Proliferation of myogenic stem cells in human skeletal muscle in response to low‐load resistance training with blood flow restriction

Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. The cellular mechanisms responsible f...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 590; no. 17; pp. 4351 - 4361
Main Authors Nielsen, Jakob Lindberg, Aagaard, Per, Bech, Rune Dueholm, Nygaard, Tobias, Hvid, Lars Grøndahl, Wernbom, Mathias, Suetta, Charlotte, Frandsen, Ulrik
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2012
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. The cellular mechanisms responsible for the muscular adaptations induced by this training paradigm are not fully understood. This study shows that 3 weeks of high‐frequency, low‐intensity muscle exercise with partial blood flow restriction induces increases in maximal muscle strength accompanied by highly marked gains in muscle fibre size. Furthermore, the results indicate that these muscular adaptations rely on a considerable upregulation in myogenic satellite cells number, resulting in nuclear addition to the exercised myofibres. The results contribute to a better understanding of the physiological mechanisms underlying the gain in muscle strength and muscle mass observed with blood flow restricted low‐intensity resistance exercise.   Low‐load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work‐matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty‐three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre‐ and post‐training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) (P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35–37% (Post3) and 31–32% (Post10) (P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short‐term low‐load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
AbstractList Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. The cellular mechanisms responsible for the muscular adaptations induced by this training paradigm are not fully understood. This study shows that 3 weeks of high‐frequency, low‐intensity muscle exercise with partial blood flow restriction induces increases in maximal muscle strength accompanied by highly marked gains in muscle fibre size. Furthermore, the results indicate that these muscular adaptations rely on a considerable upregulation in myogenic satellite cells number, resulting in nuclear addition to the exercised myofibres. The results contribute to a better understanding of the physiological mechanisms underlying the gain in muscle strength and muscle mass observed with blood flow restricted low‐intensity resistance exercise.   Low‐load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work‐matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty‐three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre‐ and post‐training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) (P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35–37% (Post3) and 31–32% (Post10) (P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short‐term low‐load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) ( P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35–37% (Post3) and 31–32% (Post10) ( P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) ( P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), ( P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years)performed four sets of knee extensor exercise (20% 1RM) to concentric failure during bloodflow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls(21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention(Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12)(P <0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35 – 37%(Post3) and 31 – 32% (Post10) (P <0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P <0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22(Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P<0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
times In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. Abstract Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 plus or minus 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls (21.9 plus or minus 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) (P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35-37% (Post3) and 31-32% (Post10) (P < 0.001). MSCs per myofibre increased with BFR training from 0.10 plus or minus 0.01 (Pre) to 0.38 plus or minus 0.02 (Mid8), 0.36 plus or minus 0.04 (Post3) and 0.25 plus or minus 0.02 (Post10) (P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 plus or minus 0.07 (Pre) to 3.30 plus or minus 0.22 (Mid8), 3.20 plus or minus 0.16 (Post3) and 3.11 plus or minus 0.11 (Post10), (P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. The cellular mechanisms responsible for the muscular adaptations induced by this training paradigm are not fully understood. This study shows that 3 weeks of high‐frequency, low‐intensity muscle exercise with partial blood flow restriction induces increases in maximal muscle strength accompanied by highly marked gains in muscle fibre size. Furthermore, the results indicate that these muscular adaptations rely on a considerable upregulation in myogenic satellite cells number, resulting in nuclear addition to the exercised myofibres. The results contribute to a better understanding of the physiological mechanisms underlying the gain in muscle strength and muscle mass observed with blood flow restricted low‐intensity resistance exercise. Abstract  Low‐load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work‐matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty‐three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre‐ and post‐training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) ( P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35–37% (Post3) and 31–32% (Post10) ( P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) ( P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), ( P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short‐term low‐load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has gained increasing interest, since it leads to significant gains in muscle strength and muscle mass. The cellular mechanisms responsible for the muscular adaptations induced by this training paradigm are not fully understood. This study shows that 3 weeks of high-frequency, low-intensity muscle exercise with partial blood flow restriction induces increases in maximal muscle strength accompanied by highly marked gains in muscle fibre size. Furthermore, the results indicate that these muscular adaptations rely on a considerable upregulation in myogenic satellite cells number, resulting in nuclear addition to the exercised myofibres. The results contribute to a better understanding of the physiological mechanisms underlying the gain in muscle strength and muscle mass observed with blood flow restricted low-intensity resistance exercise. Abstract Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) (P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35-37% (Post3) and 31-32% (Post10) (P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.
Author Aagaard, Per
Frandsen, Ulrik
Bech, Rune Dueholm
Wernbom, Mathias
Suetta, Charlotte
Nielsen, Jakob Lindberg
Hvid, Lars Grøndahl
Nygaard, Tobias
Author_xml – sequence: 1
  givenname: Jakob Lindberg
  surname: Nielsen
  fullname: Nielsen, Jakob Lindberg
– sequence: 2
  givenname: Per
  surname: Aagaard
  fullname: Aagaard, Per
– sequence: 3
  givenname: Rune Dueholm
  surname: Bech
  fullname: Bech, Rune Dueholm
– sequence: 4
  givenname: Tobias
  surname: Nygaard
  fullname: Nygaard, Tobias
– sequence: 5
  givenname: Lars Grøndahl
  surname: Hvid
  fullname: Hvid, Lars Grøndahl
– sequence: 6
  givenname: Mathias
  surname: Wernbom
  fullname: Wernbom, Mathias
– sequence: 7
  givenname: Charlotte
  surname: Suetta
  fullname: Suetta, Charlotte
– sequence: 8
  givenname: Ulrik
  surname: Frandsen
  fullname: Frandsen, Ulrik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22802591$$D View this record in MEDLINE/PubMed
BookMark eNqNkrtuFDEUhi0URDaBN0DIEg3NLL6Mx-MGCUVcFYkUoba8vux68diLPZPVdnS0PCNPgkebREADlaXzf-f3OUf_GTiJKVoAnmK0xBjTl9vd5lB8CkuCMFkSyhHqH4AFbjvRcC7oCVggREhDOcOn4KyULUKYIiEegVNCekSYwAvw_Sqn4J3NavQpwuTgcEhrG72GZbQD1DaEAn2Em2lQEZYvNthRBThMRQc7C9mWXYrFwjHBkPY_v_0ISZm57Muooq5CVj76uIZ7P27gKqRkoKvozIzZ6_nnx-ChU6HYJ7fvOfj89s31xfvm8tO7DxevLxvNsOga0bdUCNt2rXOUdVphvBJ8ZTpOjEZY9R3CPTHCGUot4doYptnKcdN1xPWY0HPw6ui7m1aDNdrGOl2Qu-wHlQ8yKS__VKLfyHW6kbTllAhUDV7cGuT0daoLyMGX-Uoq2jQViXvKK4t7_m8U0WpY-dn1-V_oNk051ktIzFpGWyQYrVR7pHROpWTr7ufGSM6hkHehkHMo5DEUte3Z7zvfN92loALiCOx9sIf_MpXXH68Y6Tv6CzeJzSA
CODEN JPHYA7
CitedBy_id crossref_primary_10_1016_j_redox_2023_102894
crossref_primary_10_1152_japplphysiol_00257_2019
crossref_primary_10_1080_17461391_2023_2201813
crossref_primary_10_1093_gerona_glu084
crossref_primary_10_1016_j_ptsp_2021_01_014
crossref_primary_10_1080_03009742_2017_1423109
crossref_primary_10_15758_ajk_2024_26_2_65
crossref_primary_10_3389_fphys_2022_838004
crossref_primary_10_3389_fphys_2020_00556
crossref_primary_10_1016_j_pmr_2016_07_002
crossref_primary_10_3390_ijms19113649
crossref_primary_10_1016_j_asmr_2020_09_009
crossref_primary_10_2106_JBJS_RVW_22_00062
crossref_primary_10_1249_MSS_0000000000002824
crossref_primary_10_1152_japplphysiol_01055_2014
crossref_primary_10_1186_s12891_023_06483_x
crossref_primary_10_3389_fphys_2018_01376
crossref_primary_10_3390_biology10101056
crossref_primary_10_5812_asjsm_38458
crossref_primary_10_1152_japplphysiol_00529_2022
crossref_primary_10_1007_s00421_014_2864_3
crossref_primary_10_1007_s00421_020_04337_1
crossref_primary_10_1007_s40279_014_0288_1
crossref_primary_10_1139_apnm_2016_0224
crossref_primary_10_1016_j_nmd_2022_04_006
crossref_primary_10_1113_JP273907
crossref_primary_10_1152_ajpregu_00061_2020
crossref_primary_10_1249_MSS_0000000000001208
crossref_primary_10_1111_sms_13952
crossref_primary_10_1007_s00421_017_3690_1
crossref_primary_10_1016_j_tcm_2014_12_014
crossref_primary_10_1152_japplphysiol_00789_2022
crossref_primary_10_3389_fspor_2021_798902
crossref_primary_10_1016_j_asmr_2021_09_025
crossref_primary_10_1113_EP089280
crossref_primary_10_1016_j_tem_2020_11_010
crossref_primary_10_1152_japplphysiol_00754_2019
crossref_primary_10_1249_MSS_0000000000001071
crossref_primary_10_4081_ejtm_2020_9311
crossref_primary_10_1152_japplphysiol_00501_2016
crossref_primary_10_1519_JSC_0000000000004034
crossref_primary_10_3389_fphys_2015_00283
crossref_primary_10_1080_17461391_2022_2039781
crossref_primary_10_1177_0363546520901539
crossref_primary_10_26862_jkpts_2022_06_29_2_48
crossref_primary_10_1002_mus_25488
crossref_primary_10_3389_fphys_2017_00190
crossref_primary_10_1016_j_arthro_2018_06_022
crossref_primary_10_1111_sms_12210
crossref_primary_10_1371_journal_pone_0283309
crossref_primary_10_3389_fphys_2020_00817
crossref_primary_10_1111_sms_14079
crossref_primary_10_1007_s00421_017_3622_0
crossref_primary_10_1007_s00421_017_3770_2
crossref_primary_10_1152_japplphysiol_00602_2019
crossref_primary_10_1007_s00421_020_04378_6
crossref_primary_10_1152_japplphysiol_01012_2020
crossref_primary_10_1007_s40279_015_0407_7
crossref_primary_10_1007_s40279_014_0264_9
crossref_primary_10_1152_ajpregu_00497_2014
crossref_primary_10_1186_s13063_022_06017_1
crossref_primary_10_1007_s40279_018_0994_1
crossref_primary_10_14814_phy2_15480
crossref_primary_10_1152_ajpheart_00027_2018
crossref_primary_10_1519_JSC_0000000000002384
crossref_primary_10_1113_jphysiol_2012_242859
crossref_primary_10_1371_journal_pone_0148236
crossref_primary_10_1152_japplphysiol_00464_2021
crossref_primary_10_1249_MSS_0000000000002156
crossref_primary_10_1519_JSC_0000000000004553
crossref_primary_10_1097_JSM_0000000000000377
crossref_primary_10_1007_s00113_020_00779_6
crossref_primary_10_1152_japplphysiol_00171_2020
crossref_primary_10_1113_JP275149
crossref_primary_10_1519_JSC_0000000000003628
crossref_primary_10_1136_bmjopen_2019_034376
crossref_primary_10_26603_001c_68143
crossref_primary_10_1155_2024_4413113
crossref_primary_10_1249_JES_0000000000000234
crossref_primary_10_1007_s12178_020_09610_6
crossref_primary_10_3357_AMHP_5855_2021
crossref_primary_10_1249_JES_0000000000000231
crossref_primary_10_18632_oncotarget_9564
crossref_primary_10_1152_ajpheart_00208_2015
crossref_primary_10_1152_japplphysiol_00917_2018
crossref_primary_10_1186_s13075_019_2036_2
crossref_primary_10_3389_fphys_2020_00243
crossref_primary_10_2478_hukin_2022_0095
crossref_primary_10_5812_jamm_106779
crossref_primary_10_1053_j_jfas_2017_11_008
crossref_primary_10_1556_APhysiol_101_2014_2_4
crossref_primary_10_3390_jfmk8020051
crossref_primary_10_1152_japplphysiol_00235_2022
crossref_primary_10_1016_j_mehy_2014_02_023
crossref_primary_10_1097_BTO_0000000000000265
crossref_primary_10_1111_apha_13302
crossref_primary_10_3390_rheumato3010003
crossref_primary_10_1152_japplphysiol_00397_2018
crossref_primary_10_1016_j_arthro_2022_06_027
crossref_primary_10_1519_JSC_0000000000001218
crossref_primary_10_1007_s40279_014_0177_7
crossref_primary_10_1177_2151458515583088
crossref_primary_10_1152_japplphysiol_00704_2022
crossref_primary_10_1007_s40520_014_0208_0
crossref_primary_10_1249_MSS_0000000000001775
crossref_primary_10_1016_j_jsams_2015_04_014
crossref_primary_10_1111_sms_12396
crossref_primary_10_1249_MSS_0000000000000722
crossref_primary_10_1111_cpf_12509
crossref_primary_10_3390_ijms22052741
crossref_primary_10_1038_s41598_020_62456_3
crossref_primary_10_1134_S0362119713050162
crossref_primary_10_1097_BTO_0000000000000252
crossref_primary_10_1007_s00421_015_3304_8
crossref_primary_10_1016_j_arthro_2018_05_038
crossref_primary_10_1016_j_eats_2018_06_010
crossref_primary_10_1111_sms_13516
crossref_primary_10_1111_sms_13632
crossref_primary_10_1007_s00421_021_04862_7
crossref_primary_10_1007_s40279_017_0795_y
crossref_primary_10_1371_journal_pone_0158860
crossref_primary_10_1519_JSC_0b013e3182874721
crossref_primary_10_3389_fphys_2017_00383
crossref_primary_10_1016_j_asmr_2022_04_002
crossref_primary_10_52082_jssm_2024_326
crossref_primary_10_1007_s12603_013_0362_7
crossref_primary_10_1016_j_jsams_2015_09_005
crossref_primary_10_1093_ptj_pzz062
crossref_primary_10_1177_26350254231202532
crossref_primary_10_1152_japplphysiol_00506_2019
crossref_primary_10_1177_0031512518776847
crossref_primary_10_1111_cpf_12259
crossref_primary_10_1152_ajpregu_00038_2021
crossref_primary_10_1519_JSC_0000000000004079
crossref_primary_10_3390_sports12060171
crossref_primary_10_1007_s00421_019_04217_3
crossref_primary_10_1177_03635465211027296
crossref_primary_10_3390_biomedicines11061601
crossref_primary_10_1177_1941738118821929
crossref_primary_10_17338_trainology_1_2_36
crossref_primary_10_1007_s40279_023_01900_6
crossref_primary_10_1519_JSC_0000000000001478
crossref_primary_10_1371_journal_pone_0279811
crossref_primary_10_1210_clinem_dgad432
crossref_primary_10_2478_hukin_2018_0101
crossref_primary_10_1111_sms_12259
crossref_primary_10_1152_japplphysiol_00115_2020
crossref_primary_10_3389_fphys_2019_00649
crossref_primary_10_1002_jcsm_12397
crossref_primary_10_7600_jpfsm_4_43
crossref_primary_10_1016_j_jse_2020_02_003
crossref_primary_10_1152_ajpendo_00600_2013
crossref_primary_10_17338_trainology_3_1_1
crossref_primary_10_18857_jkpt_2017_29_2_69
crossref_primary_10_1186_s12891_023_06693_3
crossref_primary_10_1055_a_2152_0015
crossref_primary_10_1152_japplphysiol_00015_2020
crossref_primary_10_1152_japplphysiol_00261_2014
crossref_primary_10_1371_journal_pone_0295666
crossref_primary_10_3389_fphys_2019_00533
crossref_primary_10_1111_apha_14030
crossref_primary_10_1177_23259671231209694
crossref_primary_10_3390_jcm11164881
crossref_primary_10_1519_JSC_0000000000000680
crossref_primary_10_4085_1062_6050_463_16
crossref_primary_10_1111_apha_12243
crossref_primary_10_1519_JSC_0000000000003148
crossref_primary_10_1152_ajpregu_00243_2019
crossref_primary_10_1186_s40634_022_00533_4
crossref_primary_10_1177_15563316241245700
crossref_primary_10_1519_SSC_0000000000000553
crossref_primary_10_14814_phy2_12449
crossref_primary_10_1111_sms_12087
crossref_primary_10_1177_23259671231213034
crossref_primary_10_1007_s00421_013_2733_5
crossref_primary_10_1519_SSC_0000000000000556
Cites_doi 10.1152/ajpcell.00513.2005
10.1113/jphysiol.2006.107359
10.1249/MSS.0b013e318160ff84
10.1016/j.freeradbiomed.2004.06.026
10.1007/s004180050012
10.1111/j.1600-0838.2009.01044.x
10.1007/s004210050663
10.1016/0735-1097(96)00218-5
10.1111/j.1600-0838.2010.01178.x
10.1113/jphysiol.2004.065904
10.1002/mus.21369
10.1152/japplphysiol.00195.2007
10.1123/jab.22.2.112
10.1111/j.1748-1716.2010.02172.x
10.1073/pnas.0913935107
10.1161/01.RES.57.4.599
10.1152/japplphysiol.90538.2008
10.1002/mus.20461
10.1152/japplphysiol.01267.2005
10.1091/mbc.10.4.1247
10.1371/journal.pone.0012033
10.1083/jcb.9.2.493
10.1152/japplphysiol.01266.2009
10.1139/Y10-012
10.1111/j.1469-7793.2001.t01-1-00613.x
10.1113/jphysiol.2004.061846
10.1249/MSS.0b013e318233b4bc
10.1152/japplphysiol.00307.2012
10.1152/japplphysiol.01215.2007
10.1007/s00421-001-0561-5
ContentType Journal Article
Copyright 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
Copyright_xml – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
– notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2012.237008
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Physical Education Index
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 4361
ExternalDocumentID 3374396271
10_1113_jphysiol_2012_237008
22802591
TJP5286
Genre rapidPublication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5196-984399e464ff356ca11b97bd672dc01a860182d9fd33e27cdd5c5bf7d662f8123
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 20:58:20 EDT 2024
Sat Aug 17 02:34:52 EDT 2024
Fri Aug 16 12:05:19 EDT 2024
Fri Sep 13 05:59:49 EDT 2024
Fri Aug 23 00:48:44 EDT 2024
Tue Aug 27 13:46:10 EDT 2024
Sat Aug 24 00:46:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5196-984399e464ff356ca11b97bd672dc01a860182d9fd33e27cdd5c5bf7d662f8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473290
PMID 22802591
PQID 1545340953
PQPubID 1086388
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3473290
proquest_miscellaneous_1837347187
proquest_miscellaneous_1039038370
proquest_journals_1545340953
crossref_primary_10_1113_jphysiol_2012_237008
pubmed_primary_22802591
wiley_primary_10_1113_jphysiol_2012_237008_TJP5286
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2007; 103
2009; 40
2010; 107
2000; 113
2010; 108
2006; 33
2008; 105
2008; 104
2006; 290
2006; 573
2010; 88
2010; 21
2011; 201
1996; 28
2012; 113
2002; 86
2006; 22
2004; 37
1999; 10
2011; 21
2000; 82
1961; 9
2008; 40
2010; 5
2004; 558
2012; 44
2006; 100
1985; 57
2001; 534
28949007 - J Physiol. 2017 Nov 15;595(22):6817-6818
23118067 - J Physiol. 2012 Nov 1;590(21):5271
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 57
  start-page: 599
  year: 1985
  end-page: 609
  article-title: The role of oxygen‐derived free radicals in ischemia‐induced increases in canine skeletal muscle vascular permeability
  publication-title: Circ Res
– volume: 22
  start-page: 112
  year: 2006
  end-page: 119
  article-title: Effects of low‐load resistance training with vascular occlusion on the mechanical properties of muscle and tendon
  publication-title: J Appl Biomech
– volume: 103
  start-page: 903
  year: 2007
  end-page: 910
  article-title: Blood flow restriction during low‐intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis
  publication-title: J Appl Physiol
– volume: 113
  start-page: 71
  year: 2012
  end-page: 77
  article-title: Resistance exercise load does not determine training‐mediated hypertrophic gains in young men
  publication-title: J Appl Physiol
– volume: 100
  start-page: 1460
  year: 2006
  end-page: 1466
  article-title: Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu‐walk training
  publication-title: J Appl Physiol
– volume: 44
  start-page: 406
  year: 2012
  end-page: 412
  article-title: Strength training with blood flow restriction diminishes myostatin gene expression
  publication-title: Med Sci Sports Exerc
– volume: 558
  start-page: 1005
  year: 2004
  end-page: 1012
  article-title: The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles
  publication-title: J Physiol
– volume: 88
  start-page: 388
  year: 2010
  end-page: 397
  article-title: Ischemia‐reperfusion‐induced changes in sarcolemmal Na /K ‐ATPase are due to the activation of calpain in the heart
  publication-title: Can J Physiol Pharmacol
– volume: 290
  start-page: C1487
  year: 2006
  end-page: 1494
  article-title: Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor
  publication-title: Am J Physiol Cell Physiol
– volume: 40
  start-page: 691
  year: 2008
  end-page: 698
  article-title: Human muscle gene expression following resistance exercise and blood flow restriction
  publication-title: Med Sci Sports Exerc
– volume: 10
  start-page: 1247
  year: 1999
  end-page: 1257
  article-title: Temporary disruption of the plasma membrane is required for c‐fos expression in response to mechanical stress
  publication-title: Mol Biol Cell
– volume: 108
  start-page: 1199
  year: 2010
  end-page: 1209
  article-title: Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men
  publication-title: J Appl Physiol
– volume: 104
  start-page: 1736
  year: 2008
  end-page: 1742
  article-title: Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell‐mediated myonuclear addition: a cluster analysis
  publication-title: J Appl Physiol
– volume: 28
  start-page: 591
  year: 1996
  end-page: 596
  article-title: Endothelium‐derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans
  publication-title: J Am Coll Cardiol
– volume: 5
  start-page: e12033
  year: 2010
  article-title: Low‐load high volume resistance exercise stimulates muscle protein synthesis more than high‐load low volume resistance exercise in young men
  publication-title: PLoS One
– volume: 534
  start-page: 613
  year: 2001
  end-page: 623
  article-title: A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture
  publication-title: J Physiol
– volume: 21
  start-page: 773
  year: 2010
  end-page: 782
  article-title: Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity
  publication-title: Scand J Med Sci Sports
– volume: 105
  start-page: 1454
  year: 2008
  end-page: 1461
  article-title: Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity
  publication-title: J Appl Physiol
– volume: 40
  start-page: 455
  year: 2009
  end-page: 465
  article-title: Assessment of satellite cell number and activity status in human skeletal muscle biopsies
  publication-title: Muscle Nerve
– volume: 113
  start-page: 99
  year: 2000
  end-page: 103
  article-title: Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training
  publication-title: Histochem Cell Biol
– volume: 86
  start-page: 308
  year: 2002
  end-page: 314
  article-title: Effects of resistance exercise combined with vascular occlusion on muscle function in athletes
  publication-title: Eur J Appl Physiol
– volume: 21
  start-page: 215
  year: 2011
  end-page: 223
  article-title: Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining
  publication-title: Scand J Med Sci Sports
– volume: 37
  start-page: 1064
  year: 2004
  end-page: 1072
  article-title: Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells
  publication-title: Free Radic Biol Med
– volume: 82
  start-page: 137
  year: 2000
  end-page: 141
  article-title: Effects of dynamic ischaemic training on human skeletal muscle dimensions
  publication-title: Eur J Appl Physiol
– volume: 573
  start-page: 525
  year: 2006
  end-page: 534
  article-title: Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training
  publication-title: J Physiol
– volume: 558
  start-page: 333
  year: 2004
  end-page: 340
  article-title: Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise
  publication-title: J Physiol
– volume: 9
  start-page: 493
  year: 1961
  end-page: 495
  article-title: Satellite cell of skeletal muscle fibers
  publication-title: J Biophys Biochem Cytol
– volume: 107
  start-page: 15111
  year: 2010
  end-page: 15116
  article-title: Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining
  publication-title: Proc Natl Acad Sci U S A
– volume: 33
  start-page: 242
  year: 2006
  end-page: 253
  article-title: Satellite cell numbers in young and older men 24 hours after eccentric exercise
  publication-title: Muscle Nerve
– volume: 201
  start-page: 255
  year: 2011
  end-page: 263
  article-title: Myogenic and proteolytic mRNA expression following blood flow restricted exercise
  publication-title: Acta Physiol (Oxf)
– ident: e_1_2_6_31_1
  doi: 10.1152/ajpcell.00513.2005
– ident: e_1_2_6_26_1
  doi: 10.1113/jphysiol.2006.107359
– ident: e_1_2_6_9_1
  doi: 10.1249/MSS.0b013e318160ff84
– ident: e_1_2_6_27_1
  doi: 10.1016/j.freeradbiomed.2004.06.026
– ident: e_1_2_6_16_1
  doi: 10.1007/s004180050012
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1600-0838.2009.01044.x
– ident: e_1_2_6_25_1
  doi: 10.1007/s004210050663
– ident: e_1_2_6_4_1
  doi: 10.1016/0735-1097(96)00218-5
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1600-0838.2010.01178.x
– ident: e_1_2_6_15_1
  doi: 10.1113/jphysiol.2004.065904
– ident: e_1_2_6_21_1
  doi: 10.1002/mus.21369
– ident: e_1_2_6_11_1
  doi: 10.1152/japplphysiol.00195.2007
– ident: e_1_2_6_18_1
  doi: 10.1123/jab.22.2.112
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1748-1716.2010.02172.x
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.0913935107
– ident: e_1_2_6_17_1
  doi: 10.1161/01.RES.57.4.599
– ident: e_1_2_6_13_1
  doi: 10.1152/japplphysiol.90538.2008
– ident: e_1_2_6_8_1
  doi: 10.1002/mus.20461
– ident: e_1_2_6_3_1
  doi: 10.1152/japplphysiol.01267.2005
– ident: e_1_2_6_12_1
  doi: 10.1091/mbc.10.4.1247
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.pone.0012033
– ident: e_1_2_6_23_1
  doi: 10.1083/jcb.9.2.493
– ident: e_1_2_6_10_1
  doi: 10.1152/japplphysiol.01266.2009
– ident: e_1_2_6_29_1
  doi: 10.1139/Y10-012
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1469-7793.2001.t01-1-00613.x
– ident: e_1_2_6_7_1
  doi: 10.1113/jphysiol.2004.061846
– ident: e_1_2_6_19_1
  doi: 10.1249/MSS.0b013e318233b4bc
– ident: e_1_2_6_24_1
  doi: 10.1152/japplphysiol.00307.2012
– ident: e_1_2_6_28_1
  doi: 10.1152/japplphysiol.01215.2007
– ident: e_1_2_6_30_1
  doi: 10.1007/s00421-001-0561-5
SSID ssj0013099
Score 2.5188313
Snippet Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb...
Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect...
Key points In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb...
times In the last decade muscle training performed using a combination of low external loads and partial restriction of blood flow to the exercising limb has...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4351
SubjectTerms Adult Stem Cells - cytology
Adult Stem Cells - physiology
Cell Proliferation
Exercise - physiology
Humans
Hypertrophy - pathology
Male
Muscle Strength - physiology
Muscle, Skeletal - blood supply
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Myoblasts, Skeletal - cytology
Myoblasts, Skeletal - physiology
Regional Blood Flow - physiology
Resistance Training
Satellite Cells, Skeletal Muscle - cytology
Satellite Cells, Skeletal Muscle - physiology
Skeletal Muscle and Exercise
Young Adult
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnrjwKo9AQUZC3LIkduzExwqxqiqBVqiVeouc2C5Lu3HV3RVaTty48hv5JczYSWApQgiu8cSJnZn4-_z4hpDnrgEQIMOxD1GlhdFtqo1VqbQaBeKcFEFn9s1beXhSHJ2K0x0yHc7CRH2IccINIyP8rzHAddNnIclRbOBDoP4elw9yNmG8jGd-UVMPsdE79mMxIVNqFA0vRd6foINqXv6uku0R6hrsvL578mdUG4al6S1yNjQo7kY5n6xXzaT99IvW4_-3-Da52SNXehBd7Q7Zsd1dsnfQAWtfbOgLOou3-bPNHvkyw2RAzkb3ot7RxcaDq85bisLRFJcLlnTe0ZAikC7PYfADFkAX6yXUjQVXce-upStPL_zHb5-_Xnht8DICXvBUOiS3oDiVTMMGfOrAFG0w7QA--R45mb4-fnWY9ikf0hagpExVhfzIFrJwjgvZ6jxvVNkYWTLTZrmugD9WzChnOLesbI0RrWhcaaRkDrAKv092O9_Zh4QKpy2wVWGAAhZa20ZL7axQqrFAaplOSDp85voyKnvUkRHxeujpGnu6jj2dkP3BF-o-zpc1AlBeoGZfQp6NxRCh2I-6s34NNhlXGU4EZH-wgWKOOKFMyIPoXuNLoWARkNQ8IeWW440GqBC-XdLN3welcKiSMwXPZcGv_qqd9fHRTLBKPvqXmx6TG3g1bsLbJ7urq7V9Aqht1TwNMfkd6OhCaw
  priority: 102
  providerName: Wiley-Blackwell
Title Proliferation of myogenic stem cells in human skeletal muscle in response to low‐load resistance training with blood flow restriction
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.237008
https://www.ncbi.nlm.nih.gov/pubmed/22802591
https://www.proquest.com/docview/1545340953/abstract/
https://search.proquest.com/docview/1039038370
https://search.proquest.com/docview/1837347187
https://pubmed.ncbi.nlm.nih.gov/PMC3473290
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZtn_YytnU_vHVFg7E3J7ZkSdZjKetKoSOMFvJmZEvassVWaRJG_oD937uT7bBQGGMveYgOW_aduO-TT98R8t7XAAJkPPYhyrSwpkmNdTqVzqBAnJci6sxef5aXt8XVXMwPiBjPwsSi_aZeTLplO-kW32Jt5V3bTMc6sens-pwXijOdTQ_JoeJ8pOjjp4NM651EuBL5cF4uz_n0e9wtCPjFIWcTxhUkQFQDZiVkfp3vp6YHePNh2eSfcDbmo4sn5PEAJOlZP-Gn5MB1z8jxWQckut3SD3TWTyJ83R6TXzPszeNd720aPG23ASJn0VDUcaa4e7-ii47Gjn109QNyEYBy2m5WcG0cuO9LaR1dB7oMP9NlMBb_RPQJYUPHThMU93VprIanHgzRBnsA4H2fk9uLjzfnl-nQfyFtANfJVJdIVlwhC--5kI3J81qr2krFbJPlpgQyVzKrveXcMdVYKxpRe2WlZB6AA39BjrrQuVeECm8cUEdhgY8VxrjaSOOd0Lp2wDCZSUg6vvrqrpfZqHp6wqvRaxV6req9lpCT0T_VsOhWFaJBXqCAXkLe7YZhueBbNJ0LG7DJuM6QlWd_sYFhjklbJeRl7_LdpMZYSYjaC4adAcp1749AFEfZ7iFqE8Ji2PzTc1Y3VzPBSvn6v2_3hjzC6_VlcSfkaH2_cW8BR63rU2AQXxj8fprnp3EN_QbrICEU
link.rule.ids 230,315,733,786,790,891,1382,27957,27958,46329,46753,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamcYALv8aPwAAjIW4pjR078XFCjDK2qUKdtFvkxPZWtiZobYXKiRtX_kb-Et6zk0AZQghxrV-c2n2v_j77-XuEPHMlgADpr32IPE6NrmJtrIql1SgQ56TwOrMHh3J0lO4di-MN8rq7CxP0IfoNN4wM_3-NAY4b0m2Uo9rAe8_9Gzw_SNiA8cxf-r0CkS88t3rHfhwnDJXqZcMzkbR36KCfF7_rZX2NugQ8L-dP_oxr_cK0e4OcdkMK-Shng-WiHFSfflF7_A9jvkmut-CV7gRvu0U2bH2bbO3UQNxnK_qcjsNjzclqi3wZYz0gZ4OH0cbR2aoBb51WFLWjKZ4YzOm0pr5KIJ2fwfoHRIDOlnPoGxsuQvqupYuGnjcfv33-et5ogx8j5gVnpV19C4q7ydTn4FMHpmiDlQfwzXfI0e6ryctR3FZ9iCtAkzJWOVIkm8rUOS5kpZOkVFlpZMZMNUx0DhQyZ0Y5w7llWWWMqETpMiMlcwBX-F2yWTe1vU-ocNoCYRUGWGCqtS211M4KpUoLvJbpiMTd71x8COIeRSBFvOhmusCZLsJMR2S7c4aiDfV5gRiUpyjbF5GnfTMEKc6jrm2zBJshV0PcCxj-wQaaOUKFLCL3gn_1Xwo1i4CnJhHJ1jyvN0CR8PWWenrqxcKhS84UvJd5x_qrcRaTvbFguXzwLw89IVdHk4P9Yv_N4duH5BpahJy8bbK5uFjaRwDiFuVjH6DfAep1Ro0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISEu_BqwwAZGQtxSEjt2kuPEqMaAqUKbtFvkxPbWbU2mtRXqTrtx5W_kL9l7dhIoQwjBtX5xave9-vvs5-8R8sqWAAKku_YhsjDRqgqVNnkojUKBOCuF05n9tCd3DpLdQ3G4QobdXRivD9FvuGFkuP9rDPBzbdsgR7GBE0f9Gzw-iNmA8dTd-b2VSM7Qu7c_sx-nCVGe96rhqYjbK3TQz5vf9bK8RN3AnTfTJ3-GtW5dGt4jR92IfDrK6WA-KwfV5S9ij_8_5Pvkbgtd6Zb3tQdkxdQPydpWDbR9sqCv6cg_1hwt1sjXEVYDssb7F20snSwa8NVxRVE5muJ5wZSOa-pqBNLpKax-QAPoZD6FvrHhwifvGjpr6Fnz5fvVt7NGafwYES-4Ku2qW1DcS6YuA59aMEUbrDuAb35EDobv9t_uhG3Nh7ACLCnDPEOCZBKZWMuFrFQcl3laapkyXUWxyoBAZkznVnNuWFppLSpR2lRLySyAFf6YrNZNbdYJFVYZoKtCAwdMlDKlksoakeelAVbLVEDC7mcuzr20R-EpES-6mS5wpgs_0wHZ6HyhaAN9WiAC5QmK9gXkZd8MIYrzqGrTzMEm4nmEOwHRH2ygmSNQSAPyxLtX_6VQsQhYahyQdMnxegOUCF9uqcfHTiocuoRwgPcy51d_Nc5if3ckWCaf_stDL8jt0faw-Ph-78MzcgcNfELeBlmdXczNJiC4Wfnchec182lFPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proliferation+of+myogenic+stem+cells+in+human+skeletal+muscle+in+response+to+low-load+resistance+training+with+blood+flow+restriction&rft.jtitle=The+Journal+of+physiology&rft.au=Nielsen%2C+Jakob+Lindberg&rft.au=Aagaard%2C+Per&rft.au=Bech%2C+Rune+Dueholm&rft.au=Nygaard%2C+Tobias&rft.date=2012-09-01&rft.eissn=1469-7793&rft.volume=590&rft.issue=17&rft.spage=4351&rft.epage=4361&rft_id=info:doi/10.1113%2Fjphysiol.2012.237008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon