ARF2‐PIF5 interaction controls transcriptional reprogramming in the ABS3‐mediated plant senescence pathway

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subf...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 41; no. 19; pp. e110988 - n/a
Main Authors Xue, Hui, Meng, Jingjing, Lei, Pei, Cao, Yongxin, An, Xue, Jia, Min, Li, Yan, Liu, Haofeng, Sheen, Jen, Liu, Xiayan, Yu, Fei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.10.2022
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence‐associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain‐of‐function mutant abs3‐1D , AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3‐mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 ( ORE1 ) and STAY‐GREEN 1 ( SGR1 ) in the ABS3‐mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3‐subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2‐PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3‐mediated senescence pathway. Synopsis The late endosome‐localized ABS3 subfamily of MATE transporters regulates senescence and senescence‐associated gene expression through mechanisms which are not well understood. Here, developmental transcription factors ARF2 and PIF5/4 are found to interact to control transcriptional regulation in the ABS3‐mediated senescence pathway. Mutations in ARF2 and PIF5 suppress precocious senescence caused by abs3‐1D , a gain‐of‐function mutant allele of ABS3 . ARF2 and PIF5/4 can regulate senescence both together and independently. ARF2 and PIF5 physically interact and share common target genes, such as the key senescence‐promoting genes ORE1 and SGR1 . ABS3‐subfamily MATEs and the ARF2‐PIF5/4 functional module regulate each other's activity to fine‐tune senescence. Graphical Abstract Two distinct plant transcription factors known to mediate key developmental programs are shown to cooperate to control senescence.
AbstractList One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence‐associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain‐of‐function mutant abs3‐1D , AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3‐mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 ( ORE1 ) and STAY‐GREEN 1 ( SGR1 ) in the ABS3‐mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3‐subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2‐PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3‐mediated senescence pathway. Two distinct plant transcription factors known to mediate key developmental programs are shown to cooperate to control senescence.
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence‐associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain‐of‐function mutant abs3‐1D , AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3‐mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 ( ORE1 ) and STAY‐GREEN 1 ( SGR1 ) in the ABS3‐mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3‐subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2‐PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3‐mediated senescence pathway. Synopsis The late endosome‐localized ABS3 subfamily of MATE transporters regulates senescence and senescence‐associated gene expression through mechanisms which are not well understood. Here, developmental transcription factors ARF2 and PIF5/4 are found to interact to control transcriptional regulation in the ABS3‐mediated senescence pathway. Mutations in ARF2 and PIF5 suppress precocious senescence caused by abs3‐1D , a gain‐of‐function mutant allele of ABS3 . ARF2 and PIF5/4 can regulate senescence both together and independently. ARF2 and PIF5 physically interact and share common target genes, such as the key senescence‐promoting genes ORE1 and SGR1 . ABS3‐subfamily MATEs and the ARF2‐PIF5/4 functional module regulate each other's activity to fine‐tune senescence. Graphical Abstract Two distinct plant transcription factors known to mediate key developmental programs are shown to cooperate to control senescence.
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence‐associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain‐of‐function mutant abs3‐1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3‐mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY‐GREEN 1 (SGR1) in the ABS3‐mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3‐subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2‐PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3‐mediated senescence pathway. Synopsis The late endosome‐localized ABS3 subfamily of MATE transporters regulates senescence and senescence‐associated gene expression through mechanisms which are not well understood. Here, developmental transcription factors ARF2 and PIF5/4 are found to interact to control transcriptional regulation in the ABS3‐mediated senescence pathway. Mutations in ARF2 and PIF5 suppress precocious senescence caused by abs3‐1D, a gain‐of‐function mutant allele of ABS3. ARF2 and PIF5/4 can regulate senescence both together and independently. ARF2 and PIF5 physically interact and share common target genes, such as the key senescence‐promoting genes ORE1 and SGR1. ABS3‐subfamily MATEs and the ARF2‐PIF5/4 functional module regulate each other's activity to fine‐tune senescence. Two distinct plant transcription factors known to mediate key developmental programs are shown to cooperate to control senescence.
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence‐associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain‐of‐function mutant abs3‐1D , AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3‐mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 ( ORE1 ) and STAY‐GREEN 1 ( SGR1 ) in the ABS3‐mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3‐subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2‐PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3‐mediated senescence pathway. image The late endosome‐localized ABS3 subfamily of MATE transporters regulates senescence and senescence‐associated gene expression through mechanisms which are not well understood. Here, developmental transcription factors ARF2 and PIF5/4 are found to interact to control transcriptional regulation in the ABS3‐mediated senescence pathway. Mutations in ARF2 and PIF5 suppress precocious senescence caused by abs3‐1D , a gain‐of‐function mutant allele of ABS3 . ARF2 and PIF5/4 can regulate senescence both together and independently. ARF2 and PIF5 physically interact and share common target genes, such as the key senescence‐promoting genes ORE1 and SGR1 . ABS3‐subfamily MATEs and the ARF2‐PIF5/4 functional module regulate each other's activity to fine‐tune senescence.
Author Meng, Jingjing
An, Xue
Cao, Yongxin
Liu, Haofeng
Liu, Xiayan
Xue, Hui
Lei, Pei
Li, Yan
Yu, Fei
Jia, Min
Sheen, Jen
AuthorAffiliation 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences Northwest A&F University Yangling China
5 Present address: Department of Plant and Microbial Biology University of California, Berkeley Berkeley CA USA
4 Department of Genetics Harvard Medical School Boston MA USA
2 Institute of Future Agriculture Northwest A&F University Yangling China
3 Department of Molecular Biology and Centre for Computational and Integrative Biology Massachusetts General Hospital Boston MA USA
AuthorAffiliation_xml – name: 3 Department of Molecular Biology and Centre for Computational and Integrative Biology Massachusetts General Hospital Boston MA USA
– name: 5 Present address: Department of Plant and Microbial Biology University of California, Berkeley Berkeley CA USA
– name: 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences Northwest A&F University Yangling China
– name: 4 Department of Genetics Harvard Medical School Boston MA USA
– name: 2 Institute of Future Agriculture Northwest A&F University Yangling China
Author_xml – sequence: 1
  givenname: Hui
  surname: Xue
  fullname: Xue, Hui
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 2
  givenname: Jingjing
  surname: Meng
  fullname: Meng, Jingjing
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 3
  givenname: Pei
  surname: Lei
  fullname: Lei, Pei
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 4
  givenname: Yongxin
  orcidid: 0000-0002-8492-5662
  surname: Cao
  fullname: Cao, Yongxin
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 5
  givenname: Xue
  surname: An
  fullname: An, Xue
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 6
  givenname: Min
  surname: Jia
  fullname: Jia, Min
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Department of Plant and Microbial Biology, University of California, Berkeley
– sequence: 7
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 8
  givenname: Haofeng
  surname: Liu
  fullname: Liu, Haofeng
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
– sequence: 9
  givenname: Jen
  surname: Sheen
  fullname: Sheen, Jen
  organization: Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School
– sequence: 10
  givenname: Xiayan
  orcidid: 0000-0003-4211-1668
  surname: Liu
  fullname: Liu, Xiayan
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School
– sequence: 11
  givenname: Fei
  orcidid: 0000-0001-6216-7066
  surname: Yu
  fullname: Yu, Fei
  email: feiyu@nwafu.edu.cn
  organization: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Institute of Future Agriculture, Northwest A&F University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35942625$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv0zAcxS00xLqOOycUiQuXjL-d2LElhNRNKwwNMQ04W07itK4SO9guU298BD4jnwSXboxNgl1syX6_5_f8P0B71lmN0DMMR5gSSl7poV4dESAEYxCcP0ITXDLICVR0D02AMJyXmIt9dBDCCgAor_ATtF9QURJG6ATZ2eWc_Pz-4-JsTjNjo_aqicbZrHE2eteHLHplQ-PNuD1Wfeb16N3Cq2EwdpGQLC51Njv-VCSXQbdGRd1mY69szIK2OjTaNjobVVxeqc0hetypPuin1_sUfZmffj55l59_fHt2MjvPG4oFz2vMi7KqRVlXHKBmqoOibTShXVe3Beaq7UQNjFc10K4U0JFOYSZYy0sOlWDFFL3Z-Y7rOoVKGVKNXo7eDMpvpFNG3r2xZikX7psUtMAF0GTw8trAu69rHaIcTKrSp17arYMkFUCBSZnWKXpxT7pya5--aqsiwIExQZLq-d-J_kS5GUUSsJ2g8S4ErzvZmKi2n54Cml5ikL9nLrczl7czTyDcA2-8_4O83iFXptebB_Xy9MPx-zs43uEhkXah_W3jfz75C5DQ0uo
CitedBy_id crossref_primary_10_1016_j_devcel_2024_05_003
crossref_primary_10_1016_j_xplc_2024_100848
crossref_primary_10_1111_nph_18440
crossref_primary_10_1111_nph_19760
crossref_primary_10_1093_plphys_kiae299
crossref_primary_10_1111_jipb_13615
crossref_primary_10_1007_s10725_023_01063_4
crossref_primary_10_3390_ijms25179607
crossref_primary_10_1016_j_jia_2025_01_001
crossref_primary_10_1093_jxb_erad273
crossref_primary_10_1111_nph_20082
crossref_primary_10_1111_ppl_14124
Cites_doi 10.1104/pp.17.01384
10.1126/science.1132912
10.1111/nph.14217
10.1016/j.cell.2016.04.038
10.1038/s41477-018-0269-8
10.1093/mp/ssu109
10.1073/pnas.1722407115
10.1016/0076-6879(87)48036-1
10.1016/j.cub.2008.10.058
10.1371/journal.pgen.1002172
10.1073/pnas.1304250110
10.1105/tpc.16.00684
10.1105/tpc.008417
10.1111/j.1365-313X.2004.02160.x
10.1016/j.molp.2016.04.017
10.1111/jipb.13003
10.1111/j.1365-313X.2005.02399.x
10.1104/pp.107.105601
10.1073/pnas.96.10.5844
10.1111/j.1365-313X.2012.05033.x
10.1111/j.1365-313X.2011.04598.x
10.1046/j.1365-313x.1998.00343.x
10.1038/s41477-018-0348-x
10.1038/nprot.2007.199
10.1111/j.1365-3040.2011.02442.x
10.1093/jxb/eru248
10.1186/s13059-015-0715-0
10.1101/gad.187849.112
10.1016/j.molp.2017.07.002
10.1093/mp/ssu087
10.1073/pnas.1722068115
10.1105/tpc.19.00810
10.1016/j.cell.2015.12.018
10.1038/ncomms5636
10.1126/science.1166386
10.1016/j.plantsci.2015.05.010
10.1242/dev.02012
10.1146/annurev-arplant-050718-095859
10.1093/nar/gkw982
10.1104/pp.15.01929
10.1038/nmeth.3543
10.7554/eLife.03031
10.1104/pp.15.00498
10.1111/j.1365-3040.2003.01158.x
10.1105/tpc.111.083345
10.1093/jxb/erv344
10.1105/tpc.113.120857
10.1242/dev.02194
10.1105/tpc.114.133769
10.1016/j.devcel.2004.07.002
10.1111/j.1365-313X.2005.02426.x
10.1111/nph.15127
10.1105/tpc.107.052142
10.1105/tpc.19.00297
10.1111/nph.14579
10.1111/j.1365-313X.2007.03341.x
10.1038/s41477-019-0369-0
10.1093/jxb/erq010
10.1104/pp.18.00183
ContentType Journal Article
Copyright The Author(s) 2022
2022 The Authors
2022 The Authors.
2022 EMBO
Copyright_xml – notice: The Author(s) 2022
– notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2022110988
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Hui Xue et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC9531305
35942625
10_15252_embj_2022110988
EMBJ2022110988
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 32070215; 31870268; 32100291
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: 2021JC‐17
  funderid: 10.13039/501100017596
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 32070215; 31870268; 32100291
– fundername: Natural Science Basic Research Program of Shaanxi Province
  funderid: 2021JC‐17
– fundername: NIGMS NIH HHS
  grantid: R01 GM129093
– fundername: ;
  grantid: 2021JC‐17
– fundername: ;
  grantid: 32070215; 31870268; 32100291
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5198-b18347b94b7800b6af03dce25ffbd318adf9b0687b05f490f2fa1696d84807963
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:41:55 EDT 2025
Thu Jul 10 17:06:12 EDT 2025
Fri Jul 25 10:38:53 EDT 2025
Thu Apr 03 07:10:06 EDT 2025
Tue Jul 01 01:47:23 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Jan 22 16:23:40 EST 2025
Fri Feb 21 02:37:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords senescence
ARF2
PIF5
transcriptional regulation
ABS3
Language English
License 2022 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5198-b18347b94b7800b6af03dce25ffbd318adf9b0687b05f490f2fa1696d84807963
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4211-1668
0000-0002-8492-5662
0000-0001-6216-7066
OpenAccessLink https://www.embopress.org/action/downloadSupplement?doi=10.15252/embj.2022110988&file=embj2022110988.reviewer_comments.pdf
PMID 35942625
PQID 2720806692
PQPubID 35985
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9531305
proquest_miscellaneous_2700312400
proquest_journals_2720806692
pubmed_primary_35942625
crossref_citationtrail_10_15252_embj_2022110988
crossref_primary_10_15252_embj_2022110988
wiley_primary_10_15252_embj_2022110988_EMBJ2022110988
springer_journals_10_15252_embj_2022110988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 4 October 2022
PublicationDateYYYYMMDD 2022-10-04
PublicationDate_xml – month: 10
  year: 2022
  text: 4 October 2022
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Sakuraba, Jeong, Kang, Kim, Paek, Choi (CR40) 2014; 5
Leivar, Monte (CR18) 2014; 26
Schruff, Spielman, Tiwari, Adams, Fenby, Scott (CR42) 2006; 133
Li, Johnson, Stepanova, Alonso, Ecker (CR21) 2004; 7
Jia, Liu, Xue, Wu, Shi, Wang, Chen, Xu, Zhao, Shao (CR11) 2019; 5
Richter, Behringer, Zourelidou, Schwechheimer (CR39) 2013; 110
Zhuo, Sakuraba, Yanagisawa (CR58) 2020; 32
Durian, Sedaghatmehr, Matallana‐Ramirez, Schilling, Schaepe, Guerra, Herde, Witte, Mueller‐Roeber, Schulze (CR5) 2020; 32
Woo, Koo, Kim, Jeong, Yang, Lee, Jun, Choi, Park, Kang (CR52) 2016; 171
Wang, Hua, He, Duan, Chen, Hong, Gong (CR49) 2011; 7
Pfeiffer, Shi, Tepperman, Zhang, Quail (CR37) 2014; 7
Pedmale, Huang, Zander, Cole, Hetzel, Ljung, Reis, Sridevi, Nito, Nery (CR36) 2016; 164
Leivar, Monte, Al‐Sady, Carle, Storer, Alonso, Ecker, Quail (CR19) 2008; 20
Lichtenthaler, Packer, Douce (CR24) 1987
Shor, Paik, Kangisser, Green, Huq (CR44) 2017; 215
Song, Yang, Gao, Zhang, Li, Kuai (CR45) 2014; 7
Shen, Khanna, Carle, Quail (CR43) 2007; 145
Oh, Zhu, Bai, Arenhart, Sun, Wang (CR31) 2014; 3
Okushima, Mitina, Quach, Theologis (CR32) 2005; 43
Zhao, Zhang, Ma, Wang (CR57) 2016; 28
Hornitschek, Kohnen, Lorrain, Rougemont, Ljung, Lopez‐Vidriero, Franco‐Zorrilla, Solano, Trevisan, Pradervand (CR10) 2012; 71
Liebsch, Keech (CR25) 2016; 212
Yang, Worley, Udvardi (CR59) 2014; 26
Lorrain, Allen, Duek, Whitelam, Fankhauser (CR28) 2008; 53
Pham, Kathare, Huq (CR38) 2018; 176
Wang, Liu, Liang, Ge, Li, Shao, Qi, An, Yu (CR50) 2015; 66
Kamranfar, Xue, Tohge, Sedaghatmehr, Fernie, Balazadeh, Mueller‐Roeber (CR13) 2018; 218
Leivar, Monte, Oka, Liu, Carle, Castillon, Huq, Quail (CR20) 2008; 18
Woo, Kim, Lim, Nam (CR53) 2019; 70
Buchanan‐Wollaston, Page, Harrison, Breeze, Lim, Nam, Lin, Wu, Swidzinski, Ishizaki (CR3) 2005; 42
Ellis, Nagpal, Young, Hagen, Guilfoyle, Reed (CR6) 2005; 132
Schippers, Schmidt, Wagstaff, Jing (CR41) 2015; 169
Park, Yao, Seo, Wong, Mitsuda, Huang, Chua (CR35) 2018; 4
Li, Deng, Liu, Li, Chen, Jia, Xue, Shao, Zhao, Qi (CR23) 2021; 63
Yoo, Cho, Sheen (CR54) 2007; 2
Wang, Xing, Dong, Zhang, Han, Wang, Chen (CR51) 2015; 16
Armstead, Donnison, Aubry, Harper, Hortensteiner, James, Mani, Moffet, Ougham, Roberts (CR1) 2007; 315
Clough, Bent (CR4) 1998; 16
Kim, Woo, Kim, Lim, Lee, Choi, Hwang, Nam (CR15) 2009; 323
Jin, Tian, Yang, Meng, Kong, Luo, Gao (CR12) 2017; 45
Guo, Gan (CR8) 2014; 65
Kim, Kim, Vu, Jung, McClung, Hong, Nam (CR17) 2018; 115
Zhang, Liu, Chen, He, Bi (CR56) 2015; 237
Breeze, Harrison, McHattie, Hughes, Hickman, Hill, Kiddle, Kim, Penfold, Jenkins (CR2) 2011; 23
Kim, Woo, Nam (CR16) 2016; 9
Moreno‐Mateos, Vejnar, Beaudoin, Fernandez, Mis, Khokha, Giraldez (CR30) 2015; 12
Lim, Lee, Kim, Kim, Ryu, Woo, Nam (CR26) 2010; 61
Zentgraf (CR55) 2019; 5
Meng, Wang, Wang, Zhao, Cheng, Yu, Jin, Li, Gong (CR29) 2018; 177
Ulmasov, Hagen, Guilfoyle (CR48) 1999; 96
Tiwari, Hagen, Guilfoyle (CR47) 2003; 15
Guo, Cai, Gan (CR9) 2004; 27
O'Malley, Huang, Song, Lewsey, Bartlett, Nery, Galli, Gallavotti, Ecker (CR33) 2016; 165
Keller, Jaillais, Pedmale, Moreno, Chory, Ballare (CR14) 2011; 67
Guo, Gan (CR7) 2012; 35
Paik, Kathare, Kim, Huq (CR34) 2017; 10
Lin, Wu (CR27) 2004; 39
Li, Ljung, Breton, Schmitz, Pruneda‐Paz, Cowing‐Zitron, Cole, Ivans, Pedmale, Jung (CR22) 2012; 26
Song, Ando, Xu, Fang, Zhang, Huq, Qiao, Deng, Chen (CR46) 2018; 115
2007; 145
2005; 132
2004; 27
2004; 7
2015a; 66
2017; 45
2014; 26
2003; 15
2006; 133
2014; 65
2010; 61
1998; 16
2012; 71
2018; 177
2018; 176
2014; 5
2014; 3
2018; 4
2018; 218
2004; 39
1987
2011; 23
2011; 67
1999; 96
2013; 110
2007; 2
2012; 26
2014; 7
2009; 323
2015; 12
2019; 70
2019; 5
2015; 169
2005; 42
2005; 43
2016; 165
2020; 32
2008; 53
2008b; 18
2012; 35
2008a; 20
2016; 164
2017; 215
2011; 7
2007; 315
2015; 237
2017; 10
2018; 115
2016; 212
2015b; 16
2016; 171
2016; 28
2021; 63
2016; 9
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 177
  start-page: 652
  year: 2018
  end-page: 670
  ident: CR29
  article-title: METHIONINE ADENOSYLTRANSFERASE4 mediates DNA and histone methylation
  publication-title: Plant Physiol
– volume: 4
  start-page: 898
  year: 2018
  end-page: 903
  ident: CR35
  article-title: NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency
  publication-title: Nat Plants
– volume: 115
  start-page: 5606
  year: 2018
  end-page: 5611
  ident: CR46
  article-title: Diurnal down‐regulation of ethylene biosynthesis mediates biomass heterosis
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 1610
  year: 2020
  end-page: 1625
  ident: CR5
  article-title: Calcium‐dependent protein kinase CPK1 controls cell death by phosphorylation of senescence master regulator ORE1
  publication-title: Plant Cell
– volume: 218
  start-page: 1543
  year: 2018
  end-page: 1557
  ident: CR13
  article-title: Transcription factor RD26 is a key regulator of metabolic reprogramming during dark‐induced senescence
  publication-title: New Phytol
– volume: 26
  start-page: 4862
  year: 2014
  end-page: 4874
  ident: CR59
  article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves
  publication-title: The Plant Cell
– volume: 20
  start-page: 337
  year: 2008
  end-page: 352
  ident: CR19
  article-title: The phytochrome‐interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels
  publication-title: Plant Cell
– volume: 164
  start-page: 233
  year: 2016
  end-page: 245
  ident: CR36
  article-title: Cryptochromes interact directly with PIFs to control plant growth in limiting blue light
  publication-title: Cell
– volume: 15
  start-page: 533
  year: 2003
  end-page: 543
  ident: CR47
  article-title: The roles of auxin response factor domains in auxin‐responsive transcription
  publication-title: Plant Cell
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  ident: CR33
  article-title: Cistrome and Epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
– volume: 169
  start-page: 914
  year: 2015
  end-page: 930
  ident: CR41
  article-title: Living to die and dying to live: the survival strategy behind leaf senescence
  publication-title: Plant Physiol
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  ident: CR54
  article-title: mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nat Protoc
– volume: 70
  start-page: 347
  year: 2019
  end-page: 376
  ident: CR53
  article-title: Leaf senescence: systems and dynamics aspects
  publication-title: Annu Rev Plant Biol
– volume: 43
  start-page: 29
  year: 2005
  end-page: 46
  ident: CR32
  article-title: AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator
  publication-title: Plant J
– volume: 176
  start-page: 1025
  year: 2018
  end-page: 1038
  ident: CR38
  article-title: Phytochromes and phytochrome interacting factors
  publication-title: Plant Physiol
– volume: 215
  start-page: 217
  year: 2017
  end-page: 228
  ident: CR44
  article-title: PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in
  publication-title: New Phytol
– volume: 133
  start-page: 251
  year: 2006
  end-page: 261
  ident: CR42
  article-title: The AUXIN RESPONSE FACTOR 2 gene of links auxin signalling, cell division, and the size of seeds and other organs
  publication-title: Development
– volume: 5
  start-page: 212
  year: 2019
  end-page: 224
  ident: CR11
  article-title: Noncanonical ATG8‐ABS3 interaction controls senescence in plants
  publication-title: Nat Plants
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  ident: CR4
  article-title: Floral dip: a simplified method for agrobacterium‐mediated transformation of
  publication-title: Plant J
– volume: 42
  start-page: 567
  year: 2005
  end-page: 585
  ident: CR3
  article-title: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation‐induced senescence in
  publication-title: Plant J
– volume: 5
  start-page: 4636
  year: 2014
  ident: CR40
  article-title: Phytochrome‐interacting transcription factors PIF4 and PIF5 induce leaf senescence in
  publication-title: Nat Commun
– volume: 7
  start-page: 1776
  year: 2014
  end-page: 1787
  ident: CR45
  article-title: Age‐triggered and dark‐induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5
  publication-title: Mol Plant
– volume: 96
  start-page: 5844
  year: 1999
  end-page: 5849
  ident: CR48
  article-title: Activation and repression of transcription by auxin‐response factors
  publication-title: Proc Natl Acad Sci USA
– volume: 65
  start-page: 3901
  year: 2014
  end-page: 3913
  ident: CR8
  article-title: Translational researches on leaf senescence for enhancing plant productivity and quality
  publication-title: J Exp Bot
– volume: 7
  start-page: 193
  year: 2004
  end-page: 204
  ident: CR21
  article-title: Convergence of signaling pathways in the control of differential cell growth in
  publication-title: Dev Cell
– volume: 26
  start-page: 785
  year: 2012
  end-page: 790
  ident: CR22
  article-title: Linking photoreceptor excitation to changes in plant architecture
  publication-title: Genes Dev
– volume: 7
  start-page: 1598
  year: 2014
  end-page: 1618
  ident: CR37
  article-title: Combinatorial complexity in a transcriptionally centered signaling hub in
  publication-title: Mol Plant
– volume: 237
  start-page: 57
  year: 2015
  end-page: 68
  ident: CR56
  article-title: PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) positively regulates dark‐induced senescence and chlorophyll degradation in
  publication-title: Plant Sci
– volume: 23
  start-page: 873
  year: 2011
  end-page: 894
  ident: CR2
  article-title: High‐resolution temporal profiling of transcripts during leaf senescence reveals a distinct chronology of processes and regulation
  publication-title: Plant Cell
– volume: 5
  start-page: 129
  year: 2019
  end-page: 130
  ident: CR55
  article-title: Tug‐of‐war during senescence
  publication-title: Nat Plants
– volume: 323
  start-page: 1053
  year: 2009
  end-page: 1057
  ident: CR15
  article-title: Trifurcate feed‐forward regulation of age‐dependent cell death involving miR164 in
  publication-title: Science
– volume: 53
  start-page: 312
  year: 2008
  end-page: 323
  ident: CR28
  article-title: Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors
  publication-title: Plant J
– volume: 7
  year: 2011
  ident: CR49
  article-title: Auxin response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in
  publication-title: PLoS Genet
– volume: 9
  start-page: 813
  year: 2016
  end-page: 825
  ident: CR16
  article-title: Toward systems understanding of leaf senescence: an integrated multi‐omics perspective on leaf senescence research
  publication-title: Mol Plant
– volume: 110
  start-page: 13192
  year: 2013
  end-page: 13197
  ident: CR39
  article-title: Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 6327
  year: 2015
  end-page: 6343
  ident: CR50
  article-title: A subgroup of MATE transporter genes regulates hypocotyl cell elongation in
  publication-title: J Exp Bot
– volume: 3
  year: 2014
  ident: CR31
  article-title: Cell elongation is regulated through a central circuit of interacting transcription factors in the hypocotyl
  publication-title: Elife
– volume: 71
  start-page: 699
  year: 2012
  end-page: 711
  ident: CR10
  article-title: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
  publication-title: Plant J
– volume: 145
  start-page: 1043
  year: 2007
  end-page: 1051
  ident: CR43
  article-title: Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red‐light activation
  publication-title: Plant Physiol
– volume: 61
  start-page: 1419
  year: 2010
  end-page: 1430
  ident: CR26
  article-title: Auxin response factor 2 (ARF2) plays a major role in regulating auxin‐mediated leaf longevity
  publication-title: J Exp Bot
– volume: 35
  start-page: 644
  year: 2012
  end-page: 655
  ident: CR7
  article-title: Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence‐promoting hormonal, pathological and environmental stress treatments
  publication-title: Plant Cell Environ
– start-page: 350
  year: 1987
  end-page: 382
  ident: CR24
  article-title: [34] chlorophylls and carotenoids: pigments of photosynthetic biomembranes
  publication-title: Plant Cell Membranes
– volume: 32
  start-page: 242
  year: 2020
  end-page: 262
  ident: CR58
  article-title: A Jasmonate‐activated MYC2‐Dof2.1‐MYC2 transcriptional loop promotes leaf senescence in
  publication-title: Plant Cell
– volume: 26
  start-page: 56
  year: 2014
  end-page: 78
  ident: CR18
  article-title: PIFs: systems integrators in plant development
  publication-title: Plant Cell
– volume: 45
  start-page: D1040
  year: 2017
  end-page: D1045
  ident: CR12
  article-title: PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants
  publication-title: Nucleic Acids Res
– volume: 132
  start-page: 4563
  year: 2005
  end-page: 4574
  ident: CR6
  article-title: AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in
  publication-title: Development
– volume: 315
  start-page: 73
  year: 2007
  ident: CR1
  article-title: Cross‐species identification of Mendel's I locus
  publication-title: Science
– volume: 10
  start-page: 1035
  year: 2017
  end-page: 1046
  ident: CR34
  article-title: Expanding roles of PIFs in signal integration from multiple processes
  publication-title: Mol Plant
– volume: 27
  start-page: 521
  year: 2004
  end-page: 549
  ident: CR9
  article-title: Transcriptome of leaf senescence
  publication-title: Plant, Cell & Environment
– volume: 63
  start-page: 646
  year: 2021
  end-page: 661
  ident: CR23
  article-title: ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in
  publication-title: J Integr Plant Biol
– volume: 115
  start-page: 8448
  year: 2018
  end-page: 8453
  ident: CR17
  article-title: Circadian control of ORE1 by PRR9 positively regulates leaf senescence in
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 195
  year: 2011
  end-page: 207
  ident: CR14
  article-title: Cryptochrome 1 and phytochrome B control shade‐avoidance responses in via partially independent hormonal cascades
  publication-title: Plant J
– volume: 39
  start-page: 612
  year: 2004
  end-page: 628
  ident: CR27
  article-title: Molecular events in senescing leaves
  publication-title: Plant J
– volume: 212
  start-page: 563
  year: 2016
  end-page: 570
  ident: CR25
  article-title: Dark‐induced leaf senescence: new insights into a complex light‐dependent regulatory pathway
  publication-title: New Phytol
– volume: 171
  start-page: 452
  year: 2016
  end-page: 467
  ident: CR52
  article-title: Programming of plant leaf senescence with temporal and inter‐organellar coordination of transcriptome in
  publication-title: Plant Physiol
– volume: 28
  start-page: 3005
  year: 2016
  end-page: 3019
  ident: CR57
  article-title: Phosphorylation of ARF2 relieves its repression of transcription of the K transporter gene HAK5 in response to low potassium stress
  publication-title: Plant Cell
– volume: 18
  start-page: 1815
  year: 2008
  end-page: 1823
  ident: CR20
  article-title: Multiple phytochrome‐interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness
  publication-title: Curr Biol
– volume: 16
  start-page: 144
  year: 2015
  ident: CR51
  article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation
  publication-title: Genome Biol
– volume: 12
  start-page: 982
  year: 2015
  end-page: 988
  ident: CR30
  article-title: CRISPRscan: designing highly efficient sgRNAs for CRISPR‐Cas9 targeting
  publication-title: Nat Methods
– volume: 323
  start-page: 1053
  year: 2009
  end-page: 1057
  article-title: Trifurcate feed‐forward regulation of age‐dependent cell death involving miR164 in
  publication-title: Science
– volume: 5
  start-page: 129
  year: 2019
  end-page: 130
  article-title: Tug‐of‐war during senescence
  publication-title: Nat Plants
– volume: 9
  start-page: 813
  year: 2016
  end-page: 825
  article-title: Toward systems understanding of leaf senescence: an integrated multi‐omics perspective on leaf senescence research
  publication-title: Mol Plant
– volume: 28
  start-page: 3005
  year: 2016
  end-page: 3019
  article-title: Phosphorylation of ARF2 relieves its repression of transcription of the K transporter gene HAK5 in response to low potassium stress
  publication-title: Plant Cell
– volume: 7
  start-page: 1776
  year: 2014
  end-page: 1787
  article-title: Age‐triggered and dark‐induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5
  publication-title: Mol Plant
– volume: 96
  start-page: 5844
  year: 1999
  end-page: 5849
  article-title: Activation and repression of transcription by auxin‐response factors
  publication-title: Proc Natl Acad Sci USA
– volume: 145
  start-page: 1043
  year: 2007
  end-page: 1051
  article-title: Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red‐light activation
  publication-title: Plant Physiol
– volume: 53
  start-page: 312
  year: 2008
  end-page: 323
  article-title: Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors
  publication-title: Plant J
– volume: 176
  start-page: 1025
  year: 2018
  end-page: 1038
  article-title: Phytochromes and phytochrome interacting factors
  publication-title: Plant Physiol
– volume: 63
  start-page: 646
  year: 2021
  end-page: 661
  article-title: ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in
  publication-title: J Integr Plant Biol
– volume: 39
  start-page: 612
  year: 2004
  end-page: 628
  article-title: Molecular events in senescing leaves
  publication-title: Plant J
– volume: 133
  start-page: 251
  year: 2006
  end-page: 261
  article-title: The AUXIN RESPONSE FACTOR 2 gene of links auxin signalling, cell division, and the size of seeds and other organs
  publication-title: Development
– volume: 43
  start-page: 29
  year: 2005
  end-page: 46
  article-title: AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator
  publication-title: Plant J
– volume: 27
  start-page: 521
  year: 2004
  end-page: 549
  article-title: Transcriptome of leaf senescence
  publication-title: Plant, Cell & Environment
– volume: 32
  start-page: 242
  year: 2020
  end-page: 262
  article-title: A Jasmonate‐activated MYC2‐Dof2.1‐MYC2 transcriptional loop promotes leaf senescence in
  publication-title: Plant Cell
– volume: 115
  start-page: 8448
  year: 2018
  end-page: 8453
  article-title: Circadian control of ORE1 by PRR9 positively regulates leaf senescence in
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 644
  year: 2012
  end-page: 655
  article-title: Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence‐promoting hormonal, pathological and environmental stress treatments
  publication-title: Plant Cell Environ
– volume: 5
  start-page: 212
  year: 2019
  end-page: 224
  article-title: Noncanonical ATG8‐ABS3 interaction controls senescence in plants
  publication-title: Nat Plants
– volume: 3
  year: 2014
  article-title: Cell elongation is regulated through a central circuit of interacting transcription factors in the hypocotyl
  publication-title: Elife
– volume: 115
  start-page: 5606
  year: 2018
  end-page: 5611
  article-title: Diurnal down‐regulation of ethylene biosynthesis mediates biomass heterosis
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 56
  year: 2014
  end-page: 78
  article-title: PIFs: systems integrators in plant development
  publication-title: Plant Cell
– volume: 7
  start-page: 1598
  year: 2014
  end-page: 1618
  article-title: Combinatorial complexity in a transcriptionally centered signaling hub in
  publication-title: Mol Plant
– volume: 70
  start-page: 347
  year: 2019
  end-page: 376
  article-title: Leaf senescence: systems and dynamics aspects
  publication-title: Annu Rev Plant Biol
– volume: 65
  start-page: 3901
  year: 2014
  end-page: 3913
  article-title: Translational researches on leaf senescence for enhancing plant productivity and quality
  publication-title: J Exp Bot
– volume: 164
  start-page: 233
  year: 2016
  end-page: 245
  article-title: Cryptochromes interact directly with PIFs to control plant growth in limiting blue light
  publication-title: Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for agrobacterium‐mediated transformation of
  publication-title: Plant J
– volume: 10
  start-page: 1035
  year: 2017
  end-page: 1046
  article-title: Expanding roles of PIFs in signal integration from multiple processes
  publication-title: Mol Plant
– volume: 237
  start-page: 57
  year: 2015
  end-page: 68
  article-title: PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) positively regulates dark‐induced senescence and chlorophyll degradation in
  publication-title: Plant Sci
– volume: 18
  start-page: 1815
  year: 2008b
  end-page: 1823
  article-title: Multiple phytochrome‐interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness
  publication-title: Curr Biol
– volume: 12
  start-page: 982
  year: 2015
  end-page: 988
  article-title: CRISPRscan: designing highly efficient sgRNAs for CRISPR‐Cas9 targeting
  publication-title: Nat Methods
– volume: 7
  start-page: 193
  year: 2004
  end-page: 204
  article-title: Convergence of signaling pathways in the control of differential cell growth in
  publication-title: Dev Cell
– volume: 45
  start-page: D1040
  year: 2017
  end-page: D1045
  article-title: PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: 567
  year: 2005
  end-page: 585
  article-title: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation‐induced senescence in
  publication-title: Plant J
– volume: 15
  start-page: 533
  year: 2003
  end-page: 543
  article-title: The roles of auxin response factor domains in auxin‐responsive transcription
  publication-title: Plant Cell
– volume: 5
  start-page: 4636
  year: 2014
  article-title: Phytochrome‐interacting transcription factors PIF4 and PIF5 induce leaf senescence in
  publication-title: Nat Commun
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  article-title: mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nat Protoc
– volume: 315
  start-page: 73
  year: 2007
  article-title: Cross‐species identification of Mendel's I locus
  publication-title: Science
– volume: 7
  year: 2011
  article-title: Auxin response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in
  publication-title: PLoS Genet
– volume: 26
  start-page: 785
  year: 2012
  end-page: 790
  article-title: Linking photoreceptor excitation to changes in plant architecture
  publication-title: Genes Dev
– volume: 61
  start-page: 1419
  year: 2010
  end-page: 1430
  article-title: Auxin response factor 2 (ARF2) plays a major role in regulating auxin‐mediated leaf longevity
  publication-title: J Exp Bot
– volume: 4
  start-page: 898
  year: 2018
  end-page: 903
  article-title: NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency
  publication-title: Nat Plants
– volume: 32
  start-page: 1610
  year: 2020
  end-page: 1625
  article-title: Calcium‐dependent protein kinase CPK1 controls cell death by phosphorylation of senescence master regulator ORE1
  publication-title: Plant Cell
– volume: 215
  start-page: 217
  year: 2017
  end-page: 228
  article-title: PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in
  publication-title: New Phytol
– volume: 67
  start-page: 195
  year: 2011
  end-page: 207
  article-title: Cryptochrome 1 and phytochrome B control shade‐avoidance responses in via partially independent hormonal cascades
  publication-title: Plant J
– volume: 20
  start-page: 337
  year: 2008a
  end-page: 352
  article-title: The phytochrome‐interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels
  publication-title: Plant Cell
– volume: 177
  start-page: 652
  year: 2018
  end-page: 670
  article-title: METHIONINE ADENOSYLTRANSFERASE4 mediates DNA and histone methylation
  publication-title: Plant Physiol
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  article-title: Cistrome and Epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
– volume: 110
  start-page: 13192
  year: 2013
  end-page: 13197
  article-title: Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in
  publication-title: Proc Natl Acad Sci USA
– volume: 169
  start-page: 914
  year: 2015
  end-page: 930
  article-title: Living to die and dying to live: the survival strategy behind leaf senescence
  publication-title: Plant Physiol
– volume: 218
  start-page: 1543
  year: 2018
  end-page: 1557
  article-title: Transcription factor RD26 is a key regulator of metabolic reprogramming during dark‐induced senescence
  publication-title: New Phytol
– volume: 66
  start-page: 6327
  year: 2015a
  end-page: 6343
  article-title: A subgroup of MATE transporter genes regulates hypocotyl cell elongation in
  publication-title: J Exp Bot
– volume: 23
  start-page: 873
  year: 2011
  end-page: 894
  article-title: High‐resolution temporal profiling of transcripts during leaf senescence reveals a distinct chronology of processes and regulation
  publication-title: Plant Cell
– volume: 132
  start-page: 4563
  year: 2005
  end-page: 4574
  article-title: AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in
  publication-title: Development
– volume: 212
  start-page: 563
  year: 2016
  end-page: 570
  article-title: Dark‐induced leaf senescence: new insights into a complex light‐dependent regulatory pathway
  publication-title: New Phytol
– volume: 171
  start-page: 452
  year: 2016
  end-page: 467
  article-title: Programming of plant leaf senescence with temporal and inter‐organellar coordination of transcriptome in
  publication-title: Plant Physiol
– volume: 71
  start-page: 699
  year: 2012
  end-page: 711
  article-title: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
  publication-title: Plant J
– volume: 16
  start-page: 144
  year: 2015b
  article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation
  publication-title: Genome Biol
– start-page: 350
  year: 1987
  end-page: 382
– volume: 26
  start-page: 4862
  year: 2014
  end-page: 4874
  article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves
  publication-title: The Plant Cell
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.17.01384
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1132912
– ident: e_1_2_9_26_1
  doi: 10.1111/nph.14217
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cell.2016.04.038
– ident: e_1_2_9_36_1
  doi: 10.1038/s41477-018-0269-8
– ident: e_1_2_9_46_1
  doi: 10.1093/mp/ssu109
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1722407115
– ident: e_1_2_9_25_1
  doi: 10.1016/0076-6879(87)48036-1
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cub.2008.10.058
– ident: e_1_2_9_50_1
  doi: 10.1371/journal.pgen.1002172
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1304250110
– ident: e_1_2_9_59_1
  doi: 10.1105/tpc.16.00684
– ident: e_1_2_9_48_1
  doi: 10.1105/tpc.008417
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-313X.2004.02160.x
– ident: e_1_2_9_17_1
  doi: 10.1016/j.molp.2016.04.017
– ident: e_1_2_9_24_1
  doi: 10.1111/jipb.13003
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-313X.2005.02399.x
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.107.105601
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.96.10.5844
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1365-313X.2012.05033.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1365-313X.2011.04598.x
– ident: e_1_2_9_5_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_9_12_1
  doi: 10.1038/s41477-018-0348-x
– ident: e_1_2_9_56_1
  doi: 10.1038/nprot.2007.199
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1365-3040.2011.02442.x
– ident: e_1_2_9_9_1
  doi: 10.1093/jxb/eru248
– ident: e_1_2_9_52_1
  doi: 10.1186/s13059-015-0715-0
– ident: e_1_2_9_23_1
  doi: 10.1101/gad.187849.112
– ident: e_1_2_9_35_1
  doi: 10.1016/j.molp.2017.07.002
– ident: e_1_2_9_38_1
  doi: 10.1093/mp/ssu087
– ident: e_1_2_9_47_1
  doi: 10.1073/pnas.1722068115
– ident: e_1_2_9_6_1
  doi: 10.1105/tpc.19.00810
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cell.2015.12.018
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms5636
– ident: e_1_2_9_16_1
  doi: 10.1126/science.1166386
– ident: e_1_2_9_58_1
  doi: 10.1016/j.plantsci.2015.05.010
– ident: e_1_2_9_7_1
  doi: 10.1242/dev.02012
– ident: e_1_2_9_54_1
  doi: 10.1146/annurev-arplant-050718-095859
– ident: e_1_2_9_13_1
  doi: 10.1093/nar/gkw982
– ident: e_1_2_9_53_1
  doi: 10.1104/pp.15.01929
– ident: e_1_2_9_31_1
  doi: 10.1038/nmeth.3543
– ident: e_1_2_9_32_1
  doi: 10.7554/eLife.03031
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.15.00498
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1365-3040.2003.01158.x
– ident: e_1_2_9_3_1
  doi: 10.1105/tpc.111.083345
– ident: e_1_2_9_51_1
  doi: 10.1093/jxb/erv344
– ident: e_1_2_9_19_1
  doi: 10.1105/tpc.113.120857
– ident: e_1_2_9_43_1
  doi: 10.1242/dev.02194
– ident: e_1_2_9_55_1
  doi: 10.1105/tpc.114.133769
– ident: e_1_2_9_22_1
  doi: 10.1016/j.devcel.2004.07.002
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1365-313X.2005.02426.x
– ident: e_1_2_9_14_1
  doi: 10.1111/nph.15127
– ident: e_1_2_9_20_1
  doi: 10.1105/tpc.107.052142
– ident: e_1_2_9_60_1
  doi: 10.1105/tpc.19.00297
– ident: e_1_2_9_45_1
  doi: 10.1111/nph.14579
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-313X.2007.03341.x
– ident: e_1_2_9_57_1
  doi: 10.1038/s41477-019-0369-0
– ident: e_1_2_9_27_1
  doi: 10.1093/jxb/erq010
– ident: e_1_2_9_30_1
  doi: 10.1104/pp.18.00183
SSID ssj0005871
Score 2.4859984
Snippet One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e110988
SubjectTerms ABS3
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
ARF2
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
EMBO30
Endosomes
Factor V - genetics
Factor V - metabolism
Gene expression
Gene Expression Regulation, Plant
Gene regulation
Genes
Genetic screening
Indoleacetic Acids - metabolism
Modules
Mutants
Mutation
Phenotypes
Phytochrome - genetics
PIF5
Plant Senescence
Senescence
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
transcriptional regulation
Title ARF2‐PIF5 interaction controls transcriptional reprogramming in the ABS3‐mediated plant senescence pathway
URI https://link.springer.com/article/10.15252/embj.2022110988
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022110988
https://www.ncbi.nlm.nih.gov/pubmed/35942625
https://www.proquest.com/docview/2720806692
https://www.proquest.com/docview/2700312400
https://pubmed.ncbi.nlm.nih.gov/PMC9531305
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5RUFUuqNAWQgG5Ui-tFJFN7MQ-LitWgERVtUXiFtmJLUAQELsIceMReEaehBnnZ1lBQRytOHac8cx89vwBfBeljXWZ6hDRcRHywkWhltKGVhQ9rV1ieUbRyPu_0p0DvncoDpv7DoqFeWy_F7GIN-2ZOcFjXEwHFSXlO5gTvSSjIg2DdDBx5pD-aOVvU3hPqsYg-dwI0wroCap86hzZWUin8atXQMOPsNAgR9avSb0IM7Zagvd1LcmbJfgwaEu3fYKq_2cY39_e_d4dCkYJIS7r8AXWOKaP2JhUVCswcFTKbekdtc7wG_AVhriQ9bf-JjiKDy5BYMouTpEMbETSsSCBwKic8bW--QwHw-1_g52wKawQFgjYZGiQj5EGipsM8aJJtYsSXG8snDMlMrkunTJRKjMTCcdV5GKne6lKS0kB6MiyX2C2Oq_sCrDMcW4R5eFQiusiMQY1XimyshC2dEIGsNn-7bxoso5T8YvTnE4fRJ-c6JNP6BPAj-6Nizrjxgt911oC5g3vjXKyLEtEUioO4Fv3GClAphBd2fMr6kPSjPxnA1iu6d1NlghFafpFANnUTug6UEbu6SfV8ZHPzK1QoqEADeBnu2cmn_X_NQi_q15dbL69v7U3aa6-ZZKvME8N74XI12B2fHll1xFNjc2GZ6QN0mjiAc6tGUE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRRW9VJS-0kLrSr20UkQ2sRP7GBCrZcuiqoDELbITW20FAbGLKm79CfxGfklnnMdqRR_qMbLjxPk848-ZF8B7UdlYV6kOkR2XIS9dFGopbWhFOdTaJZZnFI08PUzHJ3xyKk5XIO5iYby3e2eS9Jq6rdETb9tz8x0PdDEdWZSUD2BVilSKAazm-eRosnDskP6Y5f-s8KFUrXHyd2Msb0b3GOZ9R8neWrrMZf1mNFqHxy2LZHkD-xNYsfUGPGzqSt5swNpuV8btKdT5l1F89_P28_5IMEoOcdWEMrDWSX3G5rRddcoDR6U8l95p6xzfAW9hyBFZvnOU4Cg-0ARJKrs8Q0jYjDRlScqBUWnjH_rmGZyM9o53x2FbZCEskbzJ0KBMIx6Kmwy5o0m1ixKcbyycMxUKvK6cMlEqMxMJx1XkYqeHqUorScHoKL7PYVBf1PYlsMxxbpHx4VCK6zIxBne_SmRVKWzlhAxgu_vaRdlmIKdCGGcFnUQIn4LwKRb4BPChv-Oyyb7xl76bHYBFK4ezgqzMElmVigN41zcjAmQW0bW9uKY-pNnIlzaAFw3e_cMSoShlvwggW1oJfQfKzr3cUn_76rN0K9RuqEwD-NitmcVr_XkOwq-qf0622JvuTBaXr_7nIW9hbXw8PSgO9g8_vYZH1OC9E_kmDOZX13YLWdbcvGnF6hdrpiC-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEY8LgkIhUMBIXECKNpvYiX3cLo3aQqsKqNRbZMe2ALXpqrsV6o2fwG_klzDjPFar8hDHJH7EGc_4m8wL4JWwLtU21zGi4zrmtU9iLaWLnajHWvvM8YKikfcP8p0jvncsjrsfbvPe2703SbYxDZSlqVmMZtb39XrSkTs1X1G5S0l9UVJehxuop4xJ-Zrm06WLhwwKV_jHwsdSdWbK342weixdwZpXXSYHu-kqqg3HUnkP7nZ4kk3aDXAfrrlmHW62FSYv1-H2tC_o9gCayYcy_fn9x-FuKRiliThvgxpY564-Zws6uHoxgqNSxsvgvnWK74BdGKJFNtn6mOEoIeQE4SqbnSBx2JxkZk1iglGR42_68iEcldufpjtxV24hrhHGydggdyNlFDcFokiTa59kuN5UeG8ssr62Xpkkl4VJhOcq8anX41zlVlJYOjLyBqw1Z417DKzwnDvEfjiU4rrOjMFz0IrC1sJZL2QEo_5rV3WXi5xKYpxUpJMQfSqiT7WkTwSvhx6zNg_HX9pu9gSsOo6cV2RvloivVBrBy-ExUoAMJLpxZxfUhmQcedVG8Kil9zBZJhQl7xcRFCs7YWhAebpXnzRfPod83QrlHIrVCN70e2b5Wn9egwi76p-Lrbb3t_aWl0_-Z5IXcOvwbVm93z149xTu0P3gpsg3YW1xfuGeIdxamOeBp34BpLEjmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARF2%E2%80%90PIF5+interaction+controls+transcriptional+reprogramming+in+the+ABS3%E2%80%90mediated+plant+senescence+pathway&rft.jtitle=The+EMBO+journal&rft.au=Xue%2C+Hui&rft.au=Meng%2C+Jingjing&rft.au=Lei%2C+Pei&rft.au=Cao%2C+Yongxin&rft.date=2022-10-04&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=41&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2022110988&rft.externalDBID=10.15252%252Fembj.2022110988&rft.externalDocID=EMBJ2022110988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon