RNA polymerase: in search of promoters

Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are su...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1293; no. 1; pp. 25 - 32
Main Author Feklistov, Andrey
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
1749-6632
DOI10.1111/nyas.12197

Cover

Loading…
Abstract Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter‐opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
AbstractList Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter‐opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. [PUBLICATION ABSTRACT]
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the sub-steps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this mini-review, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
Author Feklistov, Andrey
Author_xml – sequence: 1
  givenname: Andrey
  surname: Feklistov
  fullname: Feklistov, Andrey
  email: afeklistov@rockefeller.edu
  organization: Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23855603$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9PFDEUxRuDkQV98QOQSUyMMRno_059MFlBwECWhIUQn5pOuQPFmenazqr77e26LFFijLcP96G_c3p7zxba6EMPCL0keJfk2usXNu0SSrR6gkZEcV1KyegGGmGsVFlpyjbRVkp3GBNacfUMbVJWCSExG6HX55NxMQvtooNoE7wrfF8ksNHdFqEpZjF0YYCYnqOnjW0TvLjv2-jy8OPF_nF5enb0aX98WjqRny-hqhWlhPC6lk5wh60TjtS20U4pLaUEXokaKsucU5jwBmNLrL7monYWWMW20fuV72xed3DtoB-ibc0s-s7GhQnWmz9ven9rbsI3wxTHTIts8ObeIIavc0iD6Xxy0La2hzBPhnCqNZFakv9AiRBaa84z-uoRehfmsc-byJSiOB9GM7Xz-_APU6-3nQG8AlwMKUVojPODHXxY_sW3hmCzDNQsAzW_As2St48ka9e_wmQFf_ctLP5Bmsnn8XStKVcanwb48aCx8YuRiilhriZHZnpyfPDh6mBqDtlPRHG-hg
CODEN ANYAA9
CitedBy_id crossref_primary_10_1089_omi_2019_0041
crossref_primary_10_1134_S0006297914080057
crossref_primary_10_1016_j_jbiotec_2019_01_018
crossref_primary_10_1016_j_ygeno_2019_08_009
crossref_primary_10_1007_s13337_020_00640_9
crossref_primary_10_1039_C8CP01119B
crossref_primary_10_1128_spectrum_02797_22
crossref_primary_10_1002_pro_3160
crossref_primary_10_1016_j_celrep_2021_109952
crossref_primary_10_7554_eLife_22520
crossref_primary_10_3390_ijms21239062
crossref_primary_10_1128_JB_00577_20
crossref_primary_10_1016_j_bbrc_2019_02_132
crossref_primary_10_3390_v12101064
crossref_primary_10_1021_acs_jpcb_2c09142
crossref_primary_10_1146_annurev_micro_092412_155737
crossref_primary_10_1186_s12864_018_4538_8
crossref_primary_10_1038_nsmb_2777
crossref_primary_10_1371_journal_pgen_1005348
crossref_primary_10_1093_bioinformatics_btw629
crossref_primary_10_1002_1873_3468_12321
crossref_primary_10_3389_fmolb_2016_00073
crossref_primary_10_1126_sciadv_adq9054
Cites_doi 10.1016/j.jmb.2011.01.024
10.1074/jbc.274.24.16665
10.1126/science.1069594
10.1073/pnas.86.23.9109
10.1038/emboj.2011.252
10.1016/j.jmb.2012.12.015
10.1093/emboj/16.13.4034
10.1126/science.8248804
10.1126/science.1218716
10.1146/annurev.micro.57.030502.090913
10.1073/pnas.85.13.4610
10.1128/JB.00198-11
10.1002/j.1460-2075.1988.tb03020.x
10.1093/nar/gkp560
10.1016/j.molcel.2012.06.013
10.1146/annurev-biochem-060408-091030
10.1016/S0959-440X(00)00185-8
10.1016/j.cell.2006.04.034
10.1021/bi00527a028
10.1021/ar3001298
10.1038/nature752
10.1016/j.jmb.2011.01.018
10.1126/science.1076376
10.1016/0022-2836(70)90074-4
10.1038/nsmb.2472
10.1016/S0959-440X(02)00005-2
10.1074/jbc.M112.430900
10.1074/jbc.M105027200
10.1016/S0022-2836(05)80345-6
10.1016/j.jmb.2003.07.017
10.1016/j.cell.2011.11.033
10.1073/pnas.0406441101
10.1073/pnas.0609888104
10.1126/science.1169050
10.1038/nature09775
10.1016/S0021-9258(19)84994-3
10.1093/nar/gkl956
10.1126/science.1069595
10.1073/pnas.1000967107
10.1038/nsmb.2320
10.1021/ja8025328
10.1146/annurev-micro-092611-150012
10.1038/nrmicro1912
10.1016/j.cell.2011.10.041
10.1016/j.molcel.2006.06.010
10.1074/jbc.M507984200
10.1038/nature10985
10.1046/j.1365-2958.2000.01972.x
10.1016/j.sbi.2011.11.004
10.1002/j.1460-2075.1985.tb03734.x
10.1021/bi301260u
10.1073/pnas.0408218102
10.1016/j.sbi.2009.10.006
10.1046/j.1365-2958.2003.03805.x
10.1016/S1097-2765(02)00470-7
10.1042/BJ20111258
10.1016/S0021-9258(18)34522-8
10.1126/science.1227786
ContentType Journal Article
Copyright 2013 New York Academy of Sciences.
2013 The New York Academy of Sciences
Copyright_xml – notice: 2013 New York Academy of Sciences.
– notice: 2013 The New York Academy of Sciences
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1111/nyas.12197
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Nucleic Acids Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 32
ExternalDocumentID PMC3740395
3169881761
23855603
10_1111_nyas_12197
NYAS12197
ark_67375_WNG_SKHDBWDS_F
Genre article
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Merck Postdoctoral Fellowship at the Rockefeller University
  funderid: NIH R01 GM053759
– fundername: NIGMS NIH HHS
  grantid: R01 GM053759
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM053759 || GM
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHDLI
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c5197-e8b722114bb6c54c0ac5c1baf9c779666e485be8a3cc7014f00a1a9d45bcae383
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Thu Aug 21 18:31:40 EDT 2025
Fri Jul 11 06:43:47 EDT 2025
Thu Jul 10 19:30:25 EDT 2025
Sun Jul 13 04:25:37 EDT 2025
Wed Feb 19 01:52:08 EST 2025
Tue Jul 01 04:00:46 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Wed Aug 20 07:26:38 EDT 2025
Wed Oct 30 09:49:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords promoter
RNA polymerase
transcription
protein-DNA recognition
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5197-e8b722114bb6c54c0ac5c1baf9c779666e485be8a3cc7014f00a1a9d45bcae383
Notes ArticleID:NYAS12197
ark:/67375/WNG-SKHDBWDS-F
istex:BFC7BA99C6D3745143B6AD42F5DA768A85279674
Merck Postdoctoral Fellowship at the Rockefeller University - No. NIH R01 GM053759
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3740395
PMID 23855603
PQID 1472020232
PQPubID 946344
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740395
proquest_miscellaneous_1429916961
proquest_miscellaneous_1415599944
proquest_journals_1472020232
pubmed_primary_23855603
crossref_citationtrail_10_1111_nyas_12197
crossref_primary_10_1111_nyas_12197
wiley_primary_10_1111_nyas_12197_NYAS12197
istex_primary_ark_67375_WNG_SKHDBWDS_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann. N.Y. Acad. Sci
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References James, E., M. Liu, C. Sheppard, et al. 2012. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol. Cell 47: 755-766.
Wang, F., S. Redding, I.J. Finkelstein, et al. 2012. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat. Struct. Mol. Biol. 20: 174-181.
Saecker, R.M., M.T. Record & P.L. deHaseth. 2011. Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412: 754-771.
Parker, S.C.J., L. Hansen, H.O. Abaan, et al. 2009. Local DNA topography correlates with functional noncoding regions of the human genome. Science 324: 389-392.
Niedziela-Majka, A. & T. Heyduk. 2005. Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting. J. Biol. Chem. 280: 38219-38227.
Hirata, A. & K.S. Murakami. 2009. Archaeal RNA polymerase. Curr. Opin. Struct. Biol. 19: 724-731.
Wang, F. & E.C. Greene. 2011. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J. Mol. Biol. 412: 814-831.
Spassky, A., S. Rimsky, H. Buc & S.J.W. Busby. 1988. Correlation between the conformation of Escherichia coli ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 7: 1871-1879.
Rogozina, A., E. Zaychikov, M. Buckle, et al. 2009. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res 37: 5390-5404.
Haugen, S.P., W. Ross & R.L. Gourse. 2008. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6: 507-519.
Huerta, A.M. & J. Collado-Vides. 2003. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J. Mol. Biol. 333: 261-278.
Tomsic, M., L. Tsujikawa, G. Panaghie, et al. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J. Biol. Chem. 276: 31891-31896.
Robb, N.C., T. Cordes, L.C. Hwang, et al. 2013. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425: 875-885.
Kabata, H., O. Kurosawa, I. Arai, et al. 1993. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262: 1561-1563.
Waldburger, C., T. Gardella, R. Wong & M.M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215: 267-276.
Gruber, T.M. & C.A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441-466.
Berg, O.G., R.B. Winter & P.H. von Hippel. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929-6948.
Sclavi, B., E. Zaychikov, A. Rogozina, et al. 2005. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. USA 102: 4706-4711.
Rohs, R., X. Jin, S.M. West, et al. 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79: 233-269.
Bustamante, C., M. Guthold, X. Zhu & G. Yang. 1999. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274: 16665-16668.
Lee, S., B.R. Bowman, Y. Ueno, et al. 2008. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. J. Am. Chem. Soc. 130: 11570-11571.
Yuzenkova, Y., V.R. Tadigotla, K. Severinov & N. Zenkin. 2011. A new basal promoter element recognized by RNA polymerase core enzyme. EMBO J. 30: 3766-3775.
Barne, K.A., J.A. Bown, S.J.W. Busby & S.D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the "extended-10" motif at promoters. EMBO J. 16: 4034-4040.
Feklistov, A., N. Barinova, A. Sevostyanova, et al. 2006. A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme. Mol. Cell 23: 97-107.
Feklistov, A. & S.A. Darst. 2011. Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147: 1257-1269.
Darst, S.A. 2001. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 11: 155-162.
Zhang, Y., Y. Feng, S. Chatterjee, et al. 2012. Structural basis of transcription initiation. Science 338: 1076-1080.
Cabrera, J.E. & D.J. Jin. 2003. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50: 1493-1505.
Bratton, B.P., R.A. Mooney & J.C. Weisshaar. 2011. Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli. J. Bacteriol. 193: 5138-5146.
Liu, X., D.A. Bushnell & R.D. Kornberg. 2011. Lock and key to transcription: σ-DNA interaction. Cell 147: 1218-1219.
Nikolova, E.N., E. Kim, A.A. Wise, et al. 2011. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470: 498-502.
Gries, T.J., W.S. Kontur, M.W. Capp, et al. 2010. One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl. Acad. Sci. 107: 10418-10423.
Sontz, P.A., N.B. Muren & J.K. Barton. 2012. DNA charge transport for sensing and signaling. Acc. Chem. Res. 45: 1792-1800.
Haugen, S.P., M.B. Berkmen, W. Ross, et al. 2006. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125: 1069-1082.
Park, C.S., F.Y. Wu & C.W. Wu. 1982. Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one-dimensional diffusion of RNA polymerase molecule along the DNA template. J. Biol. Chem. 257: 6950-6956.
Lickwar, C.R., F. Mueller, S.E. Hanlon, et al. 2012. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255.
Shultzaberger, R.K., Z. Chen, K.A. Lewis & T.D. Schneider. 2007. Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res. 35: 771-788.
Hippel von, P.H. & O.G. Berg. 1989. Facilitated target location in biological systems. J. Biol. Chem. 264: 675-678.
Sánchez-Romero, M.-A., D.J. Lee, E. Sánchez-Morán & S.J.W. Busby. 2012. Location and dynamics of an active promoter in Escherichia coli K-12. Biochem. J. 441: 481-485.
Sakata-Sogawa, K. & N. Shimamoto. 2004. RNA polymerase can track a DNA groove during promoter search. Proc. Natl. Acad. Sci. USA 101: 14731-14735.
Davis, C.A., C.A. Bingman, R. Landick, et al. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 104: 7833-7838.
Chakraborty, A., D. Wang, Y.W. Ebright, et al. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337: 591-595.
Lee, D.J., S.D. Minchin & S.J.W. Busby. 2012. Activating transcription in bacteria. Annu. Rev. Microbiol. 66: 125-152.
Yi, C., B. Chen, B. Qi, et al. 2012. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat. Struct. Mol. Biol. 19: 671-676.
Benoff, B., H. Yang, C.L. Lawson, et al. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562-1566.
Kenney, T.J., K. York, P. Youngman & C.P.J. Jr. Moran. 1989. Genetic evidence that RNA polymerase associated with sA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109-9113.
Gourse, R.L., W. Ross & T. Gaal. 2000. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37: 687-695.
Drew, H.R., J.R. Weeks & A.A. Travers. 1985. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4: 1025-1032.
Murakami, K.S., & S.A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31-39.
Murakami, K.S., S. Masuda & S.A. Darst. 2002. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296: 1280-1284.
Riggs, A.D., S. Bourgeois & M. Cohn. 1970. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53: 401-417.
White, M.F. & M.S. Dillingham. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22: 94-100.
Campbell, E.A., O. Muzzin, M. Chlenov, et al. 2002. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9: 527-539.
Vassylyev, D.G., S.-I. Sekine, O. Laptenko, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417: 712-719.
Murakami, K.S. 2013. The X-ray crystal structure of Escherichia Coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288: 9126-9134.
Murakami, K.S., S. Masuda, E.A. Campbell, et al. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285-1290.
Drennan, A., M. Kraemer, M. Capp, et al. 2012. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 51: 9447-9459.
Ricchetti, M., W. Metzger & H. Heumann. 1988. One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: a mechanism to facilitate promoter location. Proc. Natl. Acad. Sci. USA 85: 4610-4614.
2007; 104
2012; 484
2012; 441
1989; 86
2010; 107
2013; 288
2003; 57
2003; 13
2012; 19
2008; 6
2003; 50
2011; 470
2011; 193
2007; 35
2012; 51
1990; 215
2006; 23
2005; 102
1989; 264
1997; 16
1988; 85
1982; 257
2001; 11
2009; 19
2012; 22
2012; 66
2012; 337
2012; 338
2012; 20
2009; 324
2006; 125
2004; 101
2011; 412
2010; 79
2002; 296
2002; 9
2002; 297
1985; 4
2013; 425
2011; 30
1993; 262
1970; 53
2002; 417
2003; 333
1981; 20
2001; 276
2011; 147
2005; 280
2000; 37
2002b; 296
1988; 7
1999; 274
2012; 47
2012; 45
2008; 130
2009; 37
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hippel von P.H. (e_1_2_7_20_1) 1989; 264
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Park C.S. (e_1_2_7_22_1) 1982; 257
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
22169085 - Curr Opin Struct Biol. 2012 Feb;22(1):94-100
23262491 - Nat Struct Mol Biol. 2013 Feb;20(2):174-81
18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19
11297923 - Curr Opin Struct Biol. 2001 Apr;11(2):155-62
14529615 - J Mol Biol. 2003 Oct 17;333(2):261-78
23086998 - Science. 2012 Nov 23;338(6110):1076-80
17470797 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8
21784927 - J Bacteriol. 2011 Oct;193(19):5138-46
22498630 - Nature. 2012 Apr 12;484(7393):251-5
23274143 - J Mol Biol. 2013 Mar 11;425(5):875-85
23116321 - Biochemistry. 2012 Nov 27;51(47):9447-59
9233812 - EMBO J. 1997 Jul 1;16(13):4034-40
22659876 - Nat Struct Mol Biol. 2012 Jul;19(7):671-6
21936772 - Biochem J. 2012 Jan 1;441(1):481-5
4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17
21255583 - J Mol Biol. 2011 Oct 7;412(5):814-31
12016306 - Science. 2002 May 17;296(5571):1280-4
21371479 - J Mol Biol. 2011 Oct 7;412(5):754-71
11931761 - Mol Cell. 2002 Mar;9(3):527-39
18686953 - J Am Chem Soc. 2008 Sep 3;130(35):11570-1
19578065 - Nucleic Acids Res. 2009 Sep;37(16):5390-404
16798040 - Mol Cell. 2006 Jul 7;23(1):97-107
12016307 - Science. 2002 May 17;296(5571):1285-90
22859489 - Science. 2012 Aug 3;337(6094):591-5
20483995 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23
10358002 - J Biol Chem. 1999 Jun 11;274(24):16665-8
14651633 - Mol Microbiol. 2003 Dec;50(5):1493-505
22136875 - Cell. 2011 Dec 9;147(6):1257-69
21270796 - Nature. 2011 Feb 24;470(7335):498-502
14527287 - Annu Rev Microbiol. 2003;57:441-66
22861008 - Acc Chem Res. 2012 Oct 16;45(10):1792-800
15738402 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4706-11
10972792 - Mol Microbiol. 2000 Aug;37(4):687-95
19880312 - Curr Opin Struct Biol. 2009 Dec;19(6):724-31
2990904 - EMBO J. 1985 Apr;4(4):1025-32
12000971 - Nature. 2002 Jun 13;417(6890):712-9
3290898 - Proc Natl Acad Sci U S A. 1988 Jul;85(13):4610-4
7317363 - Biochemistry. 1981 Nov 24;20(24):6929-48
2512576 - Proc Natl Acad Sci U S A. 1989 Dec;86(23):9109-13
12202833 - Science. 2002 Aug 30;297(5586):1562-6
22153066 - Cell. 2011 Dec 9;147(6):1218-9
2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8
20334529 - Annu Rev Biochem. 2010;79:233-69
23389035 - J Biol Chem. 2013 Mar 29;288(13):9126-34
22726217 - Annu Rev Microbiol. 2012;66:125-52
22819324 - Mol Cell. 2012 Sep 14;47(5):755-66
11443133 - J Biol Chem. 2001 Aug 24;276(34):31891-6
3049079 - EMBO J. 1988 Jun;7(6):1871-9
16777598 - Cell. 2006 Jun 16;125(6):1069-82
7045099 - J Biol Chem. 1982 Jun 25;257(12):6950-6
2213883 - J Mol Biol. 1990 Sep 20;215(2):267-76
17189297 - Nucleic Acids Res. 2007;35(3):771-88
12581657 - Curr Opin Struct Biol. 2003 Feb;13(1):31-9
21792175 - EMBO J. 2011 Sep 14;30(18):3766-75
19286520 - Science. 2009 Apr 17;324(5925):389-92
8248804 - Science. 1993 Dec 3;262(5139):1561-3
15469913 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14731-5
16169843 - J Biol Chem. 2005 Nov 18;280(46):38219-27
References_xml – reference: Lickwar, C.R., F. Mueller, S.E. Hanlon, et al. 2012. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255.
– reference: Berg, O.G., R.B. Winter & P.H. von Hippel. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929-6948.
– reference: Wang, F. & E.C. Greene. 2011. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J. Mol. Biol. 412: 814-831.
– reference: Lee, D.J., S.D. Minchin & S.J.W. Busby. 2012. Activating transcription in bacteria. Annu. Rev. Microbiol. 66: 125-152.
– reference: Wang, F., S. Redding, I.J. Finkelstein, et al. 2012. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat. Struct. Mol. Biol. 20: 174-181.
– reference: Kabata, H., O. Kurosawa, I. Arai, et al. 1993. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262: 1561-1563.
– reference: Shultzaberger, R.K., Z. Chen, K.A. Lewis & T.D. Schneider. 2007. Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res. 35: 771-788.
– reference: Murakami, K.S. 2013. The X-ray crystal structure of Escherichia Coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288: 9126-9134.
– reference: Campbell, E.A., O. Muzzin, M. Chlenov, et al. 2002. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9: 527-539.
– reference: Ricchetti, M., W. Metzger & H. Heumann. 1988. One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: a mechanism to facilitate promoter location. Proc. Natl. Acad. Sci. USA 85: 4610-4614.
– reference: Sánchez-Romero, M.-A., D.J. Lee, E. Sánchez-Morán & S.J.W. Busby. 2012. Location and dynamics of an active promoter in Escherichia coli K-12. Biochem. J. 441: 481-485.
– reference: Lee, S., B.R. Bowman, Y. Ueno, et al. 2008. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. J. Am. Chem. Soc. 130: 11570-11571.
– reference: Robb, N.C., T. Cordes, L.C. Hwang, et al. 2013. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425: 875-885.
– reference: Murakami, K.S., & S.A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31-39.
– reference: Chakraborty, A., D. Wang, Y.W. Ebright, et al. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337: 591-595.
– reference: Murakami, K.S., S. Masuda & S.A. Darst. 2002. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296: 1280-1284.
– reference: Rogozina, A., E. Zaychikov, M. Buckle, et al. 2009. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res 37: 5390-5404.
– reference: Bratton, B.P., R.A. Mooney & J.C. Weisshaar. 2011. Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli. J. Bacteriol. 193: 5138-5146.
– reference: Niedziela-Majka, A. & T. Heyduk. 2005. Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting. J. Biol. Chem. 280: 38219-38227.
– reference: Gourse, R.L., W. Ross & T. Gaal. 2000. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37: 687-695.
– reference: Spassky, A., S. Rimsky, H. Buc & S.J.W. Busby. 1988. Correlation between the conformation of Escherichia coli ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 7: 1871-1879.
– reference: White, M.F. & M.S. Dillingham. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22: 94-100.
– reference: Park, C.S., F.Y. Wu & C.W. Wu. 1982. Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one-dimensional diffusion of RNA polymerase molecule along the DNA template. J. Biol. Chem. 257: 6950-6956.
– reference: Hirata, A. & K.S. Murakami. 2009. Archaeal RNA polymerase. Curr. Opin. Struct. Biol. 19: 724-731.
– reference: Drew, H.R., J.R. Weeks & A.A. Travers. 1985. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4: 1025-1032.
– reference: Gruber, T.M. & C.A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441-466.
– reference: Yi, C., B. Chen, B. Qi, et al. 2012. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat. Struct. Mol. Biol. 19: 671-676.
– reference: Vassylyev, D.G., S.-I. Sekine, O. Laptenko, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417: 712-719.
– reference: Parker, S.C.J., L. Hansen, H.O. Abaan, et al. 2009. Local DNA topography correlates with functional noncoding regions of the human genome. Science 324: 389-392.
– reference: Sakata-Sogawa, K. & N. Shimamoto. 2004. RNA polymerase can track a DNA groove during promoter search. Proc. Natl. Acad. Sci. USA 101: 14731-14735.
– reference: Yuzenkova, Y., V.R. Tadigotla, K. Severinov & N. Zenkin. 2011. A new basal promoter element recognized by RNA polymerase core enzyme. EMBO J. 30: 3766-3775.
– reference: Saecker, R.M., M.T. Record & P.L. deHaseth. 2011. Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412: 754-771.
– reference: Kenney, T.J., K. York, P. Youngman & C.P.J. Jr. Moran. 1989. Genetic evidence that RNA polymerase associated with sA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109-9113.
– reference: Feklistov, A. & S.A. Darst. 2011. Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147: 1257-1269.
– reference: Sclavi, B., E. Zaychikov, A. Rogozina, et al. 2005. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. USA 102: 4706-4711.
– reference: Bustamante, C., M. Guthold, X. Zhu & G. Yang. 1999. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274: 16665-16668.
– reference: Feklistov, A., N. Barinova, A. Sevostyanova, et al. 2006. A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme. Mol. Cell 23: 97-107.
– reference: Darst, S.A. 2001. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 11: 155-162.
– reference: Nikolova, E.N., E. Kim, A.A. Wise, et al. 2011. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470: 498-502.
– reference: Riggs, A.D., S. Bourgeois & M. Cohn. 1970. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53: 401-417.
– reference: Huerta, A.M. & J. Collado-Vides. 2003. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J. Mol. Biol. 333: 261-278.
– reference: Haugen, S.P., M.B. Berkmen, W. Ross, et al. 2006. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125: 1069-1082.
– reference: Hippel von, P.H. & O.G. Berg. 1989. Facilitated target location in biological systems. J. Biol. Chem. 264: 675-678.
– reference: Murakami, K.S., S. Masuda, E.A. Campbell, et al. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285-1290.
– reference: Cabrera, J.E. & D.J. Jin. 2003. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50: 1493-1505.
– reference: Barne, K.A., J.A. Bown, S.J.W. Busby & S.D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the "extended-10" motif at promoters. EMBO J. 16: 4034-4040.
– reference: Haugen, S.P., W. Ross & R.L. Gourse. 2008. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6: 507-519.
– reference: Gries, T.J., W.S. Kontur, M.W. Capp, et al. 2010. One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl. Acad. Sci. 107: 10418-10423.
– reference: Benoff, B., H. Yang, C.L. Lawson, et al. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562-1566.
– reference: Liu, X., D.A. Bushnell & R.D. Kornberg. 2011. Lock and key to transcription: σ-DNA interaction. Cell 147: 1218-1219.
– reference: Drennan, A., M. Kraemer, M. Capp, et al. 2012. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 51: 9447-9459.
– reference: Rohs, R., X. Jin, S.M. West, et al. 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79: 233-269.
– reference: Sontz, P.A., N.B. Muren & J.K. Barton. 2012. DNA charge transport for sensing and signaling. Acc. Chem. Res. 45: 1792-1800.
– reference: Zhang, Y., Y. Feng, S. Chatterjee, et al. 2012. Structural basis of transcription initiation. Science 338: 1076-1080.
– reference: Waldburger, C., T. Gardella, R. Wong & M.M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215: 267-276.
– reference: Davis, C.A., C.A. Bingman, R. Landick, et al. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 104: 7833-7838.
– reference: Tomsic, M., L. Tsujikawa, G. Panaghie, et al. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J. Biol. Chem. 276: 31891-31896.
– reference: James, E., M. Liu, C. Sheppard, et al. 2012. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol. Cell 47: 755-766.
– volume: 288
  start-page: 9126
  year: 2013
  end-page: 9134
  article-title: The X‐ray crystal structure of RNA polymerase sigma70 holoenzyme
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 10418
  year: 2010
  end-page: 10423
  article-title: One‐step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 101
  start-page: 14731
  year: 2004
  end-page: 14735
  article-title: RNA polymerase can track a DNA groove during promoter search
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 1871
  year: 1988
  end-page: 1879
  article-title: Correlation between the conformation of ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index
  publication-title: EMBO J.
– volume: 19
  start-page: 671
  year: 2012
  end-page: 676
  article-title: Duplex interrogation by a direct DNA repair protein in search of base damage
  publication-title: Nat. Struct. Mol. Biol.
– volume: 20
  start-page: 6929
  year: 1981
  end-page: 6948
  article-title: Diffusion‐driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
  publication-title: Biochemistry
– volume: 412
  start-page: 814
  year: 2011
  end-page: 831
  article-title: Single‐molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell
  publication-title: J. Mol. Biol.
– volume: 297
  start-page: 1562
  year: 2002
  end-page: 1566
  article-title: Structural basis of transcription activation: the CAP‐alpha CTD–DNA complex
  publication-title: Science
– volume: 51
  start-page: 9447
  year: 2012
  end-page: 9459
  article-title: Key roles of the downstream mobile jaw of RNA polymerase in transcription initiation
  publication-title: Biochemistry
– volume: 19
  start-page: 724
  year: 2009
  end-page: 731
  article-title: Archaeal RNA polymerase
  publication-title: Curr. Opin. Struct. Biol.
– volume: 23
  start-page: 97
  year: 2006
  end-page: 107
  article-title: A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme
  publication-title: Mol. Cell
– volume: 4
  start-page: 1025
  year: 1985
  end-page: 1032
  article-title: Negative supercoiling induces spontaneous unwinding of a bacterial promoter
  publication-title: EMBO J.
– volume: 11
  start-page: 155
  year: 2001
  end-page: 162
  article-title: Bacterial RNA polymerase
  publication-title: Curr. Opin. Struct. Biol.
– volume: 45
  start-page: 1792
  year: 2012
  end-page: 1800
  article-title: DNA charge transport for sensing and signaling
  publication-title: Acc. Chem. Res.
– volume: 333
  start-page: 261
  year: 2003
  end-page: 278
  article-title: Sigma70 promoters in : specific transcription in dense regions of overlapping promoter‐like signals
  publication-title: J. Mol. Biol.
– volume: 296
  start-page: 1285
  year: 2002b
  end-page: 1290
  article-title: Structural basis of transcription initiation: an RNA polymerase holoenzyme‐DNA complex
  publication-title: Science
– volume: 86
  start-page: 9109
  year: 1989
  end-page: 9113
  article-title: Genetic evidence that RNA polymerase associated with s factor uses a sporulation‐specific promoter in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 4706
  year: 2005
  end-page: 4711
  article-title: Real‐time characterization of intermediates in the pathway to open complex formation by RNA polymerase at the T7A1 promoter
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 147
  start-page: 1257
  year: 2011
  end-page: 1269
  article-title: Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit
  publication-title: Cell
– volume: 130
  start-page: 11570
  year: 2008
  end-page: 11571
  article-title: Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7‐methylguanine
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 441
  year: 2003
  end-page: 466
  article-title: Multiple sigma subunits and the partitioning of bacterial transcription space
  publication-title: Annu. Rev. Microbiol.
– volume: 104
  start-page: 7833
  year: 2007
  end-page: 7838
  article-title: Real‐time footprinting of DNA in the first kinetically significant intermediate in open complex formation by RNA polymerase
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 417
  start-page: 712
  year: 2002
  end-page: 719
  article-title: Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution
  publication-title: Nature
– volume: 37
  start-page: 5390
  year: 2009
  end-page: 5404
  article-title: DNA melting by RNA polymerase at the T7A1 promoter precedes the rate‐limiting step at 37 degrees C and results in the accumulation of an off‐pathway intermediate
  publication-title: Nucleic Acids Res
– volume: 53
  start-page: 401
  year: 1970
  end-page: 417
  article-title: The lac repressor–operator interaction. 3. Kinetic studies
  publication-title: J. Mol. Biol.
– volume: 470
  start-page: 498
  year: 2011
  end-page: 502
  article-title: Transient Hoogsteen base pairs in canonical duplex DNA
  publication-title: Nature
– volume: 22
  start-page: 94
  year: 2012
  end-page: 100
  article-title: Iron–sulphur clusters in nucleic acid processing enzymes
  publication-title: Curr. Opin. Struct. Biol.
– volume: 193
  start-page: 5138
  year: 2011
  end-page: 5146
  article-title: Spatial distribution and diffusive motion of RNA polymerase in live
  publication-title: J. Bacteriol.
– volume: 215
  start-page: 267
  year: 1990
  end-page: 276
  article-title: Changes in conserved region 2 of sigma 70 affecting promoter recognition
  publication-title: J. Mol. Biol.
– volume: 274
  start-page: 16665
  year: 1999
  end-page: 16668
  article-title: Facilitated target location on DNA by individual RNA polymerase molecules observed with the scanning force microscope operating in liquid
  publication-title: J. Biol. Chem.
– volume: 337
  start-page: 591
  year: 2012
  end-page: 595
  article-title: Opening and closing of the bacterial RNA polymerase clamp
  publication-title: Science
– volume: 9
  start-page: 527
  year: 2002
  end-page: 539
  article-title: Structure of the bacterial RNA polymerase promoter specificity sigma subunit
  publication-title: Mol. Cell
– volume: 79
  start-page: 233
  year: 2010
  end-page: 269
  article-title: Origins of specificity in protein–DNA recognition
  publication-title: Annu. Rev. Biochem.
– volume: 147
  start-page: 1218
  year: 2011
  end-page: 1219
  article-title: Lock and key to transcription: σ–DNA interaction
  publication-title: Cell
– volume: 35
  start-page: 771
  year: 2007
  end-page: 788
  article-title: Anatomy of sigma70 promoters
  publication-title: Nucleic Acids Res.
– volume: 50
  start-page: 1493
  year: 2003
  end-page: 1505
  article-title: The distribution of RNA polymerase in is dynamic and sensitive to environmental cues
  publication-title: Mol. Microbiol.
– volume: 20
  start-page: 174
  year: 2012
  end-page: 181
  article-title: The promoter‐search mechanism of RNA polymerase is dominated by three‐dimensional diffusion
  publication-title: Nat. Struct. Mol. Biol.
– volume: 13
  start-page: 31
  year: 2003
  end-page: 39
  article-title: Bacterial RNA polymerases: the wholo story
  publication-title: Curr. Opin. Struct. Biol.
– volume: 16
  start-page: 4034
  year: 1997
  end-page: 4040
  article-title: Region 2.5 of the RNA polymerase sigma70 subunit is responsible for the recognition of the “extended‐10” motif at promoters
  publication-title: EMBO J.
– volume: 30
  start-page: 3766
  year: 2011
  end-page: 3775
  article-title: A new basal promoter element recognized by RNA polymerase core enzyme
  publication-title: EMBO J.
– volume: 264
  start-page: 675
  year: 1989
  end-page: 678
  article-title: Facilitated target location in biological systems
  publication-title: J. Biol. Chem.
– volume: 324
  start-page: 389
  year: 2009
  end-page: 392
  article-title: Local DNA topography correlates with functional noncoding regions of the human genome
  publication-title: Science
– volume: 412
  start-page: 754
  year: 2011
  end-page: 771
  article-title: Mechanism of bacterial transcription initiation: RNA polymerase‐promoter binding, isomerization to initiation‐competent open complexes, and initiation of RNA synthesis
  publication-title: J. Mol. Biol.
– volume: 276
  start-page: 31891
  year: 2001
  end-page: 31896
  article-title: Different roles for basic and aromatic amino acids in conserved region 2 of sigma(70) in the nucleation and maintenance of the single‐stranded DNA bubble in open RNA polymerase‐promoter complexes
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 4610
  year: 1988
  end-page: 4614
  article-title: One‐dimensional diffusion of DNA‐dependent RNA polymerase: a mechanism to facilitate promoter location
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 338
  start-page: 1076
  year: 2012
  end-page: 1080
  article-title: Structural basis of transcription initiation
  publication-title: Science
– volume: 37
  start-page: 687
  year: 2000
  end-page: 695
  article-title: UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition
  publication-title: Mol. Microbiol.
– volume: 441
  start-page: 481
  year: 2012
  end-page: 485
  article-title: Location and dynamics of an active promoter in K‐12
  publication-title: Biochem. J.
– volume: 47
  start-page: 755
  year: 2012
  end-page: 766
  article-title: Structural and mechanistic basis for the inhibition of RNA polymerase by T7 Gp2
  publication-title: Mol. Cell
– volume: 484
  start-page: 251
  year: 2012
  end-page: 255
  article-title: Genome‐wide protein‐DNA binding dynamics suggest a molecular clutch for transcription factor function
  publication-title: Nature
– volume: 6
  start-page: 507
  year: 2008
  end-page: 519
  article-title: Advances in bacterial promoter recognition and its control by factors that do not bind DNA
  publication-title: Nat. Rev. Microbiol.
– volume: 296
  start-page: 1280
  year: 2002
  end-page: 1284
  article-title: Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution
  publication-title: Science
– volume: 125
  start-page: 1069
  year: 2006
  end-page: 1082
  article-title: rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase
  publication-title: Cell
– volume: 262
  start-page: 1561
  year: 1993
  end-page: 1563
  article-title: Visualization of single molecules of RNA polymerase sliding along DNA
  publication-title: Science
– volume: 66
  start-page: 125
  year: 2012
  end-page: 152
  article-title: Activating transcription in bacteria
  publication-title: Annu. Rev. Microbiol.
– volume: 280
  start-page: 38219
  year: 2005
  end-page: 38227
  article-title: Escherichia coli RNA polymerase contacts outside the ‐10 promoter element are not essential for promoter melting
  publication-title: J. Biol. Chem.
– volume: 257
  start-page: 6950
  year: 1982
  end-page: 6956
  article-title: Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one‐dimensional diffusion of RNA polymerase molecule along the DNA template
  publication-title: J. Biol. Chem.
– volume: 425
  start-page: 875
  year: 2013
  end-page: 885
  article-title: The transcription bubble of the RNA polymerase–promoter open complex exhibits conformational heterogeneity and millisecond‐scale dynamics: implications for transcription start‐site selection
  publication-title: J. Mol. Biol.
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jmb.2011.01.024
– ident: e_1_2_7_26_1
  doi: 10.1074/jbc.274.24.16665
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1069594
– ident: e_1_2_7_49_1
  doi: 10.1073/pnas.86.23.9109
– ident: e_1_2_7_17_1
  doi: 10.1038/emboj.2011.252
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jmb.2012.12.015
– ident: e_1_2_7_11_1
  doi: 10.1093/emboj/16.13.4034
– ident: e_1_2_7_24_1
  doi: 10.1126/science.8248804
– ident: e_1_2_7_59_1
  doi: 10.1126/science.1218716
– ident: e_1_2_7_6_1
  doi: 10.1146/annurev.micro.57.030502.090913
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.85.13.4610
– ident: e_1_2_7_27_1
  doi: 10.1128/JB.00198-11
– ident: e_1_2_7_40_1
  doi: 10.1002/j.1460-2075.1988.tb03020.x
– ident: e_1_2_7_58_1
  doi: 10.1093/nar/gkp560
– ident: e_1_2_7_43_1
  doi: 10.1016/j.molcel.2012.06.013
– ident: e_1_2_7_37_1
  doi: 10.1146/annurev-biochem-060408-091030
– ident: e_1_2_7_2_1
  doi: 10.1016/S0959-440X(00)00185-8
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2006.04.034
– ident: e_1_2_7_19_1
  doi: 10.1021/bi00527a028
– ident: e_1_2_7_33_1
  doi: 10.1021/ar3001298
– ident: e_1_2_7_3_1
  doi: 10.1038/nature752
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jmb.2011.01.018
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1076376
– ident: e_1_2_7_18_1
  doi: 10.1016/0022-2836(70)90074-4
– ident: e_1_2_7_28_1
  doi: 10.1038/nsmb.2472
– ident: e_1_2_7_7_1
  doi: 10.1016/S0959-440X(02)00005-2
– ident: e_1_2_7_5_1
  doi: 10.1074/jbc.M112.430900
– ident: e_1_2_7_46_1
  doi: 10.1074/jbc.M105027200
– ident: e_1_2_7_50_1
  doi: 10.1016/S0022-2836(05)80345-6
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jmb.2003.07.017
– ident: e_1_2_7_45_1
  doi: 10.1016/j.cell.2011.11.033
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.0406441101
– ident: e_1_2_7_54_1
  doi: 10.1073/pnas.0609888104
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1169050
– ident: e_1_2_7_41_1
  doi: 10.1038/nature09775
– volume: 264
  start-page: 675
  year: 1989
  ident: e_1_2_7_20_1
  article-title: Facilitated target location in biological systems
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84994-3
– ident: e_1_2_7_8_1
  doi: 10.1093/nar/gkl956
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1069595
– ident: e_1_2_7_55_1
  doi: 10.1073/pnas.1000967107
– ident: e_1_2_7_48_1
  doi: 10.1038/nsmb.2320
– ident: e_1_2_7_47_1
  doi: 10.1021/ja8025328
– ident: e_1_2_7_44_1
– ident: e_1_2_7_42_1
  doi: 10.1146/annurev-micro-092611-150012
– ident: e_1_2_7_60_1
  doi: 10.1038/nrmicro1912
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cell.2011.10.041
– ident: e_1_2_7_12_1
  doi: 10.1016/j.molcel.2006.06.010
– ident: e_1_2_7_51_1
  doi: 10.1074/jbc.M507984200
– ident: e_1_2_7_32_1
  doi: 10.1038/nature10985
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-2958.2000.01972.x
– ident: e_1_2_7_34_1
  doi: 10.1016/j.sbi.2011.11.004
– ident: e_1_2_7_39_1
  doi: 10.1002/j.1460-2075.1985.tb03734.x
– ident: e_1_2_7_56_1
  doi: 10.1021/bi301260u
– ident: e_1_2_7_57_1
  doi: 10.1073/pnas.0408218102
– ident: e_1_2_7_35_1
  doi: 10.1016/j.sbi.2009.10.006
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1365-2958.2003.03805.x
– ident: e_1_2_7_9_1
  doi: 10.1016/S1097-2765(02)00470-7
– ident: e_1_2_7_30_1
  doi: 10.1042/BJ20111258
– volume: 257
  start-page: 6950
  year: 1982
  ident: e_1_2_7_22_1
  article-title: Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one‐dimensional diffusion of RNA polymerase molecule along the DNA template
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34522-8
– ident: e_1_2_7_15_1
  doi: 10.1126/science.1227786
– reference: 19578065 - Nucleic Acids Res. 2009 Sep;37(16):5390-404
– reference: 23262491 - Nat Struct Mol Biol. 2013 Feb;20(2):174-81
– reference: 22153066 - Cell. 2011 Dec 9;147(6):1218-9
– reference: 22136875 - Cell. 2011 Dec 9;147(6):1257-69
– reference: 23116321 - Biochemistry. 2012 Nov 27;51(47):9447-59
– reference: 14527287 - Annu Rev Microbiol. 2003;57:441-66
– reference: 15469913 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14731-5
– reference: 22169085 - Curr Opin Struct Biol. 2012 Feb;22(1):94-100
– reference: 12202833 - Science. 2002 Aug 30;297(5586):1562-6
– reference: 23389035 - J Biol Chem. 2013 Mar 29;288(13):9126-34
– reference: 22861008 - Acc Chem Res. 2012 Oct 16;45(10):1792-800
– reference: 2512576 - Proc Natl Acad Sci U S A. 1989 Dec;86(23):9109-13
– reference: 10972792 - Mol Microbiol. 2000 Aug;37(4):687-95
– reference: 16777598 - Cell. 2006 Jun 16;125(6):1069-82
– reference: 17189297 - Nucleic Acids Res. 2007;35(3):771-88
– reference: 21784927 - J Bacteriol. 2011 Oct;193(19):5138-46
– reference: 21270796 - Nature. 2011 Feb 24;470(7335):498-502
– reference: 20334529 - Annu Rev Biochem. 2010;79:233-69
– reference: 17470797 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8
– reference: 12016306 - Science. 2002 May 17;296(5571):1280-4
– reference: 11297923 - Curr Opin Struct Biol. 2001 Apr;11(2):155-62
– reference: 22726217 - Annu Rev Microbiol. 2012;66:125-52
– reference: 21792175 - EMBO J. 2011 Sep 14;30(18):3766-75
– reference: 21371479 - J Mol Biol. 2011 Oct 7;412(5):754-71
– reference: 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8
– reference: 8248804 - Science. 1993 Dec 3;262(5139):1561-3
– reference: 16169843 - J Biol Chem. 2005 Nov 18;280(46):38219-27
– reference: 12000971 - Nature. 2002 Jun 13;417(6890):712-9
– reference: 14651633 - Mol Microbiol. 2003 Dec;50(5):1493-505
– reference: 16798040 - Mol Cell. 2006 Jul 7;23(1):97-107
– reference: 23274143 - J Mol Biol. 2013 Mar 11;425(5):875-85
– reference: 22659876 - Nat Struct Mol Biol. 2012 Jul;19(7):671-6
– reference: 21255583 - J Mol Biol. 2011 Oct 7;412(5):814-31
– reference: 15738402 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4706-11
– reference: 12016307 - Science. 2002 May 17;296(5571):1285-90
– reference: 2990904 - EMBO J. 1985 Apr;4(4):1025-32
– reference: 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19
– reference: 18686953 - J Am Chem Soc. 2008 Sep 3;130(35):11570-1
– reference: 20483995 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23
– reference: 22859489 - Science. 2012 Aug 3;337(6094):591-5
– reference: 3290898 - Proc Natl Acad Sci U S A. 1988 Jul;85(13):4610-4
– reference: 2213883 - J Mol Biol. 1990 Sep 20;215(2):267-76
– reference: 12581657 - Curr Opin Struct Biol. 2003 Feb;13(1):31-9
– reference: 19880312 - Curr Opin Struct Biol. 2009 Dec;19(6):724-31
– reference: 19286520 - Science. 2009 Apr 17;324(5925):389-92
– reference: 21936772 - Biochem J. 2012 Jan 1;441(1):481-5
– reference: 23086998 - Science. 2012 Nov 23;338(6110):1076-80
– reference: 10358002 - J Biol Chem. 1999 Jun 11;274(24):16665-8
– reference: 7045099 - J Biol Chem. 1982 Jun 25;257(12):6950-6
– reference: 11443133 - J Biol Chem. 2001 Aug 24;276(34):31891-6
– reference: 7317363 - Biochemistry. 1981 Nov 24;20(24):6929-48
– reference: 22819324 - Mol Cell. 2012 Sep 14;47(5):755-66
– reference: 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17
– reference: 14529615 - J Mol Biol. 2003 Oct 17;333(2):261-78
– reference: 9233812 - EMBO J. 1997 Jul 1;16(13):4034-40
– reference: 11931761 - Mol Cell. 2002 Mar;9(3):527-39
– reference: 3049079 - EMBO J. 1988 Jun;7(6):1871-9
– reference: 22498630 - Nature. 2012 Apr 12;484(7393):251-5
SSID ssj0012847
Score 2.221616
SecondaryResourceType review_article
Snippet Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Animals
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
DNA - chemistry
DNA - metabolism
DNA, Bacterial - chemistry
DNA, Bacterial - metabolism
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - metabolism
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - metabolism
Gene expression
Humans
Models, Molecular
Molecular Conformation
promoter
Promoter Regions, Genetic
protein-DNA recognition
RNA polymerase
Sigma Factor - chemistry
Sigma Factor - metabolism
transcription
Transcription, Genetic
Title RNA polymerase: in search of promoters
URI https://api.istex.fr/ark:/67375/WNG-SKHDBWDS-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.12197
https://www.ncbi.nlm.nih.gov/pubmed/23855603
https://www.proquest.com/docview/1472020232
https://www.proquest.com/docview/1415599944
https://www.proquest.com/docview/1429916961
https://pubmed.ncbi.nlm.nih.gov/PMC3740395
Volume 1293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EKfSlVfu1frGlRWphZT-SzUV8OWuvR0vvwatoH2SZ5LIoyt7h3YHnX28m-6HXitC-LWR22Uwyk98kk98AfFTcrmtppAId5SJgSucBWi9IXIRGGNswyGlD_2cv7R6z76f8dAH267swJT9Es-FGluH8NRk4qvEDIy9mOCZuBElXySlZixDRUcMd5fyuc8PCumELYypuUkrjuX91bjVaIsXePAY1_86YfIhk3VLUeQlndSfKDJTL3elE7erbP_gd_7eXy_Ciwqh-u5xUK7BgilV4VlatnK3CSuUPxv6nirR65xVsH_Xa_mh4NaNNrrHZ8y8Kv7Qif5j7I5f0Z5HmazjufP31pRtUNRgCTVdaA9NSIrZBIlMq1ZzpEDXXkcJcaiFsqJQa1uLKtDDRWthwKw9DjFAOGFcajQ1_38BiMSzMO_CV5DYSR8Q4lswiDYl5wlJUA2ZyERr0YKcei0xXBOVUJ-MqqwMVUkbmlOHBh0Z2VNJyPCq17Ya0EcHrS0pkEzw76X3L-j-6hwcnh_2s48FGPeZZZcP2E0zEIVWXjz143zRb66MjFSzMcEoydKwrJWNPycQEwmUaefC2nEbND1nAxC3mTDwQcxOsESD27_mW4uLcsYAngoWJ5B58dvPnCTVkvd_tvnta-xfhdXgeu9oflJu8AYuT66nZtAhsoracpd0B54or6w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJgQvwMZXYEAQaGJImfJhxzVvhVEK2_Kwbtp4smzXEdOmtFpbifLXc-ekYYVpErxF8iVKzr7z786X3wG8MRz3tTwxkU1KETFjy0ijFyQuQiccDgxLSujvF3n_iH094SdNbQ79C1PzQ7QJN7IM76_JwCkhfcnKq7meEDmCFDdhlVp6-4jqoGWP8p7XO2KBjhiBTMNOSoU8v-9d2o9WSbU_rgKbf9dMXsayfjPq3as7rk48hyHVoJxtz6Zm2_78g-Hxv7_zPtxtYGrYrdfVGtxw1TrcqhtXztdhrXEJk_Btw1u99QA2D4puOB6dzynPNXHvw9MqrA0pHJXh2Nf9Idh8CEe9T4cf-1HThiGy9Fdr5DpGpBgnMmNyy5mNteU2MbqUVgiMlnLHOty4js6sFRhxlXGsEy2HjBurHUbAj2ClGlXuCYRGcgzGtdZpKhmCDanLjOXaDJkrRex0AFuLyVC24SinVhnnahGrkDKUV0YAr1vZcc3McaXUpp_TVkRfnFEtm-DquPisBrv9nQ_HOwPVC2BjMemqMWN8BBNpTA3m0wBetcNogHSqois3mpEMnexKydh1MinhcJknATyu11H7QoiZOMLOLACxtMJaASIAXx6pTr97IvBMsDiTPIB3fgFdowZVfOsO_NXTfxF-Cbf7h_t7au9LsfsM7qS-FQiVKm_AyvRi5p4jIJuaF97sfgGGDDAG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi-KL2vq1WnVFKVbYsh_J5iK-nJ7naXWRXkvrg4Qkl2Bp2Tt6d-D515vJftjTUtC3hcwum2Rm8ptk8huA54q6dS1PVKQTyyKitI2k84LIRWiYcQ0jixv6n4t8cEA-HtGjFXjd3IWp-CHaDTe0DO-v0cAnI3vOyMuFnCI3AmdXYI3kcQd1urfXkkd5x-v9MHN-2OGYmpwU83h-v7u0HK3hyP64CGv-nTJ5Hsr6tah_E741vahSUE525jO1o3_-QfD4v928BTdqkBp2K61ahxVTbsDVqmzlYgPWa4cwDV_UrNXbt2Frr-iGk_HpAne5puZVeFyGlRmFYxtOfNafg5p34KD_bv_tIKqLMEQa77RGpqNY6qJEolSuKdGx1FQnSlquGXOxUm5IhyrTkZnWzMVbNo5lIvmIUKWlcfHvXVgtx6W5D6Hi1IXiUso05cRBDS5tRnKpRsRYFhsZwHYzF0LXDOVYKONUNJEKDobwgxHAs1Z2UvFyXCi15ae0FZFnJ5jJxqg4LN6L4e6g9-awNxT9ADabORe1EbtPEJbGWF4-DeBp2-zMD89UZGnGc5TBc13OCblMJkUUzvMkgHuVGrU_5BATdaAzC4AtKVgrgPTfyy3l8XdPA54xEmecBvDS688lwyCKr92hf3rwL8JP4NqXXl98-lDsPoTrqa8DgnnKm7A6O5ubRw6NzdRjb3S_APPVLr4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+polymerase%3A+in+search+of+promoters&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Feklistov%2C+Andrey&rft.date=2013-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1293&rft.issue=1&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1111%2Fnyas.12197&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SKHDBWDS_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon