Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the s...
Saved in:
Published in | Magnetic resonance in medicine Vol. 68; no. 2; pp. 389 - 399 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of k‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of
k
‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric navigators are embedded in a long three‐dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ∼ 1% change in contrast, and ∼3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion‐corrected sequence with no extra time required. We also demonstrate motion‐driven selective reacquisition of k‐space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high‐throughput environments. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments.We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments. We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short 3D EPI volumetric navigators (vNavs) are embedded in a long 3D sequence, and the resulting image volumes registered to provide an estimate of the subject’s location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~ 3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments. We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric navigators are embedded in a long three-dimensional sequence, and the resulting image volumes are registered to provide an estimate of the subject's location in the scanner at a cost of less than 500 ms, ~ 1% change in contrast, and ~3% change in intensity. This time fits well into the existing gaps in sequences routinely used for neuroimaging, thus giving a motion-corrected sequence with no extra time required. We also demonstrate motion-driven selective reacquisition of k-space to further compensate for subject motion. We perform multiple validation experiments to evaluate accuracy, navigator impact on tissue intensity/contrast, and the improvement in final output. The complete system operates without adding additional hardware to the scanner and requires no external calibration, making it suitable for high-throughput environments. |
Author | Fischl, Bruce van der Kouwe, André J. W. Hess, Aaron T. Reuter, Martin Tisdall, M. Dylan Meintjes, Ernesta M. |
AuthorAffiliation | 4 Medical Research Council/University of Cape Town Medical Imaging Research Unit, South Africa 6 Neurology, Harvard Medical School, Brookline, MA, USA 5 Neurology, Massachusetts General Hospital, Charlestown, MA, USA 2 Radiology, Harvard Medical School, Brookline, MA, USA 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA 3 Department of Human Biology, University of Cape Town, South Africa 7 Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA |
AuthorAffiliation_xml | – name: 7 Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 6 Neurology, Harvard Medical School, Brookline, MA, USA – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA – name: 5 Neurology, Massachusetts General Hospital, Charlestown, MA, USA – name: 2 Radiology, Harvard Medical School, Brookline, MA, USA – name: 3 Department of Human Biology, University of Cape Town, South Africa – name: 4 Medical Research Council/University of Cape Town Medical Imaging Research Unit, South Africa |
Author_xml | – sequence: 1 givenname: M. Dylan surname: Tisdall fullname: Tisdall, M. Dylan email: tisdall@nmr.mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 2 givenname: Aaron T. surname: Hess fullname: Hess, Aaron T. organization: Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa – sequence: 3 givenname: Martin surname: Reuter fullname: Reuter, Martin organization: Department Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 4 givenname: Ernesta M. surname: Meintjes fullname: Meintjes, Ernesta M. organization: Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, South Africa – sequence: 5 givenname: Bruce surname: Fischl fullname: Fischl, Bruce organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 6 givenname: André J. W. surname: van der Kouwe fullname: van der Kouwe, André J. W. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22213578$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS1URNPCgj-AZgmLaf2YlzdIKGrTogZEVUBiY9147hQXj53aM6H99zhNUgGCla98zvmOdO8B2XPeISEvGT1ilPLjPvRHXHDePCETVnKe81IWe2RC64LmgslinxzEeEMplbIunpF9zjkTZd1MyM0Xb8ceh2B05mBlrmHwIWadD9ky-LhEPZgVZr0fjHeZ9iGsf9IIrs0i2q0eEPTtaKJ50IzLHI7Bg0u03miw2fzy_Dl52oGN-GL7HpLPpydX07P84uPsfPruItclk02OutOFxLajgldYaGBlC9DIFnRLG1E0FCkKaHi9WLSSSWg7uag4gypJUnTikLzdcJfjosdWoxsCWLUMpodwrzwY9afizHd17VdKCE6rukqA11tA8LcjxkH1Jmq0Fhz6MSpGeSGFEI1M1le_dz2W7BacDMcbg07bjAE7pc0A6y2lamMTS61PqNIJ1cMJU-LNX4kd9F_eLf2nsXj_f6OaX853iXyTMHHAu8cEhB-qqkVdqq8fZmo2vfpWfpqdqvfiF7PdvpI |
CitedBy_id | crossref_primary_10_1002_hbm_26401 crossref_primary_10_1002_mrm_30385 crossref_primary_10_1002_mrm_30266 crossref_primary_10_1002_mrm_29950 crossref_primary_10_1016_j_dcn_2018_03_001 crossref_primary_10_1002_mrm_27772 crossref_primary_10_1016_j_jpsychires_2016_05_012 crossref_primary_10_1049_iet_ipr_2019_0900 crossref_primary_10_1002_mrm_27771 crossref_primary_10_1002_mrm_28063 crossref_primary_10_1016_j_neuroimage_2020_117227 crossref_primary_10_3390_adolescents1020007 crossref_primary_10_1016_j_neuroimage_2020_117585 crossref_primary_10_1002_mrm_25234 crossref_primary_10_3389_fnana_2017_00132 crossref_primary_10_1097_RLI_0000000000000754 crossref_primary_10_1017_S1092852924002190 crossref_primary_10_1001_jamanetworkopen_2020_23774 crossref_primary_10_3389_fneur_2021_669076 crossref_primary_10_3390_s23073539 crossref_primary_10_1002_ima_22088 crossref_primary_10_1016_j_neuroimage_2015_11_054 crossref_primary_10_1002_mrm_28971 crossref_primary_10_1002_mrm_28734 crossref_primary_10_1002_mrm_29705 crossref_primary_10_1016_j_neuroimage_2021_117756 crossref_primary_10_1016_j_neuroimage_2021_118843 crossref_primary_10_2967_jnumed_117_207142 crossref_primary_10_1016_j_neuroimage_2018_04_017 crossref_primary_10_1007_s00247_014_3002_4 crossref_primary_10_1002_mrm_30161 crossref_primary_10_1016_j_neuroimage_2019_05_010 crossref_primary_10_3233_BPL_240003 crossref_primary_10_1016_j_dcn_2020_100902 crossref_primary_10_1002_hbm_23397 crossref_primary_10_1016_j_nicl_2020_102368 crossref_primary_10_1038_nn_4354 crossref_primary_10_1016_j_dcn_2020_100909 crossref_primary_10_1002_mrm_29296 crossref_primary_10_1073_pnas_2313568121 crossref_primary_10_3390_diagnostics12051032 crossref_primary_10_1016_j_nic_2012_12_012 crossref_primary_10_1162_jocn_a_01944 crossref_primary_10_1002_mrm_29976 crossref_primary_10_1016_j_psyneuen_2023_106379 crossref_primary_10_1093_scan_nsy058 crossref_primary_10_1002_mrm_24845 crossref_primary_10_1186_s40708_021_00128_2 crossref_primary_10_1016_j_bandl_2017_03_009 crossref_primary_10_1016_j_neuroimage_2014_12_006 crossref_primary_10_1016_j_neuroimage_2022_119411 crossref_primary_10_1002_mrm_28991 crossref_primary_10_1002_mrm_29961 crossref_primary_10_1002_mrm_28076 crossref_primary_10_1016_j_neuroimage_2013_09_034 crossref_primary_10_1162_jocn_a_02240 crossref_primary_10_3389_fradi_2021_789632 crossref_primary_10_1002_mrm_29967 crossref_primary_10_1016_j_dcn_2023_101270 crossref_primary_10_1001_jamanetworkopen_2022_26208 crossref_primary_10_1016_j_mri_2014_11_004 crossref_primary_10_1016_j_nicl_2020_102242 crossref_primary_10_1016_j_nicl_2020_102240 crossref_primary_10_1002_aur_3239 crossref_primary_10_1371_journal_pone_0180973 crossref_primary_10_1111_acer_15332 crossref_primary_10_3389_fpsyt_2023_1195763 crossref_primary_10_1016_j_bpsgos_2021_09_005 crossref_primary_10_1016_j_mri_2016_06_006 crossref_primary_10_3390_geriatrics2040034 crossref_primary_10_1016_j_neuroimage_2012_02_084 crossref_primary_10_1162_imag_a_00197 crossref_primary_10_1007_s10802_023_01041_4 crossref_primary_10_1038_s41551_024_01283_7 crossref_primary_10_1053_j_ro_2022_10_002 crossref_primary_10_1093_cercor_bhx131 crossref_primary_10_1371_journal_pone_0217145 crossref_primary_10_1167_jov_25_1_5 crossref_primary_10_13104_imri_2020_24_4_196 crossref_primary_10_2214_AJR_17_18490 crossref_primary_10_1016_j_mri_2016_12_013 crossref_primary_10_1038_s41398_020_00947_7 crossref_primary_10_1016_j_jaac_2021_04_014 crossref_primary_10_1002_mrm_26364 crossref_primary_10_1002_mrm_29992 crossref_primary_10_1002_mrm_26127 crossref_primary_10_1016_j_metrad_2023_100001 crossref_primary_10_1002_mrm_27214 crossref_primary_10_1186_1471_244X_14_159 crossref_primary_10_3389_fneur_2019_00556 crossref_primary_10_1186_s11689_022_09470_w crossref_primary_10_1016_j_dcn_2022_101145 crossref_primary_10_1093_cercor_bhw273 crossref_primary_10_1371_journal_pone_0098386 crossref_primary_10_1002_mrm_28094 crossref_primary_10_1038_tp_2016_102 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1093_cercor_bhx249 crossref_primary_10_1002_mrm_29188 crossref_primary_10_1016_j_neuroimage_2014_09_032 crossref_primary_10_1002_nbm_4364 crossref_primary_10_3389_fnins_2021_624911 crossref_primary_10_1186_s12888_016_0770_4 crossref_primary_10_1136_bmjopen_2022_061548 crossref_primary_10_1186_s13229_016_0076_x crossref_primary_10_1002_mrm_28777 crossref_primary_10_1016_j_dcn_2022_101152 crossref_primary_10_1002_mrm_24615 crossref_primary_10_1016_j_neuroimage_2017_12_059 crossref_primary_10_1186_s40658_015_0118_z crossref_primary_10_1002_hbm_24407 crossref_primary_10_1002_mrm_28419 crossref_primary_10_1162_imag_a_00175 crossref_primary_10_1002_hbm_22261 crossref_primary_10_1007_s00429_023_02612_3 crossref_primary_10_3389_fnhum_2015_00021 crossref_primary_10_1109_TMI_2018_2791482 crossref_primary_10_1002_mp_14199 crossref_primary_10_1162_jocn_a_01342 crossref_primary_10_1002_jmri_25959 crossref_primary_10_1016_j_neuroimage_2019_05_053 crossref_primary_10_1038_s41398_017_0020_7 crossref_primary_10_1016_j_neuroimage_2021_117922 crossref_primary_10_1002_da_22627 crossref_primary_10_1002_mrm_27597 crossref_primary_10_1002_mrm_28202 crossref_primary_10_1002_mrm_29899 crossref_primary_10_1016_j_nicl_2018_06_002 crossref_primary_10_3389_fnins_2023_1085589 crossref_primary_10_1002_mrm_29534 crossref_primary_10_1038_s41598_024_61403_w crossref_primary_10_1007_s00330_016_4730_7 crossref_primary_10_1162_jocn_a_01906 crossref_primary_10_1002_jmri_26000 crossref_primary_10_1016_j_neuroimage_2019_116332 crossref_primary_10_1038_npp_2016_48 crossref_primary_10_1093_scan_nsy017 crossref_primary_10_1109_TBDATA_2017_2734883 crossref_primary_10_1093_scan_nsad052 crossref_primary_10_1016_j_neuroimage_2022_119176 crossref_primary_10_1002_ima_22381 crossref_primary_10_1016_j_neuroimage_2022_119178 crossref_primary_10_1002_jmri_24850 crossref_primary_10_3758_s13415_023_01149_6 crossref_primary_10_2967_jnumed_121_263309 crossref_primary_10_1002_nbm_4225 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1002_mrm_28791 crossref_primary_10_1038_s41398_020_00911_5 crossref_primary_10_1186_s12868_023_00783_7 crossref_primary_10_1016_j_bpsc_2019_04_012 crossref_primary_10_1002_mrm_28555 crossref_primary_10_1016_j_dcn_2019_100641 crossref_primary_10_1097_SCS_0000000000010607 crossref_primary_10_1016_j_dcn_2022_101175 crossref_primary_10_1016_j_neuroimage_2021_118101 crossref_primary_10_1186_s13063_024_08629_1 crossref_primary_10_1016_j_neuroimage_2018_08_050 crossref_primary_10_1002_mrm_27908 crossref_primary_10_1038_s41598_019_54950_0 crossref_primary_10_3389_fnins_2023_1172010 crossref_primary_10_3390_ijerph19010310 crossref_primary_10_1093_cercor_bhy028 crossref_primary_10_1007_s11011_017_0162_6 crossref_primary_10_3389_fnana_2021_639800 crossref_primary_10_1038_s41539_022_00130_1 crossref_primary_10_1002_mrm_26040 crossref_primary_10_1016_j_mri_2016_05_014 crossref_primary_10_1002_mrm_29790 crossref_primary_10_1002_mrm_27934 crossref_primary_10_3389_fnana_2017_00095 crossref_primary_10_1002_mrm_28225 crossref_primary_10_1088_1361_6560_ab10b2 crossref_primary_10_1002_mrm_25993 crossref_primary_10_1080_21678421_2018_1510575 crossref_primary_10_1002_aur_2875 crossref_primary_10_1523_JNEUROSCI_0511_22_2022 crossref_primary_10_1016_j_neuroimage_2022_119360 crossref_primary_10_1016_j_neuroimage_2013_12_012 crossref_primary_10_1016_j_ibmed_2023_100108 crossref_primary_10_3389_fnins_2016_00558 crossref_primary_10_1177_10556656211025191 crossref_primary_10_1016_j_dcn_2021_100919 crossref_primary_10_3174_ajnr_A4921 crossref_primary_10_1111_ejn_16217 crossref_primary_10_1016_j_nicl_2020_102530 crossref_primary_10_1162_jocn_a_01572 crossref_primary_10_1002_mrm_26390 crossref_primary_10_1016_j_neuroimage_2020_116759 crossref_primary_10_3389_fnins_2019_00825 crossref_primary_10_3389_fnbeh_2016_00124 crossref_primary_10_1016_j_jpsychires_2024_01_018 crossref_primary_10_1148_rg_2020190112 crossref_primary_10_3389_fnhum_2020_00143 crossref_primary_10_1016_j_neuroimage_2016_05_005 crossref_primary_10_1002_mrm_29789 crossref_primary_10_1016_j_neuroimage_2021_118447 crossref_primary_10_1002_mrm_26951 crossref_primary_10_1038_s41390_024_03258_5 crossref_primary_10_1002_jmri_25875 crossref_primary_10_1016_j_isci_2024_110159 crossref_primary_10_1016_j_ctro_2019_04_009 crossref_primary_10_1002_mrm_30441 crossref_primary_10_1007_s00247_017_3989_4 crossref_primary_10_1111_adb_13444 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1172_JCI123743 crossref_primary_10_1016_j_neuroimage_2020_117286 crossref_primary_10_1002_dev_22234 crossref_primary_10_1111_pan_12364 crossref_primary_10_3390_jcm9061715 crossref_primary_10_1136_bmjopen_2019_030601 crossref_primary_10_1002_mrm_29202 crossref_primary_10_1016_j_mric_2021_06_013 crossref_primary_10_1002_mrm_27381 crossref_primary_10_1007_s10578_020_00960_3 crossref_primary_10_1002_mp_13967 crossref_primary_10_1002_mrm_24314 crossref_primary_10_1016_j_neuroimage_2021_118543 crossref_primary_10_1523_JNEUROSCI_4383_12_2013 crossref_primary_10_3389_fnana_2017_00088 crossref_primary_10_1177_21677026221079628 crossref_primary_10_1016_j_neuroimage_2018_02_041 crossref_primary_10_1111_desc_12983 crossref_primary_10_1002_mrm_27705 crossref_primary_10_1002_mrm_26616 crossref_primary_10_1109_ACCESS_2023_3318171 crossref_primary_10_1016_j_dcn_2021_100966 crossref_primary_10_1002_hbm_26440 crossref_primary_10_1016_j_dcn_2021_100967 crossref_primary_10_1016_j_neuroimage_2015_11_022 crossref_primary_10_1016_j_biopsych_2015_02_029 crossref_primary_10_1093_radadv_umae010 crossref_primary_10_1002_mrm_25670 crossref_primary_10_1016_j_cortex_2024_11_025 crossref_primary_10_3389_fpsyt_2018_00092 crossref_primary_10_3389_fnins_2024_1385847 crossref_primary_10_1002_mrm_25552 crossref_primary_10_1111_acer_14795 crossref_primary_10_3389_fnins_2023_1113927 crossref_primary_10_1073_pnas_1324037111 crossref_primary_10_1016_j_mri_2015_06_014 crossref_primary_10_1002_jmri_24436 crossref_primary_10_1002_jmri_24678 crossref_primary_10_1002_nbm_5294 crossref_primary_10_1093_cercor_bhz269 crossref_primary_10_1177_0956797615572233 crossref_primary_10_1016_j_mri_2020_05_004 crossref_primary_10_1093_scan_nsab130 crossref_primary_10_1002_hbm_24497 crossref_primary_10_1016_j_neuroimage_2018_01_023 crossref_primary_10_1002_ima_22563 crossref_primary_10_1007_s00234_021_02821_9 crossref_primary_10_1002_nbm_4520 crossref_primary_10_1038_s41597_024_03629_x crossref_primary_10_1111_ejn_15842 crossref_primary_10_1002_nbm_5179 crossref_primary_10_1016_j_neuroimage_2013_11_027 crossref_primary_10_1002_mrm_26877 crossref_primary_10_1002_jmri_28472 crossref_primary_10_1002_mrm_29106 crossref_primary_10_1016_j_neuroimage_2023_120176 crossref_primary_10_1016_j_neuroimage_2017_08_025 crossref_primary_10_1002_nbm_5283 crossref_primary_10_1002_mrm_28287 crossref_primary_10_1016_j_engappai_2024_109978 crossref_primary_10_1016_j_neuroimage_2020_116946 crossref_primary_10_1002_mrm_29251 crossref_primary_10_1093_cercor_bhv131 crossref_primary_10_1002_mrm_28723 crossref_primary_10_1016_j_neuroimage_2016_02_034 crossref_primary_10_1007_s00234_019_02242_9 crossref_primary_10_1016_j_mri_2021_06_010 crossref_primary_10_1016_j_cortex_2023_03_004 crossref_primary_10_1016_j_euroneuro_2020_01_017 crossref_primary_10_1017_S0033291722003555 crossref_primary_10_1016_j_neuroimage_2021_118172 crossref_primary_10_1017_S0033291720004560 crossref_primary_10_1007_s10334_016_0578_8 crossref_primary_10_1016_j_neuroimage_2023_119992 crossref_primary_10_3389_fnhum_2015_00554 crossref_primary_10_1016_j_neuroimage_2013_01_023 crossref_primary_10_1016_j_jneumeth_2015_12_010 crossref_primary_10_2463_mrms_2014_0132 crossref_primary_10_1002_mrm_29364 crossref_primary_10_1038_s41467_017_01369_8 crossref_primary_10_1002_jmri_26637 crossref_primary_10_1016_j_jmr_2018_05_013 crossref_primary_10_1002_jnr_23948 crossref_primary_10_1177_0271678X231197392 crossref_primary_10_1186_s12981_020_00278_z crossref_primary_10_1002_mrm_26654 crossref_primary_10_1007_s00247_016_3677_9 crossref_primary_10_1007_s00234_019_02160_w crossref_primary_10_3389_fphys_2023_1271254 |
Cites_doi | 10.1109/42.650886 10.1002/hbm.460030306 10.1016/j.neuroimage.2004.07.016 10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1 10.1002/mrm.10012 10.1016/j.neuroimage.2007.12.025 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2004.03.032 10.1002/mrm.22754 10.1002/mrm.22076 10.1002/mrm.10093 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1002/mrm.20288 10.1002/mrm.22448 10.1002/mrm.22629 10.1093/cercor/bhg087 10.1109/TMI.2006.880587 10.1002/mrm.22176 10.1016/j.neuroimage.2006.02.051 10.1016/j.neuroimage.2010.07.020 10.1016/j.neuroimage.2005.09.046 10.1002/mrm.21038 10.1006/nimg.1995.1019 10.1073/pnas.200033797 10.1016/j.neuroimage.2010.06.017 10.1016/j.neuroimage.2011.02.076 10.1016/j.neuroimage.2009.06.060 10.1002/mrm.22805 10.1002/mrm.22082 10.1109/42.906426 10.1006/nimg.1998.0396 10.1016/S0896-6273(02)00569-X 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1006/nimg.2002.1132 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/mrm.23228 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 399 |
ExternalDocumentID | PMC3320676 22213578 10_1002_mrm_23228 MRM23228 ark_67375_WNG_GCTZ5QGF_J |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Ellison Medical Foundation – fundername: Center for Functional Neuroimaging Technologies funderid: P41RR14075 [a P41 Regional Resource supported by Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health] – fundername: NCRR Shared Instrumentation Grant Program and/or High‐End Instrumentation Grant Program funderid: S10RR021110; S10RR023401 – fundername: NIH funderid: 5R21EB008547; 5R21AA017410; 5R21DA026104; 5R01NS055754 – fundername: NIAAA NIH HHS grantid: R21 AA017410 – fundername: NIBIB NIH HHS grantid: R21 EB008547 – fundername: Medical Research Council grantid: G0700796 – fundername: NIDA NIH HHS grantid: 5R21DA026104 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NCRR NIH HHS grantid: P41RR14075 – fundername: NCRR NIH HHS grantid: S10RR021110 – fundername: NIAAA NIH HHS grantid: 5R21AA017410 – fundername: NCRR NIH HHS grantid: S10RR023401 – fundername: National Center for Research Resources : NCRR grantid: S10 RR021110-01A1 || RR – fundername: National Center for Research Resources : NCRR grantid: P41 RR014075-01A1 || RR – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R21 EB008547-01A1 || EB – fundername: National Institute on Alcohol Abuse and Alcoholism : NIAAA grantid: R21 AA017410-01 || AA – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS055754-01A1 || NS – fundername: National Center for Research Resources : NCRR grantid: S10 RR023401-01A2 || RR |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c5198-ecfc49edf0326e4ca15daa89dacd083480e0e3a827bbd919adf9b621a648093f3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:28:48 EDT 2025 Fri Jul 11 11:30:35 EDT 2025 Sat May 31 02:08:08 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 Wed Jan 22 16:54:53 EST 2025 Wed Oct 30 09:52:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5198-ecfc49edf0326e4ca15daa89dacd083480e0e3a827bbd919adf9b621a648093f3 |
Notes | ArticleID:MRM23228 NCRR Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program - No. S10RR021110; No. S10RR023401 NIH - No. 5R21EB008547; No. 5R21AA017410; No. 5R21DA026104; No. 5R01NS055754 ark:/67375/WNG-GCTZ5QGF-J Center for Functional Neuroimaging Technologies - No. P41RR14075 [a P41 Regional Resource supported by Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health] Ellison Medical Foundation istex:1F794E3A1A1942E3E68C580E4A9D04F9D098EEA4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3320676 |
PMID | 22213578 |
PQID | 1024933389 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320676 proquest_miscellaneous_1024933389 pubmed_primary_22213578 crossref_citationtrail_10_1002_mrm_23228 crossref_primary_10_1002_mrm_23228 wiley_primary_10_1002_mrm_23228_MRM23228 istex_primary_ark_67375_WNG_GCTZ5QGF_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magnetic Resonance Medicine |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Nat Acad Sci USA 2000; 97: 11050-11055. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, Fischl B, Dale A. Reliability in multi-site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data. Neuroimage 2006; 30: 436-443. Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3d rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41. Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM. Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 2010; 53: 139-145. Dale A, Fischl B, Sereno MI. Cortical surface-based analysis. i. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179-194. Pipe JG. Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969. Hess AT, Tisdall MD, Andronesi OC, Meintjes EM, van der Kouwe AJW. Real-time motion and b0 corrected single voxel spectroscopy using volumetric navigators. Magn Reson Med 2011; 66: 314-323. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004; 22: 1060-1075. Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465. Bydder M, Larkman DJ, Hajnal JV. Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med 2002; 47: 677-686. Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009; 62: 943-954. Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med Imaging 2001; 20: 70-80. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009; 48: 63-72. Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 2011; 57: 19-21. Liu J, Drangova M. Rapid six-degree-of-freedom motion detection using prerotated baseline spherical navigator echoes. Magn Reson Med 2010; 65: 506-514. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23( Suppl 1): S69-S84. Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272-284. Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW. Motion detection and correction in functional MR imaging. Hum Brain Mapp 1995; 3: 224-235. Fischl B, Sereno MI, Dale A. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9: 195-207. Atkinson D, Hill D, Stoyle P, Summers P, Keevil S. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 1997; 16: 903-910. Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 2009; 62: 924-934. van der Kouwe AJW, Benner T, Dale AM. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 2006; 56: 1019-1032. Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fmri: a multivariate approach. Neuroimage 1995; 2: 166-172. Maclaren J, Lee KJ, Luengviriya C, Speck O, Zaitsev M. Combined prospective and retrospective motion correction to relax navigator requirements. Magn Reson Med 2011; 65: 1724-1732. van der Kouwe AJW, Benner T, Salat DH, Fischl B. Brain morphometry with multiecho mprage. Neuroimage 2008; 40: 559-569. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841. Keating B, Deng W, Roddey JC, White N, Dale A, Stenger VA, Ernst T. Prospective motion correction for single-voxel 1 h MR spectroscopy. Magn Reson Med 2010; 64: 672-679. White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A. Promo: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63: 91-105. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14: 11-22. Liu C, Bammer R, Kim D-H, Moseley ME. Self-navigated interleaved spiral (snails): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004; 52: 1388-1396. Crum W, Camara O, Hill D. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 2006; 25: 1451-1461. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer. Neuroimage 2006; 32: 180-194. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 2010; 53: 1181-1196. Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR. Prospective multiaxial motion correction for fMRI. Magn Reson Med 2000; 43: 459-469. 2002; 17 2004; 22 2010; 53 2006; 30 2009; 62 2006; 56 2006; 32 2000; 43 2000; 44 2004; 23 2002; 33 1999; 42 2011; 57 1995; 2 1999; 8 1995; 3 2010; 63 2009; 48 2001; 20 1999; 9 2002; 47 2004; 52 2010; 65 2010; 64 2004; 14 2006; 25 2000; 97 2011; 66 1997; 16 2011; 65 2008; 40 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 |
References_xml | – reference: Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 2011; 57: 19-21. – reference: Maclaren J, Lee KJ, Luengviriya C, Speck O, Zaitsev M. Combined prospective and retrospective motion correction to relax navigator requirements. Magn Reson Med 2011; 65: 1724-1732. – reference: Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 2009; 62: 924-934. – reference: Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841. – reference: Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004; 22: 1060-1075. – reference: van der Kouwe AJW, Benner T, Dale AM. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 2006; 56: 1019-1032. – reference: Hess AT, Tisdall MD, Andronesi OC, Meintjes EM, van der Kouwe AJW. Real-time motion and b0 corrected single voxel spectroscopy using volumetric navigators. Magn Reson Med 2011; 66: 314-323. – reference: Liu C, Bammer R, Kim D-H, Moseley ME. Self-navigated interleaved spiral (snails): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004; 52: 1388-1396. – reference: Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009; 48: 63-72. – reference: Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465. – reference: Bydder M, Larkman DJ, Hajnal JV. Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med 2002; 47: 677-686. – reference: Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 2010; 53: 1181-1196. – reference: Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med Imaging 2001; 20: 70-80. – reference: van der Kouwe AJW, Benner T, Salat DH, Fischl B. Brain morphometry with multiecho mprage. Neuroimage 2008; 40: 559-569. – reference: White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A. Promo: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010; 63: 91-105. – reference: Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272-284. – reference: Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23( Suppl 1): S69-S84. – reference: Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, Fischl B, Dale A. Reliability in multi-site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data. Neuroimage 2006; 30: 436-443. – reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW. Motion detection and correction in functional MR imaging. Hum Brain Mapp 1995; 3: 224-235. – reference: Liu J, Drangova M. Rapid six-degree-of-freedom motion detection using prerotated baseline spherical navigator echoes. Magn Reson Med 2010; 65: 506-514. – reference: Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer. Neuroimage 2006; 32: 180-194. – reference: Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3d rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41. – reference: Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009; 62: 943-954. – reference: Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355. – reference: Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM. Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 2010; 53: 139-145. – reference: Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fmri: a multivariate approach. Neuroimage 1995; 2: 166-172. – reference: Atkinson D, Hill D, Stoyle P, Summers P, Keevil S. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 1997; 16: 903-910. – reference: Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR. Prospective multiaxial motion correction for fMRI. Magn Reson Med 2000; 43: 459-469. – reference: Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14: 11-22. – reference: Dale A, Fischl B, Sereno MI. Cortical surface-based analysis. i. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179-194. – reference: Fischl B, Sereno MI, Dale A. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9: 195-207. – reference: Crum W, Camara O, Hill D. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 2006; 25: 1451-1461. – reference: Keating B, Deng W, Roddey JC, White N, Dale A, Stenger VA, Ernst T. Prospective motion correction for single-voxel 1 h MR spectroscopy. Magn Reson Med 2010; 64: 672-679. – reference: Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Nat Acad Sci USA 2000; 97: 11050-11055. – reference: Pipe JG. Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969. – volume: 62 start-page: 943 year: 2009 end-page: 954 article-title: Prospective real‐time correction for arbitrary head motion using active markers publication-title: Magn Reson Med – volume: 56 start-page: 1019 year: 2006 end-page: 1032 article-title: Real‐time rigid body motion correction and shimming using cloverleaf navigators publication-title: Magn Reson Med – volume: 53 start-page: 139 year: 2010 end-page: 145 article-title: Prospective motion correction of high‐resolution magnetic resonance imaging data in children publication-title: Neuroimage – volume: 65 start-page: 1724 year: 2011 end-page: 1732 article-title: Combined prospective and retrospective motion correction to relax navigator requirements publication-title: Magn Reson Med – volume: 66 start-page: 314 year: 2011 end-page: 323 article-title: Real‐time motion and b0 corrected single voxel spectroscopy using volumetric navigators publication-title: Magn Reson Med – volume: 40 start-page: 559 year: 2008 end-page: 569 article-title: Brain morphometry with multiecho mprage publication-title: Neuroimage – volume: 9 start-page: 179 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis. i. Segmentation and surface reconstruction publication-title: Neuroimage – volume: 97 start-page: 11050 year: 2000 end-page: 11055 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Nat Acad Sci USA – volume: 9 start-page: 195 year: 1999 end-page: 207 article-title: Cortical surface‐based analysis. II: inflation, flattening, and a surface‐based coordinate system publication-title: Neuroimage – volume: 16 start-page: 903 year: 1997 end-page: 910 article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion publication-title: IEEE Trans Med Imaging – volume: 44 start-page: 457 year: 2000 end-page: 465 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn Reson Med – volume: 62 start-page: 924 year: 2009 end-page: 934 article-title: Prospective head‐movement correction for high‐resolution MRI using an in‐bore optical tracking system publication-title: Magn Reson Med – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 14 start-page: 11 year: 2004 end-page: 22 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb Cortex – volume: 53 start-page: 1181 year: 2010 end-page: 1196 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: Neuroimage – volume: 32 start-page: 180 year: 2006 end-page: 194 article-title: Reliability of MRI‐derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer publication-title: Neuroimage – volume: 30 start-page: 436 year: 2006 end-page: 443 article-title: Reliability in multi‐site structural MRI studies: effects of gradient nonlinearity correction on phantom and human data publication-title: Neuroimage – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 23 start-page: S69 issue: Suppl 1 year: 2004 end-page: S84 article-title: Sequence‐independent segmentation of magnetic resonance images publication-title: Neuroimage – volume: 2 start-page: 166 year: 1995 end-page: 172 article-title: Characterizing dynamic brain responses with fmri: a multivariate approach publication-title: Neuroimage – volume: 25 start-page: 1451 year: 2006 end-page: 1461 article-title: Generalized overlap measures for evaluation and validation in medical image analysis publication-title: IEEE Trans Med Imaging – volume: 63 start-page: 91 year: 2010 end-page: 105 article-title: Promo: real‐time prospective motion correction in MRI using image‐based tracking publication-title: Magn Reson Med – volume: 65 start-page: 506 year: 2010 end-page: 514 article-title: Rapid six‐degree‐of‐freedom motion detection using prerotated baseline spherical navigator echoes publication-title: Magn Reson Med – volume: 64 start-page: 672 year: 2010 end-page: 679 article-title: Prospective motion correction for single‐voxel 1 h MR spectroscopy publication-title: Magn Reson Med – volume: 57 start-page: 19 year: 2011 end-page: 21 article-title: Avoiding asymmetry‐induced bias in longitudinal image processing publication-title: Neuroimage – volume: 22 start-page: 1060 year: 2004 end-page: 1075 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: Neuroimage – volume: 52 start-page: 1388 year: 2004 end-page: 1396 article-title: Self‐navigated interleaved spiral (snails): application to high‐resolution diffusion tensor imaging publication-title: Magn Reson Med – volume: 8 start-page: 272 year: 1999 end-page: 284 article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp – volume: 42 start-page: 963 year: 1999 end-page: 969 article-title: Motion correction with propeller MRI: application to head motion and free‐breathing cardiac imaging publication-title: Magn Reson Med – volume: 20 start-page: 70 year: 2001 end-page: 80 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Med Imaging – volume: 47 start-page: 677 year: 2002 end-page: 686 article-title: Detection and elimination of motion artifacts by regeneration of ‐space publication-title: Magn Reson Med – volume: 43 start-page: 459 year: 2000 end-page: 469 article-title: Prospective multiaxial motion correction for fMRI publication-title: Magn Reson Med – volume: 3 start-page: 224 year: 1995 end-page: 235 article-title: Motion detection and correction in functional MR imaging publication-title: Hum Brain Mapp – volume: 48 start-page: 63 year: 2009 end-page: 72 article-title: Accurate and robust brain image alignment using boundary‐based registration publication-title: Neuroimage – volume: 47 start-page: 32 year: 2002 end-page: 41 article-title: Spherical navigator echoes for full 3d rigid body motion measurement in MRI publication-title: Magn Reson Med – ident: e_1_2_7_2_2 doi: 10.1109/42.650886 – ident: e_1_2_7_18_2 doi: 10.1002/hbm.460030306 – ident: e_1_2_7_31_2 doi: 10.1016/j.neuroimage.2004.07.016 – ident: e_1_2_7_7_2 doi: 10.1002/(SICI)1522-2594(200003)43:3<459::AID-MRM19>3.0.CO;2-1 – ident: e_1_2_7_8_2 doi: 10.1002/mrm.10012 – ident: e_1_2_7_21_2 doi: 10.1016/j.neuroimage.2007.12.025 – ident: e_1_2_7_24_2 doi: 10.1006/nimg.1998.0395 – ident: e_1_2_7_34_2 doi: 10.1016/j.neuroimage.2004.03.032 – ident: e_1_2_7_16_2 doi: 10.1002/mrm.22754 – ident: e_1_2_7_20_2 doi: 10.1002/mrm.22076 – ident: e_1_2_7_4_2 doi: 10.1002/mrm.10093 – ident: e_1_2_7_3_2 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: e_1_2_7_5_2 doi: 10.1002/mrm.20288 – ident: e_1_2_7_13_2 doi: 10.1002/mrm.22448 – ident: e_1_2_7_14_2 doi: 10.1002/mrm.22629 – ident: e_1_2_7_28_2 doi: 10.1093/cercor/bhg087 – ident: e_1_2_7_36_2 doi: 10.1109/TMI.2006.880587 – ident: e_1_2_7_11_2 doi: 10.1002/mrm.22176 – ident: e_1_2_7_32_2 doi: 10.1016/j.neuroimage.2006.02.051 – ident: e_1_2_7_22_2 doi: 10.1016/j.neuroimage.2010.07.020 – ident: e_1_2_7_33_2 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_7_9_2 doi: 10.1002/mrm.21038 – ident: e_1_2_7_17_2 doi: 10.1006/nimg.1995.1019 – ident: e_1_2_7_25_2 doi: 10.1073/pnas.200033797 – ident: e_1_2_7_12_2 doi: 10.1016/j.neuroimage.2010.06.017 – ident: e_1_2_7_23_2 doi: 10.1016/j.neuroimage.2011.02.076 – ident: e_1_2_7_35_2 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_2_7_15_2 doi: 10.1002/mrm.22805 – ident: e_1_2_7_10_2 doi: 10.1002/mrm.22082 – ident: e_1_2_7_26_2 doi: 10.1109/42.906426 – ident: e_1_2_7_30_2 doi: 10.1006/nimg.1998.0396 – ident: e_1_2_7_27_2 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_7_29_2 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: e_1_2_7_6_2 doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – ident: e_1_2_7_19_2 doi: 10.1006/nimg.2002.1132 |
SSID | ssj0009974 |
Score | 2.5366395 |
SecondaryResourceType | review_article |
Snippet | We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three‐dimensional echo‐planar imaging volumetric... We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short three-dimensional echo-planar imaging volumetric... We introduce a novel method of prospectively compensating for subject motion in neuroanatomical imaging. Short 3D EPI volumetric navigators (vNavs) are... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 389 |
SubjectTerms | Algorithms Brain - anatomy & histology brain morphometry Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Motion navigator Neuroradiography - methods Pattern Recognition, Automated - methods prospective motion correction Reproducibility of Results Sensitivity and Specificity validation |
Title | Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI |
URI | https://api.istex.fr/ark:/67375/WNG-GCTZ5QGF-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23228 https://www.ncbi.nlm.nih.gov/pubmed/22213578 https://www.proquest.com/docview/1024933389 https://pubmed.ncbi.nlm.nih.gov/PMC3320676 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdP0xCIlwEDRvglgxDiJV3iOD8sntBEOyZ1EtUGE0KKbMcR3VgKTYsQfz13dpNRGBLirZKvVu2e7a-Tu88BPCMZalStw1TbOhTciFDFmm4pqUxrm8rMJdKOD7P9Y3Fwkp5swMsuF8bzIfoHbrQy3H5NC1zpdvcCGno-Px-gHOCU6EuxWiSIJhfoKCk9gTkXtM9I0VGFIr7bf3PtLLpC0_r9MqH5Z7zkrzrWHUTDG_CxG4KPPzkbLBd6YH78Rnf8zzHehK2VQGWvvEfdgg3bbMO18eoV_DZcdTGjpr0Np-_czkaIf9aob8TqmM1bhiqY4Y_rUjiZrxPEDJUBcUkUTDUVa139HWpH1Wq-Lqc-doxNG-YQm6rB3hzKgI0nb-7A8fD10d5-uCrdEBqUhEVoTW2EtFUdoTy0wqg4rZQqZKVMhaJPFJGNbKIKnmtdyViqqpY647HKsEkmdXIXNptZY-8B46nSOZ6pgq7xglst60iZwmZG5wmvkwBedH9iaVZccyqv8bn0RGZe4iyWbhYDeNqbfvEwj8uMnjtP6C3U_Iyi3_K0fH84Kkd7Rx_St6NheRDAk85VSlyT9KJFNXa2bLFDvNQmePmXAex41-l7Qz0WE2EogHzNqXoD4n2vtzTTT477nSTE2s9wwM5n_j6EcjwZuw_3_930AVxHLch9bOND2FzMl_YR6q2FfuwW1k_wASoN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VVhwvHOUKp0GAeMk2cU4_8IBa9miblVhtS8VLsB1HLKVZ2Oxy_Sb-Cv-JsXOUhSLx0gfeInk0iu2ZyWdn5huARxqGSp4LOxAqt30qfZu7Qp9SAhbkKmChKaRNhmF_z98-CA5W4HtTC1PxQ7QXbtozTLzWDq4vpDeOWUOPZkcdxAM0rlMqd9TXz3hgK58NtnB3H1PafTHe7Nt1TwFbIlaJbSVz6TOV5Q7iFuVL7gYZ5zHLuMwQjfixoxzl8ZhGQmTMZTzLmQipy0McYl7uod4zsKY7iGum_q3RMVkVYxXnc-TryMb8hsfIoRvtqy59_db0Rn45Cdr-maH5K3I2n77uJfjRLFqV8XLYWcxFR377jU_yf1nVy3CxxuDkeeU0V2BFFetwLqmzDNbhrEmLleVVeLdvgrfuYkAK_knTkUxnJUGgT3A1mipVUrVCIlJ3OjF1IoQXGSlNiyE9jsBcflxMqvQ4MimIYRHlBWozbA0kGQ2uwd6pzPk6rBbTQt0EQgMuIoQNvr6p8KkSLHe4jFUoReTR3LPgaWM1qayp23UHkfdpRTpNU9y11OyaBQ9b0Q8VX8lJQk-M6bUSfHaoE_yiIH017KW9zfHr4GWvm25b8KCxzRTDjv6XxAs1XZSoEM_tnodw14Ibla222hByuppEyYJoyYpbAU1pvjxSTN4aanPP0-0EQpywMdK_TyFNRol5uPXvovfhfH-c7Ka7g-HObbiA0JdWqZx3YHU-W6i7CC_n4p7xagJvTtvgfwLFhYop |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVlS98ChQlqdBgLhkmzjOwwcOqMtutyUrWLVQcQm244ilNFs2u7z-En-FH8XY2aQsFIlLD9wieTSK7Znx52TmG4AHBoYqkUsnkDp3GFXMEZ40t5SAB7kOeGgLaZNBuL3Pdg6CgyX4XtfCVPwQzQc34xk2XhsHP87yzRPS0KPJURvhAI3nGZW7-utnvK-VT_od3NyHlHaf7W1tO_OWAo5CqBI7WuWKcZ3lLsIWzZTwgkyImGdCZQhGWOxqV_sippGUGfe4yHIuQ-qJEIe4n_uo9xyssNDlpk9EZ3jCVcV5RfkcMRPYOKtpjFy62bzqwuG3Yvbxy2nI9s8EzV-Bsz35uhfhR71mVcLLYXs2lW317Tc6yf9kUS_BhTkCJ08rl7kMS7pYh9VknmOwDudtUqwqr8D7VzZ0mx4GpBCfDBnJeFIShPkEF6OuUSVVIySiTJ8TWyVCRJGR0jYYMuMIy9XH2ahKjiOjglgOUVGgNsvVQJJh_yrsn8mcr8FyMS70dSA0EDJC0MDMdwpGteS5K1SsQyUjn-Z-Cx7XRpOqOXG76R_yIa0op2mKu5baXWvB_Ub0uGIrOU3okbW8RkJMDk16XxSkrwe9tLe19yZ42eumOy24V5tmikHH_EkShR7PSlSIt3bfR7Dbgo3KVBttCDg9Q6HUgmjBiBsBQ2i-OFKM3llic983zQRCnLC10b9PIU2GiX248e-id2H1RaebPu8Pdm_CGuJeWuVx3oLl6WSmbyO2nMo71qcJvD1re_8JoWOI2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+Navigators+%28vNavs%29+for+Prospective+Motion+Correction+and+Selective+Reacquisition+in+Neuroanatomical+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tisdall%2C+M.+Dylan&rft.au=Hess%2C+Aaron+T.&rft.au=Reuter%2C+Martin&rft.au=Meintjes%2C+Ernesta+M.&rft.date=2012-08-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=2&rft.spage=389&rft.epage=399&rft_id=info:doi/10.1002%2Fmrm.23228&rft_id=info%3Apmid%2F22213578&rft.externalDocID=PMC3320676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |