Decline of Humoral Responses against SARS-CoV-2 Spike in Convalescent Individuals

While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is th...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 5
Main Authors Beaudoin-Bussières, Guillaume, Laumaea, Annemarie, Anand, Sai Priya, Prévost, Jérémie, Gasser, Romain, Goyette, Guillaume, Medjahed, Halima, Perreault, Josée, Tremblay, Tony, Lewin, Antoine, Gokool, Laurie, Morrisseau, Chantal, Bégin, Philippe, Tremblay, Cécile, Martel-Laferrière, Valérie, Kaufmann, Daniel E., Richard, Jonathan, Bazin, Renée, Finzi, Andrés
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 16.10.2020
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.02590-20

Cover

Loading…
Abstract While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection. In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms. IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
AbstractList ABSTRACT In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms. IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms.IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms.IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection. In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms. IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection. In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms.
In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms. While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
Author Medjahed, Halima
Lewin, Antoine
Bazin, Renée
Richard, Jonathan
Perreault, Josée
Gokool, Laurie
Prévost, Jérémie
Goyette, Guillaume
Gasser, Romain
Martel-Laferrière, Valérie
Laumaea, Annemarie
Morrisseau, Chantal
Tremblay, Cécile
Tremblay, Tony
Finzi, Andrés
Bégin, Philippe
Kaufmann, Daniel E.
Beaudoin-Bussières, Guillaume
Anand, Sai Priya
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Beaudoin-Bussières
  fullname: Beaudoin-Bussières, Guillaume
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 2
  givenname: Annemarie
  surname: Laumaea
  fullname: Laumaea, Annemarie
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 3
  givenname: Sai Priya
  surname: Anand
  fullname: Anand, Sai Priya
  organization: Centre de Recherche du CHUM, Quebec, Canada, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
– sequence: 4
  givenname: Jérémie
  surname: Prévost
  fullname: Prévost, Jérémie
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 5
  givenname: Romain
  surname: Gasser
  fullname: Gasser, Romain
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 6
  givenname: Guillaume
  surname: Goyette
  fullname: Goyette, Guillaume
  organization: Centre de Recherche du CHUM, Quebec, Canada
– sequence: 7
  givenname: Halima
  surname: Medjahed
  fullname: Medjahed, Halima
  organization: Centre de Recherche du CHUM, Quebec, Canada
– sequence: 8
  givenname: Josée
  surname: Perreault
  fullname: Perreault, Josée
  organization: Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
– sequence: 9
  givenname: Tony
  surname: Tremblay
  fullname: Tremblay, Tony
  organization: Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
– sequence: 10
  givenname: Antoine
  surname: Lewin
  fullname: Lewin, Antoine
  organization: Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
– sequence: 11
  givenname: Laurie
  surname: Gokool
  fullname: Gokool, Laurie
  organization: Centre de Recherche du CHUM, Quebec, Canada
– sequence: 12
  givenname: Chantal
  surname: Morrisseau
  fullname: Morrisseau, Chantal
  organization: Centre de Recherche du CHUM, Quebec, Canada
– sequence: 13
  givenname: Philippe
  surname: Bégin
  fullname: Bégin, Philippe
  organization: Centre de Recherche du CHUM, Quebec, Canada, CHU Ste-Justine, Montreal, Quebec, Canada
– sequence: 14
  givenname: Cécile
  surname: Tremblay
  fullname: Tremblay, Cécile
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 15
  givenname: Valérie
  surname: Martel-Laferrière
  fullname: Martel-Laferrière, Valérie
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 16
  givenname: Daniel E.
  surname: Kaufmann
  fullname: Kaufmann, Daniel E.
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
– sequence: 17
  givenname: Jonathan
  surname: Richard
  fullname: Richard, Jonathan
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
– sequence: 18
  givenname: Renée
  surname: Bazin
  fullname: Bazin, Renée
  organization: Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
– sequence: 19
  givenname: Andrés
  orcidid: 0000-0002-4992-5288
  surname: Finzi
  fullname: Finzi, Andrés
  organization: Centre de Recherche du CHUM, Quebec, Canada, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33067385$$D View this record in MEDLINE/PubMed
BookMark eNptkctP3DAQxi0EAgocuVY-9mLqZ2JfkOj2wUpICJb2anljezFN7CVOVup_X4eFqiB8GT---c2Mvw9gN6boADgl-IwQKj93X0I6w1QojCjeAYeUCIxqQcjutK8IooSqA3CS8wMuizEiGd4HB4zhqmZSHIKbr65pQ3QweXg5dqk3Lbx1eZ1idhmalQkxD3BxcbtAs_QLUbhYh98OhghnKW5M63Lj4gDn0YZNsKNp8zHY8yW4k-d4BH5-_3Y3u0RX1z_ms4sr1AiiBlQ69RzTJbZCGSasYorWSnlTcSMF80tBl4pxTsvRY6Eqy0qGkpbUQmLr2RGYb7k2mQe97kNn-j86maCfLlK_0qYfQtM67b3FzHvMOVbccWYsNY2kTlWuxtTawjrfstbjsnN2Gql8xCvo65cY7vUqbXQtKlUmKYBPz4A-PY4uD7oL5Wfa1kSXxqwpF0TyWtK6SD_-X-tfkRdPioBtBU2fcu6d100YzBDSVDq0mmA9ma8n8_WT-ZpOHaA3WS_g9_V_AYQgr28
CitedBy_id crossref_primary_10_1093_infdis_jiaa618
crossref_primary_10_3390_pathogens11121531
crossref_primary_10_1016_j_immuni_2021_03_023
crossref_primary_10_1039_D2SD00073C
crossref_primary_10_1111_trf_16318
crossref_primary_10_1126_scitranslmed_abi7826
crossref_primary_10_1128_JCM_02511_20
crossref_primary_10_1128_JCM_00193_21
crossref_primary_10_1016_j_isci_2022_104528
crossref_primary_10_2196_25500
crossref_primary_10_3390_v12111214
crossref_primary_10_1126_science_abe8499
crossref_primary_10_3390_v15091926
crossref_primary_10_1128_mbio_00907_24
crossref_primary_10_3390_v14010144
crossref_primary_10_3390_ph15030365
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_4103_ajprhc_ajprhc_4_23
crossref_primary_10_1016_j_chom_2020_11_001
crossref_primary_10_1016_j_immuni_2021_08_015
crossref_primary_10_1002_gch2_202100004
crossref_primary_10_1016_j_celrep_2021_108790
crossref_primary_10_1021_acsnano_1c03972
crossref_primary_10_3390_vaccines9020147
crossref_primary_10_1016_j_isci_2022_105904
crossref_primary_10_1002_jmv_70161
crossref_primary_10_3389_fimmu_2021_793142
crossref_primary_10_4103_jfmpc_jfmpc_1369_22
crossref_primary_10_1038_s41467_021_27649_y
crossref_primary_10_12688_wellcomeopenres_19414_1
crossref_primary_10_1038_s41577_021_00550_x
crossref_primary_10_1016_j_ijid_2021_01_061
crossref_primary_10_12688_wellcomeopenres_19414_2
crossref_primary_10_3389_fcimb_2022_988604
crossref_primary_10_7774_cevr_2022_11_1_96
crossref_primary_10_1016_j_bbrc_2020_11_026
crossref_primary_10_1016_j_ejim_2021_05_010
crossref_primary_10_1093_discim_kyac004
crossref_primary_10_1371_journal_ppat_1010569
crossref_primary_10_1016_j_intimp_2021_107622
crossref_primary_10_1016_j_xcrm_2021_100253
crossref_primary_10_1038_s41467_023_44265_0
crossref_primary_10_3390_microorganisms9122578
crossref_primary_10_1111_vox_13114
crossref_primary_10_1111_vox_13113
crossref_primary_10_1172_JCI145853
crossref_primary_10_1111_mec_15730
crossref_primary_10_1111_vox_13590
crossref_primary_10_3390_microorganisms9112259
crossref_primary_10_1016_j_jcvp_2021_100016
crossref_primary_10_1016_j_virol_2025_110512
crossref_primary_10_1099_jgv_0_001684
crossref_primary_10_1002_jmv_26863
crossref_primary_10_1016_j_celrep_2022_110429
crossref_primary_10_1038_s41586_021_03207_w
crossref_primary_10_3389_fimmu_2022_1052424
crossref_primary_10_1002_jmv_27270
crossref_primary_10_1021_acs_jproteome_4c00586
crossref_primary_10_1016_j_jff_2021_104850
crossref_primary_10_1093_cid_ciaa1850
crossref_primary_10_3390_jcm9123847
crossref_primary_10_1093_clinchem_hvab069
crossref_primary_10_1016_j_jksus_2021_101366
crossref_primary_10_1016_j_virol_2021_09_001
crossref_primary_10_1038_s41598_021_83969_5
crossref_primary_10_1007_s11095_022_03323_w
crossref_primary_10_2147_IJN_S427990
crossref_primary_10_3389_fimmu_2022_977064
crossref_primary_10_3390_v15061274
crossref_primary_10_3389_fimmu_2020_610300
crossref_primary_10_1093_infdis_jiac065
crossref_primary_10_1093_ofid_ofab220
crossref_primary_10_1016_j_xcrm_2023_100955
crossref_primary_10_1111_trf_16364
crossref_primary_10_1016_j_isci_2022_104990
crossref_primary_10_1080_21505594_2021_2019959
crossref_primary_10_1016_j_virol_2025_110467
crossref_primary_10_1093_ndt_gfac132
crossref_primary_10_1016_S2666_5247_22_00090_8
crossref_primary_10_1016_j_celrep_2022_111013
crossref_primary_10_1016_j_xcrm_2021_100290
crossref_primary_10_1371_journal_pone_0301367
crossref_primary_10_3389_fimmu_2023_1100594
crossref_primary_10_1038_s41564_020_00813_8
crossref_primary_10_3389_fnano_2022_1028186
crossref_primary_10_17269_s41997_022_00622_y
crossref_primary_10_1038_s41467_021_21444_5
crossref_primary_10_1016_j_chom_2021_12_004
crossref_primary_10_1016_j_chom_2021_06_016
crossref_primary_10_1111_imr_13115
crossref_primary_10_1016_j_ekir_2024_04_072
crossref_primary_10_3390_v14112419
crossref_primary_10_1016_j_bios_2021_113165
crossref_primary_10_1038_s41564_021_00974_0
crossref_primary_10_3390_jcm9123989
crossref_primary_10_1126_sciadv_abj5629
crossref_primary_10_1371_journal_pone_0262868
crossref_primary_10_1016_j_ijid_2021_04_080
crossref_primary_10_1021_acs_jproteome_4c00285
crossref_primary_10_1016_j_vaccine_2022_01_040
crossref_primary_10_1515_cclm_2020_1347
crossref_primary_10_3389_fimmu_2020_610688
crossref_primary_10_3390_jcm13102965
crossref_primary_10_1080_19932820_2024_2348233
crossref_primary_10_1136_bmjopen_2021_054208
crossref_primary_10_1016_j_micres_2022_127145
crossref_primary_10_15212_ZOONOSES_2021_1003
crossref_primary_10_1111_trf_17037
crossref_primary_10_1016_j_isci_2022_105783
crossref_primary_10_3389_fimmu_2024_1505752
crossref_primary_10_3390_v14030532
crossref_primary_10_3389_fimmu_2022_796481
crossref_primary_10_1016_j_celrep_2023_111998
crossref_primary_10_1128_Spectrum_00886_21
crossref_primary_10_1182_blood_2020008367
crossref_primary_10_2169_internalmedicine_8019_21
crossref_primary_10_1016_j_tim_2024_01_005
crossref_primary_10_1016_j_isci_2021_102489
crossref_primary_10_3389_fimmu_2021_700429
crossref_primary_10_1186_s12879_021_06517_6
crossref_primary_10_1371_journal_pmed_1003868
crossref_primary_10_3389_fimmu_2023_1223936
crossref_primary_10_1016_j_intimp_2022_108767
crossref_primary_10_3390_v14010005
crossref_primary_10_1016_j_celrep_2022_111554
crossref_primary_10_3390_jcm10153305
crossref_primary_10_1016_j_ijid_2022_07_075
crossref_primary_10_1016_j_vaccine_2022_04_090
crossref_primary_10_1016_j_str_2023_11_015
crossref_primary_10_15252_embr_202153865
crossref_primary_10_3390_ijerph20043665
crossref_primary_10_1128_spectrum_01512_21
crossref_primary_10_3389_fimmu_2021_681586
crossref_primary_10_3389_fcimb_2021_791660
crossref_primary_10_1016_j_cell_2020_10_051
crossref_primary_10_3390_v16030342
crossref_primary_10_1016_j_jbc_2021_101151
crossref_primary_10_7759_cureus_40860
crossref_primary_10_1136_bmjopen_2021_051157
crossref_primary_10_1371_journal_pone_0272690
crossref_primary_10_1016_j_celrep_2021_110210
crossref_primary_10_3390_v14102178
crossref_primary_10_1016_j_chom_2021_06_001
crossref_primary_10_1038_s41467_022_33899_1
Cites_doi 10.1073/pnas.2004168117
10.1172/JCI138745
10.1001/jama.2020.10044
10.12688/wellcomeopenres.15927.1
10.1182/blood.2020008367
10.1084/jem.20201181
10.15585/mmwr.mm6923e4
10.1172/JCI140200
10.1101/2020.07.09.20148429
10.1016/j.xcrm.2020.100126
10.1093/cid/ciq106
10.1001/jama.2020.10218
10.1038/s41591-020-0965-6
10.3851/IMP3243
10.1038/s41586-020-2456-9
10.1056/NEJMoa2022483
10.1016/j.cell.2020.06.043
10.1007/s10096-004-1271-9
10.1101/2020.06.10.20126532
10.1172/JCI138003
10.1016/S1473-3099(20)30141-9
10.1126/science.abc5343
10.1101/2020.06.12.148726
ContentType Journal Article
Copyright Copyright © 2020 Beaudoin-Bussières et al.
Copyright © 2020 Beaudoin-Bussières et al. 2020 Beaudoin-Bussières et al.
Copyright_xml – notice: Copyright © 2020 Beaudoin-Bussières et al.
– notice: Copyright © 2020 Beaudoin-Bussières et al. 2020 Beaudoin-Bussières et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.02590-20
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Antibodies against CoV-2 S in Convalescent Individuals
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_ffd03ff044094e43ad2ac82e96e702dd
PMC7569150
33067385
10_1128_mBio_02590_20
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 352417
– fundername: ;
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c519t-150f402b0d59a35d9392799fa64a853fb52b934424a8f0596d350f98d17580df3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:28:19 EDT 2025
Thu Aug 21 18:28:43 EDT 2025
Fri Jul 11 11:07:57 EDT 2025
Wed Feb 19 02:30:25 EST 2025
Thu Apr 24 23:11:56 EDT 2025
Tue Jul 01 01:52:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
IgA
SARS-CoV-2
RBD
neutralization
IgG
coronavirus
cross-reactivity
IgM
ELISA
Spike glycoproteins
convalescent plasma
Language English
License Copyright © 2020 Beaudoin-Bussières et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-150f402b0d59a35d9392799fa64a853fb52b934424a8f0596d350f98d17580df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Guillaume Beaudoin-Bussières, Annemarie Laumaea, Sai Priya Anand, Jérémie Prévost, and Romain Gasser contributed equally to this article. Author order was determined in order of increasing seniority of the project.
ORCID 0000-0002-4992-5288
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.02590-20
PMID 33067385
PQID 2451847827
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ffd03ff044094e43ad2ac82e96e702dd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7569150
proquest_miscellaneous_2451847827
pubmed_primary_33067385
crossref_citationtrail_10_1128_mBio_02590_20
crossref_primary_10_1128_mBio_02590_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201016
PublicationDateYYYYMMDD 2020-10-16
PublicationDate_xml – month: 10
  year: 2020
  text: 20201016
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_24_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_10_2
  doi: 10.1073/pnas.2004168117
– ident: e_1_3_2_6_2
  doi: 10.1172/JCI138745
– ident: e_1_3_2_11_2
  doi: 10.1001/jama.2020.10044
– ident: e_1_3_2_16_2
  doi: 10.12688/wellcomeopenres.15927.1
– ident: e_1_3_2_24_2
  doi: 10.1182/blood.2020008367
– ident: e_1_3_2_19_2
  doi: 10.1084/jem.20201181
– ident: e_1_3_2_22_2
  doi: 10.15585/mmwr.mm6923e4
– ident: e_1_3_2_9_2
  doi: 10.1172/JCI140200
– ident: e_1_3_2_21_2
  doi: 10.1101/2020.07.09.20148429
– ident: e_1_3_2_15_2
  doi: 10.1016/j.xcrm.2020.100126
– ident: e_1_3_2_4_2
  doi: 10.1093/cid/ciq106
– ident: e_1_3_2_7_2
  doi: 10.1001/jama.2020.10218
– ident: e_1_3_2_17_2
  doi: 10.1038/s41591-020-0965-6
– ident: e_1_3_2_3_2
  doi: 10.3851/IMP3243
– ident: e_1_3_2_12_2
  doi: 10.1038/s41586-020-2456-9
– ident: e_1_3_2_20_2
  doi: 10.1056/NEJMoa2022483
– ident: e_1_3_2_18_2
  doi: 10.1016/j.cell.2020.06.043
– ident: e_1_3_2_5_2
  doi: 10.1007/s10096-004-1271-9
– ident: e_1_3_2_14_2
  doi: 10.1101/2020.06.10.20126532
– ident: e_1_3_2_8_2
  doi: 10.1172/JCI138003
– ident: e_1_3_2_2_2
  doi: 10.1016/S1473-3099(20)30141-9
– ident: e_1_3_2_13_2
  doi: 10.1126/science.abc5343
– ident: e_1_3_2_23_2
  doi: 10.1101/2020.06.12.148726
SSID ssj0000331830
Score 2.6007802
Snippet While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed....
In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to...
ABSTRACT In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adult
Aged
Antibodies, Neutralizing - blood
Antibodies, Viral - blood
Betacoronavirus - immunology
Convalescence
coronavirus
Coronavirus Infections - blood
Coronavirus Infections - immunology
COVID-19
Cross Reactions
Editor's Pick
ELISA
Female
Humans
Immunity, Humoral
Male
Middle Aged
Observation
Pandemics
Pneumonia, Viral - blood
Pneumonia, Viral - immunology
RBD
SARS-CoV-2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Spike glycoproteins
Therapeutics and Prevention
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuqLR8pNDKlVBPNVj-iOMjbEEUCSRYQNwsJ7ZhRUlW7HLg33cm2V3tIiouPSZxFGtmknlPmXlDyK4ppbKm0iwBu2AKUhjzMXgWuBeV4DkvDTYKn53nJ9fq9Fbfzo36wpqwTh64M9x-SoHLlHAyslVRSR-ErwoRbR4NFyHg1xdy3hyZar_BEmOVT0U1RbH_eDho9iDBW85wtvdcEmq1-t8CmK_rJOcSz_FHsjpBjPSg2-kaWYr1J_KhmyH58plc_IrY3Rhpkyj4Bhvu6WVX-BpH1N8B8x-Naf_gss96zQ0TtD8cPEQ6qGmvqSHMOjkn-nvWmDVaJ9fHR1e9EzaZk8AqwF9jBpguAQ0sedDWSx0sYB5jbfK58pCNU6lFaaVSAg4TjtsJEu6wRQDoUPCQ5AZZrps6bhFqKlECwfOFzxP40HoFfEx7lReyCjqJjPycGs5VExFxnGXxx7VkQhQO7exaOzvBM_JjtnzYqWf8a-EhemG2CEWv2xMQCm4SCu69UMjI96kPHbwk-OfD17F5HjmhNDBZAEMmI5udT2ePkkiaZKEzYha8vbCXxSv14L4V4jY6t2D8L_9j89tkRSCVx2KZfIcsj5-e41fAO-PyWxvafwFc5P2l
  priority: 102
  providerName: Directory of Open Access Journals
Title Decline of Humoral Responses against SARS-CoV-2 Spike in Convalescent Individuals
URI https://www.ncbi.nlm.nih.gov/pubmed/33067385
https://www.proquest.com/docview/2451847827
https://pubmed.ncbi.nlm.nih.gov/PMC7569150
https://doaj.org/article/ffd03ff044094e43ad2ac82e96e702dd
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEagXxJvwqIyEOOFi_IjjA0LtQilIRaLLor1ZTmyXiJKU3a1E_z3jJLt0q3LhslI2thLNN858X-KZAXiuSyGNrhSNqC6oxBBGXfCOeuZ4xVnOSp0ShQ8-5_sT-Wmqpn9LCg0GnF8q7VI_qcnsePv3r7O3uODf9Akwxaufu3W7jbHbMMT8KlzDoKTTGj0YmH73UBbJedmyyubFWZtwQyTyLFJP5XMBqqvjfxn5vLiH8lxQ2rsFNwc2SXZ6-G_DldDcget9f8mzu_DlXUiZj4G0kSBuKRmfHPabYsOcuCNXIzkk453DMR213ygn45P6RyB1Q0Ztgy7Yl3oiH1dJW_N7MNl7_3W0T4ceCrRCbragyPciSsSSeWWcUN4gH9LGRJdLh5E6loqXRkjJ8TCmVjxe4AxTeKQVBfNR3IeNpm3CQyC64iWKP1e4PCK-xknUasrJvBCVV5Fn8HJpOFsNBcZTn4tj2wkNXthkctuZ3HKWwYvV8JO-ssa_Bu4mFFaDUkHs7o92dmSH9WVj9EzEmBpoGxmkcJ67quDB5EEz7n0Gz5YYWlxA6auIa0J7OrdcKlS5SJR0Bg96TFeXWvpEBnoN7bV7WT_T1N-7It1a5QaN_-i_Zz6GTZ60fdo9kz-BjcXsNDxFArQot7oXB_j7Yfp6q3PzP8N0Bjw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decline+of+Humoral+Responses+against+SARS-CoV-2+Spike+in+Convalescent+Individuals&rft.jtitle=mBio&rft.au=Beaudoin-Bussi%C3%A8res%2C+Guillaume&rft.au=Laumaea%2C+Annemarie&rft.au=Anand%2C+Sai+Priya&rft.au=Pr%C3%A9vost%2C+J%C3%A9r%C3%A9mie&rft.date=2020-10-16&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1128%2FmBio.02590-20&rft_id=info%3Apmid%2F33067385&rft.externalDocID=PMC7569150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon