RNA polymerase: in search of promoters
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are su...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1293; no. 1; pp. 25 - 32 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.07.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 1749-6632 |
DOI | 10.1111/nyas.12197 |
Cover
Loading…
Abstract | Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter‐opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. |
---|---|
AbstractList | Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter‐opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. [PUBLICATION ABSTRACT] Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the sub-steps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this mini-review, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening. |
Author | Feklistov, Andrey |
Author_xml | – sequence: 1 givenname: Andrey surname: Feklistov fullname: Feklistov, Andrey email: afeklistov@rockefeller.edu organization: Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23855603$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9PFDEUxRuDkQV98QOQSUyMMRno_059MFlBwECWhIUQn5pOuQPFmenazqr77e26LFFijLcP96G_c3p7zxba6EMPCL0keJfk2usXNu0SSrR6gkZEcV1KyegGGmGsVFlpyjbRVkp3GBNacfUMbVJWCSExG6HX55NxMQvtooNoE7wrfF8ksNHdFqEpZjF0YYCYnqOnjW0TvLjv2-jy8OPF_nF5enb0aX98WjqRny-hqhWlhPC6lk5wh60TjtS20U4pLaUEXokaKsucU5jwBmNLrL7monYWWMW20fuV72xed3DtoB-ibc0s-s7GhQnWmz9ven9rbsI3wxTHTIts8ObeIIavc0iD6Xxy0La2hzBPhnCqNZFakv9AiRBaa84z-uoRehfmsc-byJSiOB9GM7Xz-_APU6-3nQG8AlwMKUVojPODHXxY_sW3hmCzDNQsAzW_As2St48ka9e_wmQFf_ctLP5Bmsnn8XStKVcanwb48aCx8YuRiilhriZHZnpyfPDh6mBqDtlPRHG-hg |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1089_omi_2019_0041 crossref_primary_10_1134_S0006297914080057 crossref_primary_10_1016_j_jbiotec_2019_01_018 crossref_primary_10_1016_j_ygeno_2019_08_009 crossref_primary_10_1007_s13337_020_00640_9 crossref_primary_10_1039_C8CP01119B crossref_primary_10_1128_spectrum_02797_22 crossref_primary_10_1002_pro_3160 crossref_primary_10_1016_j_celrep_2021_109952 crossref_primary_10_7554_eLife_22520 crossref_primary_10_3390_ijms21239062 crossref_primary_10_1128_JB_00577_20 crossref_primary_10_1016_j_bbrc_2019_02_132 crossref_primary_10_3390_v12101064 crossref_primary_10_1021_acs_jpcb_2c09142 crossref_primary_10_1146_annurev_micro_092412_155737 crossref_primary_10_1186_s12864_018_4538_8 crossref_primary_10_1038_nsmb_2777 crossref_primary_10_1371_journal_pgen_1005348 crossref_primary_10_1093_bioinformatics_btw629 crossref_primary_10_1002_1873_3468_12321 crossref_primary_10_3389_fmolb_2016_00073 crossref_primary_10_1126_sciadv_adq9054 |
Cites_doi | 10.1016/j.jmb.2011.01.024 10.1074/jbc.274.24.16665 10.1126/science.1069594 10.1073/pnas.86.23.9109 10.1038/emboj.2011.252 10.1016/j.jmb.2012.12.015 10.1093/emboj/16.13.4034 10.1126/science.8248804 10.1126/science.1218716 10.1146/annurev.micro.57.030502.090913 10.1073/pnas.85.13.4610 10.1128/JB.00198-11 10.1002/j.1460-2075.1988.tb03020.x 10.1093/nar/gkp560 10.1016/j.molcel.2012.06.013 10.1146/annurev-biochem-060408-091030 10.1016/S0959-440X(00)00185-8 10.1016/j.cell.2006.04.034 10.1021/bi00527a028 10.1021/ar3001298 10.1038/nature752 10.1016/j.jmb.2011.01.018 10.1126/science.1076376 10.1016/0022-2836(70)90074-4 10.1038/nsmb.2472 10.1016/S0959-440X(02)00005-2 10.1074/jbc.M112.430900 10.1074/jbc.M105027200 10.1016/S0022-2836(05)80345-6 10.1016/j.jmb.2003.07.017 10.1016/j.cell.2011.11.033 10.1073/pnas.0406441101 10.1073/pnas.0609888104 10.1126/science.1169050 10.1038/nature09775 10.1016/S0021-9258(19)84994-3 10.1093/nar/gkl956 10.1126/science.1069595 10.1073/pnas.1000967107 10.1038/nsmb.2320 10.1021/ja8025328 10.1146/annurev-micro-092611-150012 10.1038/nrmicro1912 10.1016/j.cell.2011.10.041 10.1016/j.molcel.2006.06.010 10.1074/jbc.M507984200 10.1038/nature10985 10.1046/j.1365-2958.2000.01972.x 10.1016/j.sbi.2011.11.004 10.1002/j.1460-2075.1985.tb03734.x 10.1021/bi301260u 10.1073/pnas.0408218102 10.1016/j.sbi.2009.10.006 10.1046/j.1365-2958.2003.03805.x 10.1016/S1097-2765(02)00470-7 10.1042/BJ20111258 10.1016/S0021-9258(18)34522-8 10.1126/science.1227786 |
ContentType | Journal Article |
Copyright | 2013 New York Academy of Sciences. 2013 The New York Academy of Sciences |
Copyright_xml | – notice: 2013 New York Academy of Sciences. – notice: 2013 The New York Academy of Sciences |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1111/nyas.12197 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic Nucleic Acids Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 32 |
ExternalDocumentID | PMC3740395 3169881761 23855603 10_1111_nyas_12197 NYAS12197 ark_67375_WNG_SKHDBWDS_F |
Genre | article Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Merck Postdoctoral Fellowship at the Rockefeller University funderid: NIH R01 GM053759 – fundername: NIGMS NIH HHS grantid: R01 GM053759 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM053759 || GM |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO ADXHL AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHDLI AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c5197-e8b722114bb6c54c0ac5c1baf9c779666e485be8a3cc7014f00a1a9d45bcae383 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Thu Aug 21 18:31:40 EDT 2025 Fri Jul 11 06:43:47 EDT 2025 Thu Jul 10 19:30:25 EDT 2025 Sun Jul 13 04:25:37 EDT 2025 Wed Feb 19 01:52:08 EST 2025 Tue Jul 01 04:00:46 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Wed Aug 20 07:26:38 EDT 2025 Wed Oct 30 09:49:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | promoter RNA polymerase transcription protein-DNA recognition |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5197-e8b722114bb6c54c0ac5c1baf9c779666e485be8a3cc7014f00a1a9d45bcae383 |
Notes | ArticleID:NYAS12197 ark:/67375/WNG-SKHDBWDS-F istex:BFC7BA99C6D3745143B6AD42F5DA768A85279674 Merck Postdoctoral Fellowship at the Rockefeller University - No. NIH R01 GM053759 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3740395 |
PMID | 23855603 |
PQID | 1472020232 |
PQPubID | 946344 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740395 proquest_miscellaneous_1429916961 proquest_miscellaneous_1415599944 proquest_journals_1472020232 pubmed_primary_23855603 crossref_citationtrail_10_1111_nyas_12197 crossref_primary_10_1111_nyas_12197 wiley_primary_10_1111_nyas_12197_NYAS12197 istex_primary_ark_67375_WNG_SKHDBWDS_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2013 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann. N.Y. Acad. Sci |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | James, E., M. Liu, C. Sheppard, et al. 2012. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol. Cell 47: 755-766. Wang, F., S. Redding, I.J. Finkelstein, et al. 2012. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat. Struct. Mol. Biol. 20: 174-181. Saecker, R.M., M.T. Record & P.L. deHaseth. 2011. Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412: 754-771. Parker, S.C.J., L. Hansen, H.O. Abaan, et al. 2009. Local DNA topography correlates with functional noncoding regions of the human genome. Science 324: 389-392. Niedziela-Majka, A. & T. Heyduk. 2005. Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting. J. Biol. Chem. 280: 38219-38227. Hirata, A. & K.S. Murakami. 2009. Archaeal RNA polymerase. Curr. Opin. Struct. Biol. 19: 724-731. Wang, F. & E.C. Greene. 2011. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J. Mol. Biol. 412: 814-831. Spassky, A., S. Rimsky, H. Buc & S.J.W. Busby. 1988. Correlation between the conformation of Escherichia coli ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 7: 1871-1879. Rogozina, A., E. Zaychikov, M. Buckle, et al. 2009. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res 37: 5390-5404. Haugen, S.P., W. Ross & R.L. Gourse. 2008. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6: 507-519. Huerta, A.M. & J. Collado-Vides. 2003. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J. Mol. Biol. 333: 261-278. Tomsic, M., L. Tsujikawa, G. Panaghie, et al. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J. Biol. Chem. 276: 31891-31896. Robb, N.C., T. Cordes, L.C. Hwang, et al. 2013. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425: 875-885. Kabata, H., O. Kurosawa, I. Arai, et al. 1993. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262: 1561-1563. Waldburger, C., T. Gardella, R. Wong & M.M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215: 267-276. Gruber, T.M. & C.A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441-466. Berg, O.G., R.B. Winter & P.H. von Hippel. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929-6948. Sclavi, B., E. Zaychikov, A. Rogozina, et al. 2005. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. USA 102: 4706-4711. Rohs, R., X. Jin, S.M. West, et al. 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79: 233-269. Bustamante, C., M. Guthold, X. Zhu & G. Yang. 1999. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274: 16665-16668. Lee, S., B.R. Bowman, Y. Ueno, et al. 2008. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. J. Am. Chem. Soc. 130: 11570-11571. Yuzenkova, Y., V.R. Tadigotla, K. Severinov & N. Zenkin. 2011. A new basal promoter element recognized by RNA polymerase core enzyme. EMBO J. 30: 3766-3775. Barne, K.A., J.A. Bown, S.J.W. Busby & S.D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the "extended-10" motif at promoters. EMBO J. 16: 4034-4040. Feklistov, A., N. Barinova, A. Sevostyanova, et al. 2006. A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme. Mol. Cell 23: 97-107. Feklistov, A. & S.A. Darst. 2011. Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147: 1257-1269. Darst, S.A. 2001. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 11: 155-162. Zhang, Y., Y. Feng, S. Chatterjee, et al. 2012. Structural basis of transcription initiation. Science 338: 1076-1080. Cabrera, J.E. & D.J. Jin. 2003. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50: 1493-1505. Bratton, B.P., R.A. Mooney & J.C. Weisshaar. 2011. Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli. J. Bacteriol. 193: 5138-5146. Liu, X., D.A. Bushnell & R.D. Kornberg. 2011. Lock and key to transcription: σ-DNA interaction. Cell 147: 1218-1219. Nikolova, E.N., E. Kim, A.A. Wise, et al. 2011. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470: 498-502. Gries, T.J., W.S. Kontur, M.W. Capp, et al. 2010. One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl. Acad. Sci. 107: 10418-10423. Sontz, P.A., N.B. Muren & J.K. Barton. 2012. DNA charge transport for sensing and signaling. Acc. Chem. Res. 45: 1792-1800. Haugen, S.P., M.B. Berkmen, W. Ross, et al. 2006. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125: 1069-1082. Park, C.S., F.Y. Wu & C.W. Wu. 1982. Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one-dimensional diffusion of RNA polymerase molecule along the DNA template. J. Biol. Chem. 257: 6950-6956. Lickwar, C.R., F. Mueller, S.E. Hanlon, et al. 2012. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255. Shultzaberger, R.K., Z. Chen, K.A. Lewis & T.D. Schneider. 2007. Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res. 35: 771-788. Hippel von, P.H. & O.G. Berg. 1989. Facilitated target location in biological systems. J. Biol. Chem. 264: 675-678. Sánchez-Romero, M.-A., D.J. Lee, E. Sánchez-Morán & S.J.W. Busby. 2012. Location and dynamics of an active promoter in Escherichia coli K-12. Biochem. J. 441: 481-485. Sakata-Sogawa, K. & N. Shimamoto. 2004. RNA polymerase can track a DNA groove during promoter search. Proc. Natl. Acad. Sci. USA 101: 14731-14735. Davis, C.A., C.A. Bingman, R. Landick, et al. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 104: 7833-7838. Chakraborty, A., D. Wang, Y.W. Ebright, et al. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337: 591-595. Lee, D.J., S.D. Minchin & S.J.W. Busby. 2012. Activating transcription in bacteria. Annu. Rev. Microbiol. 66: 125-152. Yi, C., B. Chen, B. Qi, et al. 2012. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat. Struct. Mol. Biol. 19: 671-676. Benoff, B., H. Yang, C.L. Lawson, et al. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562-1566. Kenney, T.J., K. York, P. Youngman & C.P.J. Jr. Moran. 1989. Genetic evidence that RNA polymerase associated with sA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109-9113. Gourse, R.L., W. Ross & T. Gaal. 2000. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37: 687-695. Drew, H.R., J.R. Weeks & A.A. Travers. 1985. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4: 1025-1032. Murakami, K.S., & S.A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31-39. Murakami, K.S., S. Masuda & S.A. Darst. 2002. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296: 1280-1284. Riggs, A.D., S. Bourgeois & M. Cohn. 1970. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53: 401-417. White, M.F. & M.S. Dillingham. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22: 94-100. Campbell, E.A., O. Muzzin, M. Chlenov, et al. 2002. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9: 527-539. Vassylyev, D.G., S.-I. Sekine, O. Laptenko, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417: 712-719. Murakami, K.S. 2013. The X-ray crystal structure of Escherichia Coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288: 9126-9134. Murakami, K.S., S. Masuda, E.A. Campbell, et al. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285-1290. Drennan, A., M. Kraemer, M. Capp, et al. 2012. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 51: 9447-9459. Ricchetti, M., W. Metzger & H. Heumann. 1988. One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: a mechanism to facilitate promoter location. Proc. Natl. Acad. Sci. USA 85: 4610-4614. 2007; 104 2012; 484 2012; 441 1989; 86 2010; 107 2013; 288 2003; 57 2003; 13 2012; 19 2008; 6 2003; 50 2011; 470 2011; 193 2007; 35 2012; 51 1990; 215 2006; 23 2005; 102 1989; 264 1997; 16 1988; 85 1982; 257 2001; 11 2009; 19 2012; 22 2012; 66 2012; 337 2012; 338 2012; 20 2009; 324 2006; 125 2004; 101 2011; 412 2010; 79 2002; 296 2002; 9 2002; 297 1985; 4 2013; 425 2011; 30 1993; 262 1970; 53 2002; 417 2003; 333 1981; 20 2001; 276 2011; 147 2005; 280 2000; 37 2002b; 296 1988; 7 1999; 274 2012; 47 2012; 45 2008; 130 2009; 37 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hippel von P.H. (e_1_2_7_20_1) 1989; 264 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Park C.S. (e_1_2_7_22_1) 1982; 257 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 22169085 - Curr Opin Struct Biol. 2012 Feb;22(1):94-100 23262491 - Nat Struct Mol Biol. 2013 Feb;20(2):174-81 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19 11297923 - Curr Opin Struct Biol. 2001 Apr;11(2):155-62 14529615 - J Mol Biol. 2003 Oct 17;333(2):261-78 23086998 - Science. 2012 Nov 23;338(6110):1076-80 17470797 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8 21784927 - J Bacteriol. 2011 Oct;193(19):5138-46 22498630 - Nature. 2012 Apr 12;484(7393):251-5 23274143 - J Mol Biol. 2013 Mar 11;425(5):875-85 23116321 - Biochemistry. 2012 Nov 27;51(47):9447-59 9233812 - EMBO J. 1997 Jul 1;16(13):4034-40 22659876 - Nat Struct Mol Biol. 2012 Jul;19(7):671-6 21936772 - Biochem J. 2012 Jan 1;441(1):481-5 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17 21255583 - J Mol Biol. 2011 Oct 7;412(5):814-31 12016306 - Science. 2002 May 17;296(5571):1280-4 21371479 - J Mol Biol. 2011 Oct 7;412(5):754-71 11931761 - Mol Cell. 2002 Mar;9(3):527-39 18686953 - J Am Chem Soc. 2008 Sep 3;130(35):11570-1 19578065 - Nucleic Acids Res. 2009 Sep;37(16):5390-404 16798040 - Mol Cell. 2006 Jul 7;23(1):97-107 12016307 - Science. 2002 May 17;296(5571):1285-90 22859489 - Science. 2012 Aug 3;337(6094):591-5 20483995 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23 10358002 - J Biol Chem. 1999 Jun 11;274(24):16665-8 14651633 - Mol Microbiol. 2003 Dec;50(5):1493-505 22136875 - Cell. 2011 Dec 9;147(6):1257-69 21270796 - Nature. 2011 Feb 24;470(7335):498-502 14527287 - Annu Rev Microbiol. 2003;57:441-66 22861008 - Acc Chem Res. 2012 Oct 16;45(10):1792-800 15738402 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4706-11 10972792 - Mol Microbiol. 2000 Aug;37(4):687-95 19880312 - Curr Opin Struct Biol. 2009 Dec;19(6):724-31 2990904 - EMBO J. 1985 Apr;4(4):1025-32 12000971 - Nature. 2002 Jun 13;417(6890):712-9 3290898 - Proc Natl Acad Sci U S A. 1988 Jul;85(13):4610-4 7317363 - Biochemistry. 1981 Nov 24;20(24):6929-48 2512576 - Proc Natl Acad Sci U S A. 1989 Dec;86(23):9109-13 12202833 - Science. 2002 Aug 30;297(5586):1562-6 22153066 - Cell. 2011 Dec 9;147(6):1218-9 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8 20334529 - Annu Rev Biochem. 2010;79:233-69 23389035 - J Biol Chem. 2013 Mar 29;288(13):9126-34 22726217 - Annu Rev Microbiol. 2012;66:125-52 22819324 - Mol Cell. 2012 Sep 14;47(5):755-66 11443133 - J Biol Chem. 2001 Aug 24;276(34):31891-6 3049079 - EMBO J. 1988 Jun;7(6):1871-9 16777598 - Cell. 2006 Jun 16;125(6):1069-82 7045099 - J Biol Chem. 1982 Jun 25;257(12):6950-6 2213883 - J Mol Biol. 1990 Sep 20;215(2):267-76 17189297 - Nucleic Acids Res. 2007;35(3):771-88 12581657 - Curr Opin Struct Biol. 2003 Feb;13(1):31-9 21792175 - EMBO J. 2011 Sep 14;30(18):3766-75 19286520 - Science. 2009 Apr 17;324(5925):389-92 8248804 - Science. 1993 Dec 3;262(5139):1561-3 15469913 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14731-5 16169843 - J Biol Chem. 2005 Nov 18;280(46):38219-27 |
References_xml | – reference: Lickwar, C.R., F. Mueller, S.E. Hanlon, et al. 2012. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255. – reference: Berg, O.G., R.B. Winter & P.H. von Hippel. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929-6948. – reference: Wang, F. & E.C. Greene. 2011. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J. Mol. Biol. 412: 814-831. – reference: Lee, D.J., S.D. Minchin & S.J.W. Busby. 2012. Activating transcription in bacteria. Annu. Rev. Microbiol. 66: 125-152. – reference: Wang, F., S. Redding, I.J. Finkelstein, et al. 2012. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat. Struct. Mol. Biol. 20: 174-181. – reference: Kabata, H., O. Kurosawa, I. Arai, et al. 1993. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262: 1561-1563. – reference: Shultzaberger, R.K., Z. Chen, K.A. Lewis & T.D. Schneider. 2007. Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res. 35: 771-788. – reference: Murakami, K.S. 2013. The X-ray crystal structure of Escherichia Coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288: 9126-9134. – reference: Campbell, E.A., O. Muzzin, M. Chlenov, et al. 2002. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9: 527-539. – reference: Ricchetti, M., W. Metzger & H. Heumann. 1988. One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: a mechanism to facilitate promoter location. Proc. Natl. Acad. Sci. USA 85: 4610-4614. – reference: Sánchez-Romero, M.-A., D.J. Lee, E. Sánchez-Morán & S.J.W. Busby. 2012. Location and dynamics of an active promoter in Escherichia coli K-12. Biochem. J. 441: 481-485. – reference: Lee, S., B.R. Bowman, Y. Ueno, et al. 2008. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. J. Am. Chem. Soc. 130: 11570-11571. – reference: Robb, N.C., T. Cordes, L.C. Hwang, et al. 2013. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J. Mol. Biol. 425: 875-885. – reference: Murakami, K.S., & S.A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31-39. – reference: Chakraborty, A., D. Wang, Y.W. Ebright, et al. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337: 591-595. – reference: Murakami, K.S., S. Masuda & S.A. Darst. 2002. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296: 1280-1284. – reference: Rogozina, A., E. Zaychikov, M. Buckle, et al. 2009. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res 37: 5390-5404. – reference: Bratton, B.P., R.A. Mooney & J.C. Weisshaar. 2011. Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli. J. Bacteriol. 193: 5138-5146. – reference: Niedziela-Majka, A. & T. Heyduk. 2005. Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting. J. Biol. Chem. 280: 38219-38227. – reference: Gourse, R.L., W. Ross & T. Gaal. 2000. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37: 687-695. – reference: Spassky, A., S. Rimsky, H. Buc & S.J.W. Busby. 1988. Correlation between the conformation of Escherichia coli ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 7: 1871-1879. – reference: White, M.F. & M.S. Dillingham. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22: 94-100. – reference: Park, C.S., F.Y. Wu & C.W. Wu. 1982. Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one-dimensional diffusion of RNA polymerase molecule along the DNA template. J. Biol. Chem. 257: 6950-6956. – reference: Hirata, A. & K.S. Murakami. 2009. Archaeal RNA polymerase. Curr. Opin. Struct. Biol. 19: 724-731. – reference: Drew, H.R., J.R. Weeks & A.A. Travers. 1985. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4: 1025-1032. – reference: Gruber, T.M. & C.A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441-466. – reference: Yi, C., B. Chen, B. Qi, et al. 2012. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat. Struct. Mol. Biol. 19: 671-676. – reference: Vassylyev, D.G., S.-I. Sekine, O. Laptenko, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417: 712-719. – reference: Parker, S.C.J., L. Hansen, H.O. Abaan, et al. 2009. Local DNA topography correlates with functional noncoding regions of the human genome. Science 324: 389-392. – reference: Sakata-Sogawa, K. & N. Shimamoto. 2004. RNA polymerase can track a DNA groove during promoter search. Proc. Natl. Acad. Sci. USA 101: 14731-14735. – reference: Yuzenkova, Y., V.R. Tadigotla, K. Severinov & N. Zenkin. 2011. A new basal promoter element recognized by RNA polymerase core enzyme. EMBO J. 30: 3766-3775. – reference: Saecker, R.M., M.T. Record & P.L. deHaseth. 2011. Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412: 754-771. – reference: Kenney, T.J., K. York, P. Youngman & C.P.J. Jr. Moran. 1989. Genetic evidence that RNA polymerase associated with sA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109-9113. – reference: Feklistov, A. & S.A. Darst. 2011. Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147: 1257-1269. – reference: Sclavi, B., E. Zaychikov, A. Rogozina, et al. 2005. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. USA 102: 4706-4711. – reference: Bustamante, C., M. Guthold, X. Zhu & G. Yang. 1999. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274: 16665-16668. – reference: Feklistov, A., N. Barinova, A. Sevostyanova, et al. 2006. A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme. Mol. Cell 23: 97-107. – reference: Darst, S.A. 2001. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 11: 155-162. – reference: Nikolova, E.N., E. Kim, A.A. Wise, et al. 2011. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470: 498-502. – reference: Riggs, A.D., S. Bourgeois & M. Cohn. 1970. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53: 401-417. – reference: Huerta, A.M. & J. Collado-Vides. 2003. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J. Mol. Biol. 333: 261-278. – reference: Haugen, S.P., M.B. Berkmen, W. Ross, et al. 2006. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125: 1069-1082. – reference: Hippel von, P.H. & O.G. Berg. 1989. Facilitated target location in biological systems. J. Biol. Chem. 264: 675-678. – reference: Murakami, K.S., S. Masuda, E.A. Campbell, et al. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285-1290. – reference: Cabrera, J.E. & D.J. Jin. 2003. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50: 1493-1505. – reference: Barne, K.A., J.A. Bown, S.J.W. Busby & S.D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the "extended-10" motif at promoters. EMBO J. 16: 4034-4040. – reference: Haugen, S.P., W. Ross & R.L. Gourse. 2008. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6: 507-519. – reference: Gries, T.J., W.S. Kontur, M.W. Capp, et al. 2010. One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl. Acad. Sci. 107: 10418-10423. – reference: Benoff, B., H. Yang, C.L. Lawson, et al. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562-1566. – reference: Liu, X., D.A. Bushnell & R.D. Kornberg. 2011. Lock and key to transcription: σ-DNA interaction. Cell 147: 1218-1219. – reference: Drennan, A., M. Kraemer, M. Capp, et al. 2012. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 51: 9447-9459. – reference: Rohs, R., X. Jin, S.M. West, et al. 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79: 233-269. – reference: Sontz, P.A., N.B. Muren & J.K. Barton. 2012. DNA charge transport for sensing and signaling. Acc. Chem. Res. 45: 1792-1800. – reference: Zhang, Y., Y. Feng, S. Chatterjee, et al. 2012. Structural basis of transcription initiation. Science 338: 1076-1080. – reference: Waldburger, C., T. Gardella, R. Wong & M.M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215: 267-276. – reference: Davis, C.A., C.A. Bingman, R. Landick, et al. 2007. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 104: 7833-7838. – reference: Tomsic, M., L. Tsujikawa, G. Panaghie, et al. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J. Biol. Chem. 276: 31891-31896. – reference: James, E., M. Liu, C. Sheppard, et al. 2012. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol. Cell 47: 755-766. – volume: 288 start-page: 9126 year: 2013 end-page: 9134 article-title: The X‐ray crystal structure of RNA polymerase sigma70 holoenzyme publication-title: J. Biol. Chem. – volume: 107 start-page: 10418 year: 2010 end-page: 10423 article-title: One‐step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex publication-title: Proc. Natl. Acad. Sci. – volume: 101 start-page: 14731 year: 2004 end-page: 14735 article-title: RNA polymerase can track a DNA groove during promoter search publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1871 year: 1988 end-page: 1879 article-title: Correlation between the conformation of ‒10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index publication-title: EMBO J. – volume: 19 start-page: 671 year: 2012 end-page: 676 article-title: Duplex interrogation by a direct DNA repair protein in search of base damage publication-title: Nat. Struct. Mol. Biol. – volume: 20 start-page: 6929 year: 1981 end-page: 6948 article-title: Diffusion‐driven mechanisms of protein translocation on nucleic acids. 1. Models and theory publication-title: Biochemistry – volume: 412 start-page: 814 year: 2011 end-page: 831 article-title: Single‐molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell publication-title: J. Mol. Biol. – volume: 297 start-page: 1562 year: 2002 end-page: 1566 article-title: Structural basis of transcription activation: the CAP‐alpha CTD–DNA complex publication-title: Science – volume: 51 start-page: 9447 year: 2012 end-page: 9459 article-title: Key roles of the downstream mobile jaw of RNA polymerase in transcription initiation publication-title: Biochemistry – volume: 19 start-page: 724 year: 2009 end-page: 731 article-title: Archaeal RNA polymerase publication-title: Curr. Opin. Struct. Biol. – volume: 23 start-page: 97 year: 2006 end-page: 107 article-title: A basal promoter element recognized by free RNA polymerase σ subunit determines promoter recognition by RNA polymerase holoenzyme publication-title: Mol. Cell – volume: 4 start-page: 1025 year: 1985 end-page: 1032 article-title: Negative supercoiling induces spontaneous unwinding of a bacterial promoter publication-title: EMBO J. – volume: 11 start-page: 155 year: 2001 end-page: 162 article-title: Bacterial RNA polymerase publication-title: Curr. Opin. Struct. Biol. – volume: 45 start-page: 1792 year: 2012 end-page: 1800 article-title: DNA charge transport for sensing and signaling publication-title: Acc. Chem. Res. – volume: 333 start-page: 261 year: 2003 end-page: 278 article-title: Sigma70 promoters in : specific transcription in dense regions of overlapping promoter‐like signals publication-title: J. Mol. Biol. – volume: 296 start-page: 1285 year: 2002b end-page: 1290 article-title: Structural basis of transcription initiation: an RNA polymerase holoenzyme‐DNA complex publication-title: Science – volume: 86 start-page: 9109 year: 1989 end-page: 9113 article-title: Genetic evidence that RNA polymerase associated with s factor uses a sporulation‐specific promoter in publication-title: Proc. Natl. Acad. Sci. USA – volume: 102 start-page: 4706 year: 2005 end-page: 4711 article-title: Real‐time characterization of intermediates in the pathway to open complex formation by RNA polymerase at the T7A1 promoter publication-title: Proc. Natl. Acad. Sci. USA – volume: 147 start-page: 1257 year: 2011 end-page: 1269 article-title: Structural basis for promoter ‒10 element recognition by the bacterial RNA polymerase σ subunit publication-title: Cell – volume: 130 start-page: 11570 year: 2008 end-page: 11571 article-title: Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7‐methylguanine publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 441 year: 2003 end-page: 466 article-title: Multiple sigma subunits and the partitioning of bacterial transcription space publication-title: Annu. Rev. Microbiol. – volume: 104 start-page: 7833 year: 2007 end-page: 7838 article-title: Real‐time footprinting of DNA in the first kinetically significant intermediate in open complex formation by RNA polymerase publication-title: Proc. Natl. Acad. Sci. USA – volume: 417 start-page: 712 year: 2002 end-page: 719 article-title: Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution publication-title: Nature – volume: 37 start-page: 5390 year: 2009 end-page: 5404 article-title: DNA melting by RNA polymerase at the T7A1 promoter precedes the rate‐limiting step at 37 degrees C and results in the accumulation of an off‐pathway intermediate publication-title: Nucleic Acids Res – volume: 53 start-page: 401 year: 1970 end-page: 417 article-title: The lac repressor–operator interaction. 3. Kinetic studies publication-title: J. Mol. Biol. – volume: 470 start-page: 498 year: 2011 end-page: 502 article-title: Transient Hoogsteen base pairs in canonical duplex DNA publication-title: Nature – volume: 22 start-page: 94 year: 2012 end-page: 100 article-title: Iron–sulphur clusters in nucleic acid processing enzymes publication-title: Curr. Opin. Struct. Biol. – volume: 193 start-page: 5138 year: 2011 end-page: 5146 article-title: Spatial distribution and diffusive motion of RNA polymerase in live publication-title: J. Bacteriol. – volume: 215 start-page: 267 year: 1990 end-page: 276 article-title: Changes in conserved region 2 of sigma 70 affecting promoter recognition publication-title: J. Mol. Biol. – volume: 274 start-page: 16665 year: 1999 end-page: 16668 article-title: Facilitated target location on DNA by individual RNA polymerase molecules observed with the scanning force microscope operating in liquid publication-title: J. Biol. Chem. – volume: 337 start-page: 591 year: 2012 end-page: 595 article-title: Opening and closing of the bacterial RNA polymerase clamp publication-title: Science – volume: 9 start-page: 527 year: 2002 end-page: 539 article-title: Structure of the bacterial RNA polymerase promoter specificity sigma subunit publication-title: Mol. Cell – volume: 79 start-page: 233 year: 2010 end-page: 269 article-title: Origins of specificity in protein–DNA recognition publication-title: Annu. Rev. Biochem. – volume: 147 start-page: 1218 year: 2011 end-page: 1219 article-title: Lock and key to transcription: σ–DNA interaction publication-title: Cell – volume: 35 start-page: 771 year: 2007 end-page: 788 article-title: Anatomy of sigma70 promoters publication-title: Nucleic Acids Res. – volume: 50 start-page: 1493 year: 2003 end-page: 1505 article-title: The distribution of RNA polymerase in is dynamic and sensitive to environmental cues publication-title: Mol. Microbiol. – volume: 20 start-page: 174 year: 2012 end-page: 181 article-title: The promoter‐search mechanism of RNA polymerase is dominated by three‐dimensional diffusion publication-title: Nat. Struct. Mol. Biol. – volume: 13 start-page: 31 year: 2003 end-page: 39 article-title: Bacterial RNA polymerases: the wholo story publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 4034 year: 1997 end-page: 4040 article-title: Region 2.5 of the RNA polymerase sigma70 subunit is responsible for the recognition of the “extended‐10” motif at promoters publication-title: EMBO J. – volume: 30 start-page: 3766 year: 2011 end-page: 3775 article-title: A new basal promoter element recognized by RNA polymerase core enzyme publication-title: EMBO J. – volume: 264 start-page: 675 year: 1989 end-page: 678 article-title: Facilitated target location in biological systems publication-title: J. Biol. Chem. – volume: 324 start-page: 389 year: 2009 end-page: 392 article-title: Local DNA topography correlates with functional noncoding regions of the human genome publication-title: Science – volume: 412 start-page: 754 year: 2011 end-page: 771 article-title: Mechanism of bacterial transcription initiation: RNA polymerase‐promoter binding, isomerization to initiation‐competent open complexes, and initiation of RNA synthesis publication-title: J. Mol. Biol. – volume: 276 start-page: 31891 year: 2001 end-page: 31896 article-title: Different roles for basic and aromatic amino acids in conserved region 2 of sigma(70) in the nucleation and maintenance of the single‐stranded DNA bubble in open RNA polymerase‐promoter complexes publication-title: J. Biol. Chem. – volume: 85 start-page: 4610 year: 1988 end-page: 4614 article-title: One‐dimensional diffusion of DNA‐dependent RNA polymerase: a mechanism to facilitate promoter location publication-title: Proc. Natl. Acad. Sci. USA – volume: 338 start-page: 1076 year: 2012 end-page: 1080 article-title: Structural basis of transcription initiation publication-title: Science – volume: 37 start-page: 687 year: 2000 end-page: 695 article-title: UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition publication-title: Mol. Microbiol. – volume: 441 start-page: 481 year: 2012 end-page: 485 article-title: Location and dynamics of an active promoter in K‐12 publication-title: Biochem. J. – volume: 47 start-page: 755 year: 2012 end-page: 766 article-title: Structural and mechanistic basis for the inhibition of RNA polymerase by T7 Gp2 publication-title: Mol. Cell – volume: 484 start-page: 251 year: 2012 end-page: 255 article-title: Genome‐wide protein‐DNA binding dynamics suggest a molecular clutch for transcription factor function publication-title: Nature – volume: 6 start-page: 507 year: 2008 end-page: 519 article-title: Advances in bacterial promoter recognition and its control by factors that do not bind DNA publication-title: Nat. Rev. Microbiol. – volume: 296 start-page: 1280 year: 2002 end-page: 1284 article-title: Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution publication-title: Science – volume: 125 start-page: 1069 year: 2006 end-page: 1082 article-title: rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase publication-title: Cell – volume: 262 start-page: 1561 year: 1993 end-page: 1563 article-title: Visualization of single molecules of RNA polymerase sliding along DNA publication-title: Science – volume: 66 start-page: 125 year: 2012 end-page: 152 article-title: Activating transcription in bacteria publication-title: Annu. Rev. Microbiol. – volume: 280 start-page: 38219 year: 2005 end-page: 38227 article-title: Escherichia coli RNA polymerase contacts outside the ‐10 promoter element are not essential for promoter melting publication-title: J. Biol. Chem. – volume: 257 start-page: 6950 year: 1982 end-page: 6956 article-title: Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one‐dimensional diffusion of RNA polymerase molecule along the DNA template publication-title: J. Biol. Chem. – volume: 425 start-page: 875 year: 2013 end-page: 885 article-title: The transcription bubble of the RNA polymerase–promoter open complex exhibits conformational heterogeneity and millisecond‐scale dynamics: implications for transcription start‐site selection publication-title: J. Mol. Biol. – ident: e_1_2_7_21_1 doi: 10.1016/j.jmb.2011.01.024 – ident: e_1_2_7_26_1 doi: 10.1074/jbc.274.24.16665 – ident: e_1_2_7_4_1 doi: 10.1126/science.1069594 – ident: e_1_2_7_49_1 doi: 10.1073/pnas.86.23.9109 – ident: e_1_2_7_17_1 doi: 10.1038/emboj.2011.252 – ident: e_1_2_7_52_1 doi: 10.1016/j.jmb.2012.12.015 – ident: e_1_2_7_11_1 doi: 10.1093/emboj/16.13.4034 – ident: e_1_2_7_24_1 doi: 10.1126/science.8248804 – ident: e_1_2_7_59_1 doi: 10.1126/science.1218716 – ident: e_1_2_7_6_1 doi: 10.1146/annurev.micro.57.030502.090913 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.85.13.4610 – ident: e_1_2_7_27_1 doi: 10.1128/JB.00198-11 – ident: e_1_2_7_40_1 doi: 10.1002/j.1460-2075.1988.tb03020.x – ident: e_1_2_7_58_1 doi: 10.1093/nar/gkp560 – ident: e_1_2_7_43_1 doi: 10.1016/j.molcel.2012.06.013 – ident: e_1_2_7_37_1 doi: 10.1146/annurev-biochem-060408-091030 – ident: e_1_2_7_2_1 doi: 10.1016/S0959-440X(00)00185-8 – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2006.04.034 – ident: e_1_2_7_19_1 doi: 10.1021/bi00527a028 – ident: e_1_2_7_33_1 doi: 10.1021/ar3001298 – ident: e_1_2_7_3_1 doi: 10.1038/nature752 – ident: e_1_2_7_53_1 doi: 10.1016/j.jmb.2011.01.018 – ident: e_1_2_7_16_1 doi: 10.1126/science.1076376 – ident: e_1_2_7_18_1 doi: 10.1016/0022-2836(70)90074-4 – ident: e_1_2_7_28_1 doi: 10.1038/nsmb.2472 – ident: e_1_2_7_7_1 doi: 10.1016/S0959-440X(02)00005-2 – ident: e_1_2_7_5_1 doi: 10.1074/jbc.M112.430900 – ident: e_1_2_7_46_1 doi: 10.1074/jbc.M105027200 – ident: e_1_2_7_50_1 doi: 10.1016/S0022-2836(05)80345-6 – ident: e_1_2_7_31_1 doi: 10.1016/j.jmb.2003.07.017 – ident: e_1_2_7_45_1 doi: 10.1016/j.cell.2011.11.033 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.0406441101 – ident: e_1_2_7_54_1 doi: 10.1073/pnas.0609888104 – ident: e_1_2_7_36_1 doi: 10.1126/science.1169050 – ident: e_1_2_7_41_1 doi: 10.1038/nature09775 – volume: 264 start-page: 675 year: 1989 ident: e_1_2_7_20_1 article-title: Facilitated target location in biological systems publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84994-3 – ident: e_1_2_7_8_1 doi: 10.1093/nar/gkl956 – ident: e_1_2_7_14_1 doi: 10.1126/science.1069595 – ident: e_1_2_7_55_1 doi: 10.1073/pnas.1000967107 – ident: e_1_2_7_48_1 doi: 10.1038/nsmb.2320 – ident: e_1_2_7_47_1 doi: 10.1021/ja8025328 – ident: e_1_2_7_44_1 – ident: e_1_2_7_42_1 doi: 10.1146/annurev-micro-092611-150012 – ident: e_1_2_7_60_1 doi: 10.1038/nrmicro1912 – ident: e_1_2_7_10_1 doi: 10.1016/j.cell.2011.10.041 – ident: e_1_2_7_12_1 doi: 10.1016/j.molcel.2006.06.010 – ident: e_1_2_7_51_1 doi: 10.1074/jbc.M507984200 – ident: e_1_2_7_32_1 doi: 10.1038/nature10985 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-2958.2000.01972.x – ident: e_1_2_7_34_1 doi: 10.1016/j.sbi.2011.11.004 – ident: e_1_2_7_39_1 doi: 10.1002/j.1460-2075.1985.tb03734.x – ident: e_1_2_7_56_1 doi: 10.1021/bi301260u – ident: e_1_2_7_57_1 doi: 10.1073/pnas.0408218102 – ident: e_1_2_7_35_1 doi: 10.1016/j.sbi.2009.10.006 – ident: e_1_2_7_29_1 doi: 10.1046/j.1365-2958.2003.03805.x – ident: e_1_2_7_9_1 doi: 10.1016/S1097-2765(02)00470-7 – ident: e_1_2_7_30_1 doi: 10.1042/BJ20111258 – volume: 257 start-page: 6950 year: 1982 ident: e_1_2_7_22_1 article-title: Molecular mechanism of promoter selection in gene transcription. II. Kinetic evidence for promoter search by a one‐dimensional diffusion of RNA polymerase molecule along the DNA template publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34522-8 – ident: e_1_2_7_15_1 doi: 10.1126/science.1227786 – reference: 19578065 - Nucleic Acids Res. 2009 Sep;37(16):5390-404 – reference: 23262491 - Nat Struct Mol Biol. 2013 Feb;20(2):174-81 – reference: 22153066 - Cell. 2011 Dec 9;147(6):1218-9 – reference: 22136875 - Cell. 2011 Dec 9;147(6):1257-69 – reference: 23116321 - Biochemistry. 2012 Nov 27;51(47):9447-59 – reference: 14527287 - Annu Rev Microbiol. 2003;57:441-66 – reference: 15469913 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14731-5 – reference: 22169085 - Curr Opin Struct Biol. 2012 Feb;22(1):94-100 – reference: 12202833 - Science. 2002 Aug 30;297(5586):1562-6 – reference: 23389035 - J Biol Chem. 2013 Mar 29;288(13):9126-34 – reference: 22861008 - Acc Chem Res. 2012 Oct 16;45(10):1792-800 – reference: 2512576 - Proc Natl Acad Sci U S A. 1989 Dec;86(23):9109-13 – reference: 10972792 - Mol Microbiol. 2000 Aug;37(4):687-95 – reference: 16777598 - Cell. 2006 Jun 16;125(6):1069-82 – reference: 17189297 - Nucleic Acids Res. 2007;35(3):771-88 – reference: 21784927 - J Bacteriol. 2011 Oct;193(19):5138-46 – reference: 21270796 - Nature. 2011 Feb 24;470(7335):498-502 – reference: 20334529 - Annu Rev Biochem. 2010;79:233-69 – reference: 17470797 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8 – reference: 12016306 - Science. 2002 May 17;296(5571):1280-4 – reference: 11297923 - Curr Opin Struct Biol. 2001 Apr;11(2):155-62 – reference: 22726217 - Annu Rev Microbiol. 2012;66:125-52 – reference: 21792175 - EMBO J. 2011 Sep 14;30(18):3766-75 – reference: 21371479 - J Mol Biol. 2011 Oct 7;412(5):754-71 – reference: 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8 – reference: 8248804 - Science. 1993 Dec 3;262(5139):1561-3 – reference: 16169843 - J Biol Chem. 2005 Nov 18;280(46):38219-27 – reference: 12000971 - Nature. 2002 Jun 13;417(6890):712-9 – reference: 14651633 - Mol Microbiol. 2003 Dec;50(5):1493-505 – reference: 16798040 - Mol Cell. 2006 Jul 7;23(1):97-107 – reference: 23274143 - J Mol Biol. 2013 Mar 11;425(5):875-85 – reference: 22659876 - Nat Struct Mol Biol. 2012 Jul;19(7):671-6 – reference: 21255583 - J Mol Biol. 2011 Oct 7;412(5):814-31 – reference: 15738402 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4706-11 – reference: 12016307 - Science. 2002 May 17;296(5571):1285-90 – reference: 2990904 - EMBO J. 1985 Apr;4(4):1025-32 – reference: 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19 – reference: 18686953 - J Am Chem Soc. 2008 Sep 3;130(35):11570-1 – reference: 20483995 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23 – reference: 22859489 - Science. 2012 Aug 3;337(6094):591-5 – reference: 3290898 - Proc Natl Acad Sci U S A. 1988 Jul;85(13):4610-4 – reference: 2213883 - J Mol Biol. 1990 Sep 20;215(2):267-76 – reference: 12581657 - Curr Opin Struct Biol. 2003 Feb;13(1):31-9 – reference: 19880312 - Curr Opin Struct Biol. 2009 Dec;19(6):724-31 – reference: 19286520 - Science. 2009 Apr 17;324(5925):389-92 – reference: 21936772 - Biochem J. 2012 Jan 1;441(1):481-5 – reference: 23086998 - Science. 2012 Nov 23;338(6110):1076-80 – reference: 10358002 - J Biol Chem. 1999 Jun 11;274(24):16665-8 – reference: 7045099 - J Biol Chem. 1982 Jun 25;257(12):6950-6 – reference: 11443133 - J Biol Chem. 2001 Aug 24;276(34):31891-6 – reference: 7317363 - Biochemistry. 1981 Nov 24;20(24):6929-48 – reference: 22819324 - Mol Cell. 2012 Sep 14;47(5):755-66 – reference: 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17 – reference: 14529615 - J Mol Biol. 2003 Oct 17;333(2):261-78 – reference: 9233812 - EMBO J. 1997 Jul 1;16(13):4034-40 – reference: 11931761 - Mol Cell. 2002 Mar;9(3):527-39 – reference: 3049079 - EMBO J. 1988 Jun;7(6):1871-9 – reference: 22498630 - Nature. 2012 Apr 12;484(7393):251-5 |
SSID | ssj0012847 |
Score | 2.221616 |
SecondaryResourceType | review_article |
Snippet | Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25 |
SubjectTerms | Animals Bacterial Proteins - chemistry Bacterial Proteins - metabolism DNA - chemistry DNA - metabolism DNA, Bacterial - chemistry DNA, Bacterial - metabolism DNA, Single-Stranded - chemistry DNA, Single-Stranded - metabolism DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - metabolism Gene expression Humans Models, Molecular Molecular Conformation promoter Promoter Regions, Genetic protein-DNA recognition RNA polymerase Sigma Factor - chemistry Sigma Factor - metabolism transcription Transcription, Genetic |
Title | RNA polymerase: in search of promoters |
URI | https://api.istex.fr/ark:/67375/WNG-SKHDBWDS-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.12197 https://www.ncbi.nlm.nih.gov/pubmed/23855603 https://www.proquest.com/docview/1472020232 https://www.proquest.com/docview/1415599944 https://www.proquest.com/docview/1429916961 https://pubmed.ncbi.nlm.nih.gov/PMC3740395 |
Volume | 1293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EKfSlVfu1frGlRWphZT-SzUV8OWuvR0vvwatoH2SZ5LIoyt7h3YHnX28m-6HXitC-LWR22Uwyk98kk98AfFTcrmtppAId5SJgSucBWi9IXIRGGNswyGlD_2cv7R6z76f8dAH267swJT9Es-FGluH8NRk4qvEDIy9mOCZuBElXySlZixDRUcMd5fyuc8PCumELYypuUkrjuX91bjVaIsXePAY1_86YfIhk3VLUeQlndSfKDJTL3elE7erbP_gd_7eXy_Ciwqh-u5xUK7BgilV4VlatnK3CSuUPxv6nirR65xVsH_Xa_mh4NaNNrrHZ8y8Kv7Qif5j7I5f0Z5HmazjufP31pRtUNRgCTVdaA9NSIrZBIlMq1ZzpEDXXkcJcaiFsqJQa1uLKtDDRWthwKw9DjFAOGFcajQ1_38BiMSzMO_CV5DYSR8Q4lswiDYl5wlJUA2ZyERr0YKcei0xXBOVUJ-MqqwMVUkbmlOHBh0Z2VNJyPCq17Ya0EcHrS0pkEzw76X3L-j-6hwcnh_2s48FGPeZZZcP2E0zEIVWXjz143zRb66MjFSzMcEoydKwrJWNPycQEwmUaefC2nEbND1nAxC3mTDwQcxOsESD27_mW4uLcsYAngoWJ5B58dvPnCTVkvd_tvnta-xfhdXgeu9oflJu8AYuT66nZtAhsoracpd0B54or6w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJgQvwMZXYEAQaGJImfJhxzVvhVEK2_Kwbtp4smzXEdOmtFpbifLXc-ekYYVpErxF8iVKzr7z786X3wG8MRz3tTwxkU1KETFjy0ijFyQuQiccDgxLSujvF3n_iH094SdNbQ79C1PzQ7QJN7IM76_JwCkhfcnKq7meEDmCFDdhlVp6-4jqoGWP8p7XO2KBjhiBTMNOSoU8v-9d2o9WSbU_rgKbf9dMXsayfjPq3as7rk48hyHVoJxtz6Zm2_78g-Hxv7_zPtxtYGrYrdfVGtxw1TrcqhtXztdhrXEJk_Btw1u99QA2D4puOB6dzynPNXHvw9MqrA0pHJXh2Nf9Idh8CEe9T4cf-1HThiGy9Fdr5DpGpBgnMmNyy5mNteU2MbqUVgiMlnLHOty4js6sFRhxlXGsEy2HjBurHUbAj2ClGlXuCYRGcgzGtdZpKhmCDanLjOXaDJkrRex0AFuLyVC24SinVhnnahGrkDKUV0YAr1vZcc3McaXUpp_TVkRfnFEtm-DquPisBrv9nQ_HOwPVC2BjMemqMWN8BBNpTA3m0wBetcNogHSqois3mpEMnexKydh1MinhcJknATyu11H7QoiZOMLOLACxtMJaASIAXx6pTr97IvBMsDiTPIB3fgFdowZVfOsO_NXTfxF-Cbf7h_t7au9LsfsM7qS-FQiVKm_AyvRi5p4jIJuaF97sfgGGDDAG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi-KL2vq1WnVFKVbYsh_J5iK-nJ7naXWRXkvrg4Qkl2Bp2Tt6d-D515vJftjTUtC3hcwum2Rm8ptk8huA54q6dS1PVKQTyyKitI2k84LIRWiYcQ0jixv6n4t8cEA-HtGjFXjd3IWp-CHaDTe0DO-v0cAnI3vOyMuFnCI3AmdXYI3kcQd1urfXkkd5x-v9MHN-2OGYmpwU83h-v7u0HK3hyP64CGv-nTJ5Hsr6tah_E741vahSUE525jO1o3_-QfD4v928BTdqkBp2K61ahxVTbsDVqmzlYgPWa4cwDV_UrNXbt2Frr-iGk_HpAne5puZVeFyGlRmFYxtOfNafg5p34KD_bv_tIKqLMEQa77RGpqNY6qJEolSuKdGx1FQnSlquGXOxUm5IhyrTkZnWzMVbNo5lIvmIUKWlcfHvXVgtx6W5D6Hi1IXiUso05cRBDS5tRnKpRsRYFhsZwHYzF0LXDOVYKONUNJEKDobwgxHAs1Z2UvFyXCi15ae0FZFnJ5jJxqg4LN6L4e6g9-awNxT9ADabORe1EbtPEJbGWF4-DeBp2-zMD89UZGnGc5TBc13OCblMJkUUzvMkgHuVGrU_5BATdaAzC4AtKVgrgPTfyy3l8XdPA54xEmecBvDS688lwyCKr92hf3rwL8JP4NqXXl98-lDsPoTrqa8DgnnKm7A6O5ubRw6NzdRjb3S_APPVLr4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+polymerase%3A+in+search+of+promoters&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Feklistov%2C+Andrey&rft.date=2013-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1293&rft.issue=1&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1111%2Fnyas.12197&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SKHDBWDS_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |