ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS
ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corre...
Saved in:
Published in | The Astrophysical journal Vol. 824; no. 2; p. 91 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
The American Astronomical Society
20.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself. |
---|---|
AbstractList | Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ~60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself. Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself. ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself. |
Author | Lin, Min-Kai Kratter, Kaitlin M. |
Author_xml | – sequence: 1 givenname: Min-Kai surname: Lin fullname: Lin, Min-Kai email: minkailin@email.arizona.edu organization: University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA – sequence: 2 givenname: Kaitlin M. orcidid: 0000-0001-5253-1338 surname: Kratter fullname: Kratter, Kaitlin M. organization: University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA |
BackLink | https://www.osti.gov/biblio/22666170$$D View this record in Osti.gov |
BookMark | eNqNkc9LwzAUx4MouE3_AU8FPXipy6-mybGrVYtlha0TPYU2TbFjNrXpDv73tkw8iIgQCI_3-bwH3zcFx41pNAAXCN4QTv05hJC6jPjPc47pHM8FOgIT5BHuUuL5x2DyDZyCqbXbscRCTECYLp3sIXLuV8FTnAVZnC6DxFlnwSJO4uzFSe--WqmbbVaLTRItMycIw1U0os5tvH5cn4GTKt9Zff71z8DmLsrCBzdJ7-MwSFzlIdG7uKgqr2IElYKXQkECieZloXOYi4pRThVHimlGNYMFQ4IrH-qqxEOpdFEWZAYuD3ON7WtpVd1r9apM02jVS4wZY8iHA3V9oNrOvO-17eVbbZXe7fJGm72ViAsyPJ-if6CcC-ZBOk7lB1R1xtpOV3JYn_e1afour3cSQTkeQo7ByjFnORxCYinGLfiH2nb1W959_C3dHKTatHJr9l0zJPu3cPWLkLfbb0S2ZUU-AeIkoNk |
CitedBy_id | crossref_primary_10_1146_annurev_astro_081915_023307 crossref_primary_10_1093_mnras_stad319 crossref_primary_10_1051_0004_6361_202348546 crossref_primary_10_1093_mnras_stab738 crossref_primary_10_3847_1538_4357_aa8a66 crossref_primary_10_3847_1538_4357_ab76ca crossref_primary_10_1051_0004_6361_201730606 crossref_primary_10_1051_0004_6361_202038023 crossref_primary_10_1093_mnras_stz163 crossref_primary_10_1093_mnras_stz103 crossref_primary_10_1093_mnras_stx1351 crossref_primary_10_1093_mnras_stx3255 crossref_primary_10_1093_mnras_stx824 crossref_primary_10_1051_0004_6361_202244608 crossref_primary_10_1051_0004_6361_202243219 crossref_primary_10_3847_1538_4357_ab25ea crossref_primary_10_3847_1538_4357_ad1a17 crossref_primary_10_1093_mnras_stae1249 crossref_primary_10_3847_1538_4357_ac3bb9 crossref_primary_10_3847_1538_4357_abcd9b crossref_primary_10_1051_0004_6361_202040094 crossref_primary_10_1093_mnras_sty169 crossref_primary_10_1051_0004_6361_202142121 crossref_primary_10_3847_1538_4357_aafc36 crossref_primary_10_1093_mnras_stab2989 crossref_primary_10_1093_mnras_sty947 crossref_primary_10_3847_1538_4357_aa92cd |
Cites_doi | 10.1093/mnras/130.2.97 10.1086/147861 10.1093/mnras/168.3.603 10.1086/378392 10.1086/303654 10.1006/icar.2000.6467 10.1088/0004-637X/776/1/48 10.1111/j.1365-2966.2006.11014.x 10.1088/0004-637X/790/1/13 10.1007/BF00056356 10.1088/0004-637X/811/1/17 10.1086/168187 10.1111/j.1365-2966.2012.22035.x 10.1088/0004-637X/761/2/131 10.1088/0004-637X/804/1/62 10.1088/0004-637X/740/1/1 10.1051/0004-6361:20053080 10.1111/j.1365-2966.2011.20153.x 10.1111/j.1365-2966.2005.08875.x 10.1093/pasj/64.5.116 10.1093/mnras/248.3.353 10.1086/587543 10.1038/329810a0 10.1086/160685 10.1086/320631 10.1046/j.1365-8711.2001.04356.x 10.1111/j.1745-3933.2011.01099.x 10.1111/j.1365-2966.2006.11103.x 10.1086/156635 10.1093/mnras/stv1266 10.1086/303682 10.1086/304869 10.1111/j.1365-2966.2008.14275.x 10.1088/0004-637X/814/2/155 10.1086/155274 10.1086/322323 10.1086/176648 10.1006/icar.1995.1099 10.1111/j.1365-2966.2008.14069.x 10.1093/mnras/stv2378 10.1088/2041-8205/740/1/L6 10.1093/mnras/225.3.607 10.1111/j.1365-2966.2011.19586.x 10.1126/science.276.5320.1836 10.1086/303433 10.1086/150410 10.1111/j.1745-3933.2005.00105.x 10.1088/0004-637X/794/1/55 10.1088/0004-637X/692/2/973 10.1111/j.1365-2966.2004.07811.x 10.1088/0004-637X/789/1/34 10.1111/j.1365-2966.2011.18344.x 10.1086/167832 10.1086/307594 10.1016/0032-0633(94)00155-K 10.1111/j.1365-2966.2007.12322.x 10.1111/j.1365-2966.2010.16825.x 10.1111/j.1365-2966.2012.20553.x 10.1146/annurev-astro-081710-102521 10.1093/mnras/130.2.125 10.1086/174206 10.1086/176735 10.1088/0004-637X/710/2/1375 10.1111/j.1745-3933.2010.00978.x 10.1088/0004-637X/731/2/99 10.1086/159157 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.3847/0004-637X/824/2/91 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS |
EISSN | 1538-4357 |
EndPage | 91 |
ExternalDocumentID | 22666170 10_3847_0004_637X_824_2_91 apj523559 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG KL. 8FD AEINN H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c519t-2bff5f631d98d9c0303e8dbea0a9f6484c81c6e64e60b6198c70efd2e60cebdb3 |
IEDL.DBID | IOP |
ISSN | 0004-637X 1538-4357 |
IngestDate | Fri May 19 00:37:21 EDT 2023 Sun Aug 24 02:54:32 EDT 2025 Thu Jul 10 23:09:38 EDT 2025 Tue Jul 01 04:08:30 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Aug 20 22:16:54 EDT 2024 Wed Aug 21 03:33:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-2bff5f631d98d9c0303e8dbea0a9f6484c81c6e64e60b6198c70efd2e60cebdb3 |
Notes | ApJ102043 Exoplanets ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5253-1338 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/0004-637X/824/2/91/pdf |
PQID | 1888965040 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_22666170 crossref_citationtrail_10_3847_0004_637X_824_2_91 proquest_miscellaneous_1888965040 proquest_miscellaneous_1893893741 crossref_primary_10_3847_0004_637X_824_2_91 iop_journals_10_3847_0004_637X_824_2_91 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-20 |
PublicationDateYYYYMMDD | 2016-06-20 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | D’Alessio P. (11) 1997; 474 45 Johnstone D. (23) 2001; 559 Lin M.-K. (37) 2014; 790 46 Rafikov R. R. (53) 2015; 804 48 49 Hopkins P. F. (20) 2013; 776 50 Enoch M. L. (12) 2009; 692 51 10 54 55 56 13 57 Takahashi S. Z. (66) 2014; 794 Baehr H. (4) 2015; 814 14 Mohandas G. (47) 2015 16 Youdin A. N. (72) 2011; 731 17 18 Youdin A. N. (71) 2005 1 2 3 6 7 9 60 61 62 64 Chiang E. I. (8) 1997; 490 21 65 67 25 Kratter K. M. (26) 2016 Turner N. J. (68) 2014 27 Ward W. R. ed Canup R. M. (69) 2000 Gammie C. F. (15) 2001; 553 Shi J.-M. (59) 2014; 789 Plume R. (52) 1997; 476 Kratter K. M. (28) 2008; 681 Kratter K. M. (30) 2010; 710 Kratter K. M. (29) 2011; 740 Shakura N. I. (58) 1973; 24 70 Laughlin G. (33) 1997; 477 73 74 31 Kim J.-G. (24) 2012; 761 32 Lin M.-K. (38) 2015; 811 Martin R. G. (44) 2011; 740 34 Balbus S. A. (5) 1999; 521 35 36 Shu F. H. ed Greenberg R. (63) 1984 Helled R. (19) 2014 39 Johnson B. M. (22) 2003; 597 40 41 42 43 |
References_xml | – ident: 17 doi: 10.1093/mnras/130.2.97 – ident: 67 doi: 10.1086/147861 – year: 2015 ident: 47 – ident: 42 doi: 10.1093/mnras/168.3.603 – volume: 597 start-page: 131 issn: 0004-637X year: 2003 ident: 22 publication-title: ApJ doi: 10.1086/378392 – start-page: 513 year: 1984 ident: 63 publication-title: IAU Coll. 75, Planetary Rings – volume: 476 start-page: 730 issn: 0004-637X year: 1997 ident: 52 publication-title: ApJ doi: 10.1086/303654 – ident: 18 doi: 10.1006/icar.2000.6467 – volume: 24 start-page: 337 issn: 0004-6361 year: 1973 ident: 58 publication-title: A&A – volume: 776 start-page: 48 issn: 0004-637X year: 2013 ident: 20 publication-title: ApJ doi: 10.1088/0004-637X/776/1/48 – ident: 31 doi: 10.1111/j.1365-2966.2006.11014.x – volume: 790 start-page: 13 issn: 0004-637X year: 2014 ident: 37 publication-title: ApJ doi: 10.1088/0004-637X/790/1/13 – ident: 70 doi: 10.1007/BF00056356 – volume: 811 start-page: 17 issn: 0004-637X year: 2015 ident: 38 publication-title: ApJ doi: 10.1088/0004-637X/811/1/17 – ident: 1 doi: 10.1086/168187 – ident: 46 doi: 10.1111/j.1365-2966.2012.22035.x – volume: 761 start-page: 131 issn: 0004-637X year: 2012 ident: 24 publication-title: ApJ doi: 10.1088/0004-637X/761/2/131 – volume: 804 start-page: 62 issn: 0004-637X year: 2015 ident: 53 publication-title: ApJ doi: 10.1088/0004-637X/804/1/62 – volume: 740 start-page: 1 issn: 0004-637X year: 2011 ident: 29 publication-title: ApJ doi: 10.1088/0004-637X/740/1/1 – ident: 13 doi: 10.1051/0004-6361:20053080 – ident: 55 doi: 10.1111/j.1365-2966.2011.20153.x – ident: 41 doi: 10.1111/j.1365-2966.2005.08875.x – ident: 25 doi: 10.1093/pasj/64.5.116 – ident: 50 doi: 10.1093/mnras/248.3.353 – volume: 681 start-page: 375 issn: 0004-637X year: 2008 ident: 28 publication-title: ApJ doi: 10.1086/587543 – ident: 60 doi: 10.1038/329810a0 – ident: 21 doi: 10.1086/160685 – volume: 553 start-page: 174 issn: 0004-637X year: 2001 ident: 15 publication-title: ApJ doi: 10.1086/320631 – ident: 3 doi: 10.1046/j.1365-8711.2001.04356.x – ident: 49 doi: 10.1111/j.1745-3933.2011.01099.x – start-page: 75 year: 2000 ident: 69 publication-title: On Planetesimal Formation: The Role of Collective Particle Behavior – ident: 27 doi: 10.1111/j.1365-2966.2006.11103.x – ident: 32 doi: 10.1086/156635 – ident: 73 doi: 10.1093/mnras/stv1266 – volume: 477 start-page: 410 issn: 0004-637X year: 1997 ident: 33 publication-title: ApJ doi: 10.1086/303682 – volume: 490 start-page: 368 issn: 0004-637X year: 1997 ident: 8 publication-title: ApJ doi: 10.1086/304869 – ident: 10 doi: 10.1111/j.1365-2966.2008.14275.x – volume: 814 start-page: 155 issn: 0004-637X year: 2015 ident: 4 publication-title: ApJ doi: 10.1088/0004-637X/814/2/155 – ident: 62 doi: 10.1086/155274 – volume: 559 start-page: 307 issn: 0004-637X year: 2001 ident: 23 publication-title: ApJ doi: 10.1086/322323 – ident: 34 doi: 10.1086/176648 – ident: 57 doi: 10.1006/icar.1995.1099 – ident: 64 doi: 10.1111/j.1365-2966.2008.14069.x – ident: 74 doi: 10.1093/mnras/stv2378 – volume: 740 start-page: L6 issn: 0004-637X year: 2011 ident: 44 publication-title: ApJL doi: 10.1088/2041-8205/740/1/L6 – ident: 36 doi: 10.1093/mnras/225.3.607 – ident: 54 doi: 10.1111/j.1365-2966.2011.19586.x – year: 2005 ident: 71 publication-title: ApJ – ident: 7 doi: 10.1126/science.276.5320.1836 – start-page: 411 year: 2014 ident: 68 publication-title: Protostars and Planets VI – volume: 474 start-page: 397 issn: 0004-637X year: 1997 ident: 11 publication-title: ApJ doi: 10.1086/303433 – year: 2016 ident: 26 – ident: 61 doi: 10.1086/150410 – ident: 56 doi: 10.1111/j.1745-3933.2005.00105.x – volume: 794 start-page: 55 issn: 0004-637X year: 2014 ident: 66 publication-title: ApJ doi: 10.1088/0004-637X/794/1/55 – volume: 692 start-page: 973 issn: 0004-637X year: 2009 ident: 12 publication-title: ApJ doi: 10.1088/0004-637X/692/2/973 – ident: 40 doi: 10.1111/j.1365-2966.2004.07811.x – volume: 789 start-page: 34 issn: 0004-637X year: 2014 ident: 59 publication-title: ApJ doi: 10.1088/0004-637X/789/1/34 – ident: 39 doi: 10.1111/j.1365-2966.2011.18344.x – ident: 51 doi: 10.1086/167832 – volume: 521 start-page: 650 issn: 0004-637X year: 1999 ident: 5 publication-title: ApJ doi: 10.1086/307594 – start-page: 643 year: 2014 ident: 19 publication-title: Protostars and Planets VI – ident: 65 doi: 10.1016/0032-0633(94)00155-K – ident: 9 doi: 10.1111/j.1365-2966.2007.12322.x – ident: 43 doi: 10.1111/j.1365-2966.2010.16825.x – ident: 48 doi: 10.1111/j.1365-2966.2012.20553.x – ident: 2 doi: 10.1146/annurev-astro-081710-102521 – ident: 16 doi: 10.1093/mnras/130.2.125 – ident: 6 doi: 10.1086/174206 – ident: 14 doi: 10.1086/176735 – volume: 710 start-page: 1375 issn: 0004-637X year: 2010 ident: 30 publication-title: ApJ doi: 10.1088/0004-637X/710/2/1375 – ident: 45 doi: 10.1111/j.1745-3933.2010.00978.x – volume: 731 start-page: 99 issn: 0004-637X year: 2011 ident: 72 publication-title: ApJ doi: 10.1088/0004-637X/731/2/99 – ident: 35 doi: 10.1086/159157 |
SSID | ssj0004299 |
Score | 2.4149714 |
Snippet | ABSTRACT Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating.... Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However,... Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However,... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 91 |
SubjectTerms | ACCRETION DISKS accretion, accretion disks APPROXIMATIONS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY AXIAL SYMMETRY COMPUTERIZED SIMULATION COOLING COSMIC DUST DIFFUSION Disks EXTERNAL IRRADIATION FRAGMENTATION GRAVITATION HYDRODYNAMICS instabilities INSTABILITY MASS methods: analytical OPACITY PLANETS planets and satellites: formation protoplanetary disks PROTOPLANETS THICKNESS TURBULENCE Turbulent flow VISCOSITY |
Title | ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS |
URI | https://iopscience.iop.org/article/10.3847/0004-637X/824/2/91 https://www.proquest.com/docview/1888965040 https://www.proquest.com/docview/1893893741 https://www.osti.gov/biblio/22666170 |
Volume | 824 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXPgZoZRsyEoIHlDYfjus8ZqWlhdFMbQrlyYq_HoA1FU0ftr-euyQbGogK8RI58iVObN_dz-e7MyEvAaIap9BQBbrHA070PcW59lTRV8pXDpQS2iE_Tvl4wd4v42Xrm1PHwpTrVvR3odgkCm66EPk7AlmKsQfM41F_2YP39MIexq7fiQSoTozfy85-hUWGSYt-G_omZuYv77ihl25D2yCjS-CyP2R0rXhGD5rTVTd1vkL0N_nW3Vaqqy9_y-b43__0kNxvISlNG-JH5JZd7ZODdING8vL8gr6idbmxgWz2yd2zpvSYDLIpzcdD-m6WfprkbV5dOs_Tk8npJP9Cs1FblXn5YnayOB1Oc5oOBrMhktK3k_mH-ROyGA3zwdhrT2XwNKC9yguVc7HjUWASYRINQiKywihb-EXiOBNMi0Bzy5nlvoLlmdB93zoTwq22yqjoKdlblSt7QKiLoRIgXaiSgMUFKxg3gdC2H8Ym8I3okOBqTKRuU5bjyRnfJSxdsN9w65xJ7DcJ_SZDmQQd8ub6mXWTsGMn9WsYEtny7WYn5fENymL99bpOro3rkCOcLhJGGrPvanRT0pUEdMsx532HvLiaRhIYGHdlipUtt9CkECIBnMx20iQ1sGTBs3_-4ENyD8AdR7e20D8ie9WPrT0GAFWp5zWbwDWLPv8E1tgI3w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7tLgJxQbCAtrALRuJxQKGJ47jOgUO2Dxpa2lWbQjmZ-JEDgqaiXaH9WfxDxk22aIWouOzNkSeOM-PxfB57xgDPEaKaQjlHFdoeDzXR9xTn2lN5SylfFWiUnB_yw4j3Z-z9PJrvwa9tLEy5rKf-N1isEgVXLHT6HeJc6mIPmMfD1ryJ7TRpMw6aS1PU5yoH9uInrtpWb9MOivgFpb1u1u579cUCnkbAsvaoKoqo4GFgYmFijeM8tMIom_t5XHAmmBaB5pYzy32FKwyhW74tDMVHbZVRIba7DzeiEI0bqtA4_PQnFJPGNeKu-ljF6fyj31ds4T7-L9qFEjX7L7uwMXa9u3CnRqkkqXhyD_bs4hCOkpXzm5ffL8hLsilXbpHVIdw8q0r3oT0ekazfJe8mycc0q1PtkmmWnKbDNPtMxr26auxls8npbNgdZSRptyddR0o66XQwfQCza-HnQzhYlAt7BKSIsBJRHlVxwKKc5YybQGjbopEJfCMaEFyyTOo6i7m7TOObxNWMY7PbTWfSsVkimyWVcdCA19t3llUOj53Ur1ASslbl1U7KkyuU-fLrtk7ikGzAsZOmxAHtEvJqd3JJryUCXu7S4Dfg2aWUJeq026jJF7Y8x08KIWKEzmwnTbzBmix49N8dfgq3zjo9OUxHg8dwG6Efd4feqH8MB-sf5_YE4dVaPdkMaAJfrluDfgNdMCh_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+GRAVITATIONAL+STABILITY+OF+GRAVITO-TURBULENT+ACCRETION+DISKS&rft.jtitle=The+Astrophysical+journal&rft.au=Lin%2C+Min-Kai&rft.au=Kratter%2C+Kaitlin+M&rft.date=2016-06-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=824&rft.issue=2&rft.spage=91&rft.epage=91&rft_id=info:doi/10.3847%2F0004-637X%2F824%2F2%2F91&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |