978238 – volume: 549 start-page: 953 year: 2003 ident: 2350_CR23 publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.2002.033845 – volume: 143 start-page: 515 year: 2002 ident: 2350_CR34 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1049-1 – volume: 9 start-page: 718 year: 1999 ident: 2350_CR25 publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(99)00028-8 – volume: 269 start-page: 1880 year: 1995 ident: 2350_CR52 publication-title: Science doi: 10.1126/science.7569931 – ident: 2350_CR32 doi: 10.1007/s00221-004-2202-9 – volume: 72 start-page: 299 year: 1994 ident: 2350_CR27 publication-title: J Neurophysiol doi: 10.1152/jn.1994.72.1.299 – volume: 84 start-page: 2670 year: 2000 ident: 2350_CR41 publication-title: J Neurophysiol doi: 10.1152/jn.2000.84.5.2670 – volume: 18 start-page: 723 year: 1995 ident: 2350_CR15 publication-title: Behav Brain Sci doi: 10.1017/S0140525X0004070X – volume: 73 start-page: 285 year: 1995 ident: 2350_CR21 publication-title: Can J Physiol Pharmacol doi: 10.1139/y95-039 – volume: 153 start-page: 275 year: 2003 ident: 2350_CR38 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1624-0 – volume: 88 start-page: 1059 year: 2002 ident: 2350_CR46 publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.2.1059 – volume: 377 start-page: 311 year: 1986 ident: 2350_CR8 publication-title: Brain Res doi: 10.1016/0006-8993(86)90874-7 – ident: 2350_CR1 – volume: 177 start-page: 45 year: 2007 ident: 2350_CR18 publication-title: Exp Brain Res doi: 10.1007/s00221-006-0652-y – volume: 508 start-page: 176 year: 1990 ident: 2350_CR20 publication-title: Brain Res doi: 10.1016/0006-8993(90)91135-4 – volume: 248 start-page: 33 year: 1982 ident: 2350_CR42 publication-title: Brain Res doi: 10.1016/0006-8993(82)91144-1 – volume: 2 start-page: 189 year: 1998 ident: 2350_CR17 publication-title: Mot Control doi: 10.1123/mcj.2.3.189 – volume: 91 start-page: 2135 year: 2004 ident: 2350_CR47 publication-title: J Neurophysiol doi: 10.1152/jn.00966.2003 – volume: 39 start-page: 925 year: 1976 ident: 2350_CR10 publication-title: J Neurophysiol doi: 10.1152/jn.1976.39.5.925 – volume: 225 start-page: 155 year: 1987 ident: 2350_CR13 publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/225.1.155 – volume: 43 start-page: 1183 year: 1980 ident: 2350_CR26 publication-title: J Neurophysiol doi: 10.1152/jn.1980.43.5.1183 – volume: 124 start-page: 107 year: 1999 ident: 2350_CR6 publication-title: Exp Brain Res doi: 10.1007/s002210050605 – volume: 161 start-page: 91 year: 2005 ident: 2350_CR14 publication-title: Exp Brain Res doi: 10.1007/s00221-004-2049-0 – volume: 410 start-page: 463 year: 1989 ident: 2350_CR36 publication-title: J Physiol doi: 10.1113/jphysiol.1989.sp017544 – volume: 6 start-page: 3120 year: 1986 ident: 2350_CR43 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.06-11-03120.1986 – volume: 18 start-page: 275 year: 2005 ident: 2350_CR4 publication-title: Spat Vis doi: 10.1163/1568568054089366 – volume: 107 start-page: 407 year: 2008 ident: 2350_CR49 publication-title: Percept Mot Skills doi: 10.2466/PMS.107.6.407-418 – volume: 82 start-page: 315 year: 1990 ident: 2350_CR19 publication-title: Exp Brain Res doi: 10.1007/BF00231251 – volume: 76 start-page: 3207 year: 1996 ident: 2350_CR22 publication-title: J Neurophysiol doi: 10.1152/jn.1996.76.5.3207 – volume: 176 start-page: 267 year: 2007 ident: 2350_CR44 publication-title: Exp Brain Res doi: 10.1007/s00221-006-0613-5 – volume: 85 start-page: 784 year: 2001 ident: 2350_CR11 publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.2.784 – volume: 39 start-page: 119 year: 1976 ident: 2350_CR37 publication-title: J Neurophysiol doi: 10.1152/jn.1976.39.1.119 – volume: 629 start-page: 699 year: 2009 ident: 2350_CR16 publication-title: Adv Exp Med Biol doi: 10.1007/978-0-387-77064-2_38 – volume: 66 start-page: 109 year: 1987 ident: 2350_CR31 publication-title: Am J Phys Med – volume: 72 start-page: 475 year: 1995 ident: 2350_CR50 publication-title: Biol Cybern doi: 10.1007/BF00199890 – volume: 12 start-page: 149 year: 1980 ident: 2350_CR45 publication-title: J Mot Behav doi: 10.1080/00222895.1980.10735215 – volume: 157 start-page: 507 year: 2004 ident: 2350_CR40 publication-title: Exp Brain Res doi: 10.1007/s00221-004-1864-7 – volume: 62 start-page: 331 year: 1990 ident: 2350_CR29 publication-title: Biol Cybern doi: 10.1007/BF00201447 – volume-title: The integrative action of the nervous system year: 1906 ident: 2350_CR48 – volume: 23 start-page: 9032 year: 2003 ident: 2350_CR12 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-27-09032.2003 – volume: 220 start-page: 350 year: 1981 ident: 2350_CR7 publication-title: Brain Res doi: 10.1016/0006-8993(81)91224-5 – volume: 164 start-page: 225 year: 2005 ident: 2350_CR2 publication-title: Exp Brain Res doi: 10.1007/s00221-005-2245-6 – volume: 90 start-page: 2310 year: 2003 ident: 2350_CR51 publication-title: J Neurophysiol doi: 10.1152/jn.00833.2002 – volume: 12 start-page: 343 year: 1995 ident: 2350_CR9 publication-title: Somatosens Mot Res doi: 10.3109/08990229509093667 – volume: 28 start-page: 194 year: 1998 ident: 2350_CR28 publication-title: Brain Res Brain Res Rev doi: 10.1016/S0165-0173(98)00039-3 – volume: 81 start-page: 39 year: 1999 ident: 2350_CR5 publication-title: Biol Cybern doi: 10.1007/s004220050543 – volume: 57 start-page: 263 year: 1978 ident: 2350_CR35 publication-title: Am J Phys Med – volume: 116 start-page: 299 year: 1997 ident: 2350_CR39 publication-title: Exp Brain Res doi: 10.1007/PL00005757 – volume: 10 start-page: 925 year: 1965 ident: 2350_CR3 publication-title: Biophysics – volume: 18 start-page: 49 year: 1999 ident: 2350_CR24 publication-title: Hum Mov Sci doi: 10.1016/S0167-9457(98)00033-5 – volume: 43 start-page: 697 year: 1991 ident: 2350_CR30 publication-title: Neuroscience doi: 10.1016/0306-4522(91)90328-L – volume: 143 start-page: 406 year: 2002 ident: 2350_CR33 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1001-4 – reference: 11160512 - J Neurophysiol. 2001 Feb;85(2):784-9 – reference: 11068008 - J Neurophysiol. 2000 Nov;84(5):2670-9 – reference: 15112115 - Exp Brain Res. 2004 Aug;157(4):507-17 – reference: 16896981 - Exp Brain Res. 2007 Jan;176(2):267-80 – reference: 16944111 - Exp Brain Res. 2007 Feb;177(1):45-63 – reference: 14724262 - J Neurophysiol. 2004 May;91(5):2135-47 – reference: 7284760 - Brain Res. 1981 Sep 14;220(2):350-5 – reference: 12826657 - J Neurophysiol. 2003 Oct;90(4):2310-24 – reference: 7612720 - Biol Cybern. 1995;72(6):475-85 – reference: 19093603 - Percept Mot Skills. 2008 Oct;107(2):407-18 – reference: 15215060 - J Mot Behav. 1980 Jun;12(2):149-61 – reference: 7127140 - Brain Res. 1982 Sep 23;248(1):33-41 – reference: 12717002 - J Physiol. 2003 Jun 15;549(Pt 3):953-63 – reference: 10434390 - Biol Cybern. 1999 Jul;81(1):39-60 – reference: 15490137 - Exp Brain Res. 2005 Feb;161(1):91-103 – reference: 8834307 - Somatosens Mot Res. 1995;12(3-4):343-58 – reference: 9795214 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):194-202 – reference: 2310787 - Biol Cybern. 1990;62(4):331-6 – reference: 7373360 - J Neurophysiol. 1980 May;43(5):1183-96 – reference: 9644289 - Motor Control. 1998 Jul;2(3):189-205 – reference: 1249597 - J Neurophysiol. 1976 Jan;39(1):119-42 – reference: 3730866 - Brain Res. 1986 Jul 9;377(2):311-22 – reference: 978238 - J Neurophysiol. 1976 Sep;39(5):925-35 – reference: 3772424 - J Neurosci. 1986 Nov;6(11):3120-7 – reference: 7621367 - Can J Physiol Pharmacol. 1995 Feb;73(2):285-94 – reference: 9928795 - Exp Brain Res. 1999 Jan;124(1):107-17 – reference: 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27 – reference: 3605314 - Am J Phys Med. 1987 Jun;66(3):109-20 – reference: 14534237 - J Neurosci. 2003 Oct 8;23(27):9032-45 – reference: 9348128 - Exp Brain Res. 1997 Sep;116(2):299-308 – reference: 15690154 - Exp Brain Res. 2005 Jun;163(4):468-86 – reference: 742657 - Am J Phys Med. 1978 Dec;57(6):263-77 – reference: 12163554 - J Neurophysiol. 2002 Aug;88(2):1059-63 – reference: 2337787 - Brain Res. 1990 Jan 29;508(1):176-9 – reference: 19227529 - Adv Exp Med Biol. 2009;629:699-726 – reference: 7965013 - J Neurophysiol. 1994 Jul;72(1):299-313 – reference: 11914798 - Exp Brain Res. 2002 Apr;143(4):515-9 – reference: 14610628 - Exp Brain Res. 2003 Dec;153(3):275-88 – reference: 15856209 - Exp Brain Res. 2005 Jul;164(2):225-41 – reference: 2286234 - Exp Brain Res. 1990;82(2):315-26 – reference: 2795487 - J Physiol. 1989 Mar;410:463-77 – reference: 1922790 - Neuroscience. 1991;43(2-3):697-712 – reference: 11914785 - Exp Brain Res. 2002 Apr;143(4):406-16 – reference: 16060228 - Spat Vis. 2005;18(3):275-96 – reference: 8930267 - J Neurophysiol. 1996 Nov;76(5):3207-29 – reference: 7569931 - Science. 1995 Sep 29;269(5232):1880-2 |
SSID | ssj0014370 |
Score | 1.943586 |
Snippet | Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 167 |
SubjectTerms | Adolescent Adult Arm Arm - physiology Biomechanical Phenomena Biomedical and Life Sciences Biomedicine Control theory Coriolis force Data Interpretation, Statistical Elbow Electromyography Equilibrium Experiments Female Hand - physiology Humans Hypotheses Individuality Joints Male Motor ability Motor task performance Movement - physiology Muscle, Skeletal - physiology Muscles Nervous system Neurology neuromuscular system Neuromuscular transmission Neurosciences Physiological research Psychomotor Performance - physiology Reflexes Research Article Robotics Shoulder Space Perception - physiology Stretch reflex Unloading Velocity Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BufSC-uARWsAgBBLIIk3sJD6hFaJakOAAVNqbZSdOtaIk2yY5tL-eGecBqbQcV55I2cl45puHPwO8ShD1GpNaXqpQcnR4khsa-ysKQX0cZaWj0sDXb8nyTHxZydUwm9MMY5WjT_SOuqhzqpG_J9KWiOjhPmwuOV0aRc3V4QaNu3DPM5ehOaerKd9CJJD2J1BOBBcY-camZug5RKOI8uiQR7EM-c0sLN12zv9Ep1vtUh-FTvfg_gAf2aL_3vtwx1UHcLioMHX-fc1eMz_Q6SvlB7A7ObfrQ1gubEObmNUlc5fdulz3CJx-U_GcjdNbbF0xw4q6sxeOowlsWFdd1H7SnrWm-fUAzk4__fy45MMtCjxHdNZipilU7kpXYq6rEL9YpVzqyiTPYwQHMsZ8x8a0pGSUJ0mWFVlkT6RJM1NIuhXjIexUdeUeAzPUpBFZUZZUOrLCJEJlDiO-cAhkwjyAt6MS9aYny9ATLbLXuEaNa9K4vgngOalZ9-c9p42mFwghMYLKRATw0ksQTUVFczDnpmsa_fnH95nQm0GorNsrk5vhWAG-MTFbzSSPZ5K4j_LZ8tH4vfWwjxs9WV0AL6ZVepBG0ypXd40mHgfE2ImMA2BbZDzFj0pjsV0EzVemCvFvAI96Y5tUGIWIUREXB_ButL6_b7hVv0_--3-OYLefg6BRxmPYaa869xThVWuf-U30BzVoHKE priority: 102 providerName: ProQuest |
Title | Absence of equifinality of hand position in a double-step unloading task |
URI | https://link.springer.com/article/10.1007/s00221-010-2350-z https://www.ncbi.nlm.nih.gov/pubmed/20623112 https://www.proquest.com/docview/807424867 https://www.proquest.com/docview/1999916653 https://www.proquest.com/docview/748939734 https://www.proquest.com/docview/954579851 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9NILj5aH21IWhEACuXLsXdt7NCglgKhQaaRwWq3tNYpa7La2D82vZ8YvSEQOPUXJjq3NeHfmm51vxgCvfUS9WgexnUlH2GjwhK2J9pemnPI4MhaGjga-nfrTGf8yF_Oujrvs2e59SrKx1EOxG7kbCn0d2_WEYy-3YFuMQxmOYDv69PPrZEgecC9oK0_G3Obo8fpk5v9usuKO1o3yP15pLU3aeJ-TB3Dez7slnVwc11V8nCzXWjre8Y89hPsdGmVRu3wewT2T78JelGMk_vuWvWENP7Q5eN-FncFW3u7BNIpLsgmsyJi5rhfZogX09J3O4llPBmOLnGmWFnV8aWxcUVeszi-LhrjPKl1ePIbZyeT849TuXspgJwj2KgxcuUxMZjIMnSXCoVhKE5jMTxIPsYbwMHyKPRqSwk18PwzT0I3HQgehTgW9ZOMJjPIiN8-Aacr58DDNMjqJirn2uQwNAghuEBc5iQXv-mejrtreG2rostwoTaHSFClNLS14QU9PteWjw75VESJSdMjC5xa8aiSo60VOtJpfui5L9fnH2YrQ204oK6obneiuSgFnTI2yViQPVyRxWyYrwwf9MlKdWSgVdR5yqcehBS-HUbqQmG65KepSUVsIhOy-8CxgG2SajkEy8PhmEYnIOJAIpy142q7hQYWug5AXYbYF7_v1-HeGG_W7fyfpA9hpaRbElDyEUXVTm-eI3qr4CLaCeXDU7Vn8_DA5_X6Gv87c6A_RKTpJ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-Q40FejIIfFZTV-JFoGku723YfjDkVcidwMQgJb-u23ZIL2B60jTn-J_9HZ_qlR3K-8djsNGlnZ2d-87kAL31EvVoHkZ1KR9io8IStqewvSTjlcWQkDIUGDif-6IR_PRWnK_C764WhsspOJ9aKOsljipG_p6EtLo2H-zi7tOnSKEqudjdoNFKxb-a_0GMrPoy_4Pa-ct293ePPI7u9VMCOEayU6HhxGZvUpOj6STTnkZQmMKkfxx7aSuEh_I88WpLCjX0_DJPQjXaEDkKdiOaSCNT4q5waWgew-ml38u2oT1twL2h6Xna4zdHWdmlUp55a6rrkuTu26wnHvl4whDfNwT_28EaCtrZ7e_fgbgtY2bCRsPuwYrJ12Bhm6Kz_nLPXrC4hrWPz67DWq9P5BoyGUUFqg-UpM5fVNJ02mJ-eKVzPunoxNs2YZkleRRfGRqGbsSq7yOvaflbq4vwBnNwKix_CIMsz8xiYprQQD5M0pWBVxLXPZWgQY3CD0MmJLXjbMVHNmvEcqh_EXHNcIccVcVxdW7BNbFZNh2l_tNUQQSvabOFzC17UFDQYI6PKmzNdFYUafz9aIHrTEqV5eaVj3TYy4BfTLK0Fyq0FSjy58cLyZrffqtUcherl3ILn_Sq9SMVwmcmrQtHkCET1vvAsYEto6qFCMvD4chKJ4DmQiLgteNQIW89C10FUjEjcgned9P39wqX8ffLf_9mGO6PjwwN1MJ7sb8JaU4VBhZRbMCivKvMUwV0ZPWuPFIMft32K_wATDVkE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCtIXsa2X2GpH8QLK0DSZXOZBZLEuu1aLqIV9m06SiSy2ybZJkO0_8995Tm6awvrWxzAnkJw5l-9c5gzAcx9Rr9ZBxFNpexwNnsc1tf0liaA6jow8Q6mBz8f-5ER8nHmzNfjdnYWhtsrOJtaGOsljypHv09AWh8bD7adtV8SXw_G7xQWnC6So0NrdptFIyJFZ_sLorXg7PcStfuE44w_f3094e8EAjxG4lBiECRmb1KQYBkp07ZGUJjCpH8cu-k3PxVAgcmlJek7s-2GYhE504Okg1InXXBiB1v9W4CKoQlUKZn2shygkaE6_HAgu0Ot2BVW7nl_qOBTD29zBN_nVwCVedwz_eMZrpdraA47vwp0WurJRI2ubsGayLdgeZRi2ny_ZS1Y3k9ZZ-i3Y6A3rchsmo6ggA8LylJmLap7OG_RPz5S4Z13nGJtnTLMkr6Izw1H8FqzKzvK6y5-Vuvh5D05uhMH3YT3LM_MQmKYCkQiTNKW0VSS0L2RoEG0IgyDKji143TFRLZpBHaofyVxzXCHHFXFcXVmwR2xWzVnTXsnVCOErem_PFxY8qyloREZG0vZDV0Whpt--DohetURpXl7qWLdHGvCLaarWgHJ3QIk6HA-Wd7r9Vq0NKVQv8RY87VfpRWqLy0xeFYpmSCC-9z3XAraCph4vJANXrCaRCKMDidjbggeNsPUsdGzEx4jJLXjTSd_fL1zJ30f__Z89uI26qz5Nj492YKNpx6COyl1YLy8r8xhRXhk9qfWJwelNK_AfiDBbyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absence+of+equifinality+of+hand+position+in+a+double-step+unloading+task&rft.jtitle=Experimental+brain+research&rft.au=Norouzi-Gheidari%2C+Nahid&rft.au=Archambault%2C+Philippe&rft.date=2010-08-01&rft.pub=Springer-Verlag&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=205&rft.issue=2&rft.spage=167&rft.epage=182&rft_id=info:doi/10.1007%2Fs00221-010-2350-z&rft.externalDocID=10_1007_s00221_010_2350_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |