ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS

ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corre...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 824; no. 2; p. 91
Main Authors Lin, Min-Kai, Kratter, Kaitlin M.
Format Journal Article
LanguageEnglish
Published United States The American Astronomical Society 20.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
AbstractList Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ~60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
Author Lin, Min-Kai
Kratter, Kaitlin M.
Author_xml – sequence: 1
  givenname: Min-Kai
  surname: Lin
  fullname: Lin, Min-Kai
  email: minkailin@email.arizona.edu
  organization: University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA
– sequence: 2
  givenname: Kaitlin M.
  orcidid: 0000-0001-5253-1338
  surname: Kratter
  fullname: Kratter, Kaitlin M.
  organization: University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA
BackLink https://www.osti.gov/biblio/22666170$$D View this record in Osti.gov
BookMark eNqNkc9LwzAUx4MouE3_AU8FPXipy6-mybGrVYtlha0TPYU2TbFjNrXpDv73tkw8iIgQCI_3-bwH3zcFx41pNAAXCN4QTv05hJC6jPjPc47pHM8FOgIT5BHuUuL5x2DyDZyCqbXbscRCTECYLp3sIXLuV8FTnAVZnC6DxFlnwSJO4uzFSe--WqmbbVaLTRItMycIw1U0os5tvH5cn4GTKt9Zff71z8DmLsrCBzdJ7-MwSFzlIdG7uKgqr2IElYKXQkECieZloXOYi4pRThVHimlGNYMFQ4IrH-qqxEOpdFEWZAYuD3ON7WtpVd1r9apM02jVS4wZY8iHA3V9oNrOvO-17eVbbZXe7fJGm72ViAsyPJ-if6CcC-ZBOk7lB1R1xtpOV3JYn_e1afour3cSQTkeQo7ByjFnORxCYinGLfiH2nb1W959_C3dHKTatHJr9l0zJPu3cPWLkLfbb0S2ZUU-AeIkoNk
CitedBy_id crossref_primary_10_1146_annurev_astro_081915_023307
crossref_primary_10_1093_mnras_stad319
crossref_primary_10_1051_0004_6361_202348546
crossref_primary_10_1093_mnras_stab738
crossref_primary_10_3847_1538_4357_aa8a66
crossref_primary_10_3847_1538_4357_ab76ca
crossref_primary_10_1051_0004_6361_201730606
crossref_primary_10_1051_0004_6361_202038023
crossref_primary_10_1093_mnras_stz163
crossref_primary_10_1093_mnras_stz103
crossref_primary_10_1093_mnras_stx1351
crossref_primary_10_1093_mnras_stx3255
crossref_primary_10_1093_mnras_stx824
crossref_primary_10_1051_0004_6361_202244608
crossref_primary_10_1051_0004_6361_202243219
crossref_primary_10_3847_1538_4357_ab25ea
crossref_primary_10_3847_1538_4357_ad1a17
crossref_primary_10_1093_mnras_stae1249
crossref_primary_10_3847_1538_4357_ac3bb9
crossref_primary_10_3847_1538_4357_abcd9b
crossref_primary_10_1051_0004_6361_202040094
crossref_primary_10_1093_mnras_sty169
crossref_primary_10_1051_0004_6361_202142121
crossref_primary_10_3847_1538_4357_aafc36
crossref_primary_10_1093_mnras_stab2989
crossref_primary_10_1093_mnras_sty947
crossref_primary_10_3847_1538_4357_aa92cd
Cites_doi 10.1093/mnras/130.2.97
10.1086/147861
10.1093/mnras/168.3.603
10.1086/378392
10.1086/303654
10.1006/icar.2000.6467
10.1088/0004-637X/776/1/48
10.1111/j.1365-2966.2006.11014.x
10.1088/0004-637X/790/1/13
10.1007/BF00056356
10.1088/0004-637X/811/1/17
10.1086/168187
10.1111/j.1365-2966.2012.22035.x
10.1088/0004-637X/761/2/131
10.1088/0004-637X/804/1/62
10.1088/0004-637X/740/1/1
10.1051/0004-6361:20053080
10.1111/j.1365-2966.2011.20153.x
10.1111/j.1365-2966.2005.08875.x
10.1093/pasj/64.5.116
10.1093/mnras/248.3.353
10.1086/587543
10.1038/329810a0
10.1086/160685
10.1086/320631
10.1046/j.1365-8711.2001.04356.x
10.1111/j.1745-3933.2011.01099.x
10.1111/j.1365-2966.2006.11103.x
10.1086/156635
10.1093/mnras/stv1266
10.1086/303682
10.1086/304869
10.1111/j.1365-2966.2008.14275.x
10.1088/0004-637X/814/2/155
10.1086/155274
10.1086/322323
10.1086/176648
10.1006/icar.1995.1099
10.1111/j.1365-2966.2008.14069.x
10.1093/mnras/stv2378
10.1088/2041-8205/740/1/L6
10.1093/mnras/225.3.607
10.1111/j.1365-2966.2011.19586.x
10.1126/science.276.5320.1836
10.1086/303433
10.1086/150410
10.1111/j.1745-3933.2005.00105.x
10.1088/0004-637X/794/1/55
10.1088/0004-637X/692/2/973
10.1111/j.1365-2966.2004.07811.x
10.1088/0004-637X/789/1/34
10.1111/j.1365-2966.2011.18344.x
10.1086/167832
10.1086/307594
10.1016/0032-0633(94)00155-K
10.1111/j.1365-2966.2007.12322.x
10.1111/j.1365-2966.2010.16825.x
10.1111/j.1365-2966.2012.20553.x
10.1146/annurev-astro-081710-102521
10.1093/mnras/130.2.125
10.1086/174206
10.1086/176735
10.1088/0004-637X/710/2/1375
10.1111/j.1745-3933.2010.00978.x
10.1088/0004-637X/731/2/99
10.1086/159157
ContentType Journal Article
Copyright 2016. The American Astronomical Society. All rights reserved.
Copyright_xml – notice: 2016. The American Astronomical Society. All rights reserved.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.3847/0004-637X/824/2/91
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database


Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS
EISSN 1538-4357
EndPage 91
ExternalDocumentID 22666170
10_3847_0004_637X_824_2_91
apj523559
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
KL.
8FD
AEINN
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c519t-2bff5f631d98d9c0303e8dbea0a9f6484c81c6e64e60b6198c70efd2e60cebdb3
IEDL.DBID IOP
ISSN 0004-637X
1538-4357
IngestDate Fri May 19 00:37:21 EDT 2023
Sun Aug 24 02:54:32 EDT 2025
Thu Jul 10 23:09:38 EDT 2025
Tue Jul 01 04:08:30 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Aug 20 22:16:54 EDT 2024
Wed Aug 21 03:33:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-2bff5f631d98d9c0303e8dbea0a9f6484c81c6e64e60b6198c70efd2e60cebdb3
Notes ApJ102043
Exoplanets
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5253-1338
OpenAccessLink https://iopscience.iop.org/article/10.3847/0004-637X/824/2/91/pdf
PQID 1888965040
PQPubID 23462
PageCount 15
ParticipantIDs osti_scitechconnect_22666170
crossref_citationtrail_10_3847_0004_637X_824_2_91
proquest_miscellaneous_1888965040
proquest_miscellaneous_1893893741
crossref_primary_10_3847_0004_637X_824_2_91
iop_journals_10_3847_0004_637X_824_2_91
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-20
PublicationDateYYYYMMDD 2016-06-20
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2016
Publisher The American Astronomical Society
Publisher_xml – name: The American Astronomical Society
References D’Alessio P. (11) 1997; 474
45
Johnstone D. (23) 2001; 559
Lin M.-K. (37) 2014; 790
46
Rafikov R. R. (53) 2015; 804
48
49
Hopkins P. F. (20) 2013; 776
50
Enoch M. L. (12) 2009; 692
51
10
54
55
56
13
57
Takahashi S. Z. (66) 2014; 794
Baehr H. (4) 2015; 814
14
Mohandas G. (47) 2015
16
Youdin A. N. (72) 2011; 731
17
18
Youdin A. N. (71) 2005
1
2
3
6
7
9
60
61
62
64
Chiang E. I. (8) 1997; 490
21
65
67
25
Kratter K. M. (26) 2016
Turner N. J. (68) 2014
27
Ward W. R. ed Canup R. M. (69) 2000
Gammie C. F. (15) 2001; 553
Shi J.-M. (59) 2014; 789
Plume R. (52) 1997; 476
Kratter K. M. (28) 2008; 681
Kratter K. M. (30) 2010; 710
Kratter K. M. (29) 2011; 740
Shakura N. I. (58) 1973; 24
70
Laughlin G. (33) 1997; 477
73
74
31
Kim J.-G. (24) 2012; 761
32
Lin M.-K. (38) 2015; 811
Martin R. G. (44) 2011; 740
34
Balbus S. A. (5) 1999; 521
35
36
Shu F. H. ed Greenberg R. (63) 1984
Helled R. (19) 2014
39
Johnson B. M. (22) 2003; 597
40
41
42
43
References_xml – ident: 17
  doi: 10.1093/mnras/130.2.97
– ident: 67
  doi: 10.1086/147861
– year: 2015
  ident: 47
– ident: 42
  doi: 10.1093/mnras/168.3.603
– volume: 597
  start-page: 131
  issn: 0004-637X
  year: 2003
  ident: 22
  publication-title: ApJ
  doi: 10.1086/378392
– start-page: 513
  year: 1984
  ident: 63
  publication-title: IAU Coll. 75, Planetary Rings
– volume: 476
  start-page: 730
  issn: 0004-637X
  year: 1997
  ident: 52
  publication-title: ApJ
  doi: 10.1086/303654
– ident: 18
  doi: 10.1006/icar.2000.6467
– volume: 24
  start-page: 337
  issn: 0004-6361
  year: 1973
  ident: 58
  publication-title: A&A
– volume: 776
  start-page: 48
  issn: 0004-637X
  year: 2013
  ident: 20
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/1/48
– ident: 31
  doi: 10.1111/j.1365-2966.2006.11014.x
– volume: 790
  start-page: 13
  issn: 0004-637X
  year: 2014
  ident: 37
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/1/13
– ident: 70
  doi: 10.1007/BF00056356
– volume: 811
  start-page: 17
  issn: 0004-637X
  year: 2015
  ident: 38
  publication-title: ApJ
  doi: 10.1088/0004-637X/811/1/17
– ident: 1
  doi: 10.1086/168187
– ident: 46
  doi: 10.1111/j.1365-2966.2012.22035.x
– volume: 761
  start-page: 131
  issn: 0004-637X
  year: 2012
  ident: 24
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/2/131
– volume: 804
  start-page: 62
  issn: 0004-637X
  year: 2015
  ident: 53
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/1/62
– volume: 740
  start-page: 1
  issn: 0004-637X
  year: 2011
  ident: 29
  publication-title: ApJ
  doi: 10.1088/0004-637X/740/1/1
– ident: 13
  doi: 10.1051/0004-6361:20053080
– ident: 55
  doi: 10.1111/j.1365-2966.2011.20153.x
– ident: 41
  doi: 10.1111/j.1365-2966.2005.08875.x
– ident: 25
  doi: 10.1093/pasj/64.5.116
– ident: 50
  doi: 10.1093/mnras/248.3.353
– volume: 681
  start-page: 375
  issn: 0004-637X
  year: 2008
  ident: 28
  publication-title: ApJ
  doi: 10.1086/587543
– ident: 60
  doi: 10.1038/329810a0
– ident: 21
  doi: 10.1086/160685
– volume: 553
  start-page: 174
  issn: 0004-637X
  year: 2001
  ident: 15
  publication-title: ApJ
  doi: 10.1086/320631
– ident: 3
  doi: 10.1046/j.1365-8711.2001.04356.x
– ident: 49
  doi: 10.1111/j.1745-3933.2011.01099.x
– start-page: 75
  year: 2000
  ident: 69
  publication-title: On Planetesimal Formation: The Role of Collective Particle Behavior
– ident: 27
  doi: 10.1111/j.1365-2966.2006.11103.x
– ident: 32
  doi: 10.1086/156635
– ident: 73
  doi: 10.1093/mnras/stv1266
– volume: 477
  start-page: 410
  issn: 0004-637X
  year: 1997
  ident: 33
  publication-title: ApJ
  doi: 10.1086/303682
– volume: 490
  start-page: 368
  issn: 0004-637X
  year: 1997
  ident: 8
  publication-title: ApJ
  doi: 10.1086/304869
– ident: 10
  doi: 10.1111/j.1365-2966.2008.14275.x
– volume: 814
  start-page: 155
  issn: 0004-637X
  year: 2015
  ident: 4
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/155
– ident: 62
  doi: 10.1086/155274
– volume: 559
  start-page: 307
  issn: 0004-637X
  year: 2001
  ident: 23
  publication-title: ApJ
  doi: 10.1086/322323
– ident: 34
  doi: 10.1086/176648
– ident: 57
  doi: 10.1006/icar.1995.1099
– ident: 64
  doi: 10.1111/j.1365-2966.2008.14069.x
– ident: 74
  doi: 10.1093/mnras/stv2378
– volume: 740
  start-page: L6
  issn: 0004-637X
  year: 2011
  ident: 44
  publication-title: ApJL
  doi: 10.1088/2041-8205/740/1/L6
– ident: 36
  doi: 10.1093/mnras/225.3.607
– ident: 54
  doi: 10.1111/j.1365-2966.2011.19586.x
– year: 2005
  ident: 71
  publication-title: ApJ
– ident: 7
  doi: 10.1126/science.276.5320.1836
– start-page: 411
  year: 2014
  ident: 68
  publication-title: Protostars and Planets VI
– volume: 474
  start-page: 397
  issn: 0004-637X
  year: 1997
  ident: 11
  publication-title: ApJ
  doi: 10.1086/303433
– year: 2016
  ident: 26
– ident: 61
  doi: 10.1086/150410
– ident: 56
  doi: 10.1111/j.1745-3933.2005.00105.x
– volume: 794
  start-page: 55
  issn: 0004-637X
  year: 2014
  ident: 66
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/55
– volume: 692
  start-page: 973
  issn: 0004-637X
  year: 2009
  ident: 12
  publication-title: ApJ
  doi: 10.1088/0004-637X/692/2/973
– ident: 40
  doi: 10.1111/j.1365-2966.2004.07811.x
– volume: 789
  start-page: 34
  issn: 0004-637X
  year: 2014
  ident: 59
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/1/34
– ident: 39
  doi: 10.1111/j.1365-2966.2011.18344.x
– ident: 51
  doi: 10.1086/167832
– volume: 521
  start-page: 650
  issn: 0004-637X
  year: 1999
  ident: 5
  publication-title: ApJ
  doi: 10.1086/307594
– start-page: 643
  year: 2014
  ident: 19
  publication-title: Protostars and Planets VI
– ident: 65
  doi: 10.1016/0032-0633(94)00155-K
– ident: 9
  doi: 10.1111/j.1365-2966.2007.12322.x
– ident: 43
  doi: 10.1111/j.1365-2966.2010.16825.x
– ident: 48
  doi: 10.1111/j.1365-2966.2012.20553.x
– ident: 2
  doi: 10.1146/annurev-astro-081710-102521
– ident: 16
  doi: 10.1093/mnras/130.2.125
– ident: 6
  doi: 10.1086/174206
– ident: 14
  doi: 10.1086/176735
– volume: 710
  start-page: 1375
  issn: 0004-637X
  year: 2010
  ident: 30
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/1375
– ident: 45
  doi: 10.1111/j.1745-3933.2010.00978.x
– volume: 731
  start-page: 99
  issn: 0004-637X
  year: 2011
  ident: 72
  publication-title: ApJ
  doi: 10.1088/0004-637X/731/2/99
– ident: 35
  doi: 10.1086/159157
SSID ssj0004299
Score 2.4149714
Snippet ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating....
Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However,...
Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However,...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms ACCRETION DISKS
accretion, accretion disks
APPROXIMATIONS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
AXIAL SYMMETRY
COMPUTERIZED SIMULATION
COOLING
COSMIC DUST
DIFFUSION
Disks
EXTERNAL IRRADIATION
FRAGMENTATION
GRAVITATION
HYDRODYNAMICS
instabilities
INSTABILITY
MASS
methods: analytical
OPACITY
PLANETS
planets and satellites: formation
protoplanetary disks
PROTOPLANETS
THICKNESS
TURBULENCE
Turbulent flow
VISCOSITY
Title ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS
URI https://iopscience.iop.org/article/10.3847/0004-637X/824/2/91
https://www.proquest.com/docview/1888965040
https://www.proquest.com/docview/1893893741
https://www.osti.gov/biblio/22666170
Volume 824
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXPgZoZRsyEoIHlDYfjus8ZqWlhdFMbQrlyYq_HoA1FU0ftr-euyQbGogK8RI58iVObN_dz-e7MyEvAaIap9BQBbrHA070PcW59lTRV8pXDpQS2iE_Tvl4wd4v42Xrm1PHwpTrVvR3odgkCm66EPk7AlmKsQfM41F_2YP39MIexq7fiQSoTozfy85-hUWGSYt-G_omZuYv77ihl25D2yCjS-CyP2R0rXhGD5rTVTd1vkL0N_nW3Vaqqy9_y-b43__0kNxvISlNG-JH5JZd7ZODdING8vL8gr6idbmxgWz2yd2zpvSYDLIpzcdD-m6WfprkbV5dOs_Tk8npJP9Cs1FblXn5YnayOB1Oc5oOBrMhktK3k_mH-ROyGA3zwdhrT2XwNKC9yguVc7HjUWASYRINQiKywihb-EXiOBNMi0Bzy5nlvoLlmdB93zoTwq22yqjoKdlblSt7QKiLoRIgXaiSgMUFKxg3gdC2H8Ym8I3okOBqTKRuU5bjyRnfJSxdsN9w65xJ7DcJ_SZDmQQd8ub6mXWTsGMn9WsYEtny7WYn5fENymL99bpOro3rkCOcLhJGGrPvanRT0pUEdMsx532HvLiaRhIYGHdlipUtt9CkECIBnMx20iQ1sGTBs3_-4ENyD8AdR7e20D8ie9WPrT0GAFWp5zWbwDWLPv8E1tgI3w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7tLgJxQbCAtrALRuJxQKGJ47jOgUO2Dxpa2lWbQjmZ-JEDgqaiXaH9WfxDxk22aIWouOzNkSeOM-PxfB57xgDPEaKaQjlHFdoeDzXR9xTn2lN5SylfFWiUnB_yw4j3Z-z9PJrvwa9tLEy5rKf-N1isEgVXLHT6HeJc6mIPmMfD1ryJ7TRpMw6aS1PU5yoH9uInrtpWb9MOivgFpb1u1u579cUCnkbAsvaoKoqo4GFgYmFijeM8tMIom_t5XHAmmBaB5pYzy32FKwyhW74tDMVHbZVRIba7DzeiEI0bqtA4_PQnFJPGNeKu-ljF6fyj31ds4T7-L9qFEjX7L7uwMXa9u3CnRqkkqXhyD_bs4hCOkpXzm5ffL8hLsilXbpHVIdw8q0r3oT0ekazfJe8mycc0q1PtkmmWnKbDNPtMxr26auxls8npbNgdZSRptyddR0o66XQwfQCza-HnQzhYlAt7BKSIsBJRHlVxwKKc5YybQGjbopEJfCMaEFyyTOo6i7m7TOObxNWMY7PbTWfSsVkimyWVcdCA19t3llUOj53Ur1ASslbl1U7KkyuU-fLrtk7ikGzAsZOmxAHtEvJqd3JJryUCXu7S4Dfg2aWUJeq026jJF7Y8x08KIWKEzmwnTbzBmix49N8dfgq3zjo9OUxHg8dwG6Efd4feqH8MB-sf5_YE4dVaPdkMaAJfrluDfgNdMCh_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+GRAVITATIONAL+STABILITY+OF+GRAVITO-TURBULENT+ACCRETION+DISKS&rft.jtitle=The+Astrophysical+journal&rft.au=Lin%2C+Min-Kai&rft.au=Kratter%2C+Kaitlin+M&rft.date=2016-06-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=824&rft.issue=2&rft.spage=91&rft.epage=91&rft_id=info:doi/10.3847%2F0004-637X%2F824%2F2%2F91&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon