Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys

Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that...

Full description

Saved in:
Bibliographic Details
Published inIntermetallics Vol. 103; pp. 40 - 51
Main Authors Sheikh, Saad, Gan, Lu, Tsao, Te-Kang, Murakami, Hideyuki, Shafeie, Samrand, Guo, Sheng
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials. •Pack cementation using different pack compositions were experimented on two RHEAs.•Proper aluminizing can avoid pesting in the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA.•Proper aluminizing can improve the embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5.•Aluminizing is promising to further improve RHEAs for high-temperature applications.
AbstractList Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials.
Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials. •Pack cementation using different pack compositions were experimented on two RHEAs.•Proper aluminizing can avoid pesting in the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA.•Proper aluminizing can improve the embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5.•Aluminizing is promising to further improve RHEAs for high-temperature applications.
Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600-1000 degrees C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 degrees C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials.
Author Murakami, Hideyuki
Gan, Lu
Sheikh, Saad
Guo, Sheng
Shafeie, Samrand
Tsao, Te-Kang
Author_xml – sequence: 1
  givenname: Saad
  surname: Sheikh
  fullname: Sheikh, Saad
  organization: Industrial and Materials Science, Chalmers University of Technology, 41296, Göteborg, Sweden
– sequence: 2
  givenname: Lu
  surname: Gan
  fullname: Gan, Lu
  organization: National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
– sequence: 3
  givenname: Te-Kang
  surname: Tsao
  fullname: Tsao, Te-Kang
  organization: Department of Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo, 169-8555, Japan
– sequence: 4
  givenname: Hideyuki
  surname: Murakami
  fullname: Murakami, Hideyuki
  organization: National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
– sequence: 5
  givenname: Samrand
  surname: Shafeie
  fullname: Shafeie, Samrand
  organization: Inorganic Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
– sequence: 6
  givenname: Sheng
  surname: Guo
  fullname: Guo, Sheng
  email: sheng.guo@chalmers.se
  organization: Industrial and Materials Science, Chalmers University of Technology, 41296, Göteborg, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371037$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/506782$$DView record from Swedish Publication Index
BookMark eNqFkV-L1DAUxYOs4OzoV5CCr3ZMmjZpwAeHXVeFBR_893hJ05tphk4zJqk6fvpNHfdFkH0KnNxzOPf-LsnF5Cck5DmjG0aZeLXfuClhOGDaVJS1WdxQWj8iK9ZKVdKKiQuyokqIUknVPCGXMe4pZZLyZkW-bcf54Cb32027wvpQ4DToyWBf-F-u18n5qQgYXUyLWnhb9LNJbsSs2qBN8uFUDG43lDil4I-nQo-jP8Wn5LHVY8Rnf981-XLz9vPV-_L247sPV9vb0jRMpbLSWjaV4ZLXouKt7GRnmZJUtzVDaZBxbdvKqMZwLriyVMgm_2DFO0ulMnxNPp1z4088zh0cgzvocAKvHeTeqIMZwAx6PGCIEBEMp7rndQ9tjwZqYXroaiWgtazFWnVWNl1Offnf1Gv3dQs-7GCegUtGc_c1eXEePwb_fcaYYO_nMOW9oWJ1qxrJ83Zr8vo8ZYKPMZ8PjEt_LpyCdiMwCgtP2MM9T1h4Lnrmme3iH_t9qweNb85GzBx-OAwQjcOFsQtoEvTePRRxB6cNwvs
CitedBy_id crossref_primary_10_1016_j_scriptamat_2021_114230
crossref_primary_10_1016_j_msea_2024_146828
crossref_primary_10_1016_j_vacuum_2021_110749
crossref_primary_10_1016_j_corsci_2023_111365
crossref_primary_10_1016_j_jmrt_2023_12_011
crossref_primary_10_1016_j_ijrmhm_2022_105918
crossref_primary_10_1016_j_jmrt_2023_07_277
crossref_primary_10_1016_j_actamat_2022_117970
crossref_primary_10_1002_advs_202309693
crossref_primary_10_1016_j_jallcom_2024_178216
crossref_primary_10_1016_j_jallcom_2023_172397
crossref_primary_10_1016_j_jallcom_2024_175100
crossref_primary_10_3390_ma16247505
crossref_primary_10_1070_RCR5023
crossref_primary_10_1016_j_actamat_2024_120032
crossref_primary_10_1016_j_vacuum_2019_03_017
crossref_primary_10_1016_j_vacuum_2020_109823
crossref_primary_10_1016_j_ijrmhm_2023_106223
crossref_primary_10_1016_j_jmmm_2019_166151
crossref_primary_10_1088_2053_1591_ab49e7
crossref_primary_10_1016_j_ijrmhm_2023_106308
crossref_primary_10_1080_02670836_2019_1706815
crossref_primary_10_1016_j_actamat_2022_117739
crossref_primary_10_1016_j_wear_2023_204819
crossref_primary_10_1016_j_jallcom_2022_165384
crossref_primary_10_1016_j_vacuum_2021_110072
crossref_primary_10_3390_ma17122799
crossref_primary_10_1002_adem_202400960
crossref_primary_10_3390_cryst11060612
crossref_primary_10_1088_1742_6596_2044_1_012069
crossref_primary_10_1016_j_jmmm_2019_165574
crossref_primary_10_1016_j_intermet_2020_106838
crossref_primary_10_1007_s11837_019_03679_2
crossref_primary_10_1016_j_rinma_2023_100508
crossref_primary_10_1016_j_mtadv_2020_100104
crossref_primary_10_1007_s11665_019_04177_x
crossref_primary_10_1016_j_intermet_2024_108549
crossref_primary_10_1016_j_matdes_2024_113370
crossref_primary_10_3390_ma11122526
crossref_primary_10_1016_j_apsusc_2021_150466
crossref_primary_10_1016_j_jmst_2023_02_016
crossref_primary_10_1016_j_surfcoat_2024_131721
crossref_primary_10_1016_j_actamat_2021_117114
crossref_primary_10_1016_j_jallcom_2020_154427
crossref_primary_10_3390_ma14102595
crossref_primary_10_1016_j_corsci_2022_110134
crossref_primary_10_1016_j_corsci_2022_110377
crossref_primary_10_3389_ftmal_2023_1135826
crossref_primary_10_1016_j_scriptamat_2019_04_041
crossref_primary_10_1016_j_surfcoat_2025_132040
crossref_primary_10_2139_ssrn_3995237
crossref_primary_10_1016_j_surfcoat_2023_129967
crossref_primary_10_1142_S0218625X20300063
crossref_primary_10_1016_j_intermet_2020_106711
crossref_primary_10_1016_j_surfcoat_2021_127069
crossref_primary_10_1016_j_ceramint_2020_11_217
crossref_primary_10_1063_5_0070303
Cites_doi 10.1016/S0257-8972(00)00546-6
10.1016/S1002-0071(12)60080-X
10.1016/j.intermet.2005.02.002
10.1007/BF02648354
10.1179/mst.1986.2.3.201
10.1016/0022-3115(64)90142-4
10.1557/JMR.1992.2747
10.1016/j.intermet.2013.05.002
10.1016/j.jallcom.2014.11.012
10.1179/030716983803291325
10.1002/adma.201701678
10.1016/j.mattod.2015.11.026
10.1016/j.intermet.2011.01.004
10.1016/j.msea.2005.10.017
10.1016/j.jallcom.2013.08.102
10.1007/BF01113371
10.1016/S0257-8972(02)00843-5
10.1002/adem.200300567
10.1016/S1000-9361(09)60231-4
10.1038/s41598-018-27144-3
10.1016/j.apsusc.2013.03.043
10.1007/BF00665016
10.1016/j.matdes.2015.05.019
10.1115/1.3240078
10.1063/1.4966659
10.1016/j.actamat.2016.08.081
10.1016/0257-8972(95)02492-1
10.1007/BF03222724
10.1002/adem.201700948
10.1016/0956-716X(95)00327-R
10.1103/PhysRevLett.112.115503
10.1007/BF00604047
10.1016/S0921-5093(02)00197-1
10.1016/j.jallcom.2016.07.219
10.1016/j.msea.2003.10.257
10.1016/0956-716X(93)90047-V
10.1016/S1359-6462(02)00042-8
10.1023/A:1023035809950
10.1007/s10853-012-6582-0
10.1179/1743284715Y.0000000018
10.1016/j.jallcom.2009.09.051
10.2320/matertrans.M2010439
10.1016/S0921-5093(01)01502-7
10.1007/s11663-999-0083-9
10.1016/j.jallcom.2015.11.050
10.1016/j.intermet.2010.05.014
10.1016/j.matchemphys.2013.09.016
10.1002/adma.201200764
10.1016/j.jallcom.2017.09.164
10.1016/j.msea.2011.09.033
10.1016/j.intermet.2018.04.001
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
8BQ
8FD
JG9
ADTPV
AOWAS
DF2
F1S
DOI 10.1016/j.intermet.2018.10.004
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
SwePub
SwePub Articles
SWEPUB Uppsala universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0216
EndPage 51
ExternalDocumentID oai_research_chalmers_se_c30ad34d_8dec_46cd_b496_8f18e49bf75b
oai_DiVA_org_uu_371037
10_1016_j_intermet_2018_10_004
S0966979518307179
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
EFKBS
JG9
ADTPV
AOWAS
DF2
F1S
ID FETCH-LOGICAL-c519t-2aa752c373462387b7bf1970a841e7ce13af82c95c33639f067541ee23bf079c3
IEDL.DBID .~1
ISSN 0966-9795
1879-0216
IngestDate Thu Aug 21 07:00:31 EDT 2025
Thu Aug 21 07:00:52 EDT 2025
Sat Aug 23 13:14:56 EDT 2025
Tue Jul 01 02:43:26 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Tue Dec 03 03:44:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Refractory high-entropy alloys
Aluminizing
Pack cementation
Oxidation resistance
Coating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-2aa752c373462387b7bf1970a841e7ce13af82c95c33639f067541ee23bf079c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2148957362
PQPubID 2045471
PageCount 12
ParticipantIDs swepub_primary_oai_research_chalmers_se_c30ad34d_8dec_46cd_b496_8f18e49bf75b
swepub_primary_oai_DiVA_org_uu_371037
proquest_journals_2148957362
crossref_citationtrail_10_1016_j_intermet_2018_10_004
crossref_primary_10_1016_j_intermet_2018_10_004
elsevier_sciencedirect_doi_10_1016_j_intermet_2018_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Intermetallics
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mevrel, Duret, Pichoir (bib45) 1986; 2
DiStefano, Hendricks (bib2) 1994; 41
Miracle, Senkov (bib9) 2017; 122
Guo (bib14) 2015; 31
Sheikh (bib18) 2016; 120
Senkov (bib24) 2012; 47
Cockeram (bib42) 1995; 76–77
Khanna (bib50) 2002
Zhou (bib57) 2003; 341
Senkov (bib15) 2011; 19
Kofstad (bib22) 1966
Wollner (bib55) 2003; 167
Nieh, Nix (bib52) 1981; 12
Senkov, Woodward, Miracle (bib36) 2014; 66
Wöllmer (bib39) 2003; 167
Chan (bib6) 2002; 329–331
Guo (bib12) 2013; 41
Hocking MG, Sidky (bib47) 1989
Sheikh (bib34) 2018; 97
Gorr, F.M., Christ, Mueller, Chen, Kauffmann, Heilmaier (bib27) 2016; 688
Cantor (bib8) 2004; 375–377
Goward, Boone (bib46) 1971; 3
McKamey (bib33) 2011; 7
R.H. Bianco, A. Mark, Robert A. Rapp, Codepositing elements by halide-activated pack cementation
Rastkar (bib58) 2013; 276
Tong, Dengzun, Chungen (bib51) 2010; 23
Kim, Kim, Kim (bib3) 1995; 33
Gorr (bib25) 2015; 624
Liu (bib23) 2014; 583
Chen (bib29) 2016; 661
Guo, Liu (bib13) 2011; 21
Westbrook, Wood (bib31) 1964; 12
Lemberg, Ritchie (bib7) 2012; 24
Slattery (bib56) 1983; 10
Jiang (bib1) 2002; 46
Goward, Cannon (bib54) 1988; 110
Ye (bib11) 2016; 19
Gauthier (bib53) 2003; 59
Li, Soboyejo, Rapp (bib44) 1999; 30
Zelenitsas, Tsakiropoulos (bib35) 2005; 13
Koo, Yu (bib43) 2000; 126
Tolpygo, Grabke (bib32) 1993; 28
Senkov, Woodward (bib30) 2011; 529
Kasai (bib41) 2011; 52
Korb, D.O. (bib37) 1992
Li, Qiao, Zhou (bib40) 2014; 143
Moricca, Varma (bib5) 2010; 489
Butler (bib26) 2017; 729
Chang, Titus, Yeh (bib28) 2018
Senkov (bib16) 2010; 18
Guo (bib17) 2015; 81
Stern (bib38) 1996
JOM (J. Occup. Med.). 43(11): p. 68-73.
Qi, Chrzan (bib20) 2014; 112
Huang (bib19) 2017; 29
Kung (bib48) 1990; 34
Zelenitsas, Tsakiropoulos (bib4) 2006; 416
Yeh (bib10) 2004; 6
Soni (bib21) 2018; 8
Chang (10.1016/j.intermet.2018.10.004_bib28) 2018
Qi (10.1016/j.intermet.2018.10.004_bib20) 2014; 112
Miracle (10.1016/j.intermet.2018.10.004_bib9) 2017; 122
Westbrook (10.1016/j.intermet.2018.10.004_bib31) 1964; 12
Senkov (10.1016/j.intermet.2018.10.004_bib16) 2010; 18
Kung (10.1016/j.intermet.2018.10.004_bib48) 1990; 34
Guo (10.1016/j.intermet.2018.10.004_bib12) 2013; 41
Korb (10.1016/j.intermet.2018.10.004_bib37) 1992
Huang (10.1016/j.intermet.2018.10.004_bib19) 2017; 29
Sheikh (10.1016/j.intermet.2018.10.004_bib34) 2018; 97
Tolpygo (10.1016/j.intermet.2018.10.004_bib32) 1993; 28
Goward (10.1016/j.intermet.2018.10.004_bib54) 1988; 110
Nieh (10.1016/j.intermet.2018.10.004_bib52) 1981; 12
Wollner (10.1016/j.intermet.2018.10.004_bib55) 2003; 167
Sheikh (10.1016/j.intermet.2018.10.004_bib18) 2016; 120
Zelenitsas (10.1016/j.intermet.2018.10.004_bib35) 2005; 13
Gauthier (10.1016/j.intermet.2018.10.004_bib53) 2003; 59
Cantor (10.1016/j.intermet.2018.10.004_bib8) 2004; 375–377
Soni (10.1016/j.intermet.2018.10.004_bib21) 2018; 8
Yeh (10.1016/j.intermet.2018.10.004_bib10) 2004; 6
Cockeram (10.1016/j.intermet.2018.10.004_bib42) 1995; 76–77
Koo (10.1016/j.intermet.2018.10.004_bib43) 2000; 126
Guo (10.1016/j.intermet.2018.10.004_bib13) 2011; 21
Guo (10.1016/j.intermet.2018.10.004_bib14) 2015; 31
Jiang (10.1016/j.intermet.2018.10.004_bib1) 2002; 46
Khanna (10.1016/j.intermet.2018.10.004_bib50) 2002
DiStefano (10.1016/j.intermet.2018.10.004_bib2) 1994; 41
Gorr (10.1016/j.intermet.2018.10.004_bib27) 2016; 688
Chan (10.1016/j.intermet.2018.10.004_bib6) 2002; 329–331
Butler (10.1016/j.intermet.2018.10.004_bib26) 2017; 729
Zhou (10.1016/j.intermet.2018.10.004_bib57) 2003; 341
Senkov (10.1016/j.intermet.2018.10.004_bib24) 2012; 47
Guo (10.1016/j.intermet.2018.10.004_bib17) 2015; 81
Kasai (10.1016/j.intermet.2018.10.004_bib41) 2011; 52
Moricca (10.1016/j.intermet.2018.10.004_bib5) 2010; 489
Senkov (10.1016/j.intermet.2018.10.004_bib30) 2011; 529
Chen (10.1016/j.intermet.2018.10.004_bib29) 2016; 661
Senkov (10.1016/j.intermet.2018.10.004_bib36) 2014; 66
10.1016/j.intermet.2018.10.004_bib49
Ye (10.1016/j.intermet.2018.10.004_bib11) 2016; 19
Senkov (10.1016/j.intermet.2018.10.004_bib15) 2011; 19
Slattery (10.1016/j.intermet.2018.10.004_bib56) 1983; 10
Zelenitsas (10.1016/j.intermet.2018.10.004_bib4) 2006; 416
Li (10.1016/j.intermet.2018.10.004_bib40) 2014; 143
Kim (10.1016/j.intermet.2018.10.004_bib3) 1995; 33
Li (10.1016/j.intermet.2018.10.004_bib44) 1999; 30
Stern (10.1016/j.intermet.2018.10.004_bib38) 1996
Goward (10.1016/j.intermet.2018.10.004_bib46) 1971; 3
Liu (10.1016/j.intermet.2018.10.004_bib23) 2014; 583
Tong (10.1016/j.intermet.2018.10.004_bib51) 2010; 23
Lemberg (10.1016/j.intermet.2018.10.004_bib7) 2012; 24
Kofstad (10.1016/j.intermet.2018.10.004_bib22) 1966
Gorr (10.1016/j.intermet.2018.10.004_bib25) 2015; 624
Mevrel (10.1016/j.intermet.2018.10.004_bib45) 1986; 2
McKamey (10.1016/j.intermet.2018.10.004_bib33) 2011; 7
Rastkar (10.1016/j.intermet.2018.10.004_bib58) 2013; 276
Wöllmer (10.1016/j.intermet.2018.10.004_bib39) 2003; 167
Hocking MG (10.1016/j.intermet.2018.10.004_bib47) 1989
References_xml – volume: 120
  start-page: 164902
  year: 2016
  ident: bib18
  article-title: Alloy design for intrinsically ductile refractory high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 143
  start-page: 915
  year: 2014
  end-page: 920
  ident: bib40
  article-title: Formation and cyclic oxidation resistance of Hf–Co-modified aluminide coatings on nickel base superalloys
  publication-title: Mater. Chem. Phys.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib10
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 416
  start-page: 269
  year: 2006
  end-page: 280
  ident: bib4
  article-title: Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800°C
  publication-title: Mater. Sci. Eng., A
– reference: JOM (J. Occup. Med.). 43(11): p. 68-73.
– volume: 52
  start-page: 1768
  year: 2011
  end-page: 1772
  ident: bib41
  article-title: Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy
  publication-title: Mater. Trans.
– year: 1989
  ident: bib47
  article-title: Metallic and Ceramic Coatings: Production, High Temperature Properties and Applications
– volume: 66
  start-page: 2030
  year: 2014
  end-page: 2042
  ident: bib36
  article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys
  publication-title: JOM (J. Occup. Med.)
– volume: 12
  start-page: 208
  year: 1964
  end-page: 215
  ident: bib31
  article-title: “PEST” degradation in beryllides, silicides, aluminides, and related compounds
  publication-title: J. Nucl. Mater.
– volume: 583
  start-page: 162
  year: 2014
  end-page: 169
  ident: bib23
  article-title: Microstructure and oxidation behavior of new refractory high entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 167
  start-page: 83
  year: 2003
  end-page: 96
  ident: bib55
  article-title: Characterization of phases of aluminized nickel base superalloys
  publication-title: Surf. Coating. Technol.
– volume: 7
  start-page: 2747
  year: 2011
  end-page: 2755
  ident: bib33
  article-title: A study of pest oxidation in polycrystalline MoSi
  publication-title: J. Mater. Res.
– volume: 76–77
  start-page: 20
  year: 1995
  end-page: 27
  ident: bib42
  article-title: Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method
  publication-title: Surf. Coating. Technol.
– volume: 34
  start-page: 217
  year: 1990
  end-page: 228
  ident: bib48
  article-title: High-temperature coating for titanium aluminides using the pack-cementation technique
  publication-title: Oxid. Metals
– volume: 12
  start-page: 893
  year: 1981
  end-page: 901
  ident: bib52
  article-title: Embrittlement of copper due to segregation of oxygen to grain boundaries
  publication-title: Metallurg. Trans. A
– volume: 59
  start-page: 233
  year: 2003
  end-page: 255
  ident: bib53
  article-title: Oxidation-resistant aluminide coatings on gamma-TiAl
  publication-title: Oxid. Metals
– volume: 341
  start-page: 169
  year: 2003
  end-page: 173
  ident: bib57
  article-title: A study of aluminide coatings on TiAl alloys by the pack cementation method
  publication-title: Mater. Sci. Eng.
– volume: 28
  start-page: 747
  year: 1993
  end-page: 752
  ident: bib32
  article-title: Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl
  publication-title: Scripta Metall. Mater.
– volume: 10
  start-page: 41
  year: 1983
  end-page: 51
  ident: bib56
  article-title: Microstructural aspects of aluminized coatings on nickel-base alloys
  publication-title: Met. Technol.
– volume: 2
  start-page: 201
  year: 1986
  end-page: 206
  ident: bib45
  article-title: Pack cementation processes
  publication-title: Mater. Sci. Technol.
– volume: 8
  start-page: 8816
  year: 2018
  ident: bib21
  article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy
  publication-title: Sci. Rep.
– volume: 3
  start-page: 475
  year: 1971
  end-page: 495
  ident: bib46
  article-title: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys
  publication-title: Oxid. Metals
– start-page: 1700948
  year: 2018
  ident: bib28
  article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum
  publication-title: Adv. Eng. Mater.
– volume: 31
  start-page: 1223
  year: 2015
  end-page: 1230
  ident: bib14
  article-title: Phase selection rules for cast high entropy alloys: an overview
  publication-title: Mater. Sci. Technol.
– volume: 33
  start-page: 1117
  year: 1995
  end-page: 1125
  ident: bib3
  article-title: Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature
  publication-title: Scripta Metall. Mater.
– volume: 688
  start-page: 468
  year: 2016
  end-page: 477
  ident: bib27
  article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy Nb
  publication-title: J. Alloy. Comp.
– volume: 167
  start-page: 83
  year: 2003
  end-page: 96
  ident: bib39
  article-title: Characterization of phases of aluminized nickel base superalloys
  publication-title: Surf. Coating. Technol.
– volume: 41
  start-page: 96
  year: 2013
  end-page: 103
  ident: bib12
  article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase
  publication-title: Intermetallics
– volume: 30
  start-page: 495
  year: 1999
  end-page: 504
  ident: bib44
  article-title: Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings
  publication-title: Metall. Mater. Trans. B
– volume: 110
  start-page: 150
  year: 1988
  end-page: 154
  ident: bib54
  article-title: Pack cementation coatings for superalloys: a review of history, theory and practice
  publication-title: J. Eng. Gas Turbines Power Trans ASME
– volume: 729
  start-page: 1004
  year: 2017
  end-page: 1019
  ident: bib26
  article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)
  publication-title: J. Alloy. Comp.
– year: 1992
  ident: bib37
  article-title: ASM Handbook: Corrosion
– volume: 489
  start-page: 195
  year: 2010
  end-page: 201
  ident: bib5
  article-title: High temperature oxidation characteristics of Nb-10W-XCr alloys
  publication-title: J. Alloy. Comp.
– volume: 13
  start-page: 1079
  year: 2005
  end-page: 1095
  ident: bib35
  article-title: Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites
  publication-title: Intermetallics
– volume: 46
  start-page: 639
  year: 2002
  end-page: 643
  ident: bib1
  article-title: Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al
  publication-title: Scripta Mater.
– volume: 529
  start-page: 311
  year: 2011
  end-page: 320
  ident: bib30
  article-title: Microstructure and properties of a refractory NbCrMo
  publication-title: Mater. Sci. Eng.
– volume: 21
  start-page: 433
  year: 2011
  end-page: 446
  ident: bib13
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib16
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 47
  start-page: 6522
  year: 2012
  end-page: 6534
  ident: bib24
  article-title: Oxidation behavior of a refractory NbCrMo
  publication-title: J. Mater. Sci.
– volume: 81
  start-page: 87
  year: 2015
  end-page: 94
  ident: bib17
  article-title: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy
  publication-title: Mater. Des.
– volume: 126
  start-page: 171
  year: 2000
  end-page: 180
  ident: bib43
  article-title: Pack cementation coatings on Ti3Al–Nb alloys to modify the high-temperature oxidation properties
  publication-title: Surf. Coating. Technol.
– volume: 97
  start-page: 58
  year: 2018
  end-page: 66
  ident: bib34
  article-title: Accelerated oxidation in ductile refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 329–331
  start-page: 513
  year: 2002
  end-page: 522
  ident: bib6
  article-title: Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites
  publication-title: Mater. Sci. Eng., A
– volume: 112
  start-page: 115503
  year: 2014
  ident: bib20
  article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys
  publication-title: Phys. Rev. Lett.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib9
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– reference: R.H. Bianco, A. Mark, Robert A. Rapp, Codepositing elements by halide-activated pack cementation
– year: 2002
  ident: bib50
  article-title: Introduction to High Temperature Oxidation and Corrosion
– volume: 23
  start-page: 381
  year: 2010
  end-page: 385
  ident: bib51
  article-title: Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process
  publication-title: Chin. J. Aeronaut.
– volume: 41
  start-page: 365
  year: 1994
  end-page: 376
  ident: bib2
  article-title: Oxidation rates of niobium and tantalum alloys at low pressures
  publication-title: Oxid. Metals
– volume: 19
  start-page: 349
  year: 2016
  end-page: 362
  ident: bib11
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– volume: 29
  year: 2017
  ident: bib19
  article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering
  publication-title: Adv. Mater.
– volume: 624
  start-page: 270
  year: 2015
  end-page: 278
  ident: bib25
  article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys
  publication-title: J. Alloy. Comp.
– year: 1966
  ident: bib22
  article-title: High Temperature Oxidation of Metals
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib15
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 375–377
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib8
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng.
– volume: 661
  start-page: 206
  year: 2016
  end-page: 215
  ident: bib29
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloy. Comp.
– volume: 276
  start-page: 112
  year: 2013
  end-page: 119
  ident: bib58
  article-title: Microstructural evolution and hardness of TiAl
  publication-title: Appl. Surf. Sci.
– volume: 24
  start-page: 3445
  year: 2012
  end-page: 3480
  ident: bib7
  article-title: Mo-Si-B alloys for ultrahigh-temperature structural applications
  publication-title: Adv. Mater.
– year: 1996
  ident: bib38
  article-title: Metallurgical and Ceramic Protective Coatings
– volume: 126
  start-page: 171
  issue: 2
  year: 2000
  ident: 10.1016/j.intermet.2018.10.004_bib43
  article-title: Pack cementation coatings on Ti3Al–Nb alloys to modify the high-temperature oxidation properties
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/S0257-8972(00)00546-6
– volume: 21
  start-page: 433
  issue: 6
  year: 2011
  ident: 10.1016/j.intermet.2018.10.004_bib13
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/S1002-0071(12)60080-X
– volume: 13
  start-page: 1079
  issue: 10
  year: 2005
  ident: 10.1016/j.intermet.2018.10.004_bib35
  article-title: Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2005.02.002
– volume: 12
  start-page: 893
  issue: 5
  year: 1981
  ident: 10.1016/j.intermet.2018.10.004_bib52
  article-title: Embrittlement of copper due to segregation of oxygen to grain boundaries
  publication-title: Metallurg. Trans. A
  doi: 10.1007/BF02648354
– volume: 2
  start-page: 201
  issue: 3
  year: 1986
  ident: 10.1016/j.intermet.2018.10.004_bib45
  article-title: Pack cementation processes
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1986.2.3.201
– volume: 12
  start-page: 208
  issue: 2
  year: 1964
  ident: 10.1016/j.intermet.2018.10.004_bib31
  article-title: “PEST” degradation in beryllides, silicides, aluminides, and related compounds
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(64)90142-4
– volume: 7
  start-page: 2747
  issue: 10
  year: 2011
  ident: 10.1016/j.intermet.2018.10.004_bib33
  article-title: A study of pest oxidation in polycrystalline MoSi2
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.2747
– volume: 41
  start-page: 96
  year: 2013
  ident: 10.1016/j.intermet.2018.10.004_bib12
  article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.05.002
– volume: 624
  start-page: 270
  year: 2015
  ident: 10.1016/j.intermet.2018.10.004_bib25
  article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2014.11.012
– volume: 10
  start-page: 41
  issue: FEB
  year: 1983
  ident: 10.1016/j.intermet.2018.10.004_bib56
  article-title: Microstructural aspects of aluminized coatings on nickel-base alloys
  publication-title: Met. Technol.
  doi: 10.1179/030716983803291325
– year: 1992
  ident: 10.1016/j.intermet.2018.10.004_bib37
– volume: 29
  issue: 30
  year: 2017
  ident: 10.1016/j.intermet.2018.10.004_bib19
  article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701678
– volume: 19
  start-page: 349
  issue: 6
  year: 2016
  ident: 10.1016/j.intermet.2018.10.004_bib11
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– year: 1989
  ident: 10.1016/j.intermet.2018.10.004_bib47
– volume: 19
  start-page: 698
  issue: 5
  year: 2011
  ident: 10.1016/j.intermet.2018.10.004_bib15
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 416
  start-page: 269
  issue: 1
  year: 2006
  ident: 10.1016/j.intermet.2018.10.004_bib4
  article-title: Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800°C
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2005.10.017
– volume: 583
  start-page: 162
  year: 2014
  ident: 10.1016/j.intermet.2018.10.004_bib23
  article-title: Microstructure and oxidation behavior of new refractory high entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2013.08.102
– volume: 41
  start-page: 365
  issue: 5
  year: 1994
  ident: 10.1016/j.intermet.2018.10.004_bib2
  article-title: Oxidation rates of niobium and tantalum alloys at low pressures
  publication-title: Oxid. Metals
  doi: 10.1007/BF01113371
– volume: 167
  start-page: 83
  issue: 1
  year: 2003
  ident: 10.1016/j.intermet.2018.10.004_bib55
  article-title: Characterization of phases of aluminized nickel base superalloys
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/S0257-8972(02)00843-5
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.intermet.2018.10.004_bib10
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 23
  start-page: 381
  issue: 3
  year: 2010
  ident: 10.1016/j.intermet.2018.10.004_bib51
  article-title: Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(09)60231-4
– volume: 66
  start-page: 2030
  issue: 10
  year: 2014
  ident: 10.1016/j.intermet.2018.10.004_bib36
  article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys
  publication-title: JOM (J. Occup. Med.)
– volume: 8
  start-page: 8816
  issue: 1
  year: 2018
  ident: 10.1016/j.intermet.2018.10.004_bib21
  article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27144-3
– volume: 276
  start-page: 112
  year: 2013
  ident: 10.1016/j.intermet.2018.10.004_bib58
  article-title: Microstructural evolution and hardness of TiAl3 and TiAl2 phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.03.043
– volume: 34
  start-page: 217
  issue: 3
  year: 1990
  ident: 10.1016/j.intermet.2018.10.004_bib48
  article-title: High-temperature coating for titanium aluminides using the pack-cementation technique
  publication-title: Oxid. Metals
  doi: 10.1007/BF00665016
– volume: 81
  start-page: 87
  year: 2015
  ident: 10.1016/j.intermet.2018.10.004_bib17
  article-title: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.019
– volume: 110
  start-page: 150
  issue: 1
  year: 1988
  ident: 10.1016/j.intermet.2018.10.004_bib54
  article-title: Pack cementation coatings for superalloys: a review of history, theory and practice
  publication-title: J. Eng. Gas Turbines Power Trans ASME
  doi: 10.1115/1.3240078
– volume: 120
  start-page: 164902
  issue: 16
  year: 2016
  ident: 10.1016/j.intermet.2018.10.004_bib18
  article-title: Alloy design for intrinsically ductile refractory high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4966659
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.intermet.2018.10.004_bib9
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 76–77
  start-page: 20
  year: 1995
  ident: 10.1016/j.intermet.2018.10.004_bib42
  article-title: Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/0257-8972(95)02492-1
– ident: 10.1016/j.intermet.2018.10.004_bib49
  doi: 10.1007/BF03222724
– start-page: 1700948
  year: 2018
  ident: 10.1016/j.intermet.2018.10.004_bib28
  article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700948
– volume: 33
  start-page: 1117
  issue: 7
  year: 1995
  ident: 10.1016/j.intermet.2018.10.004_bib3
  article-title: Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(95)00327-R
– volume: 112
  start-page: 115503
  issue: 11
  year: 2014
  ident: 10.1016/j.intermet.2018.10.004_bib20
  article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.115503
– year: 1996
  ident: 10.1016/j.intermet.2018.10.004_bib38
– volume: 3
  start-page: 475
  issue: 5
  year: 1971
  ident: 10.1016/j.intermet.2018.10.004_bib46
  article-title: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys
  publication-title: Oxid. Metals
  doi: 10.1007/BF00604047
– volume: 341
  start-page: 169
  issue: 1–2
  year: 2003
  ident: 10.1016/j.intermet.2018.10.004_bib57
  article-title: A study of aluminide coatings on TiAl alloys by the pack cementation method
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(02)00197-1
– volume: 688
  start-page: 468
  year: 2016
  ident: 10.1016/j.intermet.2018.10.004_bib27
  article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy Nb20Mo20Cr20Ti20Al20 with and without Si addition
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.07.219
– volume: 375–377
  start-page: 213
  year: 2004
  ident: 10.1016/j.intermet.2018.10.004_bib8
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2003.10.257
– volume: 28
  start-page: 747
  issue: 6
  year: 1993
  ident: 10.1016/j.intermet.2018.10.004_bib32
  article-title: Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl3
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(93)90047-V
– volume: 167
  start-page: 83
  issue: 1
  year: 2003
  ident: 10.1016/j.intermet.2018.10.004_bib39
  article-title: Characterization of phases of aluminized nickel base superalloys
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/S0257-8972(02)00843-5
– year: 2002
  ident: 10.1016/j.intermet.2018.10.004_bib50
– volume: 46
  start-page: 639
  issue: 9
  year: 2002
  ident: 10.1016/j.intermet.2018.10.004_bib1
  article-title: Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(02)00042-8
– volume: 59
  start-page: 233
  issue: 3–4
  year: 2003
  ident: 10.1016/j.intermet.2018.10.004_bib53
  article-title: Oxidation-resistant aluminide coatings on gamma-TiAl
  publication-title: Oxid. Metals
  doi: 10.1023/A:1023035809950
– volume: 47
  start-page: 6522
  issue: 18
  year: 2012
  ident: 10.1016/j.intermet.2018.10.004_bib24
  article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6582-0
– volume: 31
  start-page: 1223
  issue: 10
  year: 2015
  ident: 10.1016/j.intermet.2018.10.004_bib14
  article-title: Phase selection rules for cast high entropy alloys: an overview
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284715Y.0000000018
– year: 1966
  ident: 10.1016/j.intermet.2018.10.004_bib22
– volume: 489
  start-page: 195
  issue: 1
  year: 2010
  ident: 10.1016/j.intermet.2018.10.004_bib5
  article-title: High temperature oxidation characteristics of Nb-10W-XCr alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2009.09.051
– volume: 52
  start-page: 1768
  issue: 9
  year: 2011
  ident: 10.1016/j.intermet.2018.10.004_bib41
  article-title: Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2010439
– volume: 329–331
  start-page: 513
  issue: Supplement C
  year: 2002
  ident: 10.1016/j.intermet.2018.10.004_bib6
  article-title: Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(01)01502-7
– volume: 30
  start-page: 495
  issue: 3
  year: 1999
  ident: 10.1016/j.intermet.2018.10.004_bib44
  article-title: Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-999-0083-9
– volume: 661
  start-page: 206
  year: 2016
  ident: 10.1016/j.intermet.2018.10.004_bib29
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2015.11.050
– volume: 18
  start-page: 1758
  issue: 9
  year: 2010
  ident: 10.1016/j.intermet.2018.10.004_bib16
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 143
  start-page: 915
  issue: 3
  year: 2014
  ident: 10.1016/j.intermet.2018.10.004_bib40
  article-title: Formation and cyclic oxidation resistance of Hf–Co-modified aluminide coatings on nickel base superalloys
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.09.016
– volume: 24
  start-page: 3445
  issue: 26
  year: 2012
  ident: 10.1016/j.intermet.2018.10.004_bib7
  article-title: Mo-Si-B alloys for ultrahigh-temperature structural applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200764
– volume: 729
  start-page: 1004
  year: 2017
  ident: 10.1016/j.intermet.2018.10.004_bib26
  article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.09.164
– volume: 529
  start-page: 311
  year: 2011
  ident: 10.1016/j.intermet.2018.10.004_bib30
  article-title: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2011.09.033
– volume: 97
  start-page: 58
  year: 2018
  ident: 10.1016/j.intermet.2018.10.004_bib34
  article-title: Accelerated oxidation in ductile refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.04.001
SSID ssj0017035
Score 2.4648612
Snippet Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Alloys
Aluminizing
Coating
High entropy alloys
Materials selection
Mechanical properties
Oxidation
Oxidation resistance
Pack cementation
Pesting (intermetallics)
Pests
Refractory alloys
Refractory high-entropy alloys
Title Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys
URI https://dx.doi.org/10.1016/j.intermet.2018.10.004
https://www.proquest.com/docview/2148957362
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371037
https://research.chalmers.se/publication/506782
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gIHRHmIhbbyAY7ZTWInto-r0mp59QKF3iw_2VSQrPYhsRz47czksVokUA8cM7ElZ2yPv4lnviHkpfPe50KZJA2lSbhyPJHOgM8Tiuh55kve3p5_uCpn1_ztTXFzQM6HXBgMq-xtf2fTW2vdSya9NieLqpp8BPBdKgEIQTJ0SjCJj3OBq3z8axfmkcGKbsMYoXGCrfeyhG_HSMmw_B4wpjKT4zbKi__rgNoHoPukou1BdPmQPOgRJJ12gzwmB6F-RO7v8Qo-Jl-mYHKquvoJTxRQKQ31vL3pp82PqiuiRMHNRugIUtpEiqyvYB9AGpdtBZ4tRSLjBP_9Nostxev57eoJub68-HQ-S_oKCokDZLZOcmNEkTsmGAeYI4UVNmZKpEbyLAgXMmaizJ0qHGMAVSK6D_Am5MzGVCjHnpLDuqnDM0Kl89aaaABOGR5DMAAuLM9yU6aGc25HpBjUpl1PL45VLr7pIY7sVg_q1qhulIO6R2Sy67foCDbu7KGGWdF_LBUNp8CdfU-GadT9Zl3pHFxCVQg4ykfkVTe1u6Eg-_br6vNUN8uverPRTGBi5Yi8_0u7np5prt28rX2z0qugHUuNZ9xr6YPTvHReW65KLWMmA1c2isI-_48vekHu4VMXYXNCDtfLTTgFnLS2Z-1GOCNH0zfvZle_AYzyFyE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaW5QAcEE9RWMAHOKZtYie2j9XCqkB3L-zC3kZ-brOCpOpDohz47YzzqIoE2gPHTGzJGdsz38Tjbwh5Y51zmVA6GftCJ1xZnkirMebxeXA8dQVvTs9Pz4rpBf94mV8ekOP-LkxMq-xsf2vTG2vdSUadNkeLshx9RvBdKIEIQbIYlKhb5DbH7RvLGAx_7fI8UlzSTR4jtk5i871rwtfDyMmw_O5jUmUqh02aF_-Xh9pHoPusoo0nOnlA7ncQkk7aUT4kB756RO7tEQs-Jl8naHPKqvyJTxRhKfXVvDnqp_WPsq2iRDHOjtgRpbQONNK-ooFAaVg2JXi2NDIZJ_Hnb73Y0ng-v109IRcn78-Pp0lXQiGxCM3WSaa1yDPLBOOIc6QwwoRUibGWPPXC-pTpIDOrcssYYpUQ4wd84zNmwlgoy56Sw6qu_DNCpXXG6KART2kevNeILgxPM12MNefcDEjeqw1sxy8ey1x8gz6R7Bp6dUNUd5SjugdktOu3aBk2buyh-lmBP9YKoBu4se9RP43Q7dYVZBgTqlygLx-Qt-3U7oYS6bfflV8mUC-vYLMBJuLNygGZ_aVdx880Bztvit-sYOXBsrF2jDuQzlvghXVguCpAhlR6rkwQuXn-H1_0mtyZnp_OYPbh7NMLcje-adNtjsjhernxLxE0rc2rZlP8Br7sGK8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aluminizing+for+enhanced+oxidation+resistance+of+ductile+refractory+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Sheikh%2C+Saad&rft.au=Gan%2C+Lu&rft.au=Tsao%2C+Te-Kang&rft.au=Murakami%2C+Hideyuki&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0966-9795&rft.eissn=1879-0216&rft.volume=103&rft.spage=40&rft_id=info:doi/10.1016%2Fj.intermet.2018.10.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon