Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys
Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that...
Saved in:
Published in | Intermetallics Vol. 103; pp. 40 - 51 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials.
•Pack cementation using different pack compositions were experimented on two RHEAs.•Proper aluminizing can avoid pesting in the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA.•Proper aluminizing can improve the embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5.•Aluminizing is promising to further improve RHEAs for high-temperature applications. |
---|---|
AbstractList | Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials. Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 °C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 °C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials. •Pack cementation using different pack compositions were experimented on two RHEAs.•Proper aluminizing can avoid pesting in the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA.•Proper aluminizing can improve the embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5.•Aluminizing is promising to further improve RHEAs for high-temperature applications. Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600-1000 degrees C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 degrees C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials. |
Author | Murakami, Hideyuki Gan, Lu Sheikh, Saad Guo, Sheng Shafeie, Samrand Tsao, Te-Kang |
Author_xml | – sequence: 1 givenname: Saad surname: Sheikh fullname: Sheikh, Saad organization: Industrial and Materials Science, Chalmers University of Technology, 41296, Göteborg, Sweden – sequence: 2 givenname: Lu surname: Gan fullname: Gan, Lu organization: National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan – sequence: 3 givenname: Te-Kang surname: Tsao fullname: Tsao, Te-Kang organization: Department of Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo, 169-8555, Japan – sequence: 4 givenname: Hideyuki surname: Murakami fullname: Murakami, Hideyuki organization: National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan – sequence: 5 givenname: Samrand surname: Shafeie fullname: Shafeie, Samrand organization: Inorganic Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden – sequence: 6 givenname: Sheng surname: Guo fullname: Guo, Sheng email: sheng.guo@chalmers.se organization: Industrial and Materials Science, Chalmers University of Technology, 41296, Göteborg, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371037$$DView record from Swedish Publication Index https://research.chalmers.se/publication/506782$$DView record from Swedish Publication Index |
BookMark | eNqFkV-L1DAUxYOs4OzoV5CCr3ZMmjZpwAeHXVeFBR_893hJ05tphk4zJqk6fvpNHfdFkH0KnNxzOPf-LsnF5Cck5DmjG0aZeLXfuClhOGDaVJS1WdxQWj8iK9ZKVdKKiQuyokqIUknVPCGXMe4pZZLyZkW-bcf54Cb32027wvpQ4DToyWBf-F-u18n5qQgYXUyLWnhb9LNJbsSs2qBN8uFUDG43lDil4I-nQo-jP8Wn5LHVY8Rnf981-XLz9vPV-_L247sPV9vb0jRMpbLSWjaV4ZLXouKt7GRnmZJUtzVDaZBxbdvKqMZwLriyVMgm_2DFO0ulMnxNPp1z4088zh0cgzvocAKvHeTeqIMZwAx6PGCIEBEMp7rndQ9tjwZqYXroaiWgtazFWnVWNl1Offnf1Gv3dQs-7GCegUtGc_c1eXEePwb_fcaYYO_nMOW9oWJ1qxrJ83Zr8vo8ZYKPMZ8PjEt_LpyCdiMwCgtP2MM9T1h4Lnrmme3iH_t9qweNb85GzBx-OAwQjcOFsQtoEvTePRRxB6cNwvs |
CitedBy_id | crossref_primary_10_1016_j_scriptamat_2021_114230 crossref_primary_10_1016_j_msea_2024_146828 crossref_primary_10_1016_j_vacuum_2021_110749 crossref_primary_10_1016_j_corsci_2023_111365 crossref_primary_10_1016_j_jmrt_2023_12_011 crossref_primary_10_1016_j_ijrmhm_2022_105918 crossref_primary_10_1016_j_jmrt_2023_07_277 crossref_primary_10_1016_j_actamat_2022_117970 crossref_primary_10_1002_advs_202309693 crossref_primary_10_1016_j_jallcom_2024_178216 crossref_primary_10_1016_j_jallcom_2023_172397 crossref_primary_10_1016_j_jallcom_2024_175100 crossref_primary_10_3390_ma16247505 crossref_primary_10_1070_RCR5023 crossref_primary_10_1016_j_actamat_2024_120032 crossref_primary_10_1016_j_vacuum_2019_03_017 crossref_primary_10_1016_j_vacuum_2020_109823 crossref_primary_10_1016_j_ijrmhm_2023_106223 crossref_primary_10_1016_j_jmmm_2019_166151 crossref_primary_10_1088_2053_1591_ab49e7 crossref_primary_10_1016_j_ijrmhm_2023_106308 crossref_primary_10_1080_02670836_2019_1706815 crossref_primary_10_1016_j_actamat_2022_117739 crossref_primary_10_1016_j_wear_2023_204819 crossref_primary_10_1016_j_jallcom_2022_165384 crossref_primary_10_1016_j_vacuum_2021_110072 crossref_primary_10_3390_ma17122799 crossref_primary_10_1002_adem_202400960 crossref_primary_10_3390_cryst11060612 crossref_primary_10_1088_1742_6596_2044_1_012069 crossref_primary_10_1016_j_jmmm_2019_165574 crossref_primary_10_1016_j_intermet_2020_106838 crossref_primary_10_1007_s11837_019_03679_2 crossref_primary_10_1016_j_rinma_2023_100508 crossref_primary_10_1016_j_mtadv_2020_100104 crossref_primary_10_1007_s11665_019_04177_x crossref_primary_10_1016_j_intermet_2024_108549 crossref_primary_10_1016_j_matdes_2024_113370 crossref_primary_10_3390_ma11122526 crossref_primary_10_1016_j_apsusc_2021_150466 crossref_primary_10_1016_j_jmst_2023_02_016 crossref_primary_10_1016_j_surfcoat_2024_131721 crossref_primary_10_1016_j_actamat_2021_117114 crossref_primary_10_1016_j_jallcom_2020_154427 crossref_primary_10_3390_ma14102595 crossref_primary_10_1016_j_corsci_2022_110134 crossref_primary_10_1016_j_corsci_2022_110377 crossref_primary_10_3389_ftmal_2023_1135826 crossref_primary_10_1016_j_scriptamat_2019_04_041 crossref_primary_10_1016_j_surfcoat_2025_132040 crossref_primary_10_2139_ssrn_3995237 crossref_primary_10_1016_j_surfcoat_2023_129967 crossref_primary_10_1142_S0218625X20300063 crossref_primary_10_1016_j_intermet_2020_106711 crossref_primary_10_1016_j_surfcoat_2021_127069 crossref_primary_10_1016_j_ceramint_2020_11_217 crossref_primary_10_1063_5_0070303 |
Cites_doi | 10.1016/S0257-8972(00)00546-6 10.1016/S1002-0071(12)60080-X 10.1016/j.intermet.2005.02.002 10.1007/BF02648354 10.1179/mst.1986.2.3.201 10.1016/0022-3115(64)90142-4 10.1557/JMR.1992.2747 10.1016/j.intermet.2013.05.002 10.1016/j.jallcom.2014.11.012 10.1179/030716983803291325 10.1002/adma.201701678 10.1016/j.mattod.2015.11.026 10.1016/j.intermet.2011.01.004 10.1016/j.msea.2005.10.017 10.1016/j.jallcom.2013.08.102 10.1007/BF01113371 10.1016/S0257-8972(02)00843-5 10.1002/adem.200300567 10.1016/S1000-9361(09)60231-4 10.1038/s41598-018-27144-3 10.1016/j.apsusc.2013.03.043 10.1007/BF00665016 10.1016/j.matdes.2015.05.019 10.1115/1.3240078 10.1063/1.4966659 10.1016/j.actamat.2016.08.081 10.1016/0257-8972(95)02492-1 10.1007/BF03222724 10.1002/adem.201700948 10.1016/0956-716X(95)00327-R 10.1103/PhysRevLett.112.115503 10.1007/BF00604047 10.1016/S0921-5093(02)00197-1 10.1016/j.jallcom.2016.07.219 10.1016/j.msea.2003.10.257 10.1016/0956-716X(93)90047-V 10.1016/S1359-6462(02)00042-8 10.1023/A:1023035809950 10.1007/s10853-012-6582-0 10.1179/1743284715Y.0000000018 10.1016/j.jallcom.2009.09.051 10.2320/matertrans.M2010439 10.1016/S0921-5093(01)01502-7 10.1007/s11663-999-0083-9 10.1016/j.jallcom.2015.11.050 10.1016/j.intermet.2010.05.014 10.1016/j.matchemphys.2013.09.016 10.1002/adma.201200764 10.1016/j.jallcom.2017.09.164 10.1016/j.msea.2011.09.033 10.1016/j.intermet.2018.04.001 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2018 |
DBID | AAYXX CITATION 8BQ 8FD JG9 ADTPV AOWAS DF2 F1S |
DOI | 10.1016/j.intermet.2018.10.004 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database SwePub SwePub Articles SWEPUB Uppsala universitet SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0216 |
EndPage | 51 |
ExternalDocumentID | oai_research_chalmers_se_c30ad34d_8dec_46cd_b496_8f18e49bf75b oai_DiVA_org_uu_371037 10_1016_j_intermet_2018_10_004 S0966979518307179 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 8BQ 8FD EFKBS JG9 ADTPV AOWAS DF2 F1S |
ID | FETCH-LOGICAL-c519t-2aa752c373462387b7bf1970a841e7ce13af82c95c33639f067541ee23bf079c3 |
IEDL.DBID | .~1 |
ISSN | 0966-9795 1879-0216 |
IngestDate | Thu Aug 21 07:00:31 EDT 2025 Thu Aug 21 07:00:52 EDT 2025 Sat Aug 23 13:14:56 EDT 2025 Tue Jul 01 02:43:26 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Dec 03 03:44:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Refractory high-entropy alloys Aluminizing Pack cementation Oxidation resistance Coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-2aa752c373462387b7bf1970a841e7ce13af82c95c33639f067541ee23bf079c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2148957362 |
PQPubID | 2045471 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_c30ad34d_8dec_46cd_b496_8f18e49bf75b swepub_primary_oai_DiVA_org_uu_371037 proquest_journals_2148957362 crossref_citationtrail_10_1016_j_intermet_2018_10_004 crossref_primary_10_1016_j_intermet_2018_10_004 elsevier_sciencedirect_doi_10_1016_j_intermet_2018_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Intermetallics |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mevrel, Duret, Pichoir (bib45) 1986; 2 DiStefano, Hendricks (bib2) 1994; 41 Miracle, Senkov (bib9) 2017; 122 Guo (bib14) 2015; 31 Sheikh (bib18) 2016; 120 Senkov (bib24) 2012; 47 Cockeram (bib42) 1995; 76–77 Khanna (bib50) 2002 Zhou (bib57) 2003; 341 Senkov (bib15) 2011; 19 Kofstad (bib22) 1966 Wollner (bib55) 2003; 167 Nieh, Nix (bib52) 1981; 12 Senkov, Woodward, Miracle (bib36) 2014; 66 Wöllmer (bib39) 2003; 167 Chan (bib6) 2002; 329–331 Guo (bib12) 2013; 41 Hocking MG, Sidky (bib47) 1989 Sheikh (bib34) 2018; 97 Gorr, F.M., Christ, Mueller, Chen, Kauffmann, Heilmaier (bib27) 2016; 688 Cantor (bib8) 2004; 375–377 Goward, Boone (bib46) 1971; 3 McKamey (bib33) 2011; 7 R.H. Bianco, A. Mark, Robert A. Rapp, Codepositing elements by halide-activated pack cementation Rastkar (bib58) 2013; 276 Tong, Dengzun, Chungen (bib51) 2010; 23 Kim, Kim, Kim (bib3) 1995; 33 Gorr (bib25) 2015; 624 Liu (bib23) 2014; 583 Chen (bib29) 2016; 661 Guo, Liu (bib13) 2011; 21 Westbrook, Wood (bib31) 1964; 12 Lemberg, Ritchie (bib7) 2012; 24 Slattery (bib56) 1983; 10 Jiang (bib1) 2002; 46 Goward, Cannon (bib54) 1988; 110 Ye (bib11) 2016; 19 Gauthier (bib53) 2003; 59 Li, Soboyejo, Rapp (bib44) 1999; 30 Zelenitsas, Tsakiropoulos (bib35) 2005; 13 Koo, Yu (bib43) 2000; 126 Tolpygo, Grabke (bib32) 1993; 28 Senkov, Woodward (bib30) 2011; 529 Kasai (bib41) 2011; 52 Korb, D.O. (bib37) 1992 Li, Qiao, Zhou (bib40) 2014; 143 Moricca, Varma (bib5) 2010; 489 Butler (bib26) 2017; 729 Chang, Titus, Yeh (bib28) 2018 Senkov (bib16) 2010; 18 Guo (bib17) 2015; 81 Stern (bib38) 1996 JOM (J. Occup. Med.). 43(11): p. 68-73. Qi, Chrzan (bib20) 2014; 112 Huang (bib19) 2017; 29 Kung (bib48) 1990; 34 Zelenitsas, Tsakiropoulos (bib4) 2006; 416 Yeh (bib10) 2004; 6 Soni (bib21) 2018; 8 Chang (10.1016/j.intermet.2018.10.004_bib28) 2018 Qi (10.1016/j.intermet.2018.10.004_bib20) 2014; 112 Miracle (10.1016/j.intermet.2018.10.004_bib9) 2017; 122 Westbrook (10.1016/j.intermet.2018.10.004_bib31) 1964; 12 Senkov (10.1016/j.intermet.2018.10.004_bib16) 2010; 18 Kung (10.1016/j.intermet.2018.10.004_bib48) 1990; 34 Guo (10.1016/j.intermet.2018.10.004_bib12) 2013; 41 Korb (10.1016/j.intermet.2018.10.004_bib37) 1992 Huang (10.1016/j.intermet.2018.10.004_bib19) 2017; 29 Sheikh (10.1016/j.intermet.2018.10.004_bib34) 2018; 97 Tolpygo (10.1016/j.intermet.2018.10.004_bib32) 1993; 28 Goward (10.1016/j.intermet.2018.10.004_bib54) 1988; 110 Nieh (10.1016/j.intermet.2018.10.004_bib52) 1981; 12 Wollner (10.1016/j.intermet.2018.10.004_bib55) 2003; 167 Sheikh (10.1016/j.intermet.2018.10.004_bib18) 2016; 120 Zelenitsas (10.1016/j.intermet.2018.10.004_bib35) 2005; 13 Gauthier (10.1016/j.intermet.2018.10.004_bib53) 2003; 59 Cantor (10.1016/j.intermet.2018.10.004_bib8) 2004; 375–377 Soni (10.1016/j.intermet.2018.10.004_bib21) 2018; 8 Yeh (10.1016/j.intermet.2018.10.004_bib10) 2004; 6 Cockeram (10.1016/j.intermet.2018.10.004_bib42) 1995; 76–77 Koo (10.1016/j.intermet.2018.10.004_bib43) 2000; 126 Guo (10.1016/j.intermet.2018.10.004_bib13) 2011; 21 Guo (10.1016/j.intermet.2018.10.004_bib14) 2015; 31 Jiang (10.1016/j.intermet.2018.10.004_bib1) 2002; 46 Khanna (10.1016/j.intermet.2018.10.004_bib50) 2002 DiStefano (10.1016/j.intermet.2018.10.004_bib2) 1994; 41 Gorr (10.1016/j.intermet.2018.10.004_bib27) 2016; 688 Chan (10.1016/j.intermet.2018.10.004_bib6) 2002; 329–331 Butler (10.1016/j.intermet.2018.10.004_bib26) 2017; 729 Zhou (10.1016/j.intermet.2018.10.004_bib57) 2003; 341 Senkov (10.1016/j.intermet.2018.10.004_bib24) 2012; 47 Guo (10.1016/j.intermet.2018.10.004_bib17) 2015; 81 Kasai (10.1016/j.intermet.2018.10.004_bib41) 2011; 52 Moricca (10.1016/j.intermet.2018.10.004_bib5) 2010; 489 Senkov (10.1016/j.intermet.2018.10.004_bib30) 2011; 529 Chen (10.1016/j.intermet.2018.10.004_bib29) 2016; 661 Senkov (10.1016/j.intermet.2018.10.004_bib36) 2014; 66 10.1016/j.intermet.2018.10.004_bib49 Ye (10.1016/j.intermet.2018.10.004_bib11) 2016; 19 Senkov (10.1016/j.intermet.2018.10.004_bib15) 2011; 19 Slattery (10.1016/j.intermet.2018.10.004_bib56) 1983; 10 Zelenitsas (10.1016/j.intermet.2018.10.004_bib4) 2006; 416 Li (10.1016/j.intermet.2018.10.004_bib40) 2014; 143 Kim (10.1016/j.intermet.2018.10.004_bib3) 1995; 33 Li (10.1016/j.intermet.2018.10.004_bib44) 1999; 30 Stern (10.1016/j.intermet.2018.10.004_bib38) 1996 Goward (10.1016/j.intermet.2018.10.004_bib46) 1971; 3 Liu (10.1016/j.intermet.2018.10.004_bib23) 2014; 583 Tong (10.1016/j.intermet.2018.10.004_bib51) 2010; 23 Lemberg (10.1016/j.intermet.2018.10.004_bib7) 2012; 24 Kofstad (10.1016/j.intermet.2018.10.004_bib22) 1966 Gorr (10.1016/j.intermet.2018.10.004_bib25) 2015; 624 Mevrel (10.1016/j.intermet.2018.10.004_bib45) 1986; 2 McKamey (10.1016/j.intermet.2018.10.004_bib33) 2011; 7 Rastkar (10.1016/j.intermet.2018.10.004_bib58) 2013; 276 Wöllmer (10.1016/j.intermet.2018.10.004_bib39) 2003; 167 Hocking MG (10.1016/j.intermet.2018.10.004_bib47) 1989 |
References_xml | – volume: 120 start-page: 164902 year: 2016 ident: bib18 article-title: Alloy design for intrinsically ductile refractory high-entropy alloys publication-title: J. Appl. Phys. – volume: 143 start-page: 915 year: 2014 end-page: 920 ident: bib40 article-title: Formation and cyclic oxidation resistance of Hf–Co-modified aluminide coatings on nickel base superalloys publication-title: Mater. Chem. Phys. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib10 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 416 start-page: 269 year: 2006 end-page: 280 ident: bib4 article-title: Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800°C publication-title: Mater. Sci. Eng., A – reference: JOM (J. Occup. Med.). 43(11): p. 68-73. – volume: 52 start-page: 1768 year: 2011 end-page: 1772 ident: bib41 article-title: Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy publication-title: Mater. Trans. – year: 1989 ident: bib47 article-title: Metallic and Ceramic Coatings: Production, High Temperature Properties and Applications – volume: 66 start-page: 2030 year: 2014 end-page: 2042 ident: bib36 article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys publication-title: JOM (J. Occup. Med.) – volume: 12 start-page: 208 year: 1964 end-page: 215 ident: bib31 article-title: “PEST” degradation in beryllides, silicides, aluminides, and related compounds publication-title: J. Nucl. Mater. – volume: 583 start-page: 162 year: 2014 end-page: 169 ident: bib23 article-title: Microstructure and oxidation behavior of new refractory high entropy alloys publication-title: J. Alloy. Comp. – volume: 167 start-page: 83 year: 2003 end-page: 96 ident: bib55 article-title: Characterization of phases of aluminized nickel base superalloys publication-title: Surf. Coating. Technol. – volume: 7 start-page: 2747 year: 2011 end-page: 2755 ident: bib33 article-title: A study of pest oxidation in polycrystalline MoSi publication-title: J. Mater. Res. – volume: 76–77 start-page: 20 year: 1995 end-page: 27 ident: bib42 article-title: Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method publication-title: Surf. Coating. Technol. – volume: 34 start-page: 217 year: 1990 end-page: 228 ident: bib48 article-title: High-temperature coating for titanium aluminides using the pack-cementation technique publication-title: Oxid. Metals – volume: 12 start-page: 893 year: 1981 end-page: 901 ident: bib52 article-title: Embrittlement of copper due to segregation of oxygen to grain boundaries publication-title: Metallurg. Trans. A – volume: 59 start-page: 233 year: 2003 end-page: 255 ident: bib53 article-title: Oxidation-resistant aluminide coatings on gamma-TiAl publication-title: Oxid. Metals – volume: 341 start-page: 169 year: 2003 end-page: 173 ident: bib57 article-title: A study of aluminide coatings on TiAl alloys by the pack cementation method publication-title: Mater. Sci. Eng. – volume: 28 start-page: 747 year: 1993 end-page: 752 ident: bib32 article-title: Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl publication-title: Scripta Metall. Mater. – volume: 10 start-page: 41 year: 1983 end-page: 51 ident: bib56 article-title: Microstructural aspects of aluminized coatings on nickel-base alloys publication-title: Met. Technol. – volume: 2 start-page: 201 year: 1986 end-page: 206 ident: bib45 article-title: Pack cementation processes publication-title: Mater. Sci. Technol. – volume: 8 start-page: 8816 year: 2018 ident: bib21 article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy publication-title: Sci. Rep. – volume: 3 start-page: 475 year: 1971 end-page: 495 ident: bib46 article-title: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys publication-title: Oxid. Metals – start-page: 1700948 year: 2018 ident: bib28 article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum publication-title: Adv. Eng. Mater. – volume: 31 start-page: 1223 year: 2015 end-page: 1230 ident: bib14 article-title: Phase selection rules for cast high entropy alloys: an overview publication-title: Mater. Sci. Technol. – volume: 33 start-page: 1117 year: 1995 end-page: 1125 ident: bib3 article-title: Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature publication-title: Scripta Metall. Mater. – volume: 688 start-page: 468 year: 2016 end-page: 477 ident: bib27 article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy Nb publication-title: J. Alloy. Comp. – volume: 167 start-page: 83 year: 2003 end-page: 96 ident: bib39 article-title: Characterization of phases of aluminized nickel base superalloys publication-title: Surf. Coating. Technol. – volume: 41 start-page: 96 year: 2013 end-page: 103 ident: bib12 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics – volume: 30 start-page: 495 year: 1999 end-page: 504 ident: bib44 article-title: Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings publication-title: Metall. Mater. Trans. B – volume: 110 start-page: 150 year: 1988 end-page: 154 ident: bib54 article-title: Pack cementation coatings for superalloys: a review of history, theory and practice publication-title: J. Eng. Gas Turbines Power Trans ASME – volume: 729 start-page: 1004 year: 2017 end-page: 1019 ident: bib26 article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) publication-title: J. Alloy. Comp. – year: 1992 ident: bib37 article-title: ASM Handbook: Corrosion – volume: 489 start-page: 195 year: 2010 end-page: 201 ident: bib5 article-title: High temperature oxidation characteristics of Nb-10W-XCr alloys publication-title: J. Alloy. Comp. – volume: 13 start-page: 1079 year: 2005 end-page: 1095 ident: bib35 article-title: Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites publication-title: Intermetallics – volume: 46 start-page: 639 year: 2002 end-page: 643 ident: bib1 article-title: Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al publication-title: Scripta Mater. – volume: 529 start-page: 311 year: 2011 end-page: 320 ident: bib30 article-title: Microstructure and properties of a refractory NbCrMo publication-title: Mater. Sci. Eng. – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: bib13 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib16 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 47 start-page: 6522 year: 2012 end-page: 6534 ident: bib24 article-title: Oxidation behavior of a refractory NbCrMo publication-title: J. Mater. Sci. – volume: 81 start-page: 87 year: 2015 end-page: 94 ident: bib17 article-title: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy publication-title: Mater. Des. – volume: 126 start-page: 171 year: 2000 end-page: 180 ident: bib43 article-title: Pack cementation coatings on Ti3Al–Nb alloys to modify the high-temperature oxidation properties publication-title: Surf. Coating. Technol. – volume: 97 start-page: 58 year: 2018 end-page: 66 ident: bib34 article-title: Accelerated oxidation in ductile refractory high-entropy alloys publication-title: Intermetallics – volume: 329–331 start-page: 513 year: 2002 end-page: 522 ident: bib6 article-title: Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites publication-title: Mater. Sci. Eng., A – volume: 112 start-page: 115503 year: 2014 ident: bib20 article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys publication-title: Phys. Rev. Lett. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib9 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – reference: R.H. Bianco, A. Mark, Robert A. Rapp, Codepositing elements by halide-activated pack cementation – year: 2002 ident: bib50 article-title: Introduction to High Temperature Oxidation and Corrosion – volume: 23 start-page: 381 year: 2010 end-page: 385 ident: bib51 article-title: Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process publication-title: Chin. J. Aeronaut. – volume: 41 start-page: 365 year: 1994 end-page: 376 ident: bib2 article-title: Oxidation rates of niobium and tantalum alloys at low pressures publication-title: Oxid. Metals – volume: 19 start-page: 349 year: 2016 end-page: 362 ident: bib11 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today – volume: 29 year: 2017 ident: bib19 article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering publication-title: Adv. Mater. – volume: 624 start-page: 270 year: 2015 end-page: 278 ident: bib25 article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys publication-title: J. Alloy. Comp. – year: 1966 ident: bib22 article-title: High Temperature Oxidation of Metals – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib15 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: bib8 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. – volume: 661 start-page: 206 year: 2016 end-page: 215 ident: bib29 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloy. Comp. – volume: 276 start-page: 112 year: 2013 end-page: 119 ident: bib58 article-title: Microstructural evolution and hardness of TiAl publication-title: Appl. Surf. Sci. – volume: 24 start-page: 3445 year: 2012 end-page: 3480 ident: bib7 article-title: Mo-Si-B alloys for ultrahigh-temperature structural applications publication-title: Adv. Mater. – year: 1996 ident: bib38 article-title: Metallurgical and Ceramic Protective Coatings – volume: 126 start-page: 171 issue: 2 year: 2000 ident: 10.1016/j.intermet.2018.10.004_bib43 article-title: Pack cementation coatings on Ti3Al–Nb alloys to modify the high-temperature oxidation properties publication-title: Surf. Coating. Technol. doi: 10.1016/S0257-8972(00)00546-6 – volume: 21 start-page: 433 issue: 6 year: 2011 ident: 10.1016/j.intermet.2018.10.004_bib13 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/S1002-0071(12)60080-X – volume: 13 start-page: 1079 issue: 10 year: 2005 ident: 10.1016/j.intermet.2018.10.004_bib35 article-title: Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites publication-title: Intermetallics doi: 10.1016/j.intermet.2005.02.002 – volume: 12 start-page: 893 issue: 5 year: 1981 ident: 10.1016/j.intermet.2018.10.004_bib52 article-title: Embrittlement of copper due to segregation of oxygen to grain boundaries publication-title: Metallurg. Trans. A doi: 10.1007/BF02648354 – volume: 2 start-page: 201 issue: 3 year: 1986 ident: 10.1016/j.intermet.2018.10.004_bib45 article-title: Pack cementation processes publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1986.2.3.201 – volume: 12 start-page: 208 issue: 2 year: 1964 ident: 10.1016/j.intermet.2018.10.004_bib31 article-title: “PEST” degradation in beryllides, silicides, aluminides, and related compounds publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(64)90142-4 – volume: 7 start-page: 2747 issue: 10 year: 2011 ident: 10.1016/j.intermet.2018.10.004_bib33 article-title: A study of pest oxidation in polycrystalline MoSi2 publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.2747 – volume: 41 start-page: 96 year: 2013 ident: 10.1016/j.intermet.2018.10.004_bib12 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics doi: 10.1016/j.intermet.2013.05.002 – volume: 624 start-page: 270 year: 2015 ident: 10.1016/j.intermet.2018.10.004_bib25 article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.11.012 – volume: 10 start-page: 41 issue: FEB year: 1983 ident: 10.1016/j.intermet.2018.10.004_bib56 article-title: Microstructural aspects of aluminized coatings on nickel-base alloys publication-title: Met. Technol. doi: 10.1179/030716983803291325 – year: 1992 ident: 10.1016/j.intermet.2018.10.004_bib37 – volume: 29 issue: 30 year: 2017 ident: 10.1016/j.intermet.2018.10.004_bib19 article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering publication-title: Adv. Mater. doi: 10.1002/adma.201701678 – volume: 19 start-page: 349 issue: 6 year: 2016 ident: 10.1016/j.intermet.2018.10.004_bib11 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – year: 1989 ident: 10.1016/j.intermet.2018.10.004_bib47 – volume: 19 start-page: 698 issue: 5 year: 2011 ident: 10.1016/j.intermet.2018.10.004_bib15 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 416 start-page: 269 issue: 1 year: 2006 ident: 10.1016/j.intermet.2018.10.004_bib4 article-title: Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800°C publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2005.10.017 – volume: 583 start-page: 162 year: 2014 ident: 10.1016/j.intermet.2018.10.004_bib23 article-title: Microstructure and oxidation behavior of new refractory high entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2013.08.102 – volume: 41 start-page: 365 issue: 5 year: 1994 ident: 10.1016/j.intermet.2018.10.004_bib2 article-title: Oxidation rates of niobium and tantalum alloys at low pressures publication-title: Oxid. Metals doi: 10.1007/BF01113371 – volume: 167 start-page: 83 issue: 1 year: 2003 ident: 10.1016/j.intermet.2018.10.004_bib55 article-title: Characterization of phases of aluminized nickel base superalloys publication-title: Surf. Coating. Technol. doi: 10.1016/S0257-8972(02)00843-5 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.intermet.2018.10.004_bib10 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 23 start-page: 381 issue: 3 year: 2010 ident: 10.1016/j.intermet.2018.10.004_bib51 article-title: Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(09)60231-4 – volume: 66 start-page: 2030 issue: 10 year: 2014 ident: 10.1016/j.intermet.2018.10.004_bib36 article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys publication-title: JOM (J. Occup. Med.) – volume: 8 start-page: 8816 issue: 1 year: 2018 ident: 10.1016/j.intermet.2018.10.004_bib21 article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy publication-title: Sci. Rep. doi: 10.1038/s41598-018-27144-3 – volume: 276 start-page: 112 year: 2013 ident: 10.1016/j.intermet.2018.10.004_bib58 article-title: Microstructural evolution and hardness of TiAl3 and TiAl2 phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.03.043 – volume: 34 start-page: 217 issue: 3 year: 1990 ident: 10.1016/j.intermet.2018.10.004_bib48 article-title: High-temperature coating for titanium aluminides using the pack-cementation technique publication-title: Oxid. Metals doi: 10.1007/BF00665016 – volume: 81 start-page: 87 year: 2015 ident: 10.1016/j.intermet.2018.10.004_bib17 article-title: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.019 – volume: 110 start-page: 150 issue: 1 year: 1988 ident: 10.1016/j.intermet.2018.10.004_bib54 article-title: Pack cementation coatings for superalloys: a review of history, theory and practice publication-title: J. Eng. Gas Turbines Power Trans ASME doi: 10.1115/1.3240078 – volume: 120 start-page: 164902 issue: 16 year: 2016 ident: 10.1016/j.intermet.2018.10.004_bib18 article-title: Alloy design for intrinsically ductile refractory high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4966659 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.intermet.2018.10.004_bib9 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 76–77 start-page: 20 year: 1995 ident: 10.1016/j.intermet.2018.10.004_bib42 article-title: Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method publication-title: Surf. Coating. Technol. doi: 10.1016/0257-8972(95)02492-1 – ident: 10.1016/j.intermet.2018.10.004_bib49 doi: 10.1007/BF03222724 – start-page: 1700948 year: 2018 ident: 10.1016/j.intermet.2018.10.004_bib28 article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700948 – volume: 33 start-page: 1117 issue: 7 year: 1995 ident: 10.1016/j.intermet.2018.10.004_bib3 article-title: Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(95)00327-R – volume: 112 start-page: 115503 issue: 11 year: 2014 ident: 10.1016/j.intermet.2018.10.004_bib20 article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.115503 – year: 1996 ident: 10.1016/j.intermet.2018.10.004_bib38 – volume: 3 start-page: 475 issue: 5 year: 1971 ident: 10.1016/j.intermet.2018.10.004_bib46 article-title: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys publication-title: Oxid. Metals doi: 10.1007/BF00604047 – volume: 341 start-page: 169 issue: 1–2 year: 2003 ident: 10.1016/j.intermet.2018.10.004_bib57 article-title: A study of aluminide coatings on TiAl alloys by the pack cementation method publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(02)00197-1 – volume: 688 start-page: 468 year: 2016 ident: 10.1016/j.intermet.2018.10.004_bib27 article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy Nb20Mo20Cr20Ti20Al20 with and without Si addition publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.07.219 – volume: 375–377 start-page: 213 year: 2004 ident: 10.1016/j.intermet.2018.10.004_bib8 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2003.10.257 – volume: 28 start-page: 747 issue: 6 year: 1993 ident: 10.1016/j.intermet.2018.10.004_bib32 article-title: Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl3 publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(93)90047-V – volume: 167 start-page: 83 issue: 1 year: 2003 ident: 10.1016/j.intermet.2018.10.004_bib39 article-title: Characterization of phases of aluminized nickel base superalloys publication-title: Surf. Coating. Technol. doi: 10.1016/S0257-8972(02)00843-5 – year: 2002 ident: 10.1016/j.intermet.2018.10.004_bib50 – volume: 46 start-page: 639 issue: 9 year: 2002 ident: 10.1016/j.intermet.2018.10.004_bib1 article-title: Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al publication-title: Scripta Mater. doi: 10.1016/S1359-6462(02)00042-8 – volume: 59 start-page: 233 issue: 3–4 year: 2003 ident: 10.1016/j.intermet.2018.10.004_bib53 article-title: Oxidation-resistant aluminide coatings on gamma-TiAl publication-title: Oxid. Metals doi: 10.1023/A:1023035809950 – volume: 47 start-page: 6522 issue: 18 year: 2012 ident: 10.1016/j.intermet.2018.10.004_bib24 article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6582-0 – volume: 31 start-page: 1223 issue: 10 year: 2015 ident: 10.1016/j.intermet.2018.10.004_bib14 article-title: Phase selection rules for cast high entropy alloys: an overview publication-title: Mater. Sci. Technol. doi: 10.1179/1743284715Y.0000000018 – year: 1966 ident: 10.1016/j.intermet.2018.10.004_bib22 – volume: 489 start-page: 195 issue: 1 year: 2010 ident: 10.1016/j.intermet.2018.10.004_bib5 article-title: High temperature oxidation characteristics of Nb-10W-XCr alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2009.09.051 – volume: 52 start-page: 1768 issue: 9 year: 2011 ident: 10.1016/j.intermet.2018.10.004_bib41 article-title: Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy publication-title: Mater. Trans. doi: 10.2320/matertrans.M2010439 – volume: 329–331 start-page: 513 issue: Supplement C year: 2002 ident: 10.1016/j.intermet.2018.10.004_bib6 article-title: Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(01)01502-7 – volume: 30 start-page: 495 issue: 3 year: 1999 ident: 10.1016/j.intermet.2018.10.004_bib44 article-title: Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-999-0083-9 – volume: 661 start-page: 206 year: 2016 ident: 10.1016/j.intermet.2018.10.004_bib29 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.11.050 – volume: 18 start-page: 1758 issue: 9 year: 2010 ident: 10.1016/j.intermet.2018.10.004_bib16 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 143 start-page: 915 issue: 3 year: 2014 ident: 10.1016/j.intermet.2018.10.004_bib40 article-title: Formation and cyclic oxidation resistance of Hf–Co-modified aluminide coatings on nickel base superalloys publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.09.016 – volume: 24 start-page: 3445 issue: 26 year: 2012 ident: 10.1016/j.intermet.2018.10.004_bib7 article-title: Mo-Si-B alloys for ultrahigh-temperature structural applications publication-title: Adv. Mater. doi: 10.1002/adma.201200764 – volume: 729 start-page: 1004 year: 2017 ident: 10.1016/j.intermet.2018.10.004_bib26 article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.09.164 – volume: 529 start-page: 311 year: 2011 ident: 10.1016/j.intermet.2018.10.004_bib30 article-title: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2011.09.033 – volume: 97 start-page: 58 year: 2018 ident: 10.1016/j.intermet.2018.10.004_bib34 article-title: Accelerated oxidation in ductile refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2018.04.001 |
SSID | ssj0017035 |
Score | 2.4648612 |
Snippet | Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 40 |
SubjectTerms | Alloys Aluminizing Coating High entropy alloys Materials selection Mechanical properties Oxidation Oxidation resistance Pack cementation Pesting (intermetallics) Pests Refractory alloys Refractory high-entropy alloys |
Title | Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys |
URI | https://dx.doi.org/10.1016/j.intermet.2018.10.004 https://www.proquest.com/docview/2148957362 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371037 https://research.chalmers.se/publication/506782 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gIHRHmIhbbyAY7ZTWInto-r0mp59QKF3iw_2VSQrPYhsRz47czksVokUA8cM7ElZ2yPv4lnviHkpfPe50KZJA2lSbhyPJHOgM8Tiuh55kve3p5_uCpn1_ztTXFzQM6HXBgMq-xtf2fTW2vdSya9NieLqpp8BPBdKgEIQTJ0SjCJj3OBq3z8axfmkcGKbsMYoXGCrfeyhG_HSMmw_B4wpjKT4zbKi__rgNoHoPukou1BdPmQPOgRJJ12gzwmB6F-RO7v8Qo-Jl-mYHKquvoJTxRQKQ31vL3pp82PqiuiRMHNRugIUtpEiqyvYB9AGpdtBZ4tRSLjBP_9Nostxev57eoJub68-HQ-S_oKCokDZLZOcmNEkTsmGAeYI4UVNmZKpEbyLAgXMmaizJ0qHGMAVSK6D_Am5MzGVCjHnpLDuqnDM0Kl89aaaABOGR5DMAAuLM9yU6aGc25HpBjUpl1PL45VLr7pIY7sVg_q1qhulIO6R2Sy67foCDbu7KGGWdF_LBUNp8CdfU-GadT9Zl3pHFxCVQg4ykfkVTe1u6Eg-_br6vNUN8uverPRTGBi5Yi8_0u7np5prt28rX2z0qugHUuNZ9xr6YPTvHReW65KLWMmA1c2isI-_48vekHu4VMXYXNCDtfLTTgFnLS2Z-1GOCNH0zfvZle_AYzyFyE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaW5QAcEE9RWMAHOKZtYie2j9XCqkB3L-zC3kZ-brOCpOpDohz47YzzqIoE2gPHTGzJGdsz38Tjbwh5Y51zmVA6GftCJ1xZnkirMebxeXA8dQVvTs9Pz4rpBf94mV8ekOP-LkxMq-xsf2vTG2vdSUadNkeLshx9RvBdKIEIQbIYlKhb5DbH7RvLGAx_7fI8UlzSTR4jtk5i871rwtfDyMmw_O5jUmUqh02aF_-Xh9pHoPusoo0nOnlA7ncQkk7aUT4kB756RO7tEQs-Jl8naHPKqvyJTxRhKfXVvDnqp_WPsq2iRDHOjtgRpbQONNK-ooFAaVg2JXi2NDIZJ_Hnb73Y0ng-v109IRcn78-Pp0lXQiGxCM3WSaa1yDPLBOOIc6QwwoRUibGWPPXC-pTpIDOrcssYYpUQ4wd84zNmwlgoy56Sw6qu_DNCpXXG6KART2kevNeILgxPM12MNefcDEjeqw1sxy8ey1x8gz6R7Bp6dUNUd5SjugdktOu3aBk2buyh-lmBP9YKoBu4se9RP43Q7dYVZBgTqlygLx-Qt-3U7oYS6bfflV8mUC-vYLMBJuLNygGZ_aVdx880Bztvit-sYOXBsrF2jDuQzlvghXVguCpAhlR6rkwQuXn-H1_0mtyZnp_OYPbh7NMLcje-adNtjsjhernxLxE0rc2rZlP8Br7sGK8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aluminizing+for+enhanced+oxidation+resistance+of+ductile+refractory+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Sheikh%2C+Saad&rft.au=Gan%2C+Lu&rft.au=Tsao%2C+Te-Kang&rft.au=Murakami%2C+Hideyuki&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0966-9795&rft.eissn=1879-0216&rft.volume=103&rft.spage=40&rft_id=info:doi/10.1016%2Fj.intermet.2018.10.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon |