Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI

We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the s...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 68; no. 2; pp. 389 - 399
Main Authors Tisdall, M. Dylan, Hess, Aaron T., Reuter, Martin, Meintjes, Ernesta M., Fischl, Bruce, van der Kouwe, André J. W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of k‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of k ‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of k‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments.We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments.
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short 3D EPI volumetric navigators (vNavs) are embedded in a long 3D sequence, and the resulting image volumes registered to provide an estimate of the subject’s location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~ 3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments.
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments.
Author Fischl, Bruce
van der Kouwe, André J. W.
Hess, Aaron T.
Reuter, Martin
Tisdall, M. Dylan
Meintjes, Ernesta M.
AuthorAffiliation 4 Medical Research Council/University of Cape Town Medical Imaging Research Unit, South Africa
6 Neurology, Harvard Medical School, Brookline, MA, USA
5 Neurology, Massachusetts General Hospital, Charlestown, MA, USA
2 Radiology, Harvard Medical School, Brookline, MA, USA
1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
3 Department of Human Biology, University of Cape Town, South Africa
7 Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
AuthorAffiliation_xml – name: 7 Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 6 Neurology, Harvard Medical School, Brookline, MA, USA
– name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
– name: 5 Neurology, Massachusetts General Hospital, Charlestown, MA, USA
– name: 2 Radiology, Harvard Medical School, Brookline, MA, USA
– name: 3 Department of Human Biology, University of Cape Town, South Africa
– name: 4 Medical Research Council/University of Cape Town Medical Imaging Research Unit, South Africa
Author_xml – sequence: 1
  givenname: M. Dylan
  surname: Tisdall
  fullname: Tisdall, M. Dylan
  email: tisdall@nmr.mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 2
  givenname: Aaron T.
  surname: Hess
  fullname: Hess, Aaron T.
  organization: Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa
– sequence: 3
  givenname: Martin
  surname: Reuter
  fullname: Reuter, Martin
  organization: Department Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 4
  givenname: Ernesta M.
  surname: Meintjes
  fullname: Meintjes, Ernesta M.
  organization: Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa
– sequence: 5
  givenname: Bruce
  surname: Fischl
  fullname: Fischl, Bruce
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 6
  givenname: André J. W.
  surname: van der Kouwe
  fullname: van der Kouwe, André J. W.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22213578$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1URNPCgj-AZgmLaf2YlzdIKGrTogZEVUBiY9147hQXj53aM6H99zhNUgGCla98zvmOdO8B2XPeISEvGT1ilPLjPvRHXHDePCETVnKe81IWe2RC64LmgslinxzEeEMplbIunpF9zjkTZd1MyM0Xb8ceh2B05mBlrmHwIWadD9ky-LhEPZgVZr0fjHeZ9iGsf9IIrs0i2q0eEPTtaKJ50IzLHI7Bg0u03miw2fzy_Dl52oGN-GL7HpLPpydX07P84uPsfPruItclk02OutOFxLajgldYaGBlC9DIFnRLG1E0FCkKaHi9WLSSSWg7uag4gypJUnTikLzdcJfjosdWoxsCWLUMpodwrzwY9afizHd17VdKCE6rukqA11tA8LcjxkH1Jmq0Fhz6MSpGeSGFEI1M1le_dz2W7BacDMcbg07bjAE7pc0A6y2lamMTS61PqNIJ1cMJU-LNX4kd9F_eLf2nsXj_f6OaX853iXyTMHHAu8cEhB-qqkVdqq8fZmo2vfpWfpqdqvfiF7PdvpI
CitedBy_id crossref_primary_10_1002_hbm_26401
crossref_primary_10_1002_mrm_30385
crossref_primary_10_1002_mrm_30266
crossref_primary_10_1002_mrm_29950
crossref_primary_10_1016_j_dcn_2018_03_001
crossref_primary_10_1002_mrm_27772
crossref_primary_10_1016_j_jpsychires_2016_05_012
crossref_primary_10_1049_iet_ipr_2019_0900
crossref_primary_10_1002_mrm_27771
crossref_primary_10_1002_mrm_28063
crossref_primary_10_1016_j_neuroimage_2020_117227
crossref_primary_10_3390_adolescents1020007
crossref_primary_10_1016_j_neuroimage_2020_117585
crossref_primary_10_1002_mrm_25234
crossref_primary_10_3389_fnana_2017_00132
crossref_primary_10_1097_RLI_0000000000000754
crossref_primary_10_1017_S1092852924002190
crossref_primary_10_1001_jamanetworkopen_2020_23774
crossref_primary_10_3389_fneur_2021_669076
crossref_primary_10_3390_s23073539
crossref_primary_10_1002_ima_22088
crossref_primary_10_1016_j_neuroimage_2015_11_054
crossref_primary_10_1002_mrm_28971
crossref_primary_10_1002_mrm_28734
crossref_primary_10_1002_mrm_29705
crossref_primary_10_1016_j_neuroimage_2021_117756
crossref_primary_10_1016_j_neuroimage_2021_118843
crossref_primary_10_2967_jnumed_117_207142
crossref_primary_10_1016_j_neuroimage_2018_04_017
crossref_primary_10_1007_s00247_014_3002_4
crossref_primary_10_1002_mrm_30161
crossref_primary_10_1016_j_neuroimage_2019_05_010
crossref_primary_10_3233_BPL_240003
crossref_primary_10_1016_j_dcn_2020_100902
crossref_primary_10_1002_hbm_23397
crossref_primary_10_1016_j_nicl_2020_102368
crossref_primary_10_1038_nn_4354
crossref_primary_10_1016_j_dcn_2020_100909
crossref_primary_10_1002_mrm_29296
crossref_primary_10_1073_pnas_2313568121
crossref_primary_10_3390_diagnostics12051032
crossref_primary_10_1016_j_nic_2012_12_012
crossref_primary_10_1162_jocn_a_01944
crossref_primary_10_1002_mrm_29976
crossref_primary_10_1016_j_psyneuen_2023_106379
crossref_primary_10_1093_scan_nsy058
crossref_primary_10_1002_mrm_24845
crossref_primary_10_1186_s40708_021_00128_2
crossref_primary_10_1016_j_bandl_2017_03_009
crossref_primary_10_1016_j_neuroimage_2014_12_006
crossref_primary_10_1016_j_neuroimage_2022_119411
crossref_primary_10_1002_mrm_28991
crossref_primary_10_1002_mrm_29961
crossref_primary_10_1002_mrm_28076
crossref_primary_10_1016_j_neuroimage_2013_09_034
crossref_primary_10_1162_jocn_a_02240
crossref_primary_10_3389_fradi_2021_789632
crossref_primary_10_1002_mrm_29967
crossref_primary_10_1016_j_dcn_2023_101270
crossref_primary_10_1001_jamanetworkopen_2022_26208
crossref_primary_10_1016_j_mri_2014_11_004
crossref_primary_10_1016_j_nicl_2020_102242
crossref_primary_10_1016_j_nicl_2020_102240
crossref_primary_10_1002_aur_3239
crossref_primary_10_1371_journal_pone_0180973
crossref_primary_10_1111_acer_15332
crossref_primary_10_3389_fpsyt_2023_1195763
crossref_primary_10_1016_j_bpsgos_2021_09_005
crossref_primary_10_1016_j_mri_2016_06_006
crossref_primary_10_3390_geriatrics2040034
crossref_primary_10_1016_j_neuroimage_2012_02_084
crossref_primary_10_1162_imag_a_00197
crossref_primary_10_1007_s10802_023_01041_4
crossref_primary_10_1038_s41551_024_01283_7
crossref_primary_10_1053_j_ro_2022_10_002
crossref_primary_10_1093_cercor_bhx131
crossref_primary_10_1371_journal_pone_0217145
crossref_primary_10_1167_jov_25_1_5
crossref_primary_10_13104_imri_2020_24_4_196
crossref_primary_10_2214_AJR_17_18490
crossref_primary_10_1016_j_mri_2016_12_013
crossref_primary_10_1038_s41398_020_00947_7
crossref_primary_10_1016_j_jaac_2021_04_014
crossref_primary_10_1002_mrm_26364
crossref_primary_10_1002_mrm_29992
crossref_primary_10_1002_mrm_26127
crossref_primary_10_1016_j_metrad_2023_100001
crossref_primary_10_1002_mrm_27214
crossref_primary_10_1186_1471_244X_14_159
crossref_primary_10_3389_fneur_2019_00556
crossref_primary_10_1186_s11689_022_09470_w
crossref_primary_10_1016_j_dcn_2022_101145
crossref_primary_10_1093_cercor_bhw273
crossref_primary_10_1371_journal_pone_0098386
crossref_primary_10_1002_mrm_28094
crossref_primary_10_1038_tp_2016_102
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1093_cercor_bhx249
crossref_primary_10_1002_mrm_29188
crossref_primary_10_1016_j_neuroimage_2014_09_032
crossref_primary_10_1002_nbm_4364
crossref_primary_10_3389_fnins_2021_624911
crossref_primary_10_1186_s12888_016_0770_4
crossref_primary_10_1136_bmjopen_2022_061548
crossref_primary_10_1186_s13229_016_0076_x
crossref_primary_10_1002_mrm_28777
crossref_primary_10_1016_j_dcn_2022_101152
crossref_primary_10_1002_mrm_24615
crossref_primary_10_1016_j_neuroimage_2017_12_059
crossref_primary_10_1186_s40658_015_0118_z
crossref_primary_10_1002_hbm_24407
crossref_primary_10_1002_mrm_28419
crossref_primary_10_1162_imag_a_00175
crossref_primary_10_1002_hbm_22261
crossref_primary_10_1007_s00429_023_02612_3
crossref_primary_10_3389_fnhum_2015_00021
crossref_primary_10_1109_TMI_2018_2791482
crossref_primary_10_1002_mp_14199
crossref_primary_10_1162_jocn_a_01342
crossref_primary_10_1002_jmri_25959
crossref_primary_10_1016_j_neuroimage_2019_05_053
crossref_primary_10_1038_s41398_017_0020_7
crossref_primary_10_1016_j_neuroimage_2021_117922
crossref_primary_10_1002_da_22627
crossref_primary_10_1002_mrm_27597
crossref_primary_10_1002_mrm_28202
crossref_primary_10_1002_mrm_29899
crossref_primary_10_1016_j_nicl_2018_06_002
crossref_primary_10_3389_fnins_2023_1085589
crossref_primary_10_1002_mrm_29534
crossref_primary_10_1038_s41598_024_61403_w
crossref_primary_10_1007_s00330_016_4730_7
crossref_primary_10_1162_jocn_a_01906
crossref_primary_10_1002_jmri_26000
crossref_primary_10_1016_j_neuroimage_2019_116332
crossref_primary_10_1038_npp_2016_48
crossref_primary_10_1093_scan_nsy017
crossref_primary_10_1109_TBDATA_2017_2734883
crossref_primary_10_1093_scan_nsad052
crossref_primary_10_1016_j_neuroimage_2022_119176
crossref_primary_10_1002_ima_22381
crossref_primary_10_1016_j_neuroimage_2022_119178
crossref_primary_10_1002_jmri_24850
crossref_primary_10_3758_s13415_023_01149_6
crossref_primary_10_2967_jnumed_121_263309
crossref_primary_10_1002_nbm_4225
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1002_mrm_28791
crossref_primary_10_1038_s41398_020_00911_5
crossref_primary_10_1186_s12868_023_00783_7
crossref_primary_10_1016_j_bpsc_2019_04_012
crossref_primary_10_1002_mrm_28555
crossref_primary_10_1016_j_dcn_2019_100641
crossref_primary_10_1097_SCS_0000000000010607
crossref_primary_10_1016_j_dcn_2022_101175
crossref_primary_10_1016_j_neuroimage_2021_118101
crossref_primary_10_1186_s13063_024_08629_1
crossref_primary_10_1016_j_neuroimage_2018_08_050
crossref_primary_10_1002_mrm_27908
crossref_primary_10_1038_s41598_019_54950_0
crossref_primary_10_3389_fnins_2023_1172010
crossref_primary_10_3390_ijerph19010310
crossref_primary_10_1093_cercor_bhy028
crossref_primary_10_1007_s11011_017_0162_6
crossref_primary_10_3389_fnana_2021_639800
crossref_primary_10_1038_s41539_022_00130_1
crossref_primary_10_1002_mrm_26040
crossref_primary_10_1016_j_mri_2016_05_014
crossref_primary_10_1002_mrm_29790
crossref_primary_10_1002_mrm_27934
crossref_primary_10_3389_fnana_2017_00095
crossref_primary_10_1002_mrm_28225
crossref_primary_10_1088_1361_6560_ab10b2
crossref_primary_10_1002_mrm_25993
crossref_primary_10_1080_21678421_2018_1510575
crossref_primary_10_1002_aur_2875
crossref_primary_10_1523_JNEUROSCI_0511_22_2022
crossref_primary_10_1016_j_neuroimage_2022_119360
crossref_primary_10_1016_j_neuroimage_2013_12_012
crossref_primary_10_1016_j_ibmed_2023_100108
crossref_primary_10_3389_fnins_2016_00558
crossref_primary_10_1177_10556656211025191
crossref_primary_10_1016_j_dcn_2021_100919
crossref_primary_10_3174_ajnr_A4921
crossref_primary_10_1111_ejn_16217
crossref_primary_10_1016_j_nicl_2020_102530
crossref_primary_10_1162_jocn_a_01572
crossref_primary_10_1002_mrm_26390
crossref_primary_10_1016_j_neuroimage_2020_116759
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_3389_fnbeh_2016_00124
crossref_primary_10_1016_j_jpsychires_2024_01_018
crossref_primary_10_1148_rg_2020190112
crossref_primary_10_3389_fnhum_2020_00143
crossref_primary_10_1016_j_neuroimage_2016_05_005
crossref_primary_10_1002_mrm_29789
crossref_primary_10_1016_j_neuroimage_2021_118447
crossref_primary_10_1002_mrm_26951
crossref_primary_10_1038_s41390_024_03258_5
crossref_primary_10_1002_jmri_25875
crossref_primary_10_1016_j_isci_2024_110159
crossref_primary_10_1016_j_ctro_2019_04_009
crossref_primary_10_1002_mrm_30441
crossref_primary_10_1007_s00247_017_3989_4
crossref_primary_10_1111_adb_13444
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1172_JCI123743
crossref_primary_10_1016_j_neuroimage_2020_117286
crossref_primary_10_1002_dev_22234
crossref_primary_10_1111_pan_12364
crossref_primary_10_3390_jcm9061715
crossref_primary_10_1136_bmjopen_2019_030601
crossref_primary_10_1002_mrm_29202
crossref_primary_10_1016_j_mric_2021_06_013
crossref_primary_10_1002_mrm_27381
crossref_primary_10_1007_s10578_020_00960_3
crossref_primary_10_1002_mp_13967
crossref_primary_10_1002_mrm_24314
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1523_JNEUROSCI_4383_12_2013
crossref_primary_10_3389_fnana_2017_00088
crossref_primary_10_1177_21677026221079628
crossref_primary_10_1016_j_neuroimage_2018_02_041
crossref_primary_10_1111_desc_12983
crossref_primary_10_1002_mrm_27705
crossref_primary_10_1002_mrm_26616
crossref_primary_10_1109_ACCESS_2023_3318171
crossref_primary_10_1016_j_dcn_2021_100966
crossref_primary_10_1002_hbm_26440
crossref_primary_10_1016_j_dcn_2021_100967
crossref_primary_10_1016_j_neuroimage_2015_11_022
crossref_primary_10_1016_j_biopsych_2015_02_029
crossref_primary_10_1093_radadv_umae010
crossref_primary_10_1002_mrm_25670
crossref_primary_10_1016_j_cortex_2024_11_025
crossref_primary_10_3389_fpsyt_2018_00092
crossref_primary_10_3389_fnins_2024_1385847
crossref_primary_10_1002_mrm_25552
crossref_primary_10_1111_acer_14795
crossref_primary_10_3389_fnins_2023_1113927
crossref_primary_10_1073_pnas_1324037111
crossref_primary_10_1016_j_mri_2015_06_014
crossref_primary_10_1002_jmri_24436
crossref_primary_10_1002_jmri_24678
crossref_primary_10_1002_nbm_5294
crossref_primary_10_1093_cercor_bhz269
crossref_primary_10_1177_0956797615572233
crossref_primary_10_1016_j_mri_2020_05_004
crossref_primary_10_1093_scan_nsab130
crossref_primary_10_1002_hbm_24497
crossref_primary_10_1016_j_neuroimage_2018_01_023
crossref_primary_10_1002_ima_22563
crossref_primary_10_1007_s00234_021_02821_9
crossref_primary_10_1002_nbm_4520
crossref_primary_10_1038_s41597_024_03629_x
crossref_primary_10_1111_ejn_15842
crossref_primary_10_1002_nbm_5179
crossref_primary_10_1016_j_neuroimage_2013_11_027
crossref_primary_10_1002_mrm_26877
crossref_primary_10_1002_jmri_28472
crossref_primary_10_1002_mrm_29106
crossref_primary_10_1016_j_neuroimage_2023_120176
crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_primary_10_1002_nbm_5283
crossref_primary_10_1002_mrm_28287
crossref_primary_10_1016_j_engappai_2024_109978
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1002_mrm_29251
crossref_primary_10_1093_cercor_bhv131
crossref_primary_10_1002_mrm_28723
crossref_primary_10_1016_j_neuroimage_2016_02_034
crossref_primary_10_1007_s00234_019_02242_9
crossref_primary_10_1016_j_mri_2021_06_010
crossref_primary_10_1016_j_cortex_2023_03_004
crossref_primary_10_1016_j_euroneuro_2020_01_017
crossref_primary_10_1017_S0033291722003555
crossref_primary_10_1016_j_neuroimage_2021_118172
crossref_primary_10_1017_S0033291720004560
crossref_primary_10_1007_s10334_016_0578_8
crossref_primary_10_1016_j_neuroimage_2023_119992
crossref_primary_10_3389_fnhum_2015_00554
crossref_primary_10_1016_j_neuroimage_2013_01_023
crossref_primary_10_1016_j_jneumeth_2015_12_010
crossref_primary_10_2463_mrms_2014_0132
crossref_primary_10_1002_mrm_29364
crossref_primary_10_1038_s41467_017_01369_8
crossref_primary_10_1002_jmri_26637
crossref_primary_10_1016_j_jmr_2018_05_013
crossref_primary_10_1002_jnr_23948
crossref_primary_10_1177_0271678X231197392
crossref_primary_10_1186_s12981_020_00278_z
crossref_primary_10_1002_mrm_26654
crossref_primary_10_1007_s00247_016_3677_9
crossref_primary_10_1007_s00234_019_02160_w
crossref_primary_10_3389_fphys_2023_1271254
Cites_doi 10.1109/42.650886
10.1002/hbm.460030306
10.1016/j.neuroimage.2004.07.016
10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1
10.1002/mrm.10012
10.1016/j.neuroimage.2007.12.025
10.1006/nimg.1998.0395
10.1016/j.neuroimage.2004.03.032
10.1002/mrm.22754
10.1002/mrm.22076
10.1002/mrm.10093
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1002/mrm.20288
10.1002/mrm.22448
10.1002/mrm.22629
10.1093/cercor/bhg087
10.1109/TMI.2006.880587
10.1002/mrm.22176
10.1016/j.neuroimage.2006.02.051
10.1016/j.neuroimage.2010.07.020
10.1016/j.neuroimage.2005.09.046
10.1002/mrm.21038
10.1006/nimg.1995.1019
10.1073/pnas.200033797
10.1016/j.neuroimage.2010.06.017
10.1016/j.neuroimage.2011.02.076
10.1016/j.neuroimage.2009.06.060
10.1002/mrm.22805
10.1002/mrm.22082
10.1109/42.906426
10.1006/nimg.1998.0396
10.1016/S0896-6273(02)00569-X
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1006/nimg.2002.1132
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mrm.23228
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 399
ExternalDocumentID PMC3320676
22213578
10_1002_mrm_23228
MRM23228
ark_67375_WNG_GCTZ5QGF_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Ellison Medical Foundation
– fundername: Center for Functional Neuroimaging Technologies
  funderid: P41RR14075 [a P41 Regional Resource supported by Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health]
– fundername: NCRR Shared Instrumentation Grant Program and/or High‐End Instrumentation Grant Program
  funderid: S10RR021110; S10RR023401
– fundername: NIH
  funderid: 5R21EB008547; 5R21AA017410; 5R21DA026104; 5R01NS055754
– fundername: NIAAA NIH HHS
  grantid: R21 AA017410
– fundername: NIBIB NIH HHS
  grantid: R21 EB008547
– fundername: Medical Research Council
  grantid: G0700796
– fundername: NIDA NIH HHS
  grantid: 5R21DA026104
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NCRR NIH HHS
  grantid: P41RR14075
– fundername: NCRR NIH HHS
  grantid: S10RR021110
– fundername: NIAAA NIH HHS
  grantid: 5R21AA017410
– fundername: NCRR NIH HHS
  grantid: S10RR023401
– fundername: National Center for Research Resources : NCRR
  grantid: S10 RR021110-01A1 || RR
– fundername: National Center for Research Resources : NCRR
  grantid: P41 RR014075-01A1 || RR
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R21 EB008547-01A1 || EB
– fundername: National Institute on Alcohol Abuse and Alcoholism : NIAAA
  grantid: R21 AA017410-01 || AA
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS055754-01A1 || NS
– fundername: National Center for Research Resources : NCRR
  grantid: S10 RR023401-01A2 || RR
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c5198-ecfc49edf0326e4ca15daa89dacd083480e0e3a827bbd919adf9b621a648093f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:28:48 EDT 2025
Fri Jul 11 11:30:35 EDT 2025
Sat May 31 02:08:08 EDT 2025
Tue Jul 01 01:20:49 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Wed Jan 22 16:54:53 EST 2025
Wed Oct 30 09:52:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5198-ecfc49edf0326e4ca15daa89dacd083480e0e3a827bbd919adf9b621a648093f3
Notes ArticleID:MRM23228
NCRR Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program - No. S10RR021110; No. S10RR023401
NIH - No. 5R21EB008547; No. 5R21AA017410; No. 5R21DA026104; No. 5R01NS055754
ark:/67375/WNG-GCTZ5QGF-J
Center for Functional Neuroimaging Technologies - No. P41RR14075 [a P41 Regional Resource supported by Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health]
Ellison Medical Foundation
istex:1F794E3A1A1942E3E68C580E4A9D04F9D098EEA4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3320676
PMID 22213578
PQID 1024933389
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320676
proquest_miscellaneous_1024933389
pubmed_primary_22213578
crossref_citationtrail_10_1002_mrm_23228
crossref_primary_10_1002_mrm_23228
wiley_primary_10_1002_mrm_23228_MRM23228
istex_primary_ark_67375_WNG_GCTZ5QGF_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magnetic Resonance Medicine
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Nat Acad Sci USA 2000; 97: 11050-11055.
Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, Fischl B, Dale A. Reliability in multi-site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data. Neuroimage 2006; 30: 436-443.
Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3d rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41.
Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM. Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 2010; 53: 139-145.
Dale A, Fischl B, Sereno MI. Cortical surface-based analysis. i. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179-194.
Pipe JG. Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969.
Hess AT, Tisdall MD, Andronesi OC, Meintjes EM, van der Kouwe AJW. Real-time motion and b0 corrected single voxel spectroscopy using volumetric navigators. Magn Reson Med 2011; 66: 314-323.
Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004; 22: 1060-1075.
Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465.
Bydder M, Larkman DJ, Hajnal JV. Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med 2002; 47: 677-686.
Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009; 62: 943-954.
Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med Imaging 2001; 20: 70-80.
Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009; 48: 63-72.
Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 2011; 57: 19-21.
Liu J, Drangova M. Rapid six-degree-of-freedom motion detection using prerotated baseline spherical navigator echoes. Magn Reson Med 2010; 65: 506-514.
Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23( Suppl 1): S69-S84.
Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272-284.
Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW. Motion detection and correction in functional MR imaging. Hum Brain Mapp 1995; 3: 224-235.
Fischl B, Sereno MI, Dale A. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9: 195-207.
Atkinson D, Hill D, Stoyle P, Summers P, Keevil S. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 1997; 16: 903-910.
Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 2009; 62: 924-934.
van der Kouwe AJW, Benner T, Dale AM. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 2006; 56: 1019-1032.
Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fmri: a multivariate approach. Neuroimage 1995; 2: 166-172.
Maclaren J, Lee KJ, Luengviriya C, Speck O, Zaitsev M. Combined prospective and retrospective motion correction to relax navigator requirements. Magn Reson Med 2011; 65: 1724-1732.
van der Kouwe AJW, Benner T, Salat DH, Fischl B. Brain morphometry with multiecho mprage. Neuroimage 2008; 40: 559-569.
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841.
Keating B, Deng W, Roddey JC, White N, Dale A, Stenger VA, Ernst T. Prospective motion correction for single-voxel 1 h MR spectroscopy. Magn Reson Med 2010; 64: 672-679.
White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A. Promo: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63: 91-105.
Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14: 11-22.
Liu C, Bammer R, Kim D-H, Moseley ME. Self-navigated interleaved spiral (snails): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004; 52: 1388-1396.
Crum W, Camara O, Hill D. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 2006; 25: 1451-1461.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355.
Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer. Neuroimage 2006; 32: 180-194.
Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 2010; 53: 1181-1196.
Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR. Prospective multiaxial motion correction for fMRI. Magn Reson Med 2000; 43: 459-469.
2002; 17
2004; 22
2010; 53
2006; 30
2009; 62
2006; 56
2006; 32
2000; 43
2000; 44
2004; 23
2002; 33
1999; 42
2011; 57
1995; 2
1999; 8
1995; 3
2010; 63
2009; 48
2001; 20
1999; 9
2002; 47
2004; 52
2010; 65
2010; 64
2004; 14
2006; 25
2000; 97
2011; 66
1997; 16
2011; 65
2008; 40
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
References_xml – reference: Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 2011; 57: 19-21.
– reference: Maclaren J, Lee KJ, Luengviriya C, Speck O, Zaitsev M. Combined prospective and retrospective motion correction to relax navigator requirements. Magn Reson Med 2011; 65: 1724-1732.
– reference: Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 2009; 62: 924-934.
– reference: Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841.
– reference: Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004; 22: 1060-1075.
– reference: van der Kouwe AJW, Benner T, Dale AM. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 2006; 56: 1019-1032.
– reference: Hess AT, Tisdall MD, Andronesi OC, Meintjes EM, van der Kouwe AJW. Real-time motion and b0 corrected single voxel spectroscopy using volumetric navigators. Magn Reson Med 2011; 66: 314-323.
– reference: Liu C, Bammer R, Kim D-H, Moseley ME. Self-navigated interleaved spiral (snails): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004; 52: 1388-1396.
– reference: Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009; 48: 63-72.
– reference: Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465.
– reference: Bydder M, Larkman DJ, Hajnal JV. Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med 2002; 47: 677-686.
– reference: Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 2010; 53: 1181-1196.
– reference: Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med Imaging 2001; 20: 70-80.
– reference: van der Kouwe AJW, Benner T, Salat DH, Fischl B. Brain morphometry with multiecho mprage. Neuroimage 2008; 40: 559-569.
– reference: White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A. Promo: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63: 91-105.
– reference: Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272-284.
– reference: Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23( Suppl 1): S69-S84.
– reference: Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, Fischl B, Dale A. Reliability in multi-site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data. Neuroimage 2006; 30: 436-443.
– reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW. Motion detection and correction in functional MR imaging. Hum Brain Mapp 1995; 3: 224-235.
– reference: Liu J, Drangova M. Rapid six-degree-of-freedom motion detection using prerotated baseline spherical navigator echoes. Magn Reson Med 2010; 65: 506-514.
– reference: Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer. Neuroimage 2006; 32: 180-194.
– reference: Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3d rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41.
– reference: Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009; 62: 943-954.
– reference: Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355.
– reference: Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM. Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 2010; 53: 139-145.
– reference: Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fmri: a multivariate approach. Neuroimage 1995; 2: 166-172.
– reference: Atkinson D, Hill D, Stoyle P, Summers P, Keevil S. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 1997; 16: 903-910.
– reference: Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR. Prospective multiaxial motion correction for fMRI. Magn Reson Med 2000; 43: 459-469.
– reference: Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14: 11-22.
– reference: Dale A, Fischl B, Sereno MI. Cortical surface-based analysis. i. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179-194.
– reference: Fischl B, Sereno MI, Dale A. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9: 195-207.
– reference: Crum W, Camara O, Hill D. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 2006; 25: 1451-1461.
– reference: Keating B, Deng W, Roddey JC, White N, Dale A, Stenger VA, Ernst T. Prospective motion correction for single-voxel 1 h MR spectroscopy. Magn Reson Med 2010; 64: 672-679.
– reference: Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Nat Acad Sci USA 2000; 97: 11050-11055.
– reference: Pipe JG. Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969.
– volume: 62
  start-page: 943
  year: 2009
  end-page: 954
  article-title: Prospective real‐time correction for arbitrary head motion using active markers
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1019
  year: 2006
  end-page: 1032
  article-title: Real‐time rigid body motion correction and shimming using cloverleaf navigators
  publication-title: Magn Reson Med
– volume: 53
  start-page: 139
  year: 2010
  end-page: 145
  article-title: Prospective motion correction of high‐resolution magnetic resonance imaging data in children
  publication-title: Neuroimage
– volume: 65
  start-page: 1724
  year: 2011
  end-page: 1732
  article-title: Combined prospective and retrospective motion correction to relax navigator requirements
  publication-title: Magn Reson Med
– volume: 66
  start-page: 314
  year: 2011
  end-page: 323
  article-title: Real‐time motion and b0 corrected single voxel spectroscopy using volumetric navigators
  publication-title: Magn Reson Med
– volume: 40
  start-page: 559
  year: 2008
  end-page: 569
  article-title: Brain morphometry with multiecho mprage
  publication-title: Neuroimage
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis. i. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Nat Acad Sci USA
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  article-title: Cortical surface‐based analysis. II: inflation, flattening, and a surface‐based coordinate system
  publication-title: Neuroimage
– volume: 16
  start-page: 903
  year: 1997
  end-page: 910
  article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion
  publication-title: IEEE Trans Med Imaging
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn Reson Med
– volume: 62
  start-page: 924
  year: 2009
  end-page: 934
  article-title: Prospective head‐movement correction for high‐resolution MRI using an in‐bore optical tracking system
  publication-title: Magn Reson Med
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb Cortex
– volume: 53
  start-page: 1181
  year: 2010
  end-page: 1196
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: Neuroimage
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  article-title: Reliability of MRI‐derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer
  publication-title: Neuroimage
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data
  publication-title: Neuroimage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 23
  start-page: S69
  issue: Suppl 1
  year: 2004
  end-page: S84
  article-title: Sequence‐independent segmentation of magnetic resonance images
  publication-title: Neuroimage
– volume: 2
  start-page: 166
  year: 1995
  end-page: 172
  article-title: Characterizing dynamic brain responses with fmri: a multivariate approach
  publication-title: Neuroimage
– volume: 25
  start-page: 1451
  year: 2006
  end-page: 1461
  article-title: Generalized overlap measures for evaluation and validation in medical image analysis
  publication-title: IEEE Trans Med Imaging
– volume: 63
  start-page: 91
  year: 2010
  end-page: 105
  article-title: Promo: real‐time prospective motion correction in MRI using image‐based tracking
  publication-title: Magn Reson Med
– volume: 65
  start-page: 506
  year: 2010
  end-page: 514
  article-title: Rapid six‐degree‐of‐freedom motion detection using prerotated baseline spherical navigator echoes
  publication-title: Magn Reson Med
– volume: 64
  start-page: 672
  year: 2010
  end-page: 679
  article-title: Prospective motion correction for single‐voxel 1 h MR spectroscopy
  publication-title: Magn Reson Med
– volume: 57
  start-page: 19
  year: 2011
  end-page: 21
  article-title: Avoiding asymmetry‐induced bias in longitudinal image processing
  publication-title: Neuroimage
– volume: 22
  start-page: 1060
  year: 2004
  end-page: 1075
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: Neuroimage
– volume: 52
  start-page: 1388
  year: 2004
  end-page: 1396
  article-title: Self‐navigated interleaved spiral (snails): application to high‐resolution diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 963
  year: 1999
  end-page: 969
  article-title: Motion correction with propeller MRI: application to head motion and free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Med Imaging
– volume: 47
  start-page: 677
  year: 2002
  end-page: 686
  article-title: Detection and elimination of motion artifacts by regeneration of ‐space
  publication-title: Magn Reson Med
– volume: 43
  start-page: 459
  year: 2000
  end-page: 469
  article-title: Prospective multiaxial motion correction for fMRI
  publication-title: Magn Reson Med
– volume: 3
  start-page: 224
  year: 1995
  end-page: 235
  article-title: Motion detection and correction in functional MR imaging
  publication-title: Hum Brain Mapp
– volume: 48
  start-page: 63
  year: 2009
  end-page: 72
  article-title: Accurate and robust brain image alignment using boundary‐based registration
  publication-title: Neuroimage
– volume: 47
  start-page: 32
  year: 2002
  end-page: 41
  article-title: Spherical navigator echoes for full 3d rigid body motion measurement in MRI
  publication-title: Magn Reson Med
– ident: e_1_2_7_2_2
  doi: 10.1109/42.650886
– ident: e_1_2_7_18_2
  doi: 10.1002/hbm.460030306
– ident: e_1_2_7_31_2
  doi: 10.1016/j.neuroimage.2004.07.016
– ident: e_1_2_7_7_2
  doi: 10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1
– ident: e_1_2_7_8_2
  doi: 10.1002/mrm.10012
– ident: e_1_2_7_21_2
  doi: 10.1016/j.neuroimage.2007.12.025
– ident: e_1_2_7_24_2
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_7_34_2
  doi: 10.1016/j.neuroimage.2004.03.032
– ident: e_1_2_7_16_2
  doi: 10.1002/mrm.22754
– ident: e_1_2_7_20_2
  doi: 10.1002/mrm.22076
– ident: e_1_2_7_4_2
  doi: 10.1002/mrm.10093
– ident: e_1_2_7_3_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: e_1_2_7_5_2
  doi: 10.1002/mrm.20288
– ident: e_1_2_7_13_2
  doi: 10.1002/mrm.22448
– ident: e_1_2_7_14_2
  doi: 10.1002/mrm.22629
– ident: e_1_2_7_28_2
  doi: 10.1093/cercor/bhg087
– ident: e_1_2_7_36_2
  doi: 10.1109/TMI.2006.880587
– ident: e_1_2_7_11_2
  doi: 10.1002/mrm.22176
– ident: e_1_2_7_32_2
  doi: 10.1016/j.neuroimage.2006.02.051
– ident: e_1_2_7_22_2
  doi: 10.1016/j.neuroimage.2010.07.020
– ident: e_1_2_7_33_2
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_7_9_2
  doi: 10.1002/mrm.21038
– ident: e_1_2_7_17_2
  doi: 10.1006/nimg.1995.1019
– ident: e_1_2_7_25_2
  doi: 10.1073/pnas.200033797
– ident: e_1_2_7_12_2
  doi: 10.1016/j.neuroimage.2010.06.017
– ident: e_1_2_7_23_2
  doi: 10.1016/j.neuroimage.2011.02.076
– ident: e_1_2_7_35_2
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_2_7_15_2
  doi: 10.1002/mrm.22805
– ident: e_1_2_7_10_2
  doi: 10.1002/mrm.22082
– ident: e_1_2_7_26_2
  doi: 10.1109/42.906426
– ident: e_1_2_7_30_2
  doi: 10.1006/nimg.1998.0396
– ident: e_1_2_7_27_2
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_7_29_2
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: e_1_2_7_6_2
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– ident: e_1_2_7_19_2
  doi: 10.1006/nimg.2002.1132
SSID ssj0009974
Score 2.5366395
SecondaryResourceType review_article
Snippet We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric...
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric...
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short 3D EPI volumetric navigators (vNavs) are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 389
SubjectTerms Algorithms
Brain - anatomy & histology
brain morphometry
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Motion
navigator
Neuroradiography - methods
Pattern Recognition, Automated - methods
prospective motion correction
Reproducibility of Results
Sensitivity and Specificity
validation
Title Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
URI https://api.istex.fr/ark:/67375/WNG-GCTZ5QGF-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23228
https://www.ncbi.nlm.nih.gov/pubmed/22213578
https://www.proquest.com/docview/1024933389
https://pubmed.ncbi.nlm.nih.gov/PMC3320676
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdP0xCIlwEDRvglgxDiJV3iOD8sntBEOyZ1EtUGE0KKbMcR3VgKTYsQfz13dpNRGBLirZKvVu2e7a-Tu88BPCMZalStw1TbOhTciFDFmm4pqUxrm8rMJdKOD7P9Y3Fwkp5swMsuF8bzIfoHbrQy3H5NC1zpdvcCGno-Px-gHOCU6EuxWiSIJhfoKCk9gTkXtM9I0VGFIr7bf3PtLLpC0_r9MqH5Z7zkrzrWHUTDG_CxG4KPPzkbLBd6YH78Rnf8zzHehK2VQGWvvEfdgg3bbMO18eoV_DZcdTGjpr0Np-_czkaIf9aob8TqmM1bhiqY4Y_rUjiZrxPEDJUBcUkUTDUVa139HWpH1Wq-Lqc-doxNG-YQm6rB3hzKgI0nb-7A8fD10d5-uCrdEBqUhEVoTW2EtFUdoTy0wqg4rZQqZKVMhaJPFJGNbKIKnmtdyViqqpY647HKsEkmdXIXNptZY-8B46nSOZ6pgq7xglst60iZwmZG5wmvkwBedH9iaVZccyqv8bn0RGZe4iyWbhYDeNqbfvEwj8uMnjtP6C3U_Iyi3_K0fH84Kkd7Rx_St6NheRDAk85VSlyT9KJFNXa2bLFDvNQmePmXAex41-l7Qz0WE2EogHzNqXoD4n2vtzTTT477nSTE2s9wwM5n_j6EcjwZuw_3_930AVxHLch9bOND2FzMl_YR6q2FfuwW1k_wASoN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VVhwvHOUKp0GAeMk2cU4_8IBa9miblVhtS8VLsB1HLKVZ2Oxy_Sb-Cv-JsXOUhSLx0gfeInk0iu2ZyWdn5huARxqGSp4LOxAqt30qfZu7Qp9SAhbkKmChKaRNhmF_z98-CA5W4HtTC1PxQ7QXbtozTLzWDq4vpDeOWUOPZkcdxAM0rlMqd9TXz3hgK58NtnB3H1PafTHe7Nt1TwFbIlaJbSVz6TOV5Q7iFuVL7gYZ5zHLuMwQjfixoxzl8ZhGQmTMZTzLmQipy0McYl7uod4zsKY7iGum_q3RMVkVYxXnc-TryMb8hsfIoRvtqy59_db0Rn45Cdr-maH5K3I2n77uJfjRLFqV8XLYWcxFR377jU_yf1nVy3CxxuDkeeU0V2BFFetwLqmzDNbhrEmLleVVeLdvgrfuYkAK_knTkUxnJUGgT3A1mipVUrVCIlJ3OjF1IoQXGSlNiyE9jsBcflxMqvQ4MimIYRHlBWozbA0kGQ2uwd6pzPk6rBbTQt0EQgMuIoQNvr6p8KkSLHe4jFUoReTR3LPgaWM1qayp23UHkfdpRTpNU9y11OyaBQ9b0Q8VX8lJQk-M6bUSfHaoE_yiIH017KW9zfHr4GWvm25b8KCxzRTDjv6XxAs1XZSoEM_tnodw14Ibla222hByuppEyYJoyYpbAU1pvjxSTN4aanPP0-0EQpywMdK_TyFNRol5uPXvovfhfH-c7Ka7g-HObbiA0JdWqZx3YHU-W6i7CC_n4p7xagJvTtvgfwLFhYop
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVlS98ChQlqdBgLhkmzjOwwcOqMtutyUrWLVQcQm244ilNFs2u7z-En-FH8XY2aQsFIlLD9wieTSK7Znx52TmG4AHBoYqkUsnkDp3GFXMEZ40t5SAB7kOeGgLaZNBuL3Pdg6CgyX4XtfCVPwQzQc34xk2XhsHP87yzRPS0KPJURvhAI3nGZW7-utnvK-VT_od3NyHlHaf7W1tO_OWAo5CqBI7WuWKcZ3lLsIWzZTwgkyImGdCZQhGWOxqV_sippGUGfe4yHIuQ-qJEIe4n_uo9xyssNDlpk9EZ3jCVcV5RfkcMRPYOKtpjFy62bzqwuG3Yvbxy2nI9s8EzV-Bsz35uhfhR71mVcLLYXs2lW317Tc6yf9kUS_BhTkCJ08rl7kMS7pYh9VknmOwDudtUqwqr8D7VzZ0mx4GpBCfDBnJeFIShPkEF6OuUSVVIySiTJ8TWyVCRJGR0jYYMuMIy9XH2ahKjiOjglgOUVGgNsvVQJJh_yrsn8mcr8FyMS70dSA0EDJC0MDMdwpGteS5K1SsQyUjn-Z-Cx7XRpOqOXG76R_yIa0op2mKu5baXWvB_Ub0uGIrOU3okbW8RkJMDk16XxSkrwe9tLe19yZ42eumOy24V5tmikHH_EkShR7PSlSIt3bfR7Dbgo3KVBttCDg9Q6HUgmjBiBsBQ2i-OFKM3llic983zQRCnLC10b9PIU2GiX248e-id2H1RaebPu8Pdm_CGuJeWuVx3oLl6WSmbyO2nMo71qcJvD1re_8JoWOI2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+Navigators+%28vNavs%29+for+Prospective+Motion+Correction+and+Selective+Reacquisition+in+Neuroanatomical+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tisdall%2C+M.+Dylan&rft.au=Hess%2C+Aaron+T.&rft.au=Reuter%2C+Martin&rft.au=Meintjes%2C+Ernesta+M.&rft.date=2012-08-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=2&rft.spage=389&rft.epage=399&rft_id=info:doi/10.1002%2Fmrm.23228&rft_id=info%3Apmid%2F22213578&rft.externalDocID=PMC3320676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon