Observation of heat pumping effect by radiative shuttling

Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical wor...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5465 - 7
Main Authors Li, Yuxuan, Dang, Yongdi, Zhang, Sen, Li, Xinran, Chen, Tianle, Choudhury, Pankaj K., Jin, Yi, Xu, Jianbin, Ben-Abdallah, Philippe, Ju, Bing-Feng, Ma, Yungui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials.
AbstractList Abstract Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges. Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials.
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.Authors demonstrate a net heat flux between two objects at averagely zero temperature gradient, exploring the nonlinear thermal emissivity based on phase change materials.
ArticleNumber 5465
Author Zhang, Sen
Xu, Jianbin
Ben-Abdallah, Philippe
Chen, Tianle
Ma, Yungui
Li, Xinran
Li, Yuxuan
Choudhury, Pankaj K.
Dang, Yongdi
Jin, Yi
Ju, Bing-Feng
Author_xml – sequence: 1
  givenname: Yuxuan
  surname: Li
  fullname: Li, Yuxuan
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 2
  givenname: Yongdi
  surname: Dang
  fullname: Dang, Yongdi
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 3
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 4
  givenname: Xinran
  surname: Li
  fullname: Li, Xinran
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 5
  givenname: Tianle
  surname: Chen
  fullname: Chen, Tianle
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 6
  givenname: Pankaj K.
  orcidid: 0000-0002-1681-9753
  surname: Choudhury
  fullname: Choudhury, Pankaj K.
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 7
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
– sequence: 8
  givenname: Jianbin
  orcidid: 0000-0003-0509-9508
  surname: Xu
  fullname: Xu, Jianbin
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong
– sequence: 9
  givenname: Philippe
  orcidid: 0000-0002-1137-4492
  surname: Ben-Abdallah
  fullname: Ben-Abdallah, Philippe
  email: pba@institutoptique.fr
  organization: Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Saclay
– sequence: 10
  givenname: Bing-Feng
  surname: Ju
  fullname: Ju, Bing-Feng
  organization: The State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University
– sequence: 11
  givenname: Yungui
  orcidid: 0000-0002-1859-1211
  surname: Ma
  fullname: Ma, Yungui
  email: yungui@zju.edu.cn
  organization: The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38937478$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04631932$$DView record in HAL
BookMark eNp9kUtv1DAUhS1UREvpH2CBIrGBRcCvjO1lVQGtNFI3sLauk-uZjDLxYDsjtb--nknLo4t6Y-ve7xz7-rwlJ2MYkZD3jH5hVOivSTK5UDXlspZGU17fvyJnnEpWM8XFyT_nU3KR0oaWJQzTUr4hp0IboaTSZ8TcuoRxD7kPYxV8tUbI1W7a7vpxVaH32ObK3VURur4we6zSesp5KN135LWHIeHF435Ofn3_9vPqul7e_ri5ulzWbcNMrkWDrlVeG6q1c-gAPDNUgBHQGg2sazreaQAJqNSCK8mp6oRwunW00dKLc3Iz-3YBNnYX-y3EOxugt8dCiCsLMfftgJZyr6k2mnvk0ig0jtLi3bmGecU7V7w-z15rGP6zur5c2kONyoVgRvA9K-ynmd3F8HvClO22Ty0OA4wYpmQFVYILxpQu6Mdn6CZMcSy_cqC44aphqlAfHqnJbbH7c_9TGAXQM9DGkFJEb9s-H5PJEfrBMmoP0ds5-jKttMfo7X2R8mfSJ_cXRWIWpQKPK4x_n_2C6gE5ir5p
CitedBy_id crossref_primary_10_1103_PhysRevApplied_22_054053
crossref_primary_10_1021_acsphotonics_4c01965
Cites_doi 10.1088/0022-3727/48/30/305104
10.1103/PhysRevLett.120.125501
10.1103/PhysRevLett.124.077402
10.1063/1.5084781
10.1103/PhysRevB.106.L100102
10.1063/1.2431456
10.1209/0295-5075/84/40009
10.1103/PhysRevE.80.011125
10.1103/PhysRevE.73.026109
10.1103/PhysRevB.107.134510
10.1063/1.2191730
10.1126/science.1150124
10.1038/s41598-020-60603-4
10.1103/PhysRevE.81.021111
10.1103/PhysRevLett.123.165901
10.1103/PhysRevLett.88.094302
10.1103/PhysRevLett.101.260601
10.1016/j.jqsrt.2018.02.005
10.1103/PhysRevLett.17.1286
10.1016/j.jqsrt.2020.107414
10.1103/PhysRevLett.113.074301
10.1103/PhysRevB.84.161413
10.1063/1.5063737
10.1002/andp.201900188
10.1103/PhysRevApplied.14.034023
10.1103/PhysRevB.106.235412
10.1063/5.0121043
10.1103/PhysRevLett.129.260602
10.1063/1.4950791
10.1103/PhysRevApplied.20.024061
10.1103/PhysRevApplied.15.024036
10.1103/PhysRevLett.123.025901
10.1063/1.4829618
10.1364/OE.26.00A209
10.1103/PhysRevB.101.165435
10.1364/OL.43.005619
10.1063/1.4905132
10.1063/1.4963317
10.1063/5.0180035
10.1103/PhysRevB.103.115440
10.1021/acsnano.8b01645
10.1016/0031-8914(65)90045-5
10.1021/acsphotonics.1c00896
10.1103/PhysRevB.79.075107
10.1063/1.4985055
10.1103/PhysRevApplied.6.054003
10.1103/PhysRevLett.112.044301
10.1103/PhysRevLett.93.184301
10.1063/1.4941405
10.1103/PhysRevB.94.241401
10.1103/PhysRevLett.121.023903
10.1103/PhysRevApplied.18.034049
10.1063/5.0147225
10.1103/RevModPhys.84.1045
10.1063/1.4916730
10.1115/1.4000171
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
1XC
VOOES
DOA
DOI 10.1038/s41467-024-49802-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_02f808982fe2497e9b00d8adb51f72db
oai_HAL_hal_04631932v1
38937478
10_1038_s41467_024_49802_z
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62075196
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62075196
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c519t-35ebc7f89088bbebaaf1903a93ac98a1d5d2d8aa4ae776274207d33b8cb0584f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:59 EDT 2025
Fri May 09 12:27:00 EDT 2025
Fri Jul 11 10:08:09 EDT 2025
Wed Aug 13 04:54:23 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 02:11:15 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-35ebc7f89088bbebaaf1903a93ac98a1d5d2d8aa4ae776274207d33b8cb0584f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0509-9508
0000-0002-1859-1211
0000-0002-1137-4492
0000-0002-1681-9753
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49802-z
PMID 38937478
PQID 3072927517
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_02f808982fe2497e9b00d8adb51f72db
hal_primary_oai_HAL_hal_04631932v1
proquest_miscellaneous_3073231178
proquest_journals_3072927517
pubmed_primary_38937478
crossref_citationtrail_10_1038_s41467_024_49802_z
crossref_primary_10_1038_s41467_024_49802_z
springer_journals_10_1038_s41467_024_49802_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-27
PublicationDateYYYYMMDD 2024-06-27
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Fernández-Alcázar, Ellis, Shapiro, Kottos (CR37) 2019; 123
Kubytskyi, Biehs, Ben-Abdallah (CR19) 2014; 113
Ordonez-Miranda, Anufriev, Nomura, Volz (CR45) 2022; 106
Yang, Gordon, Urban (CR23) 2019; 125
Joulain, Ezzahri, Drevillon, Ben-Abdallah (CR4) 2015; 106
Li, Zhan, Hänggi, Li (CR41) 2009; 80
Segal (CR29) 2008; 101
Torrent, Poncelet, Batsale (CR39) 2018; 120
Li, Wang, Casati (CR48) 2006; 88
Ben-Abdallah, Biehs (CR5) 2014; 112
Fiorino (CR17) 2018; 12
Dang (CR55) 2023; 123
Messina, Ott, Kathmann, Biehs, Ben-Abdallah (CR31) 2021; 103
Ito, Nishikawa, Iizuka (CR21) 2016; 108
Segal, Nitzan (CR27) 2006; 73
Ghanekar, Ji, Zheng (CR15) 2016; 109
Biehs, Ben-Abdallah (CR38) 2022; 106
Wan (CR56) 2019; 531
Messina, Ben-Abdallah (CR30) 2020; 101
Prod’homme, Ordonez-Miranda, Ezzahri, Drevillon, Joulain (CR6) 2016; 119
Ben-Abdallah, Biehs (CR13) 2013; 103
Krapez (CR46) 2023; 133
Prod’homme, Ordonez-Miranda, Ezzahri, Drévillon, Joulain (CR8) 2018; 210
Fernández-Alcázar, Li, Nafari, Kottos (CR32) 2021; 8
Ordonez-Miranda, Ezzahri, Drevillon, Joulain (CR7) 2016; 6
Ben-Abdallah, Rodriguez (CR36) 2022; 129
Terraneo, Peyrard, Casati (CR2) 2002; 88
Li, Wang, Casati (CR3) 2004; 93
Koledov (CR35) 2018; 1092
Buddhiraju, Li, Fan (CR33) 2020; 124
Kathmann, Reina, Messina, Ben-Abdallah, Biehs (CR26) 2020; 10
Qazilbash (CR51) 2009; 79
Jia, Fu, Su, Ma (CR57) 2018; 43
Qazilbash (CR50) 2007; 318
Kim (CR34) 2007; 90
Liu, Xiao (CR44) 2022; 18
Barker, Verleur, Guggenheim (CR49) 1966; 17
Latella, Messina, Rubi, Ben-Abdallah (CR28) 2018; 121
CR54
Zhang (CR53) 2022; 132
Dyakov, Dai, Yan, Qiu (CR20) 2015; 48
Ordonez-Miranda, Joulain, Ezzahri, Drevillon, Alvarado-Gil (CR47) 2019; 125
Ben-Abdallah (CR22) 2017; 7
Ordonez-Miranda, Ezzahri, Tiburcio-Moreno, Joulain, Drevillon (CR24) 2019; 123
Van Zwol, Joulain, Ben-Abdallah, Chevrier (CR12) 2011; 84
Forero-Sandoval (CR18) 2020; 14
Chen, Liu, Tian, Wang, Zheng (CR9) 2021; 259
Ghanekar (CR16) 2018; 26
Li, Hänggi, Li (CR40) 2008; 84
Ren, Li (CR42) 2010; 81
Li (CR1) 2012; 84
Moncada-Villa, Cuevas (CR10) 2021; 15
Saheb Dey, Timossi, Amico, Marchegiani (CR43) 2023; 107
Li (CR11) 2023; 20
Looyenga (CR52) 1965; 31
Ito, Nishikawa, Iizuka, Toshiyoshi (CR14) 2014; 105
Ben-Abdallah, Biehs (CR25) 2016; 94
S Zhang (49802_CR53) 2022; 132
R Messina (49802_CR30) 2020; 101
S Saheb Dey (49802_CR43) 2023; 107
PJ Van Zwol (49802_CR12) 2011; 84
LJ Fernández-Alcázar (49802_CR32) 2021; 8
J Ren (49802_CR42) 2010; 81
D Segal (49802_CR29) 2008; 101
F Yang (49802_CR23) 2019; 125
VV Koledov (49802_CR35) 2018; 1092
N Li (49802_CR1) 2012; 84
I Latella (49802_CR28) 2018; 121
N Li (49802_CR40) 2008; 84
A Fiorino (49802_CR17) 2018; 12
AS Barker (49802_CR49) 1966; 17
E Moncada-Villa (49802_CR10) 2021; 15
M Terraneo (49802_CR2) 2002; 88
Y Dang (49802_CR55) 2023; 123
R Messina (49802_CR31) 2021; 103
C Wan (49802_CR56) 2019; 531
S Buddhiraju (49802_CR33) 2020; 124
C Kathmann (49802_CR26) 2020; 10
FQ Chen (49802_CR9) 2021; 259
J-C Krapez (49802_CR46) 2023; 133
A Ghanekar (49802_CR16) 2018; 26
K Joulain (49802_CR4) 2015; 106
J Ordonez-Miranda (49802_CR45) 2022; 106
Q Liu (49802_CR44) 2022; 18
B Li (49802_CR48) 2006; 88
N Li (49802_CR41) 2009; 80
P Ben-Abdallah (49802_CR5) 2014; 112
B-J Kim (49802_CR34) 2007; 90
IY Forero-Sandoval (49802_CR18) 2020; 14
J Ordonez-Miranda (49802_CR24) 2019; 123
BW Li (49802_CR3) 2004; 93
H Prod’homme (49802_CR8) 2018; 210
H Prod’homme (49802_CR6) 2016; 119
D Segal (49802_CR27) 2006; 73
H Looyenga (49802_CR52) 1965; 31
MM Qazilbash (49802_CR50) 2007; 318
J Ordonez-Miranda (49802_CR47) 2019; 125
P Ben-Abdallah (49802_CR13) 2013; 103
P Ben-Abdallah (49802_CR25) 2016; 94
Y Li (49802_CR11) 2023; 20
P Ben-Abdallah (49802_CR22) 2017; 7
J Ordonez-Miranda (49802_CR7) 2016; 6
K Ito (49802_CR21) 2016; 108
P Ben-Abdallah (49802_CR36) 2022; 129
K Ito (49802_CR14) 2014; 105
V Kubytskyi (49802_CR19) 2014; 113
SA Biehs (49802_CR38) 2022; 106
H Li (49802_CR37) 2019; 123
MM Qazilbash (49802_CR51) 2009; 79
49802_CR54
A Ghanekar (49802_CR15) 2016; 109
SA Dyakov (49802_CR20) 2015; 48
S Jia (49802_CR57) 2018; 43
D Torrent (49802_CR39) 2018; 120
References_xml – volume: 48
  start-page: 305104
  year: 2015
  ident: CR20
  article-title: Near field thermal memory based on radiative phase bistability of VO
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/30/305104
– volume: 120
  start-page: 125501
  year: 2018
  ident: CR39
  article-title: Nonreciprocal thermal material by spatiotemporal modulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.125501
– volume: 124
  start-page: 077402
  year: 2020
  ident: CR33
  article-title: Photonic refrigeration from time-modulated thermal emission
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.077402
– volume: 125
  start-page: 064302
  year: 2019
  ident: CR47
  article-title: Periodic amplification of radiative heat transfer
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5084781
– volume: 106
  start-page: L100102
  year: 2022
  ident: CR45
  article-title: Net heat current at zero mean temperature gradient
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.L100102
– volume: 90
  start-page: 023515
  year: 2007
  ident: CR34
  article-title: Temperature dependence of the first-order metal-insulator transition in VO and programmable critical temperature sensor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2431456
– volume: 84
  start-page: 40009
  year: 2008
  ident: CR40
  article-title: Ratcheting heat flux against a thermal bias
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/84/40009
– ident: CR54
– volume: 80
  start-page: 011125
  year: 2009
  ident: CR41
  article-title: Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.011125
– volume: 73
  start-page: 026109
  year: 2006
  ident: CR27
  article-title: Molecular heat pump
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.026109
– volume: 107
  start-page: 134510
  year: 2023
  ident: CR43
  article-title: Negative differential thermal conductance by photonic transport in electronic circuits
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.134510
– volume: 88
  start-page: 143501
  year: 2006
  ident: CR48
  article-title: Negative differential thermal resistance and thermal transistor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2191730
– volume: 318
  start-page: 1750
  year: 2007
  end-page: 1753
  ident: CR50
  article-title: Mott transition in VO revealed by infrared spectroscopy and nano-imaging
  publication-title: Science
  doi: 10.1126/science.1150124
– volume: 10
  year: 2020
  ident: CR26
  article-title: Scalable radiative thermal logic gates based on nanoparticle networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60603-4
– volume: 81
  start-page: 021111
  year: 2010
  ident: CR42
  article-title: Emergence and control of heat current from strict zero thermal bias
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.021111
– volume: 123
  start-page: 165901
  year: 2019
  ident: CR37
  article-title: Adiabatic thermal radiation pumps for thermal photonics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.165901
– volume: 88
  start-page: 094302
  year: 2002
  ident: CR2
  article-title: Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.094302
– volume: 101
  start-page: 260601
  year: 2008
  ident: CR29
  article-title: Stochastic pumping of heat: approaching the carnot efficiency
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.260601
– volume: 210
  start-page: 52
  year: 2018
  end-page: 61
  ident: CR8
  article-title: VO -based radiative thermal transistor with a semi-transparent base
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.02.005
– volume: 17
  start-page: 1286
  year: 1966
  end-page: 1289
  ident: CR49
  article-title: Infrared optical properties of vanadium dioxide above and below the transition temperature
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.17.1286
– volume: 259
  start-page: 107414
  year: 2021
  ident: CR9
  article-title: Non-contact thermal transistor effects modulated by nanoscale mechanical deformation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2020.107414
– volume: 113
  start-page: 074301
  year: 2014
  ident: CR19
  article-title: Radiative bistability and thermal memory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.074301
– volume: 84
  start-page: 161413
  year: 2011
  ident: CR12
  article-title: Phonon polaritons enhance near-field thermal transfer across the phase transition of VO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.161413
– volume: 125
  start-page: 025109
  year: 2019
  ident: CR23
  article-title: Theoretical framework of the thermal memristor via a solid-state phase change material
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063737
– volume: 531
  start-page: 1900188
  year: 2019
  ident: CR56
  article-title: On the optical properties of thin-film vanadium dioxide from the visible to the far infrared
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201900188
– volume: 14
  start-page: 034023
  year: 2020
  ident: CR18
  article-title: VO substrate effect on the thermal rectification of a far-field radiative diode
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.034023
– volume: 106
  start-page: 235412
  year: 2022
  ident: CR38
  article-title: Heat transfer mediated by the Berry phase in nonreciprocal many-body systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.235412
– volume: 132
  start-page: 223104
  year: 2022
  ident: CR53
  article-title: Self-adaptive passive temperature management for silicon chips based on near-field thermal radiation
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0121043
– volume: 129
  start-page: 260602
  year: 2022
  ident: CR36
  article-title: Controlling local thermal states in classical many-body systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.260602
– volume: 119
  start-page: 194502
  year: 2016
  ident: CR6
  article-title: Optimized thermal amplification in a radiative transistor
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4950791
– volume: 20
  start-page: 024061
  year: 2023
  ident: CR11
  article-title: Radiative thermal transistor
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.024061
– volume: 15
  start-page: 024036
  year: 2021
  ident: CR10
  article-title: Normal-metal–superconductor near-field thermal diodes and transistors
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.024036
– volume: 123
  start-page: 025901
  year: 2019
  ident: CR24
  article-title: Radiative thermal memristor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.025901
– volume: 103
  start-page: 191907
  year: 2013
  ident: CR13
  article-title: Phase-change radiative thermal diode
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829618
– volume: 26
  start-page: A209
  year: 2018
  end-page: A218
  ident: CR16
  article-title: Near-field thermal rectification devices using phase change periodic nanostructure
  publication-title: Opt. Express
  doi: 10.1364/OE.26.00A209
– volume: 101
  start-page: 165435
  year: 2020
  ident: CR30
  article-title: Many-body near-field radiative heat pumping
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.165435
– volume: 43
  start-page: 5619
  year: 2018
  end-page: 5622
  ident: CR57
  article-title: Far-field radiative thermal rectifier based on nanostructures with vanadium dioxide
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.005619
– volume: 105
  start-page: 253503
  year: 2014
  ident: CR14
  article-title: Experimental investigation of radiative thermal rectifier using vanadium dioxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905132
– volume: 1092
  start-page: 012108
  year: 2018
  ident: CR35
  article-title: Interaction of electromagnetic waves with VO2 nanoparticles and films in optical and millimetre wave ranges: Prospective for nano-photonics, nano-antennas, and sensors
  publication-title: J. Phys.: Conf. Ser.
– volume: 109
  start-page: 123106
  year: 2016
  ident: CR15
  article-title: High-rectification near-field thermal diode using phase change periodic nanostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4963317
– volume: 123
  start-page: 222201
  year: 2023
  ident: CR55
  article-title: Radiative thermal coats for passive temperature management
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0180035
– volume: 103
  start-page: 115440
  year: 2021
  ident: CR31
  article-title: Radiative cooling induced by time-symmetry breaking in periodically driven systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.115440
– volume: 12
  start-page: 5774
  year: 2018
  end-page: 5779
  ident: CR17
  article-title: A thermal diode based on nanoscale thermal radiation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01645
– volume: 31
  start-page: 401
  year: 1965
  end-page: 406
  ident: CR52
  article-title: Dielectric constants of heterogeneous mixtures
  publication-title: Physica
  doi: 10.1016/0031-8914(65)90045-5
– volume: 8
  start-page: 2973
  year: 2021
  end-page: 2979
  ident: CR32
  article-title: Implementation of optimal thermal radiation pumps using adiabatically modulated photonic cavities
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c00896
– volume: 79
  year: 2009
  ident: CR51
  article-title: Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.075107
– volume: 7
  start-page: 065002
  year: 2017
  ident: CR22
  article-title: Thermal memristor and neuromorphic networks for manipulating heat flow
  publication-title: AIP Adv.
  doi: 10.1063/1.4985055
– volume: 6
  start-page: 054003
  year: 2016
  ident: CR7
  article-title: Transistorlike device for heating and cooling based on the thermal hysteresis of VO
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.6.054003
– volume: 112
  start-page: 044301
  year: 2014
  ident: CR5
  article-title: Near-field thermal transistor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.044301
– volume: 93
  start-page: 184301
  year: 2004
  ident: CR3
  article-title: Thermal diode: rectification of heat flux
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.184301
– volume: 108
  start-page: 053507
  year: 2016
  ident: CR21
  article-title: Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941405
– volume: 94
  start-page: 241401
  year: 2016
  ident: CR25
  article-title: Towards Boolean operations with thermal photons
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.241401
– volume: 121
  start-page: 023903
  year: 2018
  ident: CR28
  article-title: Radiative heat shuttling
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.023903
– volume: 18
  start-page: 034049
  year: 2022
  ident: CR44
  article-title: Energy harvesting from thermal variation with phase-change materials
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.034049
– volume: 133
  start-page: 195102
  year: 2023
  ident: CR46
  article-title: Influence of thermal hysteresis on the heat shuttling effect: the case of VO
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0147225
– volume: 84
  start-page: 1045
  year: 2012
  ident: CR1
  article-title: Phononics: manipulating heat flow with electronic analogs and beyond
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.1045
– volume: 106
  start-page: 133505
  year: 2015
  ident: CR4
  article-title: Modulation and amplification of radiative far field heat transfer: towards a simple radiative thermal transistor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916730
– volume: 133
  start-page: 195102
  year: 2023
  ident: 49802_CR46
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0147225
– volume: 318
  start-page: 1750
  year: 2007
  ident: 49802_CR50
  publication-title: Science
  doi: 10.1126/science.1150124
– volume: 8
  start-page: 2973
  year: 2021
  ident: 49802_CR32
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c00896
– volume: 80
  start-page: 011125
  year: 2009
  ident: 49802_CR41
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.011125
– volume: 129
  start-page: 260602
  year: 2022
  ident: 49802_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.260602
– volume: 90
  start-page: 023515
  year: 2007
  ident: 49802_CR34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2431456
– volume: 18
  start-page: 034049
  year: 2022
  ident: 49802_CR44
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.034049
– volume: 26
  start-page: A209
  year: 2018
  ident: 49802_CR16
  publication-title: Opt. Express
  doi: 10.1364/OE.26.00A209
– volume: 84
  start-page: 40009
  year: 2008
  ident: 49802_CR40
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/84/40009
– volume: 12
  start-page: 5774
  year: 2018
  ident: 49802_CR17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01645
– volume: 10
  year: 2020
  ident: 49802_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60603-4
– volume: 106
  start-page: 235412
  year: 2022
  ident: 49802_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.235412
– volume: 107
  start-page: 134510
  year: 2023
  ident: 49802_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.134510
– volume: 210
  start-page: 52
  year: 2018
  ident: 49802_CR8
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.02.005
– volume: 123
  start-page: 222201
  year: 2023
  ident: 49802_CR55
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0180035
– volume: 103
  start-page: 191907
  year: 2013
  ident: 49802_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829618
– volume: 121
  start-page: 023903
  year: 2018
  ident: 49802_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.023903
– volume: 132
  start-page: 223104
  year: 2022
  ident: 49802_CR53
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0121043
– volume: 1092
  start-page: 012108
  year: 2018
  ident: 49802_CR35
  publication-title: J. Phys.: Conf. Ser.
– volume: 109
  start-page: 123106
  year: 2016
  ident: 49802_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4963317
– volume: 113
  start-page: 074301
  year: 2014
  ident: 49802_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.074301
– volume: 108
  start-page: 053507
  year: 2016
  ident: 49802_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941405
– volume: 105
  start-page: 253503
  year: 2014
  ident: 49802_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905132
– volume: 88
  start-page: 143501
  year: 2006
  ident: 49802_CR48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2191730
– volume: 17
  start-page: 1286
  year: 1966
  ident: 49802_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.17.1286
– volume: 103
  start-page: 115440
  year: 2021
  ident: 49802_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.115440
– volume: 120
  start-page: 125501
  year: 2018
  ident: 49802_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.125501
– volume: 84
  start-page: 161413
  year: 2011
  ident: 49802_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.161413
– volume: 84
  start-page: 1045
  year: 2012
  ident: 49802_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.1045
– volume: 125
  start-page: 064302
  year: 2019
  ident: 49802_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5084781
– volume: 101
  start-page: 260601
  year: 2008
  ident: 49802_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.260601
– volume: 101
  start-page: 165435
  year: 2020
  ident: 49802_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.165435
– volume: 93
  start-page: 184301
  year: 2004
  ident: 49802_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.184301
– volume: 88
  start-page: 094302
  year: 2002
  ident: 49802_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.094302
– volume: 6
  start-page: 054003
  year: 2016
  ident: 49802_CR7
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.6.054003
– volume: 15
  start-page: 024036
  year: 2021
  ident: 49802_CR10
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.024036
– volume: 73
  start-page: 026109
  year: 2006
  ident: 49802_CR27
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.026109
– volume: 94
  start-page: 241401
  year: 2016
  ident: 49802_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.241401
– volume: 106
  start-page: L100102
  year: 2022
  ident: 49802_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.L100102
– volume: 106
  start-page: 133505
  year: 2015
  ident: 49802_CR4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916730
– volume: 112
  start-page: 044301
  year: 2014
  ident: 49802_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.044301
– ident: 49802_CR54
  doi: 10.1115/1.4000171
– volume: 119
  start-page: 194502
  year: 2016
  ident: 49802_CR6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4950791
– volume: 7
  start-page: 065002
  year: 2017
  ident: 49802_CR22
  publication-title: AIP Adv.
  doi: 10.1063/1.4985055
– volume: 124
  start-page: 077402
  year: 2020
  ident: 49802_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.077402
– volume: 123
  start-page: 025901
  year: 2019
  ident: 49802_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.025901
– volume: 20
  start-page: 024061
  year: 2023
  ident: 49802_CR11
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.024061
– volume: 14
  start-page: 034023
  year: 2020
  ident: 49802_CR18
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.034023
– volume: 259
  start-page: 107414
  year: 2021
  ident: 49802_CR9
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2020.107414
– volume: 123
  start-page: 165901
  year: 2019
  ident: 49802_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.165901
– volume: 48
  start-page: 305104
  year: 2015
  ident: 49802_CR20
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/30/305104
– volume: 79
  year: 2009
  ident: 49802_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.075107
– volume: 125
  start-page: 025109
  year: 2019
  ident: 49802_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063737
– volume: 43
  start-page: 5619
  year: 2018
  ident: 49802_CR57
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.005619
– volume: 531
  start-page: 1900188
  year: 2019
  ident: 49802_CR56
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201900188
– volume: 81
  start-page: 021111
  year: 2010
  ident: 49802_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.021111
– volume: 31
  start-page: 401
  year: 1965
  ident: 49802_CR52
  publication-title: Physica
  doi: 10.1016/0031-8914(65)90045-5
SSID ssj0000391844
Score 2.4823391
Snippet Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially...
Abstract Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was...
SourceID doaj
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5465
SubjectTerms 639/624/399/1015
639/766/530/951
Composite materials
Conduction heating
Conductive heat transfer
Controllability
Emissivity
Engineering Sciences
Heat
Heat exchange
Heat flow
Heat flux
Heat transmission
Humanities and Social Sciences
multidisciplinary
Phase change materials
Photons
Physics
Pumping
Science
Science (multidisciplinary)
Solids
Temperature
Temperature dependence
Temperature gradients
Thermal management
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxUxEJ4YEhMuRgV1FUkh3rRht-1u2yMayAsBvUjCrWl323Aw7xHePhP4653p7lshRLlw3Xa72-l05pv--AbgU123KnqruW985KoOHTcyNbyzRO8lbGM8rXecfW9m5-rkor64k-qLzoQN9MCD4A5KkUxprBEpYqSgI3H4dcZ3oa6SFl0g64s-704wlW2wtBi6qPGWTCnNwVJlm4AuiStr0Azc3vNEmbAf_cslHYd8iDUf7JNm93P8El6MuJEdDv_7Cp7F-Wt4PmSSvNkC-yNMy6tskRiZWHaFQ4WNseHMBgs37JqYCMjAseXlqu_pKvo2nB8f_fw242NWBN4i2uq5rGNodTJ0QCmEGLxP6NSlt9K31viqqzuBAvLKR60ps44odSdlMG0oEW0k-QY25ot5fAesVamRlcCIqdWqjI0JGJ6lpowqeJWSLaBaS8i1I2U4Za745fLWtTRukKpDqbosVXdbwOfpnauBMOO_tb-S4KeaRHadH6AKuFEF3GMqUMA-Dtu9NmaHp46eER8aQdTfVQE761F14zRdOkm86ULXlS5gbyrGCUa7Jn4eF6tcRyIIrrQp4O2gDdOnMtpTVPJlrR5_G_93r98_Ra8_wKYgbS4bLvQObPTXq_gRAVIfdvNc-AMFMQfX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgCImXaXyubKCCeINobZI2yRMaiOOE-Hhh0t6ipE3YA7re7nqTtr8eO-11mib22qRpYzu24zg_A7yrqkYGZxRztQtMVr5lWsSatYbgvbiptaN4x4-f9fxEfjutTseA23pMq9zqxKSo266hGPmRIIhrrqpSfVyeM6oaRaerYwmN-_CgREtDKV169nWKsRD6uZZyvCtTCH20lkkzoGFi0mhUBlc37FGC7Ucrc0ZJkbc9zlunpckIzfZgd_Qe8-OB3Y_hXlg8gYdDPcnLp2B--SnImncxJ0WbL5FhOFg-ZG7k_jJfER4Bqbl8fbbpe7qQ_gxOZl9-f56zsTYCa9Dn6pmogm9U1JSm5H3wzkU07cIZ4RqjXdlWLW-1c9IFpai-Di9UK4TXjS_Q54jiOewsukXYh7yRsRYlx31To2QRau1xkxbrIkjvZIwmg3JLIduMwOFUv-KvTQfYQtuBqhapahNV7VUG76d3lgNsxp29PxHhp54EeZ0edKs_dlxB2D_qQhvNY8AtowoE5ogzbH1VRsVbn8FbZNuNMebH3y09I1Q0clQvygwOt1y142Jd22vRyuDN1IzLjM5O3CJ0m9RHoCtcKp3Bi0Eapk8ln09Sy4eteFwP_v9Zv7z7Xw7gESc5LWrG1SHs9KtNeIUOUO9fJyn_BymM_yI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcUHmnLZVB3CAisZ3YPi6IarXicYBKvVl2YtMD2q12s0jtr--M80BVAalXe-zEM2PP2B5_A_CmqhoZnFG5q13IZeXbXItY560heC9uau3ovOPL13p-Khdn1dkO8PEtTAraT5CWaZkeo8Peb2Sa0mhRcmk0zuKre7BHUO2o23uz2eL7YjpZIcxzLeXwQqYQ-i-Nb1ihBNaPtuWcQiFv-5m37kiT6TnZh4eDz8hm_V8-gp2wfAz3-yySl0_AfPPT0SpbRUbLK7tAMWFnrI_XYP6SrQmFgBY3tjnfdh09Q38Kpyeffnyc50NGhLxBT6vLRRV8o6Km4CTvg3cuokEXzgjXGO3Ktmp5q52TLihFWXV4oVohvG58gZ5GFM9gd7lahhfAGhlrUXLcLTVKFqHWHrdmsS6C9E7GaDIoRw7ZZoALp6wVv2y6thba9ly1yFWbuGqvMng7tbnowTL-S_2BGD9REtB1Klitf9pB8EgfdaGN5jHgRlEFgnDEEba-KqPirc_gNYrtRh_z2WdLZYSFRu7p7zKDo1GqdpiiGysIM52rqlQZvJqqcXLRjYlbhtU20Qh0gEulM3jea8P0qeTpSap5N6rHn87_PeqDu5EfwgNOelvUOVdHsNutt-ElukGdPx70_hqiZv7Z
  priority: 102
  providerName: Springer Nature
Title Observation of heat pumping effect by radiative shuttling
URI https://link.springer.com/article/10.1038/s41467-024-49802-z
https://www.ncbi.nlm.nih.gov/pubmed/38937478
https://www.proquest.com/docview/3072927517
https://www.proquest.com/docview/3073231178
https://hal.science/hal-04631932
https://doaj.org/article/02f808982fe2497e9b00d8adb51f72db
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4XGFVAvEEgiZ3YfkCoq1aqig0EVOpbZCc2e5ja0aaI7q_nzvlA0wYSL4nkXBzl7PP9zh-_A3iZZSW3WolI59pGPDNVJJnLo0oRvVeqcqlpvuPkNJ_M-HSezXegS3fUKnB9Y2hH-aRmq_M3v35s36PBv2uOjMu3a-7NHb1NxJVEC7_chX30TIIyGpy0cN-PzExhQMPbszM3v3rFP3kaf_Q6Z7RJ8joCvbZ66p3S-C7cadFkOGya_x7s2MV9uNXkl9w-APXJ9JOu4dKFNPCGF9iAWFnY7OQIzTZcET8BDXvh-mxT13RA_SHMxsffRpOozZUQlYjB6ohl1pTCSdq2ZIw1Wjt09UwrpksldVJlVVpJrbm2QlC-nTQWFWNGliZGDOLYI9hbLBf2AMKSu5wlKcZRpeCxzaXBoM3lseVGc-dUAEmnoaJsicQpn8V54Re0mSwarRao1cJrtbgM4FX_zkVDo_FP6SNSfC9JFNi-YLn6XrQWhfJOxlLJ1FkMIYUlckf8w8pkiRNpZQJ4gc12pY7J8GNBZcSSRsD1ZxLAYdeqRdf3CkZs6qnIEhHA8_4xmh2tpeiFXW68DENonAgZwOOmN_Sf8hiQ05PXXff4U_nf__rJ_4k_hdsp9ds4j1JxCHv1amOfIUCqzQB2xVzgVY4_DGB_OJx-neL96Pj08xcsHeWjgZ96GHjr-A0oXQ3w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgYDgBFET24mdA0LlsWzptlxaqTfXTmx6qDbb3Sxo-6P4jczkVVUVvfUaO5N4PJ6H7fkG4G2aFsKZXEYmMy4SqS0jxX0WlTnBe7E8U4b2O3b3svGB-HGYHq7B3z4Xhq5V9jqxUdRlVdAe-SYniGsm00R-mp1GVDWKTlf7EhqtWOy41R8M2RYft7_i_L5jbPRt_8s46qoKRAV6K3XEU2cL6RVd8LHWWWM8GkVucm6KXJmkTEtWKmOEcVJSZRoWy5Jzqwobo7X2HOnegJuCoyWnzPTR92FPh9DWlRBdbk7M1eZCNJoIDWEkcoXK5-yC_WvKBKBVO6ZLmJc93Euns43RG92Du523Gm614nUf1tz0Adxq61euHkL-0w6bumHlQ1Ls4QwFBImF7U2R0K7COeEfkFoNF8fLuqYE-EdwcC1cewzr02rqnkJYCJ_xhGGcVkgRu0xZDAp9FjthjfA-DyDpOaSLDqic6mWc6ObAnCvdclUjV3XDVX0WwPvhnVkL03Fl78_E-KEnQWw3D6r5L92tWOzvVaxyxbzDEFU6Ao_EEZY2TbxkpQ3gDU7bBRrjrYmmZ4TCRo7x7ySAjX5WdaccFvpclAN4PTTjsqazGjN11bLpw9H1TqQK4EkrDcOnGh9TUMuHXjzOif9_1M-u_pdXcHu8vzvRk-29nedwh5HMxlnE5Aas1_Ole4HOV21fNhIfwtF1L7F_T449Aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBQKCE0Sb2E7sHBBqaVdbWpYKUak3105seqh2t_sAbX8av46ZvKqqordeY8eJx-N5efwNwLs0LYQzuYxMZlwkUltGivssKnOC92J5pgzFO76NsuGh-HqUHq3B3_YuDKVVtjKxEtTlpKAYeZ8TxDWTaSL7vkmLONgefJ6eRVRBik5a23IaNYvsudUfdN_mn3a3ca3fMzbY-fllGDUVBqICLZdFxFNnC-kVJftY66wxHhUkNzk3Ra5MUqYlK5UxwjgpqUoNi2XJuVWFjVFze47j3oJ1SV5RD9a3dkYHP7oID2GvKyGamzoxV_25qOQSqsVI5ApF0fklbVgVDUAdd0IpmVft3StntZUKHNyHe43tGm7WzPYA1tz4Idyuq1muHkH-3XYh3nDiQxLz4RTZBQcL67yR0K7CGaEhkJAN5yfLxYKuwz-Gwxuh2xPojSdj9wzCQviMJwy9tgLJ6DJl0UX0WeyENcL7PICkpZAuGthyqp5xqqvjc650TVWNVNUVVfV5AB-6d6Y1aMe1vbeI8F1PAtyuHkxmv3Szf7G_V7HKFfMOHVbpCEoSZ1jaNPGSlTaAt7hsl8YYbu5rekaYbGQm_04C2GhXVTeiYq4vGDuAN10zbnI6uTFjN1lWfTga4olUATytuaH7VGVxCmr52LLHxeD_n_Xz6__lNdzB7aX3d0d7L-AuI5aNs4jJDegtZkv3Ei2xhX3VsHwIxze9y_4BlTdClQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+heat+pumping+effect+by+radiative+shuttling&rft.jtitle=Nature+communications&rft.au=Li%2C+Yuxuan&rft.au=Dang%2C+Yongdi&rft.au=Zhang%2C+Sen&rft.au=Li%2C+Xinran&rft.date=2024-06-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-49802-z&rft.externalDocID=10_1038_s41467_024_49802_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon