Antibody Avidity Maturation Following Recovery From Infection or the Booster Vaccination Grants Breadth of SARS-CoV-2 Neutralizing Capacity

Abstract Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to d...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of infectious diseases Vol. 227; no. 6; pp. 780 - 787
Main Authors Nakagama, Yu, Candray, Katherine, Kaku, Natsuko, Komase, Yuko, Rodriguez-Funes, Maria-Virginia, Dominguez, Rhina, Tsuchida, Tomoya, Kunishima, Hiroyuki, Nagai, Etsuko, Adachi, Eisuke, Ngoyi, Dieudonné Mumba, Yamasue, Mari, Komiya, Kosaku, Hiramatsu, Kazufumi, Uemura, Naoto, Sugiura, Yuki, Yasugi, Mayo, Yamagishi, Yuka, Mikamo, Hiroshige, Shiraishi, Satoshi, Izumo, Takehiro, Nakagama, Sachie, Watanabe, Chihiro, Nitahara, Yuko, Tshibangu-Kabamba, Evariste, Kakeya, Hiroshi, Kido, Yasutoshi
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 28.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated. Methods Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity. Results Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4–45.1] vs 64.9 [57.5–71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18–0.52 vs 0.48–0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25. Conclusions Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial. Avidity maturation augments host immunity following a natural infection and/or vaccination. For protection against SARS-CoV-2, avidity maturation was progressive beyond acute recovery from infection or became apparent after the booster vaccine dose, and granted broader neutralizing capacity against variant strains.
AbstractList Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated. Methods Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity. Results Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4–45.1] vs 64.9 [57.5–71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18–0.52 vs 0.48–0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25. Conclusions Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial.
Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated. Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity. Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4-45.1] vs 64.9 [57.5-71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18-0.52 vs 0.48-0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25. Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial.
Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated.BACKGROUNDCross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated.Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity.METHODSSera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity.Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4-45.1] vs 64.9 [57.5-71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18-0.52 vs 0.48-0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25.RESULTSCompared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4-45.1] vs 64.9 [57.5-71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18-0.52 vs 0.48-0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25.Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial.CONCLUSIONSAvidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial.
Avidity maturation augments host immunity following a natural infection and/or vaccination. For protection against SARS-CoV-2, avidity maturation was progressive beyond acute recovery from infection or became apparent after the booster vaccine dose, and granted broader neutralizing capacity against variant strains.
Abstract Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated. Methods Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity. Results Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4–45.1] vs 64.9 [57.5–71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18–0.52 vs 0.48–0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25. Conclusions Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial. Avidity maturation augments host immunity following a natural infection and/or vaccination. For protection against SARS-CoV-2, avidity maturation was progressive beyond acute recovery from infection or became apparent after the booster vaccine dose, and granted broader neutralizing capacity against variant strains.
Author Dominguez, Rhina
Adachi, Eisuke
Mikamo, Hiroshige
Nitahara, Yuko
Candray, Katherine
Kunishima, Hiroyuki
Ngoyi, Dieudonné Mumba
Hiramatsu, Kazufumi
Tshibangu-Kabamba, Evariste
Tsuchida, Tomoya
Kido, Yasutoshi
Nagai, Etsuko
Watanabe, Chihiro
Sugiura, Yuki
Shiraishi, Satoshi
Yasugi, Mayo
Komase, Yuko
Nakagama, Sachie
Rodriguez-Funes, Maria-Virginia
Kakeya, Hiroshi
Uemura, Naoto
Yamagishi, Yuka
Izumo, Takehiro
Yamasue, Mari
Nakagama, Yu
Kaku, Natsuko
Komiya, Kosaku
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-9780-9719
  surname: Nakagama
  fullname: Nakagama, Yu
  email: nakagama.yu@omu.ac.jp
– sequence: 2
  givenname: Katherine
  surname: Candray
  fullname: Candray, Katherine
– sequence: 3
  givenname: Natsuko
  surname: Kaku
  fullname: Kaku, Natsuko
– sequence: 4
  givenname: Yuko
  surname: Komase
  fullname: Komase, Yuko
– sequence: 5
  givenname: Maria-Virginia
  surname: Rodriguez-Funes
  fullname: Rodriguez-Funes, Maria-Virginia
– sequence: 6
  givenname: Rhina
  surname: Dominguez
  fullname: Dominguez, Rhina
– sequence: 7
  givenname: Tomoya
  surname: Tsuchida
  fullname: Tsuchida, Tomoya
– sequence: 8
  givenname: Hiroyuki
  surname: Kunishima
  fullname: Kunishima, Hiroyuki
– sequence: 9
  givenname: Etsuko
  surname: Nagai
  fullname: Nagai, Etsuko
– sequence: 10
  givenname: Eisuke
  surname: Adachi
  fullname: Adachi, Eisuke
– sequence: 11
  givenname: Dieudonné Mumba
  surname: Ngoyi
  fullname: Ngoyi, Dieudonné Mumba
– sequence: 12
  givenname: Mari
  surname: Yamasue
  fullname: Yamasue, Mari
– sequence: 13
  givenname: Kosaku
  surname: Komiya
  fullname: Komiya, Kosaku
– sequence: 14
  givenname: Kazufumi
  surname: Hiramatsu
  fullname: Hiramatsu, Kazufumi
– sequence: 15
  givenname: Naoto
  surname: Uemura
  fullname: Uemura, Naoto
– sequence: 16
  givenname: Yuki
  surname: Sugiura
  fullname: Sugiura, Yuki
– sequence: 17
  givenname: Mayo
  surname: Yasugi
  fullname: Yasugi, Mayo
– sequence: 18
  givenname: Yuka
  surname: Yamagishi
  fullname: Yamagishi, Yuka
– sequence: 19
  givenname: Hiroshige
  surname: Mikamo
  fullname: Mikamo, Hiroshige
– sequence: 20
  givenname: Satoshi
  surname: Shiraishi
  fullname: Shiraishi, Satoshi
– sequence: 21
  givenname: Takehiro
  surname: Izumo
  fullname: Izumo, Takehiro
– sequence: 22
  givenname: Sachie
  surname: Nakagama
  fullname: Nakagama, Sachie
  email: nakagama.yu@omu.ac.jp
– sequence: 23
  givenname: Chihiro
  surname: Watanabe
  fullname: Watanabe, Chihiro
– sequence: 24
  givenname: Yuko
  surname: Nitahara
  fullname: Nitahara, Yuko
– sequence: 25
  givenname: Evariste
  surname: Tshibangu-Kabamba
  fullname: Tshibangu-Kabamba, Evariste
– sequence: 26
  givenname: Hiroshi
  surname: Kakeya
  fullname: Kakeya, Hiroshi
– sequence: 27
  givenname: Yasutoshi
  orcidid: 0000-0003-3615-2631
  surname: Kido
  fullname: Kido, Yasutoshi
  email: kidoyasu@omu.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36546706$$D View this record in MEDLINE/PubMed
BookMark eNqFksFvFCEYxYmpsdvq1aMh8WIP08IwDMPJbDdubVI1abVXwjDQZTMLKzBrtv-C_7RsZ2u0ifHEgd97vO_xHYED550G4DVGpxhxcmad6Ww8W1qpKl4-AxNMCSvqGpMDMEGoLAvccH4IjmJcIoQqUrMX4JDUtKoZqifg59Ql2_puC6cb29m0hZ9kGoJM1js4933vf1h3B6-18hsdtnAe_ApeOqPVA-EDTAsNz72PSQd4K5WybhRfBOlShOdByy4toDfwZnp9U8z8bVHCz3pIQfb2fmc-k2up8tMvwXMj-6hf7c9j8G3-4evsY3H15eJyNr0qFMU8FaRhnLKO65pobZDiNa87rE3bGEIbiTjrGCN1y1tdGlRh1naaG95Upmpp2bXkGLwffddDu9Kd0m6XRayDXcmwFV5a8feNswtx5zcC5wIrxJrs8G7vEPz3QcckVjYq3ffSaT9EUTLKEKUVQhl9-wRd-iG4PJ8giOKGYlrSTL35M9LvLI8flYFqBFTwMQZtRG7soeic0PY5mtjtgxj3Qez3IctOn8genf8pOBkFflj_j_0FIcHLeg
CitedBy_id crossref_primary_10_3390_vaccines12010055
crossref_primary_10_1093_jleuko_qiad106
crossref_primary_10_15789_2220_7619_TAO_16938
crossref_primary_10_3390_vaccines12040423
crossref_primary_10_1038_s41598_024_57931_0
crossref_primary_10_3390_covid5040044
crossref_primary_10_3390_v15081662
crossref_primary_10_1080_21645515_2023_2276624
crossref_primary_10_1007_s11357_024_01215_y
crossref_primary_10_1016_j_vaccine_2024_126444
crossref_primary_10_3390_v15040970
crossref_primary_10_1016_j_jiac_2024_12_006
crossref_primary_10_1002_jmv_29225
crossref_primary_10_1007_s12519_023_00764_0
crossref_primary_10_1038_s41541_024_01009_5
crossref_primary_10_3389_fimmu_2023_1196988
crossref_primary_10_1080_21645515_2024_2346963
crossref_primary_10_1038_s41598_024_71047_5
crossref_primary_10_3390_vaccines12121362
Cites_doi 10.1093/cid/ciaa1275
10.1038/s41586-021-03207-w
10.1128/jcm.02262-21
10.1093/infdis/jiab300
10.1038/s41591-021-01377-8
10.1016/S2666-5247(21)00025-2
10.1056/NEJMoa2118691
10.1016/j.cmi.2022.06.020
10.1056/NEJMoa2109072
10.1038/s41577-021-00550-x
10.1038/s41598-022-12834-w
10.1016/j.isci.2021.103006
10.1093/cid/ciac262
10.1016/j.immuni.2021.06.015
10.1016/S1074-7613(00)80108-9
10.1016/j.ijid.2021.01.061
10.1093/cid/ciaa1389
10.1016/S1074-7613(00)00061-3
10.2169/internalmedicine.7884-21
10.1056/NEJMoa2105000
10.1128/Spectrum.01082-21
10.3389/fimmu.2018.00117
10.1016/j.jcv.2021.104986
10.1128/Spectrum.00965-21
10.1038/s41587-020-0631-z
10.1016/j.cell.2021.07.025
10.1038/s41586-021-03696-9
10.1126/scitranslmed.abi9915
10.1016/j.vaccine.2021.07.098
10.1016/j.immuni.2021.07.008
10.1002/jmv.26863
10.1146/annurev-immunol-020711-075032
10.1016/j.jviromet.2021.114228
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1093/infdis/jiac492
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1537-6613
EndPage 787
ExternalDocumentID PMC10044078
36546706
10_1093_infdis_jiac492
10.1093/infdis/jiac492
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 21K09078; 22K15927
– fundername: ;
  grantid: OCU-SRG2021_YR09
– fundername: ;
  grantid: JP20jk0110021; JP20wm0125003; JP20he1122001
GroupedDBID ---
-DZ
-~X
..I
.2P
.55
.GJ
.I3
.XZ
.ZR
08P
0R~
123
1KJ
1TH
29K
2AX
2WC
36B
3O-
4.4
41~
48X
53G
5GY
5RE
5VS
5WD
6.Y
70D
85S
AABZA
AACGO
AACZT
AAHBH
AAHTB
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYOK
ABBHK
ABDPE
ABEJV
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPLY
ABPPZ
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABTLG
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADACV
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFZL
AFHKK
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVQM
ATGXG
AVNTJ
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BR6
BTRTY
BVRKM
BZKNY
C45
CDBKE
CS3
CZ4
D-I
DAKXR
DCCCD
DIK
DILTD
DOOOF
DU5
D~K
EBS
ECGQY
EE~
EIHJH
EJD
EMOBN
ENERS
ESX
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HQ3
HTVGU
HW0
HZ~
IH2
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
LSO
LU7
M49
MBLQV
MHKGH
MJL
ML0
MVM
N4W
N9A
NEJ
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P0-
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TOX
TR2
VH1
W2D
W8F
WH7
X7H
X7M
Y6R
YAYTL
YKOAZ
YXANX
ZE2
ZGI
ZKG
ZXP
~91
AAYXX
ABDFA
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
YIF
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c519t-387957d9e63eef0c9696d1efb8f358a097d7736b9be2f0417bde9f984f4b52db3
IEDL.DBID TOX
ISSN 0022-1899
1537-6613
IngestDate Thu Aug 21 18:38:17 EDT 2025
Thu Jul 10 22:16:26 EDT 2025
Mon Jun 30 10:41:59 EDT 2025
Wed Feb 19 02:24:31 EST 2025
Tue Jul 01 01:31:36 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Nov 26 06:00:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords avidity
SARS-CoV-2
variants of concern
antibody maturation
neutralization breadth
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc-nd/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-387957d9e63eef0c9696d1efb8f358a097d7736b9be2f0417bde9f984f4b52db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conflict of Interest. Y. N. and Y. K. report equity ownership of Quantum Molecular Diagnostics, an Osaka Metropolitan University spinout targeting infectious diseases to develop innovative diagnostics. Y. N. and Y. K. also report receiving financial support outside of this work from Abbott Japan LLC, Japan.
ORCID 0000-0001-9780-9719
0000-0003-3615-2631
OpenAccessLink https://dx.doi.org/10.1093/infdis/jiac492
PMID 36546706
PQID 3051851525
PQPubID 41591
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10044078
proquest_miscellaneous_2757055400
proquest_journals_3051851525
pubmed_primary_36546706
crossref_citationtrail_10_1093_infdis_jiac492
crossref_primary_10_1093_infdis_jiac492
oup_primary_10_1093_infdis_jiac492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-28
PublicationDateYYYYMMDD 2023-03-28
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle The Journal of infectious diseases
PublicationTitleAlternate J Infect Dis
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Adachi (2023032810294323900_)
Bergwerk (2023032810294323900_) 2021; 385
Nakagama (2023032810294323900_) 2022
Wang (2023032810294323900_) 2021; 595
To (2023032810294323900_) 2021; 73
Takakuwa (2023032810294323900_) 2021; 60
Takita (2023032810294323900_) 2022; 12
Hacisuleyman (2023032810294323900_) 2021; 384
Hall (2023032810294323900_) 2022; 386
Furukawa (2023032810294323900_) 1999; 11
Khoury (2023032810294323900_) 2021; 27
Nitahara (2023032810294323900_) 2021; 9
Taylor (2023032810294323900_) 2021; 39
Cromer (2023032810294323900_) 2021; 21
Bauer (2023032810294323900_) 2021; 106
Löfström (2023032810294323900_) 2021; 144
Mariën (2023032810294323900_) 2021; 297
Muecksch (2023032810294323900_) 2021; 54
Nakagama (2023032810294323900_) 2021; 9
Nakagama (2023032810294323900_) 2022; 28
Chia (2023032810294323900_) 2021; 2
World Health Organization (2023032810294323900_)
Tan (2023032810294323900_) 2020; 38
Victora (2023032810294323900_) 2012; 30
Bauer (2023032810294323900_) 2021; 93
Mishra (2023032810294323900_) 2018; 9
National Institute for Biological Standards and Control. (2023032810294323900_)
Gazit (2023032810294323900_) 2022; 75
Moriyama (2023032810294323900_) 2021; 54
Luo (2023032810294323900_) 2021; 73
Pichler (2023032810294323900_) 2021; 224
Nakagama (2023032810294323900_) 2022; 60
Manivel (2023032810294323900_) 2000; 13
Tang (2023032810294323900_) 2021; 24
Gaebler (2023032810294323900_) 2021; 591
Greaney (2023032810294323900_) 2021; 13
Tong (2023032810294323900_) 2021; 184
References_xml – volume: 73
  start-page: e2946
  year: 2021
  ident: 2023032810294323900_
  article-title: Coronavirus disease 2019 (COVID-19) re-infection by a phylogenetically distinct severe acute respiratory syndrome coronavirus 2 strain confirmed by whole genome sequencing
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1275
– volume: 591
  start-page: 639
  year: 2021
  ident: 2023032810294323900_
  article-title: Evolution of antibody immunity to SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-03207-w
– volume: 60
  year: 2022
  ident: 2023032810294323900_
  article-title: A dual-antigen SARS-CoV-2 serological assay reflects antibody avidity
  publication-title: J Clin Microbiol
  doi: 10.1128/jcm.02262-21
– volume: 224
  start-page: 764
  year: 2021
  ident: 2023032810294323900_
  article-title: Marked increase in avidity of SARS-CoV-2 antibodies 7–8 months after infection is not diminished in old age
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiab300
– volume: 27
  start-page: 1205
  year: 2021
  ident: 2023032810294323900_
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01377-8
– volume: 2
  start-page: e240
  year: 2021
  ident: 2023032810294323900_
  article-title: Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00025-2
– volume: 386
  start-page: 1207
  year: 2022
  ident: 2023032810294323900_
  article-title: Protection against SARS-CoV-2 after COVID-19 vaccination and previous infection
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2118691
– volume: 28
  start-page: 1508
  year: 2022
  ident: 2023032810294323900_
  article-title: Cumulative seroprevalence among healthcare workers after the first wave of the COVID-19 pandemic in El Salvador, Central America
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2022.06.020
– volume: 385
  start-page: 1474
  year: 2021
  ident: 2023032810294323900_
  article-title: COVID-19 breakthrough infections in vaccinated health care workers
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2109072
– volume: 21
  start-page: 395
  year: 2021
  ident: 2023032810294323900_
  article-title: Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00550-x
– volume: 12
  start-page: 9147
  year: 2022
  ident: 2023032810294323900_
  article-title: Low SARS-CoV-2 antibody titers may be associated with poor clinical outcomes for patients with severe COVID-19
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-12834-w
– volume: 24
  year: 2021
  ident: 2023032810294323900_
  article-title: Epitope diversity of SARS-CoV-2 hyperimmune intravenous human immunoglobulins and neutralization of variants of concern
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103006
– volume: 75
  start-page: e545
  year: 2022
  ident: 2023032810294323900_
  article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, reinfections versus breakthrough infections: a retrospective cohort study
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciac262
– volume: 54
  start-page: 1841
  year: 2021
  ident: 2023032810294323900_
  article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.06.015
– volume: 11
  start-page: 329
  year: 1999
  ident: 2023032810294323900_
  article-title: Junctional amino acids determine the maturation pathway of an antibody
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80108-9
– ident: 2023032810294323900_
– ident: 2023032810294323900_
– volume: 106
  start-page: 61
  year: 2021
  ident: 2023032810294323900_
  article-title: The potential significance of high avidity immunoglobulin G (IgG) for protective immunity towards SARS-CoV-2
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2021.01.061
– volume: 73
  start-page: e3095
  year: 2021
  ident: 2023032810294323900_
  article-title: Kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody avidity maturation and association with disease severity
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1389
– volume: 13
  start-page: 611
  year: 2000
  ident: 2023032810294323900_
  article-title: Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)00061-3
– volume: 60
  start-page: 3827
  year: 2021
  ident: 2023032810294323900_
  article-title: Discrepant antigen-specific antibody responses causing SARS-CoV-2 persistence in a patient receiving B-cell-targeted therapy with rituximab
  publication-title: Intern Med
  doi: 10.2169/internalmedicine.7884-21
– volume: 384
  start-page: 2212
  year: 2021
  ident: 2023032810294323900_
  article-title: Vaccine breakthrough infections with SARS-CoV-2 variants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2105000
– volume: 9
  year: 2021
  ident: 2023032810294323900_
  article-title: Serological testing reveals the hidden COVID-19 burden among health care workers experiencing a SARS-CoV-2 nosocomial outbreak
  publication-title: Microbiol Spectr
  doi: 10.1128/Spectrum.01082-21
– volume: 9
  start-page: 117
  year: 2018
  ident: 2023032810294323900_
  article-title: Insights into the structural basis of antibody affinity maturation from next-generation sequencing
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00117
– volume: 144
  year: 2021
  ident: 2023032810294323900_
  article-title: Dynamics of IgG-avidity and antibody levels after COVID-19
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2021.104986
– volume: 9
  year: 2021
  ident: 2023032810294323900_
  article-title: High-resolution linear epitope mapping of the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 mRNA vaccine recipients
  publication-title: Microbiol Spectr
  doi: 10.1128/Spectrum.00965-21
– volume: 38
  start-page: 1073
  year: 2020
  ident: 2023032810294323900_
  article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0631-z
– year: 2022
  ident: 2023032810294323900_
  article-title: The impact of prior COVID-19 on vaccine response and the resultant hybrid immunity are age-dependent
  publication-title: MedRxiv
– ident: 2023032810294323900_
– volume: 184
  start-page: 4969
  year: 2021
  ident: 2023032810294323900_
  article-title: Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.025
– volume: 595
  start-page: 426
  year: 2021
  ident: 2023032810294323900_
  article-title: Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection
  publication-title: Nature
  doi: 10.1038/s41586-021-03696-9
– volume: 13
  start-page: eabi9915
  year: 2021
  ident: 2023032810294323900_
  article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.abi9915
– volume: 39
  start-page: 5688
  year: 2021
  ident: 2023032810294323900_
  article-title: Semi-quantitative, high throughput analysis of SARS-CoV-2 neutralizing antibodies: measuring the level and duration of immune response antibodies post infection/vaccination
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.07.098
– volume: 54
  start-page: 1853
  year: 2021
  ident: 2023032810294323900_
  article-title: Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.07.008
– volume: 93
  start-page: 3092
  year: 2021
  ident: 2023032810294323900_
  article-title: The challenge of avidity determination in SARS-CoV-2 serology
  publication-title: J Med Virol
  doi: 10.1002/jmv.26863
– volume: 30
  start-page: 429
  year: 2012
  ident: 2023032810294323900_
  article-title: Germinal centers
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-020711-075032
– volume: 297
  start-page: 114228
  year: 2021
  ident: 2023032810294323900_
  article-title: Evaluation of a surrogate virus neutralization test for high-throughput serosurveillance of SARS-CoV-2
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2021.114228
SSID ssj0004367
Score 2.5211694
Snippet Abstract Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in...
Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating...
Background Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating...
Avidity maturation augments host immunity following a natural infection and/or vaccination. For protection against SARS-CoV-2, avidity maturation was...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 780
SubjectTerms Antibodies, Neutralizing
Antibodies, Viral
Antibody Affinity
Avidity
BNT162 Vaccine
Coronaviruses
COVID-19
COVID-19 Serotherapy
Humans
Humoral immunity
Immunity
Immunoglobulin G
Major
Recovery (Medical)
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus
Urea
Vaccination
Vaccines
Title Antibody Avidity Maturation Following Recovery From Infection or the Booster Vaccination Grants Breadth of SARS-CoV-2 Neutralizing Capacity
URI https://www.ncbi.nlm.nih.gov/pubmed/36546706
https://www.proquest.com/docview/3051851525
https://www.proquest.com/docview/2757055400
https://pubmed.ncbi.nlm.nih.gov/PMC10044078
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQpSIuiJZXoFQGIXGKmo2T2D5uVywtaItEH9pb5FfUVBCjbBa0_Qv908wk2dCtQHD2K_LYnm8yM98Q8lYJpQzXLhQ2AQPFKhnKlLsQoIiMRzoRsUNDcXaSHZ0nH-fpvCeLXvzBhS_ZAey0LRcHV6UyicTXFjQwsuSffZ7_zoBkGV_zgo_AhBjoGe8O31A_Gyltt5Dl3QDJWxpn-og87KEiHXey3SH3XLVLtrvikatdcn_Wu8Ufk5tx1ZTa2xUd_ygt4Go6Q77OdtPpFCTtf4KGomhqwsld0Wntv9HjPgyror6mAAPpoceEj5peKAPTdoM_1BgnQw8BWtrmkvqCno6_nIYTfxHG9MQt2_8k1zj5BLSugaWfkPPp-7PJUdhXWQgNoLcGyXVBOla6jDlXRAbpcuzIFVoULBUqktxyzjIttYuLKBlxbZ0spEiKRKex1ewp2ap85Z4TitaNMA4UI4DKyETKGaQjkwljWOhKByRcb35uegpyrITxNe9c4SzvhJX3wgrIu6H_9458468934As_9lpby3qvL-pixzeO4AsWAUqIK-HZrhj6DhRlfPLRR7zFEmH4LkLyLPuZAxLMcwG41EWELFxZoYOyN-92VKVly2Pd0vWBxDtxf98_EvyACvdY_hbLPbIVlMv3SvAQ43eB0vg-NN-eyF-AZGqDUU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody+Avidity+Maturation+Following+Recovery+From+Infection+or+the+Booster+Vaccination+Grants+Breadth+of+SARS-CoV-2+Neutralizing+Capacity&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Nakagama%2C+Yu&rft.au=Candray%2C+Katherine&rft.au=Kaku%2C+Natsuko&rft.au=Komase%2C+Yuko&rft.date=2023-03-28&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=227&rft.issue=6&rft.spage=780&rft.epage=787&rft_id=info:doi/10.1093%2Finfdis%2Fjiac492&rft.externalDocID=10.1093%2Finfdis%2Fjiac492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon