Observation of heat pumping effect by radiative shuttling
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical wor...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5465 - 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.
Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials. |
---|---|
AbstractList | Abstract Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials. Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials. |
ArticleNumber | 5465 |
Author | Zhang, Sen Xu, Jianbin Ben-Abdallah, Philippe Chen, Tianle Ma, Yungui Li, Xinran Li, Yuxuan Choudhury, Pankaj K. Dang, Yongdi Jin, Yi Ju, Bing-Feng |
Author_xml | – sequence: 1 givenname: Yuxuan surname: Li fullname: Li, Yuxuan organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 2 givenname: Yongdi surname: Dang fullname: Dang, Yongdi organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 3 givenname: Sen surname: Zhang fullname: Zhang, Sen organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 4 givenname: Xinran surname: Li fullname: Li, Xinran organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 5 givenname: Tianle surname: Chen fullname: Chen, Tianle organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 6 givenname: Pankaj K. orcidid: 0000-0002-1681-9753 surname: Choudhury fullname: Choudhury, Pankaj K. organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 7 givenname: Yi surname: Jin fullname: Jin, Yi organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University – sequence: 8 givenname: Jianbin orcidid: 0000-0003-0509-9508 surname: Xu fullname: Xu, Jianbin organization: Department of Electronic Engineering, The Chinese University of Hong Kong – sequence: 9 givenname: Philippe orcidid: 0000-0002-1137-4492 surname: Ben-Abdallah fullname: Ben-Abdallah, Philippe email: pba@institutoptique.fr organization: Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Saclay – sequence: 10 givenname: Bing-Feng surname: Ju fullname: Ju, Bing-Feng organization: The State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University – sequence: 11 givenname: Yungui orcidid: 0000-0002-1859-1211 surname: Ma fullname: Ma, Yungui email: yungui@zju.edu.cn organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38937478$$D View this record in MEDLINE/PubMed https://hal.science/hal-04631932$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS1UREvpH2CBIrGBRcCvjO1lVQGtNFI3sLauk-uZjDLxYDsjtb--nknLo4t6Y-ve7xz7-rwlJ2MYkZD3jH5hVOivSTK5UDXlspZGU17fvyJnnEpWM8XFyT_nU3KR0oaWJQzTUr4hp0IboaTSZ8TcuoRxD7kPYxV8tUbI1W7a7vpxVaH32ObK3VURur4we6zSesp5KN135LWHIeHF435Ofn3_9vPqul7e_ri5ulzWbcNMrkWDrlVeG6q1c-gAPDNUgBHQGg2sazreaQAJqNSCK8mp6oRwunW00dKLc3Iz-3YBNnYX-y3EOxugt8dCiCsLMfftgJZyr6k2mnvk0ig0jtLi3bmGecU7V7w-z15rGP6zur5c2kONyoVgRvA9K-ynmd3F8HvClO22Ty0OA4wYpmQFVYILxpQu6Mdn6CZMcSy_cqC44aphqlAfHqnJbbH7c_9TGAXQM9DGkFJEb9s-H5PJEfrBMmoP0ds5-jKttMfo7X2R8mfSJ_cXRWIWpQKPK4x_n_2C6gE5ir5p |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_22_054053 crossref_primary_10_1021_acsphotonics_4c01965 |
Cites_doi | 10.1088/0022-3727/48/30/305104 10.1103/PhysRevLett.120.125501 10.1103/PhysRevLett.124.077402 10.1063/1.5084781 10.1103/PhysRevB.106.L100102 10.1063/1.2431456 10.1209/0295-5075/84/40009 10.1103/PhysRevE.80.011125 10.1103/PhysRevE.73.026109 10.1103/PhysRevB.107.134510 10.1063/1.2191730 10.1126/science.1150124 10.1038/s41598-020-60603-4 10.1103/PhysRevE.81.021111 10.1103/PhysRevLett.123.165901 10.1103/PhysRevLett.88.094302 10.1103/PhysRevLett.101.260601 10.1016/j.jqsrt.2018.02.005 10.1103/PhysRevLett.17.1286 10.1016/j.jqsrt.2020.107414 10.1103/PhysRevLett.113.074301 10.1103/PhysRevB.84.161413 10.1063/1.5063737 10.1002/andp.201900188 10.1103/PhysRevApplied.14.034023 10.1103/PhysRevB.106.235412 10.1063/5.0121043 10.1103/PhysRevLett.129.260602 10.1063/1.4950791 10.1103/PhysRevApplied.20.024061 10.1103/PhysRevApplied.15.024036 10.1103/PhysRevLett.123.025901 10.1063/1.4829618 10.1364/OE.26.00A209 10.1103/PhysRevB.101.165435 10.1364/OL.43.005619 10.1063/1.4905132 10.1063/1.4963317 10.1063/5.0180035 10.1103/PhysRevB.103.115440 10.1021/acsnano.8b01645 10.1016/0031-8914(65)90045-5 10.1021/acsphotonics.1c00896 10.1103/PhysRevB.79.075107 10.1063/1.4985055 10.1103/PhysRevApplied.6.054003 10.1103/PhysRevLett.112.044301 10.1103/PhysRevLett.93.184301 10.1063/1.4941405 10.1103/PhysRevB.94.241401 10.1103/PhysRevLett.121.023903 10.1103/PhysRevApplied.18.034049 10.1063/5.0147225 10.1103/RevModPhys.84.1045 10.1063/1.4916730 10.1115/1.4000171 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 1XC VOOES DOA |
DOI | 10.1038/s41467-024-49802-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_02f808982fe2497e9b00d8adb51f72db oai_HAL_hal_04631932v1 38937478 10_1038_s41467_024_49802_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62075196 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62075196 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 1XC VOOES PUEGO |
ID | FETCH-LOGICAL-c519t-35ebc7f89088bbebaaf1903a93ac98a1d5d2d8aa4ae776274207d33b8cb0584f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:59 EDT 2025 Fri May 09 12:27:00 EDT 2025 Fri Jul 11 10:08:09 EDT 2025 Wed Aug 13 04:54:23 EDT 2025 Thu Apr 03 07:00:33 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 02:11:15 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-35ebc7f89088bbebaaf1903a93ac98a1d5d2d8aa4ae776274207d33b8cb0584f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0509-9508 0000-0002-1859-1211 0000-0002-1137-4492 0000-0002-1681-9753 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49802-z |
PMID | 38937478 |
PQID | 3072927517 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02f808982fe2497e9b00d8adb51f72db hal_primary_oai_HAL_hal_04631932v1 proquest_miscellaneous_3073231178 proquest_journals_3072927517 pubmed_primary_38937478 crossref_citationtrail_10_1038_s41467_024_49802_z crossref_primary_10_1038_s41467_024_49802_z springer_journals_10_1038_s41467_024_49802_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-27 |
PublicationDateYYYYMMDD | 2024-06-27 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Fernández-Alcázar, Ellis, Shapiro, Kottos (CR37) 2019; 123 Kubytskyi, Biehs, Ben-Abdallah (CR19) 2014; 113 Ordonez-Miranda, Anufriev, Nomura, Volz (CR45) 2022; 106 Yang, Gordon, Urban (CR23) 2019; 125 Joulain, Ezzahri, Drevillon, Ben-Abdallah (CR4) 2015; 106 Li, Zhan, Hänggi, Li (CR41) 2009; 80 Segal (CR29) 2008; 101 Torrent, Poncelet, Batsale (CR39) 2018; 120 Li, Wang, Casati (CR48) 2006; 88 Ben-Abdallah, Biehs (CR5) 2014; 112 Fiorino (CR17) 2018; 12 Dang (CR55) 2023; 123 Messina, Ott, Kathmann, Biehs, Ben-Abdallah (CR31) 2021; 103 Ito, Nishikawa, Iizuka (CR21) 2016; 108 Segal, Nitzan (CR27) 2006; 73 Ghanekar, Ji, Zheng (CR15) 2016; 109 Biehs, Ben-Abdallah (CR38) 2022; 106 Wan (CR56) 2019; 531 Messina, Ben-Abdallah (CR30) 2020; 101 Prod’homme, Ordonez-Miranda, Ezzahri, Drevillon, Joulain (CR6) 2016; 119 Ben-Abdallah, Biehs (CR13) 2013; 103 Krapez (CR46) 2023; 133 Prod’homme, Ordonez-Miranda, Ezzahri, Drévillon, Joulain (CR8) 2018; 210 Fernández-Alcázar, Li, Nafari, Kottos (CR32) 2021; 8 Ordonez-Miranda, Ezzahri, Drevillon, Joulain (CR7) 2016; 6 Ben-Abdallah, Rodriguez (CR36) 2022; 129 Terraneo, Peyrard, Casati (CR2) 2002; 88 Li, Wang, Casati (CR3) 2004; 93 Koledov (CR35) 2018; 1092 Buddhiraju, Li, Fan (CR33) 2020; 124 Kathmann, Reina, Messina, Ben-Abdallah, Biehs (CR26) 2020; 10 Qazilbash (CR51) 2009; 79 Jia, Fu, Su, Ma (CR57) 2018; 43 Qazilbash (CR50) 2007; 318 Kim (CR34) 2007; 90 Liu, Xiao (CR44) 2022; 18 Barker, Verleur, Guggenheim (CR49) 1966; 17 Latella, Messina, Rubi, Ben-Abdallah (CR28) 2018; 121 CR54 Zhang (CR53) 2022; 132 Dyakov, Dai, Yan, Qiu (CR20) 2015; 48 Ordonez-Miranda, Joulain, Ezzahri, Drevillon, Alvarado-Gil (CR47) 2019; 125 Ben-Abdallah (CR22) 2017; 7 Ordonez-Miranda, Ezzahri, Tiburcio-Moreno, Joulain, Drevillon (CR24) 2019; 123 Van Zwol, Joulain, Ben-Abdallah, Chevrier (CR12) 2011; 84 Forero-Sandoval (CR18) 2020; 14 Chen, Liu, Tian, Wang, Zheng (CR9) 2021; 259 Ghanekar (CR16) 2018; 26 Li, Hänggi, Li (CR40) 2008; 84 Ren, Li (CR42) 2010; 81 Li (CR1) 2012; 84 Moncada-Villa, Cuevas (CR10) 2021; 15 Saheb Dey, Timossi, Amico, Marchegiani (CR43) 2023; 107 Li (CR11) 2023; 20 Looyenga (CR52) 1965; 31 Ito, Nishikawa, Iizuka, Toshiyoshi (CR14) 2014; 105 Ben-Abdallah, Biehs (CR25) 2016; 94 S Zhang (49802_CR53) 2022; 132 R Messina (49802_CR30) 2020; 101 S Saheb Dey (49802_CR43) 2023; 107 PJ Van Zwol (49802_CR12) 2011; 84 LJ Fernández-Alcázar (49802_CR32) 2021; 8 J Ren (49802_CR42) 2010; 81 D Segal (49802_CR29) 2008; 101 F Yang (49802_CR23) 2019; 125 VV Koledov (49802_CR35) 2018; 1092 N Li (49802_CR1) 2012; 84 I Latella (49802_CR28) 2018; 121 N Li (49802_CR40) 2008; 84 A Fiorino (49802_CR17) 2018; 12 AS Barker (49802_CR49) 1966; 17 E Moncada-Villa (49802_CR10) 2021; 15 M Terraneo (49802_CR2) 2002; 88 Y Dang (49802_CR55) 2023; 123 R Messina (49802_CR31) 2021; 103 C Wan (49802_CR56) 2019; 531 S Buddhiraju (49802_CR33) 2020; 124 C Kathmann (49802_CR26) 2020; 10 FQ Chen (49802_CR9) 2021; 259 J-C Krapez (49802_CR46) 2023; 133 A Ghanekar (49802_CR16) 2018; 26 K Joulain (49802_CR4) 2015; 106 J Ordonez-Miranda (49802_CR45) 2022; 106 Q Liu (49802_CR44) 2022; 18 B Li (49802_CR48) 2006; 88 N Li (49802_CR41) 2009; 80 P Ben-Abdallah (49802_CR5) 2014; 112 B-J Kim (49802_CR34) 2007; 90 IY Forero-Sandoval (49802_CR18) 2020; 14 J Ordonez-Miranda (49802_CR24) 2019; 123 BW Li (49802_CR3) 2004; 93 H Prod’homme (49802_CR8) 2018; 210 H Prod’homme (49802_CR6) 2016; 119 D Segal (49802_CR27) 2006; 73 H Looyenga (49802_CR52) 1965; 31 MM Qazilbash (49802_CR50) 2007; 318 J Ordonez-Miranda (49802_CR47) 2019; 125 P Ben-Abdallah (49802_CR13) 2013; 103 P Ben-Abdallah (49802_CR25) 2016; 94 Y Li (49802_CR11) 2023; 20 P Ben-Abdallah (49802_CR22) 2017; 7 J Ordonez-Miranda (49802_CR7) 2016; 6 K Ito (49802_CR21) 2016; 108 P Ben-Abdallah (49802_CR36) 2022; 129 K Ito (49802_CR14) 2014; 105 V Kubytskyi (49802_CR19) 2014; 113 SA Biehs (49802_CR38) 2022; 106 H Li (49802_CR37) 2019; 123 MM Qazilbash (49802_CR51) 2009; 79 49802_CR54 A Ghanekar (49802_CR15) 2016; 109 SA Dyakov (49802_CR20) 2015; 48 S Jia (49802_CR57) 2018; 43 D Torrent (49802_CR39) 2018; 120 |
References_xml | – volume: 48 start-page: 305104 year: 2015 ident: CR20 article-title: Near field thermal memory based on radiative phase bistability of VO publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/30/305104 – volume: 120 start-page: 125501 year: 2018 ident: CR39 article-title: Nonreciprocal thermal material by spatiotemporal modulation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.125501 – volume: 124 start-page: 077402 year: 2020 ident: CR33 article-title: Photonic refrigeration from time-modulated thermal emission publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.077402 – volume: 125 start-page: 064302 year: 2019 ident: CR47 article-title: Periodic amplification of radiative heat transfer publication-title: J. Appl. Phys. doi: 10.1063/1.5084781 – volume: 106 start-page: L100102 year: 2022 ident: CR45 article-title: Net heat current at zero mean temperature gradient publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.L100102 – volume: 90 start-page: 023515 year: 2007 ident: CR34 article-title: Temperature dependence of the first-order metal-insulator transition in VO and programmable critical temperature sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.2431456 – volume: 84 start-page: 40009 year: 2008 ident: CR40 article-title: Ratcheting heat flux against a thermal bias publication-title: Europhys. Lett. doi: 10.1209/0295-5075/84/40009 – ident: CR54 – volume: 80 start-page: 011125 year: 2009 ident: CR41 article-title: Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.011125 – volume: 73 start-page: 026109 year: 2006 ident: CR27 article-title: Molecular heat pump publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.026109 – volume: 107 start-page: 134510 year: 2023 ident: CR43 article-title: Negative differential thermal conductance by photonic transport in electronic circuits publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.134510 – volume: 88 start-page: 143501 year: 2006 ident: CR48 article-title: Negative differential thermal resistance and thermal transistor publication-title: Appl. Phys. Lett. doi: 10.1063/1.2191730 – volume: 318 start-page: 1750 year: 2007 end-page: 1753 ident: CR50 article-title: Mott transition in VO revealed by infrared spectroscopy and nano-imaging publication-title: Science doi: 10.1126/science.1150124 – volume: 10 year: 2020 ident: CR26 article-title: Scalable radiative thermal logic gates based on nanoparticle networks publication-title: Sci. Rep. doi: 10.1038/s41598-020-60603-4 – volume: 81 start-page: 021111 year: 2010 ident: CR42 article-title: Emergence and control of heat current from strict zero thermal bias publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.021111 – volume: 123 start-page: 165901 year: 2019 ident: CR37 article-title: Adiabatic thermal radiation pumps for thermal photonics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.165901 – volume: 88 start-page: 094302 year: 2002 ident: CR2 article-title: Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.094302 – volume: 101 start-page: 260601 year: 2008 ident: CR29 article-title: Stochastic pumping of heat: approaching the carnot efficiency publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.260601 – volume: 210 start-page: 52 year: 2018 end-page: 61 ident: CR8 article-title: VO -based radiative thermal transistor with a semi-transparent base publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.02.005 – volume: 17 start-page: 1286 year: 1966 end-page: 1289 ident: CR49 article-title: Infrared optical properties of vanadium dioxide above and below the transition temperature publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.17.1286 – volume: 259 start-page: 107414 year: 2021 ident: CR9 article-title: Non-contact thermal transistor effects modulated by nanoscale mechanical deformation publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2020.107414 – volume: 113 start-page: 074301 year: 2014 ident: CR19 article-title: Radiative bistability and thermal memory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.074301 – volume: 84 start-page: 161413 year: 2011 ident: CR12 article-title: Phonon polaritons enhance near-field thermal transfer across the phase transition of VO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.161413 – volume: 125 start-page: 025109 year: 2019 ident: CR23 article-title: Theoretical framework of the thermal memristor via a solid-state phase change material publication-title: J. Appl. Phys. doi: 10.1063/1.5063737 – volume: 531 start-page: 1900188 year: 2019 ident: CR56 article-title: On the optical properties of thin-film vanadium dioxide from the visible to the far infrared publication-title: Ann. Phys. doi: 10.1002/andp.201900188 – volume: 14 start-page: 034023 year: 2020 ident: CR18 article-title: VO substrate effect on the thermal rectification of a far-field radiative diode publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034023 – volume: 106 start-page: 235412 year: 2022 ident: CR38 article-title: Heat transfer mediated by the Berry phase in nonreciprocal many-body systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.235412 – volume: 132 start-page: 223104 year: 2022 ident: CR53 article-title: Self-adaptive passive temperature management for silicon chips based on near-field thermal radiation publication-title: J. Appl. Phys. doi: 10.1063/5.0121043 – volume: 129 start-page: 260602 year: 2022 ident: CR36 article-title: Controlling local thermal states in classical many-body systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.260602 – volume: 119 start-page: 194502 year: 2016 ident: CR6 article-title: Optimized thermal amplification in a radiative transistor publication-title: J. Appl. Phys. doi: 10.1063/1.4950791 – volume: 20 start-page: 024061 year: 2023 ident: CR11 article-title: Radiative thermal transistor publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.024061 – volume: 15 start-page: 024036 year: 2021 ident: CR10 article-title: Normal-metal–superconductor near-field thermal diodes and transistors publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.024036 – volume: 123 start-page: 025901 year: 2019 ident: CR24 article-title: Radiative thermal memristor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.025901 – volume: 103 start-page: 191907 year: 2013 ident: CR13 article-title: Phase-change radiative thermal diode publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829618 – volume: 26 start-page: A209 year: 2018 end-page: A218 ident: CR16 article-title: Near-field thermal rectification devices using phase change periodic nanostructure publication-title: Opt. Express doi: 10.1364/OE.26.00A209 – volume: 101 start-page: 165435 year: 2020 ident: CR30 article-title: Many-body near-field radiative heat pumping publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.165435 – volume: 43 start-page: 5619 year: 2018 end-page: 5622 ident: CR57 article-title: Far-field radiative thermal rectifier based on nanostructures with vanadium dioxide publication-title: Opt. Lett. doi: 10.1364/OL.43.005619 – volume: 105 start-page: 253503 year: 2014 ident: CR14 article-title: Experimental investigation of radiative thermal rectifier using vanadium dioxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905132 – volume: 1092 start-page: 012108 year: 2018 ident: CR35 article-title: Interaction of electromagnetic waves with VO2 nanoparticles and films in optical and millimetre wave ranges: Prospective for nano-photonics, nano-antennas, and sensors publication-title: J. Phys.: Conf. Ser. – volume: 109 start-page: 123106 year: 2016 ident: CR15 article-title: High-rectification near-field thermal diode using phase change periodic nanostructure publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963317 – volume: 123 start-page: 222201 year: 2023 ident: CR55 article-title: Radiative thermal coats for passive temperature management publication-title: Appl. Phys. Lett. doi: 10.1063/5.0180035 – volume: 103 start-page: 115440 year: 2021 ident: CR31 article-title: Radiative cooling induced by time-symmetry breaking in periodically driven systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.115440 – volume: 12 start-page: 5774 year: 2018 end-page: 5779 ident: CR17 article-title: A thermal diode based on nanoscale thermal radiation publication-title: ACS Nano doi: 10.1021/acsnano.8b01645 – volume: 31 start-page: 401 year: 1965 end-page: 406 ident: CR52 article-title: Dielectric constants of heterogeneous mixtures publication-title: Physica doi: 10.1016/0031-8914(65)90045-5 – volume: 8 start-page: 2973 year: 2021 end-page: 2979 ident: CR32 article-title: Implementation of optimal thermal radiation pumps using adiabatically modulated photonic cavities publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c00896 – volume: 79 year: 2009 ident: CR51 article-title: Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.075107 – volume: 7 start-page: 065002 year: 2017 ident: CR22 article-title: Thermal memristor and neuromorphic networks for manipulating heat flow publication-title: AIP Adv. doi: 10.1063/1.4985055 – volume: 6 start-page: 054003 year: 2016 ident: CR7 article-title: Transistorlike device for heating and cooling based on the thermal hysteresis of VO publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.6.054003 – volume: 112 start-page: 044301 year: 2014 ident: CR5 article-title: Near-field thermal transistor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.044301 – volume: 93 start-page: 184301 year: 2004 ident: CR3 article-title: Thermal diode: rectification of heat flux publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.184301 – volume: 108 start-page: 053507 year: 2016 ident: CR21 article-title: Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941405 – volume: 94 start-page: 241401 year: 2016 ident: CR25 article-title: Towards Boolean operations with thermal photons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.241401 – volume: 121 start-page: 023903 year: 2018 ident: CR28 article-title: Radiative heat shuttling publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.023903 – volume: 18 start-page: 034049 year: 2022 ident: CR44 article-title: Energy harvesting from thermal variation with phase-change materials publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.034049 – volume: 133 start-page: 195102 year: 2023 ident: CR46 article-title: Influence of thermal hysteresis on the heat shuttling effect: the case of VO publication-title: J. Appl. Phys. doi: 10.1063/5.0147225 – volume: 84 start-page: 1045 year: 2012 ident: CR1 article-title: Phononics: manipulating heat flow with electronic analogs and beyond publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1045 – volume: 106 start-page: 133505 year: 2015 ident: CR4 article-title: Modulation and amplification of radiative far field heat transfer: towards a simple radiative thermal transistor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916730 – volume: 133 start-page: 195102 year: 2023 ident: 49802_CR46 publication-title: J. Appl. Phys. doi: 10.1063/5.0147225 – volume: 318 start-page: 1750 year: 2007 ident: 49802_CR50 publication-title: Science doi: 10.1126/science.1150124 – volume: 8 start-page: 2973 year: 2021 ident: 49802_CR32 publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c00896 – volume: 80 start-page: 011125 year: 2009 ident: 49802_CR41 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.011125 – volume: 129 start-page: 260602 year: 2022 ident: 49802_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.260602 – volume: 90 start-page: 023515 year: 2007 ident: 49802_CR34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2431456 – volume: 18 start-page: 034049 year: 2022 ident: 49802_CR44 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.034049 – volume: 26 start-page: A209 year: 2018 ident: 49802_CR16 publication-title: Opt. Express doi: 10.1364/OE.26.00A209 – volume: 84 start-page: 40009 year: 2008 ident: 49802_CR40 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/84/40009 – volume: 12 start-page: 5774 year: 2018 ident: 49802_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.8b01645 – volume: 10 year: 2020 ident: 49802_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-020-60603-4 – volume: 106 start-page: 235412 year: 2022 ident: 49802_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.235412 – volume: 107 start-page: 134510 year: 2023 ident: 49802_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.134510 – volume: 210 start-page: 52 year: 2018 ident: 49802_CR8 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.02.005 – volume: 123 start-page: 222201 year: 2023 ident: 49802_CR55 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0180035 – volume: 103 start-page: 191907 year: 2013 ident: 49802_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829618 – volume: 121 start-page: 023903 year: 2018 ident: 49802_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.023903 – volume: 132 start-page: 223104 year: 2022 ident: 49802_CR53 publication-title: J. Appl. Phys. doi: 10.1063/5.0121043 – volume: 1092 start-page: 012108 year: 2018 ident: 49802_CR35 publication-title: J. Phys.: Conf. Ser. – volume: 109 start-page: 123106 year: 2016 ident: 49802_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963317 – volume: 113 start-page: 074301 year: 2014 ident: 49802_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.074301 – volume: 108 start-page: 053507 year: 2016 ident: 49802_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941405 – volume: 105 start-page: 253503 year: 2014 ident: 49802_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905132 – volume: 88 start-page: 143501 year: 2006 ident: 49802_CR48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2191730 – volume: 17 start-page: 1286 year: 1966 ident: 49802_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.17.1286 – volume: 103 start-page: 115440 year: 2021 ident: 49802_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.115440 – volume: 120 start-page: 125501 year: 2018 ident: 49802_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.125501 – volume: 84 start-page: 161413 year: 2011 ident: 49802_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.161413 – volume: 84 start-page: 1045 year: 2012 ident: 49802_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1045 – volume: 125 start-page: 064302 year: 2019 ident: 49802_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.5084781 – volume: 101 start-page: 260601 year: 2008 ident: 49802_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.260601 – volume: 101 start-page: 165435 year: 2020 ident: 49802_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.165435 – volume: 93 start-page: 184301 year: 2004 ident: 49802_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.184301 – volume: 88 start-page: 094302 year: 2002 ident: 49802_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.094302 – volume: 6 start-page: 054003 year: 2016 ident: 49802_CR7 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.6.054003 – volume: 15 start-page: 024036 year: 2021 ident: 49802_CR10 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.024036 – volume: 73 start-page: 026109 year: 2006 ident: 49802_CR27 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.026109 – volume: 94 start-page: 241401 year: 2016 ident: 49802_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.241401 – volume: 106 start-page: L100102 year: 2022 ident: 49802_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.L100102 – volume: 106 start-page: 133505 year: 2015 ident: 49802_CR4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916730 – volume: 112 start-page: 044301 year: 2014 ident: 49802_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.044301 – ident: 49802_CR54 doi: 10.1115/1.4000171 – volume: 119 start-page: 194502 year: 2016 ident: 49802_CR6 publication-title: J. Appl. Phys. doi: 10.1063/1.4950791 – volume: 7 start-page: 065002 year: 2017 ident: 49802_CR22 publication-title: AIP Adv. doi: 10.1063/1.4985055 – volume: 124 start-page: 077402 year: 2020 ident: 49802_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.077402 – volume: 123 start-page: 025901 year: 2019 ident: 49802_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.025901 – volume: 20 start-page: 024061 year: 2023 ident: 49802_CR11 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.024061 – volume: 14 start-page: 034023 year: 2020 ident: 49802_CR18 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034023 – volume: 259 start-page: 107414 year: 2021 ident: 49802_CR9 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2020.107414 – volume: 123 start-page: 165901 year: 2019 ident: 49802_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.165901 – volume: 48 start-page: 305104 year: 2015 ident: 49802_CR20 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/30/305104 – volume: 79 year: 2009 ident: 49802_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.075107 – volume: 125 start-page: 025109 year: 2019 ident: 49802_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.5063737 – volume: 43 start-page: 5619 year: 2018 ident: 49802_CR57 publication-title: Opt. Lett. doi: 10.1364/OL.43.005619 – volume: 531 start-page: 1900188 year: 2019 ident: 49802_CR56 publication-title: Ann. Phys. doi: 10.1002/andp.201900188 – volume: 81 start-page: 021111 year: 2010 ident: 49802_CR42 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.021111 – volume: 31 start-page: 401 year: 1965 ident: 49802_CR52 publication-title: Physica doi: 10.1016/0031-8914(65)90045-5 |
SSID | ssj0000391844 |
Score | 2.4823391 |
Snippet | Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially... Abstract Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was... |
SourceID | doaj hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5465 |
SubjectTerms | 639/624/399/1015 639/766/530/951 Composite materials Conduction heating Conductive heat transfer Controllability Emissivity Engineering Sciences Heat Heat exchange Heat flow Heat flux Heat transmission Humanities and Social Sciences multidisciplinary Phase change materials Photons Physics Pumping Science Science (multidisciplinary) Solids Temperature Temperature dependence Temperature gradients Thermal management |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxUxEJ4YEhMuRgV1FUkh3rRht-1u2yMayAsBvUjCrWl323Aw7xHePhP4653p7lshRLlw3Xa72-l05pv--AbgU123KnqruW985KoOHTcyNbyzRO8lbGM8rXecfW9m5-rkor64k-qLzoQN9MCD4A5KkUxprBEpYqSgI3H4dcZ3oa6SFl0g64s-704wlW2wtBi6qPGWTCnNwVJlm4AuiStr0Azc3vNEmbAf_cslHYd8iDUf7JNm93P8El6MuJEdDv_7Cp7F-Wt4PmSSvNkC-yNMy6tskRiZWHaFQ4WNseHMBgs37JqYCMjAseXlqu_pKvo2nB8f_fw242NWBN4i2uq5rGNodTJ0QCmEGLxP6NSlt9K31viqqzuBAvLKR60ps44odSdlMG0oEW0k-QY25ot5fAesVamRlcCIqdWqjI0JGJ6lpowqeJWSLaBaS8i1I2U4Za745fLWtTRukKpDqbosVXdbwOfpnauBMOO_tb-S4KeaRHadH6AKuFEF3GMqUMA-Dtu9NmaHp46eER8aQdTfVQE761F14zRdOkm86ULXlS5gbyrGCUa7Jn4eF6tcRyIIrrQp4O2gDdOnMtpTVPJlrR5_G_93r98_Ra8_wKYgbS4bLvQObPTXq_gRAVIfdvNc-AMFMQfX priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgCImXaXyubKCCeINobZI2yRMaiOOE-Hhh0t6ipE3YA7re7nqTtr8eO-11mib22qRpYzu24zg_A7yrqkYGZxRztQtMVr5lWsSatYbgvbiptaN4x4-f9fxEfjutTseA23pMq9zqxKSo266hGPmRIIhrrqpSfVyeM6oaRaerYwmN-_CgREtDKV169nWKsRD6uZZyvCtTCH20lkkzoGFi0mhUBlc37FGC7Ucrc0ZJkbc9zlunpckIzfZgd_Qe8-OB3Y_hXlg8gYdDPcnLp2B--SnImncxJ0WbL5FhOFg-ZG7k_jJfER4Bqbl8fbbpe7qQ_gxOZl9-f56zsTYCa9Dn6pmogm9U1JSm5H3wzkU07cIZ4RqjXdlWLW-1c9IFpai-Di9UK4TXjS_Q54jiOewsukXYh7yRsRYlx31To2QRau1xkxbrIkjvZIwmg3JLIduMwOFUv-KvTQfYQtuBqhapahNV7VUG76d3lgNsxp29PxHhp54EeZ0edKs_dlxB2D_qQhvNY8AtowoE5ogzbH1VRsVbn8FbZNuNMebH3y09I1Q0clQvygwOt1y142Jd22vRyuDN1IzLjM5O3CJ0m9RHoCtcKp3Bi0Eapk8ln09Sy4eteFwP_v9Zv7z7Xw7gESc5LWrG1SHs9KtNeIUOUO9fJyn_BymM_yI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcUHmnLZVB3CAisZ3YPi6IarXicYBKvVl2YtMD2q12s0jtr--M80BVAalXe-zEM2PP2B5_A_CmqhoZnFG5q13IZeXbXItY560heC9uau3ovOPL13p-Khdn1dkO8PEtTAraT5CWaZkeo8Peb2Sa0mhRcmk0zuKre7BHUO2o23uz2eL7YjpZIcxzLeXwQqYQ-i-Nb1ihBNaPtuWcQiFv-5m37kiT6TnZh4eDz8hm_V8-gp2wfAz3-yySl0_AfPPT0SpbRUbLK7tAMWFnrI_XYP6SrQmFgBY3tjnfdh09Q38Kpyeffnyc50NGhLxBT6vLRRV8o6Km4CTvg3cuokEXzgjXGO3Ktmp5q52TLihFWXV4oVohvG58gZ5GFM9gd7lahhfAGhlrUXLcLTVKFqHWHrdmsS6C9E7GaDIoRw7ZZoALp6wVv2y6thba9ly1yFWbuGqvMng7tbnowTL-S_2BGD9REtB1Klitf9pB8EgfdaGN5jHgRlEFgnDEEba-KqPirc_gNYrtRh_z2WdLZYSFRu7p7zKDo1GqdpiiGysIM52rqlQZvJqqcXLRjYlbhtU20Qh0gEulM3jea8P0qeTpSap5N6rHn87_PeqDu5EfwgNOelvUOVdHsNutt-ElukGdPx70_hqiZv7Z priority: 102 providerName: Springer Nature |
Title | Observation of heat pumping effect by radiative shuttling |
URI | https://link.springer.com/article/10.1038/s41467-024-49802-z https://www.ncbi.nlm.nih.gov/pubmed/38937478 https://www.proquest.com/docview/3072927517 https://www.proquest.com/docview/3073231178 https://hal.science/hal-04631932 https://doaj.org/article/02f808982fe2497e9b00d8adb51f72db |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4XGFVAvEEgiZ3YfkCoq1aqig0EVOpbZCc2e5ja0aaI7q_nzvlA0wYSL4nkXBzl7PP9zh-_A3iZZSW3WolI59pGPDNVJJnLo0oRvVeqcqlpvuPkNJ_M-HSezXegS3fUKnB9Y2hH-aRmq_M3v35s36PBv2uOjMu3a-7NHb1NxJVEC7_chX30TIIyGpy0cN-PzExhQMPbszM3v3rFP3kaf_Q6Z7RJ8joCvbZ66p3S-C7cadFkOGya_x7s2MV9uNXkl9w-APXJ9JOu4dKFNPCGF9iAWFnY7OQIzTZcET8BDXvh-mxT13RA_SHMxsffRpOozZUQlYjB6ohl1pTCSdq2ZIw1Wjt09UwrpksldVJlVVpJrbm2QlC-nTQWFWNGliZGDOLYI9hbLBf2AMKSu5wlKcZRpeCxzaXBoM3lseVGc-dUAEmnoaJsicQpn8V54Re0mSwarRao1cJrtbgM4FX_zkVDo_FP6SNSfC9JFNi-YLn6XrQWhfJOxlLJ1FkMIYUlckf8w8pkiRNpZQJ4gc12pY7J8GNBZcSSRsD1ZxLAYdeqRdf3CkZs6qnIEhHA8_4xmh2tpeiFXW68DENonAgZwOOmN_Sf8hiQ05PXXff4U_nf__rJ_4k_hdsp9ds4j1JxCHv1amOfIUCqzQB2xVzgVY4_DGB_OJx-neL96Pj08xcsHeWjgZ96GHjr-A0oXQ3w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgYDgBFET24mdA0LlsWzptlxaqTfXTmx6qDbb3Sxo-6P4jczkVVUVvfUaO5N4PJ6H7fkG4G2aFsKZXEYmMy4SqS0jxX0WlTnBe7E8U4b2O3b3svGB-HGYHq7B3z4Xhq5V9jqxUdRlVdAe-SYniGsm00R-mp1GVDWKTlf7EhqtWOy41R8M2RYft7_i_L5jbPRt_8s46qoKRAV6K3XEU2cL6RVd8LHWWWM8GkVucm6KXJmkTEtWKmOEcVJSZRoWy5Jzqwobo7X2HOnegJuCoyWnzPTR92FPh9DWlRBdbk7M1eZCNJoIDWEkcoXK5-yC_WvKBKBVO6ZLmJc93Euns43RG92Du523Gm614nUf1tz0Adxq61euHkL-0w6bumHlQ1Ls4QwFBImF7U2R0K7COeEfkFoNF8fLuqYE-EdwcC1cewzr02rqnkJYCJ_xhGGcVkgRu0xZDAp9FjthjfA-DyDpOaSLDqic6mWc6ObAnCvdclUjV3XDVX0WwPvhnVkL03Fl78_E-KEnQWw3D6r5L92tWOzvVaxyxbzDEFU6Ao_EEZY2TbxkpQ3gDU7bBRrjrYmmZ4TCRo7x7ySAjX5WdaccFvpclAN4PTTjsqazGjN11bLpw9H1TqQK4EkrDcOnGh9TUMuHXjzOif9_1M-u_pdXcHu8vzvRk-29nedwh5HMxlnE5Aas1_Ole4HOV21fNhIfwtF1L7F_T449Aw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBQKCE0Sb2E7sHBBqaVdbWpYKUak3105seqh2t_sAbX8av46ZvKqqordeY8eJx-N5efwNwLs0LYQzuYxMZlwkUltGivssKnOC92J5pgzFO76NsuGh-HqUHq3B3_YuDKVVtjKxEtTlpKAYeZ8TxDWTaSL7vkmLONgefJ6eRVRBik5a23IaNYvsudUfdN_mn3a3ca3fMzbY-fllGDUVBqICLZdFxFNnC-kVJftY66wxHhUkNzk3Ra5MUqYlK5UxwjgpqUoNi2XJuVWFjVFze47j3oJ1SV5RD9a3dkYHP7oID2GvKyGamzoxV_25qOQSqsVI5ApF0fklbVgVDUAdd0IpmVft3StntZUKHNyHe43tGm7WzPYA1tz4Idyuq1muHkH-3XYh3nDiQxLz4RTZBQcL67yR0K7CGaEhkJAN5yfLxYKuwz-Gwxuh2xPojSdj9wzCQviMJwy9tgLJ6DJl0UX0WeyENcL7PICkpZAuGthyqp5xqqvjc650TVWNVNUVVfV5AB-6d6Y1aMe1vbeI8F1PAtyuHkxmv3Szf7G_V7HKFfMOHVbpCEoSZ1jaNPGSlTaAt7hsl8YYbu5rekaYbGQm_04C2GhXVTeiYq4vGDuAN10zbnI6uTFjN1lWfTga4olUATytuaH7VGVxCmr52LLHxeD_n_Xz6__lNdzB7aX3d0d7L-AuI5aNs4jJDegtZkv3Ei2xhX3VsHwIxze9y_4BlTdClQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+heat+pumping+effect+by+radiative+shuttling&rft.jtitle=Nature+communications&rft.au=Li%2C+Yuxuan&rft.au=Dang%2C+Yongdi&rft.au=Zhang%2C+Sen&rft.au=Li%2C+Xinran&rft.date=2024-06-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-49802-z&rft.externalDocID=10_1038_s41467_024_49802_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |