Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light

In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This c...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 8; p. 1071
Main Authors Chung, Wan-Yu, Lai, Yi-Chin, Yonezawa, Tetsu, Liao, Ying-Chih
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10−5 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10−5 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm2. The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.
AbstractList In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10 −5 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10 −5 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm 2 . The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.
In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm . The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.
In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10−5 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10−5 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm2. The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.
In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10-5 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10-5 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm2. The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering. To improve inter-particle connections in the sintering process, a cuprous oxide shell was synthesized over copper nanoparticles (CuNP). This cuprous oxide shell can be reduced by IPL with the presence of a reductant and fused to form connection between large copper particles. However, the thermal yield stress after strong IPL sintering resulted in cracks of conductive copper film. Thus, a multiple pulse sintering with an off time of 2 s was needed to reach a low resistivity of 10-5 Ω·cm. To increase the light absorption efficiency and to further decrease voids between CuNPs in the copper film, cupric oxide nanoparticles (CuONP) of 50 nm, were also added into ink. The results showed that these CuONPs can be reduced to copper with a single pulse IPL and fused with the surrounding CuNPs. With an optimal CuNP/CuONP weight ratio of 1/80, the copper film showed a lowest resistivity of 7 × 10-5 Ω·cm, ~25% conductivity of bulk copper, with a single sintering energy at 3.08 J/cm2. The ink can be printed on flexible substrates as conductive tracks and the resistance remained nearly the same after 10,000 bending cycles.
Author Lai, Yi-Chin
Liao, Ying-Chih
Yonezawa, Tetsu
Chung, Wan-Yu
AuthorAffiliation 2 Division of Materials Science and Engineering, Hokkaido University, Sapporo 060-0808, Japan
1 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
AuthorAffiliation_xml – name: 2 Division of Materials Science and Engineering, Hokkaido University, Sapporo 060-0808, Japan
– name: 1 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Author_xml – sequence: 1
  givenname: Wan-Yu
  surname: Chung
  fullname: Chung, Wan-Yu
– sequence: 2
  givenname: Yi-Chin
  surname: Lai
  fullname: Lai, Yi-Chin
– sequence: 3
  givenname: Tetsu
  orcidid: 0000-0001-7371-204X
  surname: Yonezawa
  fullname: Yonezawa, Tetsu
– sequence: 4
  givenname: Ying-Chih
  orcidid: 0000-0001-9496-4190
  surname: Liao
  fullname: Liao, Ying-Chih
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31349711$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rGzEQhkVJaRI3p97LQi-B4FZafa0uhWD6YTCtoe1ZaCWtLbOWtpI2Jf--2tgpTuhcJM2878NImktw5oO3ALxB8D3GAn7wygcBGwQ5egEuasjFnAiBzk725-AqpR0sIRBuKH4FzjHCRHCELsD-h_PZRuc31SIMg43Vt0IcVMxO9zZVf1zeVuttyME7Xd0a47K7s1UXYrWOk9UUnzejfkivVS4wn6r2vlqWok8lN_apqFZus82vwctOlePVcZ2BX58__Vx8na--f1kubldzTZHIc4JJjVqMVcuJRRBDTLTR0HDVcaYxhbrp2q6BtDOw00xgY6juGLbM2toSjmdgeeCaoHZyiG6v4r0MysmHRIgbebyhtIZjwyhSCHHCWts0xNKWMyaMERN7Bj4eWMPY7q3R1ueo-ifQpxXvtnIT7iTjNaaEFMD1ERDD79GmLPcuadv3ytswJlnXjHKCsKiL9N0z6S6M0ZenkjWG9RTlMWbg7WlH_1p5_NUiQAeBjiGlaDupXVbZhalB10sE5TQ88mR4iufmmecR-z_1Xxb6xrU
CitedBy_id crossref_primary_10_1007_s00339_023_06504_5
crossref_primary_10_1080_19475411_2023_2227129
crossref_primary_10_11618_adhesion_56_207
crossref_primary_10_1007_s10854_025_14583_8
crossref_primary_10_1016_j_nexres_2025_100278
crossref_primary_10_1021_acsaelm_4c01257
crossref_primary_10_3390_nano11051295
crossref_primary_10_7791_jspmee_11_272
crossref_primary_10_1021_acsaelm_9b00444
crossref_primary_10_1016_j_jtice_2022_104616
crossref_primary_10_1002_adem_202301730
crossref_primary_10_1021_acsaelm_4c01727
crossref_primary_10_2320_matertrans_MT_N2021004
crossref_primary_10_3390_nano10091689
crossref_primary_10_1016_j_apt_2020_10_004
crossref_primary_10_1002_admi_201901550
crossref_primary_10_1039_D1MA01242H
crossref_primary_10_1088_1361_6528_acbd1f
Cites_doi 10.1007/s11664-010-1384-0
10.1039/c3ra41480a
10.1039/C4CC08749F
10.1149/2.0061504jss
10.1039/C7RA01005B
10.1021/acsami.5b12516
10.1039/C6TC00628K
10.1038/srep19696
10.1063/1.4798387
10.1021/acsami.6b14462
10.1039/C6TC04360G
10.1021/am404581b
10.1246/bcsj.20150305
10.1007/s00339-009-5360-6
10.1088/0957-4484/25/26/265601
10.1039/C3NR05479A
10.3390/s19143068
10.1021/nn901868t
10.1039/C6NR00607H
10.1021/acs.langmuir.5b01207
10.3390/ma3094626
10.1021/acsami.5b03061
10.1039/C5RA06599B
10.1039/C5TC00745C
10.1088/1361-6528/aa6cda
10.1016/j.mee.2009.10.043
10.1021/acsami.5b03854
10.1088/2053-1583/aa69b5
10.1016/j.tsf.2016.02.033
10.1021/acs.langmuir.6b01704
10.2352/ISSN.2169-4451.2013.29.1.art00056_2
10.1246/cl.2010.548
10.1021/am302505j
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/nano9081071
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_ed73d651a11746be884e5b7669dd9c69
PMC6723544
31349711
10_3390_nano9081071
Genre Journal Article
GeographicLocations St Louis Missouri
United States--US
Japan
GeographicLocations_xml – name: St Louis Missouri
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 106-2628-E-002-008-MY3
– fundername: Japan Society for the Promotion of Science
  grantid: 19K22094
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c519t-43421b33ab74e103034cdc0d7af76c350c8fbf805fd0fc693dd5cf63e6ee2e473
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:01:01 EDT 2025
Thu Aug 21 13:54:14 EDT 2025
Thu Jul 10 18:42:01 EDT 2025
Fri Jul 25 12:18:56 EDT 2025
Wed Feb 19 02:35:57 EST 2025
Tue Jul 01 01:16:45 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords copper nanoparticle
conductive patterns
porosity
photonic sintering
light absorption
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-43421b33ab74e103034cdc0d7af76c350c8fbf805fd0fc693dd5cf63e6ee2e473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9496-4190
0000-0001-7371-204X
OpenAccessLink https://www.proquest.com/docview/2302222230?pq-origsite=%requestingapplication%
PMID 31349711
PQID 2302222230
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_ed73d651a11746be884e5b7669dd9c69
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6723544
proquest_miscellaneous_2265741392
proquest_journals_2302222230
pubmed_primary_31349711
crossref_citationtrail_10_3390_nano9081071
crossref_primary_10_3390_nano9081071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190725
PublicationDateYYYYMMDD 2019-07-25
PublicationDate_xml – month: 7
  year: 2019
  text: 20190725
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kim (ref_7) 2013; 3
Abargues (ref_11) 2010; 87
Yu (ref_20) 2017; 28
Pan (ref_32) 2016; 28
Kang (ref_13) 2013; 2013
ref_14
Hwang (ref_26) 2016; 8
Yong (ref_28) 2015; 3
Kim (ref_31) 2009; 97
Schuppert (ref_12) 2015; 7
Schulz (ref_2) 2016; 32
Yonezawa (ref_27) 2015; 5
Chen (ref_1) 2015; 4
Chen (ref_21) 2012; 4
Choi (ref_22) 2015; 31
Draper (ref_15) 2015; 7
Yong (ref_29) 2017; 5
Matsubara (ref_17) 2015; 88
Kang (ref_16) 2014; 6
Farraj (ref_24) 2017; 9
Hwang (ref_19) 2016; 6
Marchena (ref_35) 2017; 4
Magdassi (ref_5) 2010; 4
Schulz (ref_3) 2016; 8
Shen (ref_9) 2014; 6
Videla (ref_30) 2013; 113
Ryu (ref_18) 2011; 40
Huang (ref_25) 2017; 7
Joo (ref_33) 2014; 25
Magdassi (ref_6) 2010; 3
Abargues (ref_10) 2009; 26
Albrecht (ref_4) 2016; 4
Yonezawa (ref_8) 2010; 39
Jeon (ref_34) 2016; 603
Farraj (ref_23) 2015; 51
References_xml – volume: 40
  start-page: 42
  year: 2011
  ident: ref_18
  article-title: Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1384-0
– volume: 3
  start-page: 15169
  year: 2013
  ident: ref_7
  article-title: Synthesis of oxidation-resistant core–shell copper nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41480a
– volume: 51
  start-page: 1587
  year: 2015
  ident: ref_23
  article-title: Self-reduction of a copper complex mod ink for inkjet printing conductive patterns on plastics
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08749F
– volume: 28
  start-page: 817
  year: 2016
  ident: ref_32
  article-title: Investigations of cuprous oxide and cupric oxide thin films by controlling the deposition atmosphere in the reactive sputtering method
  publication-title: Sens. Mater.
– volume: 4
  start-page: P3026
  year: 2015
  ident: ref_1
  article-title: Inkjet printed conductive tracks for printed electronics
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0061504jss
– volume: 7
  start-page: 25095
  year: 2017
  ident: ref_25
  article-title: Stabilization of the thermal decomposition process of self-reducible copper ion ink for direct printed conductive patterns
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01005B
– volume: 8
  start-page: 8591
  year: 2016
  ident: ref_26
  article-title: Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12516
– volume: 4
  start-page: 3546
  year: 2016
  ident: ref_4
  article-title: Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00628K
– volume: 6
  start-page: 19696
  year: 2016
  ident: ref_19
  article-title: All-photonic drying and sintering process via flash white light combined with deep-uv and near-infrared irradiation for highly conductive copper nano-ink
  publication-title: Sci. Rep.
  doi: 10.1038/srep19696
– volume: 113
  start-page: 134305
  year: 2013
  ident: ref_30
  article-title: Analysis of the structure, configuration, and sizing of cu and cu oxide nanoparticles generated by fs laser ablation of solid target in liquids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798387
– volume: 9
  start-page: 8766
  year: 2017
  ident: ref_24
  article-title: Plasma-induced decomposition of copper complex ink for the formation of highly conductive copper tracks on heat-sensitive substrates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14462
– volume: 5
  start-page: 1033
  year: 2017
  ident: ref_29
  article-title: Use of decomposable polymer-coated submicron cu particles with effective additive for production of highly conductive cu films at low sintering temperature
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04360G
– volume: 6
  start-page: 1682
  year: 2014
  ident: ref_16
  article-title: Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404581b
– volume: 88
  start-page: 1755
  year: 2015
  ident: ref_17
  article-title: Effect of glass transition temperature of stabilizing polymer of air-stable gelatin-stabilized copper fine particles during redox two-step low-temperature sintering process
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20150305
– volume: 97
  start-page: 791
  year: 2009
  ident: ref_31
  article-title: Intense pulsed light sintering of copper nanoink for printed electronics
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-009-5360-6
– volume: 25
  start-page: 265601
  year: 2014
  ident: ref_33
  article-title: Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/26/265601
– volume: 6
  start-page: 1622
  year: 2014
  ident: ref_9
  article-title: Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity
  publication-title: Nanoscale
  doi: 10.1039/C3NR05479A
– ident: ref_14
  doi: 10.3390/s19143068
– volume: 4
  start-page: 1943
  year: 2010
  ident: ref_5
  article-title: Triggering the sintering of silver nanoparticles at room temperature
  publication-title: ACS Nano
  doi: 10.1021/nn901868t
– volume: 8
  start-page: 7296
  year: 2016
  ident: ref_3
  article-title: Effective pegylation of gold nanorods
  publication-title: Nanoscale
  doi: 10.1039/C6NR00607H
– volume: 31
  start-page: 8101
  year: 2015
  ident: ref_22
  article-title: Effect of the amine concentration on phase evolution and densification in printed films using cu (ii) complex ink
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01207
– volume: 3
  start-page: 4626
  year: 2010
  ident: ref_6
  article-title: Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability
  publication-title: Materials
  doi: 10.3390/ma3094626
– volume: 26
  start-page: 2825
  year: 2009
  ident: ref_10
  article-title: Au-pva nanocomposite negative resist for one-step three-dimensional e-beam lithography
  publication-title: Langmuir
– volume: 7
  start-page: 18273
  year: 2015
  ident: ref_12
  article-title: Inkjet fabrication of copper patterns for flexible electronics: Using paper with active precoatings
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03061
– volume: 5
  start-page: 61290
  year: 2015
  ident: ref_27
  article-title: Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06599B
– volume: 3
  start-page: 5890
  year: 2015
  ident: ref_28
  article-title: The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00745C
– volume: 28
  start-page: 205205
  year: 2017
  ident: ref_20
  article-title: Multi-pulse flash light sintering of bimodal cu nanoparticle-ink for highly conductive printed cu electrodes
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa6cda
– volume: 87
  start-page: 1147
  year: 2010
  ident: ref_11
  article-title: Resist-based silver nanocomposites synthesized by lithographic methods
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.10.043
– volume: 7
  start-page: 16478
  year: 2015
  ident: ref_15
  article-title: Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03854
– volume: 4
  start-page: 025088
  year: 2017
  ident: ref_35
  article-title: Direct growth of 2d and 3d graphene nano-structures over large glass substrates by tuning a sacrificial cu-template layer
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa69b5
– volume: 603
  start-page: 382
  year: 2016
  ident: ref_34
  article-title: Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate
  publication-title: Thin Solid Film.
  doi: 10.1016/j.tsf.2016.02.033
– volume: 32
  start-page: 7897
  year: 2016
  ident: ref_2
  article-title: Ligand layer engineering to control stability and interfacial properties of nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01704
– volume: 2013
  start-page: 494
  year: 2013
  ident: ref_13
  article-title: Photonic Sintering of Inkjet Printed Copper Oxide Layer
  publication-title: NIP Digit. Fabr. Conf.
  doi: 10.2352/ISSN.2169-4451.2013.29.1.art00056_2
– volume: 39
  start-page: 548
  year: 2010
  ident: ref_8
  article-title: One-pot preparation of antioxidized copper fine particles with a unique structure by chemical reduction at room temperature
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2010.548
– volume: 4
  start-page: 7064
  year: 2012
  ident: ref_21
  article-title: Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302505j
SSID ssj0000913853
Score 2.1924472
Snippet In this study, an ink formulation was developed to prepare conductive copper thin films with compact structure by using intense pulsed light (IPL) sintering....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1071
SubjectTerms conductive patterns
Conductivity
Copper
copper nanoparticle
Copper oxides
Cracks
Decomposition
Electrical resistivity
Electromagnetic absorption
Glass substrates
High temperature
light absorption
Nanoparticles
Oxidation
photonic sintering
Photonics
porosity
Sintering
Substrates
Thin films
Yield stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-khbp0lQIaeCifWWj0loCKUtC0kgN2M9TAqtvGx2D_n3mZG9i7cEeolPRg8jz4w831ijT4SceHB7LkJ0wlnsSqlsW9ZtEKV2GrwTd5LlpZifv_TVrfx-p-4mR31hTthADzwI7jQGI4JWrGWAnbWL1sqonNG6DqH2Om_dg6dOgqn8Da6ZAEc0bMgTENefpjb1Nfi_yrAtF5SZ-p-Dl_9mSU7czuUb8nrEi_RsGOdbshPTO7I3YRF8T_5eI-cD3tOLfj6PCwqfTIiFx5Q3ir9a6ey-XyILLj0LIacLUUCrdLbArgH6JeR9xeJZJtxMD9Q90iG_HcpW4EAD_YGB_D65vfx2c3FVjqcolB7Q2bKUQnLmhGidkREPFRPSB18F03ZGe6EqbzvX2Up1oepAoCIE5Tstoo6RR2nEB7Kb-hQ_EWpr6wHeBeNYLbmLgCU6gF_KWu0q5WNBvq4F2_iRYhxPuvjTQKiBWmgmWijAUNaN5wOzxvPNzlFDmyZIh50LwEiaUZLN_4ykIIdr_TbjHH1oIPjieImqIF821TC7cMmkTbFfQRuuFWAuAJEF-TiYw2YkApkdDYMRmi1D2Rrqdk36fZ8ZvLXhQkl58BLv9pm8AhCHO9FKrg7J7nKxikcAlJbuOM-JJ-kTE1I
  priority: 102
  providerName: Directory of Open Access Journals
Title Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light
URI https://www.ncbi.nlm.nih.gov/pubmed/31349711
https://www.proquest.com/docview/2302222230
https://www.proquest.com/docview/2265741392
https://pubmed.ncbi.nlm.nih.gov/PMC6723544
https://doaj.org/article/ed73d651a11746be884e5b7669dd9c69
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9gIHRHmGtisjcUKKmvidU9VWXSoE1Qqo1FsUP0KRwFn2ceDfM5N4l11UkVPkOJKTGXu-GY-_IeStA7NnA3gnrAxtLqRp8qrxPFdWgXViVpT9Vsyna3V1Iz7cytsUcFuktMr1mtgv1L5zGCM_AajM8OLF6exXjlWjcHc1ldDYI_uwBBszIvvnl9fTz5soC7JegkEaDuZx8O9PYhO7CuxgocsdU9Qz9t8HM__NltwyP5Mn5HHCjfRsEPQBeRDiU_Joi03wGfn5Bbkf8J5edLNZmFNYOsEnTqlvFEOudHrXLZENl55536cNUUCtdDrHVz28F5H_FZunPfFmXFD7mw557tC2AkPq6Ud06J-Tm8nl14urPFVTyB2gtGUuuGCl5byxWgQsLsaF867wumm1clwWzrS2NYVsfdE6VXHvpWsVDyoEFoTmL8godjG8ItRUxgHM89qWlWA2AKZoAYZJY5QtpAsZebf-sbVLVONY8eJHDS4HSqHekkIGCrPuPBsYNu7vdo4S2nRBWuy-oZt_q9OfrIPX3CtZNiU4WsoGY0SQVitVeV_BN2XkaC3fOs3VRf1XszLyZvMYZhlunTQxdCvow5QE7AVgMiMvB3XYjIQjw6MuYYR6R1F2hrr7JH6_65m8lWZcCvH6_8M6JA8BpuFZs5zJIzJazlfhGKDQ0o7Jnpm8HyetH_cBhT946w31
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBBSlq4mdyQKgUli3dVivRSr2l8SO0UnGWfQj1T_Ebmclj2UUVt-YU2U7keCaeb-zxN4S8sWD2jAfvhKW-ioXMyjgvHY-VUWCdmBFpsxVzcKiGx-LriTzZIL_7szAYVtnPic1E7WqLa-TbAJUZXjz5MPkZY9Yo3F3tU2i0arHvL3-ByzZ7v_cJ5PuWscHno91h3GUViC2glXksuGCp4bw0WnhMssWFdTZxuqy0slwmNqtMlSWyckllVc6dk7ZS3CvvmReaw3tvkJuCgyXHk-mDL8s1HeTYBPPXHgOE-mQ7lKHOweomOl0zfE1-gKtA7b-xmSvGbnCP3O1QKt1p1eo-2fDhAbmzwl34kPz4hkwTeE9368nETylM1OCBd4F2FBd46fisniP3Lt1xrglSooCR6XiKjzp4LiDbLBaPG5rPMKPmkrZR9VC2ALPt6AiXDx6R42sZ5cdkM9TBPyU0yzMLoNJpk-aCGQ8IpgLQJ7NMmURaH5F3_cAWtiM2x_waFwU4OCiFYkUKEahn33jS8nlc3ewjSmjZBEm4m4J6-r3oRrLwTnOnZFqm4NYp47NMeGm0UrlzOXxTRLZ6-RbdzDAr_upxRF4vq-Gfxo2aMvh6AW2YkoD0ALpG5EmrDsuecOST1Cn0UK8pylpX12vC-VnDG64041KIZ__v1itya3h0MCpGe4f7z8ltAIh4yi1mcotszqcL_wJA2Ny8bDSfktPr_tX-APfLSG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVkLwgLgJFDASvCBFm_hMHhDqtWppWUVApb6l8RFaqSTLHkL9a_w6ZnIsu6jirXmKHCdyPGPPN_b4G0LeWjB7xoN3wmJfhkImRZgWjofKKLBOzIi42Yr5PFYHJ-LTqTzdIL_7szAYVtnPic1E7WqLa-RDgMoMLx4Nyy4sItsbfZz8DDGDFO609uk0WhU58le_wH2bfTjcA1m_Y2y0_233IOwyDIQWkMs8FFyw2HBeGC08JtziwjobOV2UWlkuI5uUpkwiWbqotCrlzklbKu6V98wLzeG7t8imRq9oQDZ39sfZl-UKDzJugjFsDwVynkbDqqjqFGxwpOM1M9hkC7gO4v4bqbli-kb3yb0Os9LtVskekA1fPSR3V5gMH5EfX5F3Au_pbj2Z-CmFaRv88S7sjuJyL83O6zky8dJt55qQJQqImWZTfNXBexVyz2Jx1pB-VjNqrmgbYw9lCzDijh7jYsJjcnIj_fyEDKq68s8ITdLEAsR02sSpYMYDnikBAsokUSaS1gfkfd-xue1ozjHbxmUO7g5KIV-RQgDK2leetOwe11fbQQktqyAld1NQT7_nXU_m3mnulIyLGJw8ZXySCC-NVip1LoV_CshWL9-8mydm-V-tDsib5WMY4bhtU1S-XkAdpiTgPgCyAXnaqsOyJRzZJXUMLdRrirLW1PUn1cV5wyKuNONSiOf_b9ZrchuGWX58OD56Qe4AWsQjbyGTW2Qwny78S0Bkc_OqU31Kzm56tP0BbNtOAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering+Copper+Nanoparticles+with+Photonic+Additive+for+Printed+Conductive+Patterns+by+Intense+Pulsed+Light&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Chung%2C+Wan-Yu&rft.au=Lai%2C+Yi-Chin&rft.au=Yonezawa%2C+Tetsu&rft.au=Liao%2C+Ying-Chih&rft.date=2019-07-25&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=9&rft.issue=8&rft_id=info:doi/10.3390%2Fnano9081071&rft_id=info%3Apmid%2F31349711&rft.externalDocID=PMC6723544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon