Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement

A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the tot...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 68; no. 1; pp. 166 - 178
Main Author Yarnykh, Vasily L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2012
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.23224

Cover

Abstract A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%.
A new method was developed for fast quantitative mapping of the macromolecular proton fraction (MPF) defined within the two-pool model of magnetization transfer (MT). The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T 1 , B 0 , and B 1 maps with the total acquisition time ~10 min for whole-brain imaging. MPF maps are reconstructed by iterative solution of the matrix pulsed MT equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multi-parameter multi-point fit of the pulsed MT model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative MPF errors. Comparison with the multi-parameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%.
A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%.A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%.
A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T 1 , B 0 , and B 1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
Author Yarnykh, Vasily L.
Author_xml – sequence: 1
  givenname: Vasily L.
  surname: Yarnykh
  fullname: Yarnykh, Vasily L.
  email: yarnykh@u.washington.edu
  organization: Department of Radiology, University of Washington, Seattle, Washington, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22190042$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URKeFBX8AZQmLtI7tJPYGiRamIHVAQuWxsxznenCJ7WAnQPn1mHlUgGDlK_t851jnHqEDHzwg9LDCJxXG5NRFd0IoIewOWlQ1ISWpBTtAC9wyXNJKsEN0lNI1xliIlt1Dh4RUAmNGFuh6qdJUOKVjcGEAPQ8qFmMMU_CFiUpPNg9OjaP163wRXKGKlOcBimBMGSEFr7yGrFl7mOwPtSGmqHwyEAsHKs0RHPjpPrpr1JDgwe48Ru-WL67OX5aXby5enT-7LHWdv1rWRLRU8Yb33HSMkq7tgPW66xsOTWeM7ozmRhlVi04ZUXHcE8qZEIJy3mNGj9HTre84dw56naOjGuQYrVPxRgZl5Z8v3n6S6_BVUlpVbdNkg8c7gxi-zJAm6WzSMAzKQ5iTrDDBdUWJIFn66Pes25B9wVlwuhXkglOKYKS206ajHG2H7CV_rVDmFcrNCjPx5C9ib_ov7c79mx3g5v9CuXq72hPllrBpgu-3hIqfZdPStpYfXl9I_rF5f_Z8eSVX9Cfz5L4l
CitedBy_id crossref_primary_10_1038_s41598_024_67445_4
crossref_primary_10_3389_fnhum_2022_922552
crossref_primary_10_1016_j_neuroimage_2015_03_068
crossref_primary_10_1016_j_neuroimage_2022_119641
crossref_primary_10_1002_mrm_30144
crossref_primary_10_1016_j_neuroimage_2017_11_065
crossref_primary_10_1002_nbm_3004
crossref_primary_10_1002_mrm_26164
crossref_primary_10_1002_mrm_29430
crossref_primary_10_1007_s12194_024_00843_5
crossref_primary_10_1016_j_zemedi_2023_02_005
crossref_primary_10_1038_s41380_022_01740_2
crossref_primary_10_1016_j_mri_2020_01_014
crossref_primary_10_1148_radiol_14140528
crossref_primary_10_1016_j_mri_2015_03_003
crossref_primary_10_1016_j_nicl_2022_103244
crossref_primary_10_1002_mrm_28984
crossref_primary_10_1002_mrm_29678
crossref_primary_10_1002_mrm_29951
crossref_primary_10_3389_fnhum_2021_662031
crossref_primary_10_1002_mrm_25516
crossref_primary_10_1007_s10334_024_01190_7
crossref_primary_10_1002_mrm_28509
crossref_primary_10_2463_mrms_rev_2024_0001
crossref_primary_10_1002_mrm_30013
crossref_primary_10_1002_mrm_28212
crossref_primary_10_1016_j_neuroimage_2019_05_061
crossref_primary_10_1371_journal_pone_0196297
crossref_primary_10_1002_mrm_29140
crossref_primary_10_1002_mrm_26673
crossref_primary_10_22328_2079_5343_2023_14_4_36_44
crossref_primary_10_1016_j_nicl_2014_07_010
crossref_primary_10_1371_journal_pone_0119915
crossref_primary_10_1016_j_neuroimage_2022_119785
crossref_primary_10_1002_mrm_27792
crossref_primary_10_1002_jmri_29710
crossref_primary_10_1002_mrm_29055
crossref_primary_10_1002_mrm_28362
crossref_primary_10_1109_TMI_2021_3088258
crossref_primary_10_1002_mrm_25811
crossref_primary_10_1016_j_neuroimage_2014_03_005
crossref_primary_10_1016_j_brainres_2015_06_006
crossref_primary_10_1111_desc_13323
crossref_primary_10_1177_20552173231211396
crossref_primary_10_1007_s11172_021_3343_8
crossref_primary_10_1177_0271678X18755203
crossref_primary_10_22328_2079_5343_2022_13_2_50_58
crossref_primary_10_1002_mrm_26176
crossref_primary_10_1016_j_nicl_2020_102234
crossref_primary_10_1016_j_neuroimage_2020_117678
crossref_primary_10_3389_fnagi_2024_1306312
crossref_primary_10_1002_mrm_29207
crossref_primary_10_1002_mrm_24677
crossref_primary_10_1016_j_neuroimage_2019_06_049
crossref_primary_10_1038_srep46686
crossref_primary_10_1002_jmri_27088
crossref_primary_10_1088_1742_6596_677_1_012006
crossref_primary_10_1038_s41398_021_01475_8
crossref_primary_10_1016_j_nicl_2019_101921
crossref_primary_10_1002_mrm_27174
crossref_primary_10_1038_nrneurol_2015_194
crossref_primary_10_1002_mrm_27337
crossref_primary_10_1038_s41380_024_02883_0
crossref_primary_10_1002_mrm_28940
crossref_primary_10_1002_mrm_29512
crossref_primary_10_1093_brain_awac436
crossref_primary_10_1093_braincomms_fcac088
crossref_primary_10_1007_s11172_021_3344_7
crossref_primary_10_1002_nbm_5293
crossref_primary_10_1002_mrm_26909
crossref_primary_10_1016_j_dib_2016_11_066
crossref_primary_10_1016_j_neuroimage_2023_119974
crossref_primary_10_2217_cnc_2016_0028
crossref_primary_10_1007_s11182_015_0451_7
crossref_primary_10_1016_j_joca_2014_06_004
crossref_primary_10_1007_s00247_020_04777_z
crossref_primary_10_1016_j_neuroimage_2016_09_036
crossref_primary_10_3174_ajnr_A5542
crossref_primary_10_1002_nbm_3437
crossref_primary_10_3174_ajnr_A5668
crossref_primary_10_3390_jcm13051442
crossref_primary_10_1089_neu_2013_2952
crossref_primary_10_3390_jcm13237065
crossref_primary_10_1002_cmr_a_21357
crossref_primary_10_1162_imag_a_00177
crossref_primary_10_1007_s00234_017_1911_2
crossref_primary_10_1002_dneu_22552
crossref_primary_10_1016_j_neuroimage_2022_119743
crossref_primary_10_1002_nbm_4116
crossref_primary_10_1002_jmri_28308
crossref_primary_10_1371_journal_pone_0152480
crossref_primary_10_1002_nbm_3706
crossref_primary_10_1002_mrm_28324
crossref_primary_10_1002_mrm_29778
crossref_primary_10_1016_j_clinimag_2018_06_001
crossref_primary_10_3389_fnins_2022_819912
crossref_primary_10_1016_j_neuroimage_2024_120800
crossref_primary_10_1002_jmri_28936
crossref_primary_10_1002_jmri_26635
crossref_primary_10_1002_jmri_26998
crossref_primary_10_1016_j_nicl_2017_07_010
crossref_primary_10_1002_jmri_28938
crossref_primary_10_1002_mrm_30195
crossref_primary_10_1016_j_neuroimage_2017_08_038
crossref_primary_10_1002_mrm_28397
crossref_primary_10_7554_eLife_61523
crossref_primary_10_1088_1742_6596_886_1_012010
crossref_primary_10_1002_mrm_27221
crossref_primary_10_1177_0271678X211020860
crossref_primary_10_3390_cells8101204
crossref_primary_10_1523_JNEUROSCI_1043_22_2023
crossref_primary_10_1002_mrm_27984
crossref_primary_10_1093_texcom_tgab015
Cites_doi 10.1002/mrm.21143
10.1002/mrm.1910290607
10.1002/mrm.1910330404
10.1002/mrm.10514
10.1016/j.mri.2005.10.025
10.1002/mrm.1910100113
10.1002/mrm.10120
10.1002/mrm.22331
10.1148/radiology.182.2.1732968
10.1002/nbm.951
10.1002/mrm.20310
10.1016/j.neuroimage.2010.10.065
10.1002/mrm.21732
10.1002/jmri.20984
10.1002/nbm.1358
10.1002/hbm.10062
10.1177/1352458508096006
10.1002/mrm.22846
10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9
10.1088/0031-9155/54/23/N01
10.1016/S0730-725X(02)00598-2
10.1002/mrm.21705
10.1002/mrm.1910370426
10.1016/j.neuroimage.2009.11.054
10.1021/cr040659d
10.1002/mrm.21244
10.1002/mrm.10386
10.1016/j.neuroimage.2004.04.029
10.1002/mrm.21850
10.1002/mrm.21550
10.1016/j.neuroimage.2005.04.031
10.1002/jmri.1880070521
10.1002/mrm.21120
10.1002/mrm.22379
10.1002/mrm.1278
10.1002/mrm.10427
10.1016/j.neuroimage.2009.05.075
10.1002/mrm.21003
10.1002/mrm.22394
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mrm.23224
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 178
ExternalDocumentID PMC3311766
22190042
10_1002_mrm_23224
MRM23224
ark_67375_WNG_8X6VBDFT_M
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R21EB009908
– fundername: NIBIB NIH HHS
  grantid: R21 EB009908
– fundername: NIBIB NIH HHS
  grantid: R21EB009908
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R21 EB009908-02 || EB
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c5194-52973a868d8fb432b7be4dcbd68e6bffcbfc8fafa59baf9180d2384999388d043
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 17:39:02 EDT 2025
Thu Jul 10 18:45:52 EDT 2025
Sat May 31 02:07:47 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 01:20:49 EDT 2025
Wed Jan 22 17:11:46 EST 2025
Wed Oct 30 09:54:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5194-52973a868d8fb432b7be4dcbd68e6bffcbfc8fafa59baf9180d2384999388d043
Notes istex:4E58217FBB3EDE228A0D321B354DD8953E3BF6A7
ArticleID:MRM23224
NIH - No. R21EB009908
ark:/67375/WNG-8X6VBDFT-M
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.23224
PMID 22190042
PQID 1020513292
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3311766
proquest_miscellaneous_1020513292
pubmed_primary_22190042
crossref_citationtrail_10_1002_mrm_23224
crossref_primary_10_1002_mrm_23224
wiley_primary_10_1002_mrm_23224_MRM23224
istex_primary_ark_67375_WNG_8X6VBDFT_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008; 60: 1396-1407.
Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev 2005; 105: 2811-2828.
Gochberg DF, Gore JC. Quantitative imaging of magnetization transfer using an inversion recovery sequence. Magn Reson Med 2003; 49: 501-505.
Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26: 41-51.
Frank PM. Introduction to system sensitivity theory. New York: Academic Press; 1978. 386 p.
Gloor M, Scheffler K, Bieri O. Nonbalanced SSFP-based quantitative magnetization transfer imaging. Magn Reson Med 2010; 64: 149-156.
Yarnykh VL, Yuan C. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain. Neuroimage 2004; 23: 409-424.
Rausch M, Tofts P, Lervik P, Walmsley A, Mir A, Schubart A, Seabrook T. Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f. Mult Scler 2009; 15: 16-27.
Underhill HR, Yuan C, Yarnykh VL. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T. Neuroimage 2009; 47: 1568-1578.
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155.
Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992; 182: 483-491.
Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997; 37: 628-630.
Samson RS, Wheeler-Kingshott CA, Symms MR, Tozer DJ, Tofts PS. A simple correction for B1 field errors in magnetization transfer ratio measurements. Magn Reson Imaging 2006; 24: 255-263.
Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766.
Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. Quantitative magnetization transfer measured pool-size ratio reflects optic nerve myelin content in ex vivo mice. Magn Reson Med 2009; 61: 364-371.
Yarnykh VL. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn Reson Med 2010; 63: 1610-1626.
Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med 1995; 33: 475-482.
Ropele S, Filippi M, Valsasina P, Korteweg T, Barkhof F, Tofts PS, Samson R, Miller DH, Fazekas F. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn Reson Med 2005; 53: 134-140.
Cercignani M, Alexander DC. Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI. Magn Reson Med 2006; 56: 803-810.
Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441.
Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50: 83-91.
Gloor M, Scheffler K, Bieri O. Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 2008; 60: 691-700.
Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice. NMR Biomed 2009; 22: 480-487.
Portnoy S, Stanisz GJ. Modeling pulsed magnetization transfer. Magn Reson Med 2007; 58: 144-155.
Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage 2011; 54: 2052-2065.
Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010; 64: 177-185.
Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923-931.
Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 2002; 20: 721-731.
Soellinger M, Langkammer C, Seifert-Held T, Fazekas F, Ropele S. Fast bound pool fraction mapping using stimulated echoes. Magn Reson Med 2011; 66: 717-724.
Gochberg DF, Kennan RP, Robson MD, Gore JC. Quantitative imaging of magnetization transfer using multiple selective pulses. Magn Reson Med 1999; 41: 1065-1072.
Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007; 57: 192-200.
Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn Reson Med 2003; 49: 864-871.
Yarnykh VL. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn Reson Med 2002; 47: 929-939.
Cercignani M, Symms MR, Schmierer K, Boulby PA, Tozer DJ, Ron M, Tofts PS, Barker GJ. Three-dimensional quantitative magnetization transfer imaging of the human brain. Neuroimage 2005; 27: 436-441.
Helms G, Hagberg GE. In vivo quantification of the bound pool T1 in human white matter using the binary spin-bath model of progressive magnetization transfer saturation. Phys Med Biol 2009; 54: N529-N540.
Lee RR, Dagher AP. Low power method for estimating the magnetization transfer bound-pool macromolecular fraction. J Magn Reson Imaging 1997; 7: 913-917.
Odrobina EE, Lam TY, Pun T, Midha R, Stanisz GJ. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed 2005; 18: 277-284.
Wolf SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135-144.
Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R. A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage 2010; 49: 3015-3026.
Ou X, Gochberg DF. MT effects and T1 quantification in single-slice spoiled gradient echo imaging. Magn Reson Med 2008; 59: 835-845.
2009; 22
2002; 17
2009; 47
1992; 182
1993; 29
2006; 56
2009; 61
2010
1995; 33
2004; 23
2009
2008; 59
2011; 54
1999; 41
2003; 50
2005; 27
2001; 46
2007; 57
2010; 63
2007; 58
1997; 7
1978
2002; 47
2010; 64
2010; 49
2009; 54
1989; 10
2002; 20
2006; 24
1997; 37
2005; 105
2011; 66
2005; 53
2003; 49
2008; 60
2005; 18
2009; 15
2007; 26
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Frank PM (e_1_2_8_32_2) 1978
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
References_xml – reference: Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. Quantitative magnetization transfer measured pool-size ratio reflects optic nerve myelin content in ex vivo mice. Magn Reson Med 2009; 61: 364-371.
– reference: Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923-931.
– reference: Ropele S, Filippi M, Valsasina P, Korteweg T, Barkhof F, Tofts PS, Samson R, Miller DH, Fazekas F. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn Reson Med 2005; 53: 134-140.
– reference: Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441.
– reference: Frank PM. Introduction to system sensitivity theory. New York: Academic Press; 1978. 386 p.
– reference: Gochberg DF, Gore JC. Quantitative imaging of magnetization transfer using an inversion recovery sequence. Magn Reson Med 2003; 49: 501-505.
– reference: Yarnykh VL. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn Reson Med 2010; 63: 1610-1626.
– reference: Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766.
– reference: Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007; 57: 192-200.
– reference: Rausch M, Tofts P, Lervik P, Walmsley A, Mir A, Schubart A, Seabrook T. Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f. Mult Scler 2009; 15: 16-27.
– reference: Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med 1995; 33: 475-482.
– reference: Gloor M, Scheffler K, Bieri O. Nonbalanced SSFP-based quantitative magnetization transfer imaging. Magn Reson Med 2010; 64: 149-156.
– reference: Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50: 83-91.
– reference: Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26: 41-51.
– reference: Helms G, Hagberg GE. In vivo quantification of the bound pool T1 in human white matter using the binary spin-bath model of progressive magnetization transfer saturation. Phys Med Biol 2009; 54: N529-N540.
– reference: Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010; 64: 177-185.
– reference: Soellinger M, Langkammer C, Seifert-Held T, Fazekas F, Ropele S. Fast bound pool fraction mapping using stimulated echoes. Magn Reson Med 2011; 66: 717-724.
– reference: Ou X, Gochberg DF. MT effects and T1 quantification in single-slice spoiled gradient echo imaging. Magn Reson Med 2008; 59: 835-845.
– reference: Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992; 182: 483-491.
– reference: Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008; 60: 1396-1407.
– reference: Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R. A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage 2010; 49: 3015-3026.
– reference: Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage 2011; 54: 2052-2065.
– reference: Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev 2005; 105: 2811-2828.
– reference: Underhill HR, Yuan C, Yarnykh VL. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T. Neuroimage 2009; 47: 1568-1578.
– reference: Gochberg DF, Kennan RP, Robson MD, Gore JC. Quantitative imaging of magnetization transfer using multiple selective pulses. Magn Reson Med 1999; 41: 1065-1072.
– reference: Gloor M, Scheffler K, Bieri O. Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 2008; 60: 691-700.
– reference: Cercignani M, Alexander DC. Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI. Magn Reson Med 2006; 56: 803-810.
– reference: Samson RS, Wheeler-Kingshott CA, Symms MR, Tozer DJ, Tofts PS. A simple correction for B1 field errors in magnetization transfer ratio measurements. Magn Reson Imaging 2006; 24: 255-263.
– reference: Yarnykh VL, Yuan C. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain. Neuroimage 2004; 23: 409-424.
– reference: Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice. NMR Biomed 2009; 22: 480-487.
– reference: Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn Reson Med 2003; 49: 864-871.
– reference: Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997; 37: 628-630.
– reference: Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 2002; 20: 721-731.
– reference: Cercignani M, Symms MR, Schmierer K, Boulby PA, Tozer DJ, Ron M, Tofts PS, Barker GJ. Three-dimensional quantitative magnetization transfer imaging of the human brain. Neuroimage 2005; 27: 436-441.
– reference: Portnoy S, Stanisz GJ. Modeling pulsed magnetization transfer. Magn Reson Med 2007; 58: 144-155.
– reference: Wolf SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135-144.
– reference: Odrobina EE, Lam TY, Pun T, Midha R, Stanisz GJ. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed 2005; 18: 277-284.
– reference: Lee RR, Dagher AP. Low power method for estimating the magnetization transfer bound-pool macromolecular fraction. J Magn Reson Imaging 1997; 7: 913-917.
– reference: Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155.
– reference: Yarnykh VL. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn Reson Med 2002; 47: 929-939.
– volume: 47
  start-page: 929
  year: 2002
  end-page: 939
  article-title: Pulsed Z‐spectroscopic imaging of cross‐relaxation parameters in tissues for human MRI: theory and clinical applications
  publication-title: Magn Reson Med
– volume: 49
  start-page: 501
  year: 2003
  end-page: 505
  article-title: Quantitative imaging of magnetization transfer using an inversion recovery sequence
  publication-title: Magn Reson Med
– start-page: 386
  year: 1978
– volume: 46
  start-page: 923
  year: 2001
  end-page: 931
  article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI
  publication-title: Magn Reson Med
– volume: 64
  start-page: 149
  year: 2010
  end-page: 156
  article-title: Nonbalanced SSFP‐based quantitative magnetization transfer imaging
  publication-title: Magn Reson Med
– volume: 22
  start-page: 480
  year: 2009
  end-page: 487
  article-title: The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice
  publication-title: NMR Biomed
– volume: 66
  start-page: 717
  year: 2011
  end-page: 724
  article-title: Fast bound pool fraction mapping using stimulated echoes
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1610
  year: 2010
  end-page: 1626
  article-title: Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady‐state techniques
  publication-title: Magn Reson Med
– volume: 61
  start-page: 364
  year: 2009
  end-page: 371
  article-title: Quantitative magnetization transfer measured pool‐size ratio reflects optic nerve myelin content in ex vivo mice
  publication-title: Magn Reson Med
– volume: 23
  start-page: 409
  year: 2004
  end-page: 424
  article-title: Cross‐relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain
  publication-title: Neuroimage
– volume: 20
  start-page: 721
  year: 2002
  end-page: 731
  article-title: Precise estimate of fundamental in‐vivo MT parameters in human brain in clinically feasible times
  publication-title: Magn Reson Imaging
– volume: 58
  start-page: 144
  year: 2007
  end-page: 155
  article-title: Modeling pulsed magnetization transfer
  publication-title: Magn Reson Med
– volume: 54
  start-page: N529
  year: 2009
  end-page: N540
  article-title: In vivo quantification of the bound pool T1 in human white matter using the binary spin‐bath model of progressive magnetization transfer saturation
  publication-title: Phys Med Biol
– volume: 18
  start-page: 277
  year: 2005
  end-page: 284
  article-title: MR properties of excised neural tissue following experimentally induced demyelination
  publication-title: NMR Biomed
– volume: 37
  start-page: 628
  year: 1997
  end-page: 630
  article-title: An extended two‐point Dixon algorithm for calculating separate water, fat, and B0 images
  publication-title: Magn Reson Med
– volume: 49
  start-page: 864
  year: 2003
  end-page: 871
  article-title: Method for quantitative imaging of the macromolecular 1H fraction in tissues
  publication-title: Magn Reson Med
– volume: 57
  start-page: 437
  year: 2007
  end-page: 441
  article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times
  publication-title: Magn Reson Med
– volume: 29
  start-page: 759
  year: 1993
  end-page: 766
  article-title: Quantitative interpretation of magnetization transfer
  publication-title: Magn Reson Med
– volume: 26
  start-page: 41
  year: 2007
  end-page: 51
  article-title: Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– start-page: 4482
  year: 2009
– volume: 60
  start-page: 1396
  year: 2008
  end-page: 1407
  article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI
  publication-title: Magn Reson Med
– volume: 7
  start-page: 913
  year: 1997
  end-page: 917
  article-title: Low power method for estimating the magnetization transfer bound‐pool macromolecular fraction
  publication-title: J Magn Reson Imaging
– volume: 54
  start-page: 2052
  year: 2011
  end-page: 2065
  article-title: Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model
  publication-title: Neuroimage
– volume: 64
  start-page: 177
  year: 2010
  end-page: 185
  article-title: Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI
  publication-title: Magn Reson Med
– volume: 41
  start-page: 1065
  year: 1999
  end-page: 1072
  article-title: Quantitative imaging of magnetization transfer using multiple selective pulses
  publication-title: Magn Reson Med
– volume: 10
  start-page: 135
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med
– volume: 60
  start-page: 691
  year: 2008
  end-page: 700
  article-title: Quantitative magnetization transfer imaging using balanced SSFP
  publication-title: Magn Reson Med
– volume: 56
  start-page: 803
  year: 2006
  end-page: 810
  article-title: Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI
  publication-title: Magn Reson Med
– volume: 15
  start-page: 16
  year: 2009
  end-page: 27
  article-title: Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f
  publication-title: Mult Scler
– volume: 50
  start-page: 83
  year: 2003
  end-page: 91
  article-title: Quantitative magnetization transfer mapping of bound protons in multiple sclerosis
  publication-title: Magn Reson Med
– volume: 59
  start-page: 835
  year: 2008
  end-page: 845
  article-title: MT effects and quantification in single‐slice spoiled gradient echo imaging
  publication-title: Magn Reson Med
– volume: 182
  start-page: 483
  year: 1992
  end-page: 491
  article-title: Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging
  publication-title: Radiology
– volume: 24
  start-page: 255
  year: 2006
  end-page: 263
  article-title: A simple correction for B1 field errors in magnetization transfer ratio measurements
  publication-title: Magn Reson Imaging
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 53
  start-page: 134
  year: 2005
  end-page: 140
  article-title: Assessment and correction of B1‐induced errors in magnetization transfer ratio measurements
  publication-title: Magn Reson Med
– start-page: 4515
  year: 2010
– volume: 33
  start-page: 475
  year: 1995
  end-page: 482
  article-title: A model for magnetization transfer in tissues
  publication-title: Magn Reson Med
– volume: 27
  start-page: 436
  year: 2005
  end-page: 441
  article-title: Three‐dimensional quantitative magnetization transfer imaging of the human brain
  publication-title: Neuroimage
– volume: 49
  start-page: 3015
  year: 2010
  end-page: 3026
  article-title: A fast B1‐mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T
  publication-title: Neuroimage
– volume: 47
  start-page: 1568
  year: 2009
  end-page: 1578
  article-title: Direct quantitative comparison between cross‐relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T
  publication-title: Neuroimage
– volume: 105
  start-page: 2811
  year: 2005
  end-page: 2828
  article-title: Sensitivity analysis for chemical models
  publication-title: Chem Rev
– ident: e_1_2_8_15_2
  doi: 10.1002/mrm.21143
– ident: e_1_2_8_5_2
  doi: 10.1002/mrm.1910290607
– ident: e_1_2_8_6_2
  doi: 10.1002/mrm.1910330404
– ident: e_1_2_8_12_2
  doi: 10.1002/mrm.10514
– ident: e_1_2_8_39_2
  doi: 10.1016/j.mri.2005.10.025
– ident: e_1_2_8_2_2
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_8_27_2
– ident: e_1_2_8_9_2
  doi: 10.1002/mrm.10120
– ident: e_1_2_8_19_2
  doi: 10.1002/mrm.22331
– ident: e_1_2_8_3_2
  doi: 10.1148/radiology.182.2.1732968
– ident: e_1_2_8_23_2
  doi: 10.1002/nbm.951
– ident: e_1_2_8_38_2
  doi: 10.1002/mrm.20310
– ident: e_1_2_8_28_2
  doi: 10.1016/j.neuroimage.2010.10.065
– ident: e_1_2_8_4_2
  doi: 10.1002/mrm.21732
– ident: e_1_2_8_22_2
  doi: 10.1002/jmri.20984
– ident: e_1_2_8_26_2
  doi: 10.1002/nbm.1358
– ident: e_1_2_8_37_2
  doi: 10.1002/hbm.10062
– ident: e_1_2_8_24_2
  doi: 10.1177/1352458508096006
– ident: e_1_2_8_31_2
  doi: 10.1002/mrm.22846
– ident: e_1_2_8_7_2
  doi: 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9
– ident: e_1_2_8_17_2
  doi: 10.1088/0031-9155/54/23/N01
– ident: e_1_2_8_10_2
  doi: 10.1016/S0730-725X(02)00598-2
– start-page: 386
  volume-title: Introduction to system sensitivity theory
  year: 1978
  ident: e_1_2_8_32_2
– ident: e_1_2_8_16_2
  doi: 10.1002/mrm.21705
– ident: e_1_2_8_34_2
  doi: 10.1002/mrm.1910370426
– ident: e_1_2_8_41_2
  doi: 10.1016/j.neuroimage.2009.11.054
– ident: e_1_2_8_33_2
  doi: 10.1021/cr040659d
– ident: e_1_2_8_21_2
  doi: 10.1002/mrm.21244
– ident: e_1_2_8_11_2
  doi: 10.1002/mrm.10386
– ident: e_1_2_8_13_2
  doi: 10.1016/j.neuroimage.2004.04.029
– ident: e_1_2_8_25_2
  doi: 10.1002/mrm.21850
– ident: e_1_2_8_43_2
  doi: 10.1002/mrm.21550
– ident: e_1_2_8_14_2
  doi: 10.1016/j.neuroimage.2005.04.031
– ident: e_1_2_8_29_2
  doi: 10.1002/jmri.1880070521
– ident: e_1_2_8_35_2
  doi: 10.1002/mrm.21120
– ident: e_1_2_8_42_2
  doi: 10.1002/mrm.22379
– ident: e_1_2_8_8_2
  doi: 10.1002/mrm.1278
– ident: e_1_2_8_30_2
  doi: 10.1002/mrm.10427
– ident: e_1_2_8_18_2
  doi: 10.1016/j.neuroimage.2009.05.075
– ident: e_1_2_8_40_2
– ident: e_1_2_8_20_2
  doi: 10.1002/mrm.21003
– ident: e_1_2_8_36_2
  doi: 10.1002/mrm.22394
SSID ssj0009974
Score 2.4151046
Snippet A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The...
A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The...
A new method was developed for fast quantitative mapping of the macromolecular proton fraction (MPF) defined within the two-pool model of magnetization...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 166
SubjectTerms Adult
Algorithms
brain
Computer Simulation
cross-relaxation
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
macromolecular proton fraction
Macromolecular Substances - analysis
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
magnetization transfer
Middle Aged
Models, Biological
Models, Statistical
multiple sclerosis
Multiple Sclerosis - metabolism
Multiple Sclerosis - pathology
Protons
Reproducibility of Results
Sensitivity and Specificity
Title Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement
URI https://api.istex.fr/ark:/67375/WNG-8X6VBDFT-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23224
https://www.ncbi.nlm.nih.gov/pubmed/22190042
https://www.proquest.com/docview/1020513292
https://pubmed.ncbi.nlm.nih.gov/PMC3311766
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMetaQjEy4BxCzcZhBAv6VI7dWzxBIwyIWUP0wZ9QIp8HWhtMqWphHjiI_AZ-SQcO5dSGBKiT5VyGsnuOcd_28c_I_SUEQdZjulYOMLiVNksVoKbmBKTMQfjvQkb7fkhOzhJ380msy30oj8L0_IhhgU3HxkhX_sAl2q5t4aGLurFCOQA8SzQMWWem79_tEZHCdESmLPU5xmR9lShhOwNv9wYiy75bv1ykdD8s17yVx0bBqLpNfSxb0Jbf3I2WjVqpL_-Rnf8zzZeRzudQMUvW4-6gbZsuYuu5N0W_C66HGpG9fImmk_lssELGSr6ukt2sec-VCV2dXtgAh57AMQp9sdYsMR-ZWJuceXcj2_fYaZfed6HBavT0jbdkVDcBDFta7xYL2DeQifTN8evD-Lu8oZYgyhMYYIrMio544Y7lVKiMmVTo5Vh3DLlnFZOcyednAglnRjzxIB68PMvyrlJUnobbZdVae8ibC3T8EmJgSk0k1wkRqqEJVQzA0EuI_S8_xsL3ZHN_QUb86JlMpMC-rEI_RihJ4PpeYvzuMjoWfCFwULWZ77-LZsUHw7fFnzG3r_anx4XeYQe985SQFT6rRZZ2mq1hBcSyHaUCBKhO63zDG8jMEj4XBmhbMOtBgNP_N58Un7-FMjflI490BMaHLzm700o8qM8fLn376b30VVQg10t8gO03dQr-xAUV6MehdD6CavnK54
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTTBe-DNglL8GIcRLusxxHUfiBRilwNKHqYO-oMiO7YHWpihNJcQTH4HPyCfh7KQphSEh8hTJF0t27s6_O59_BnjEqUUvx_MgsZQHTJk4UInQQUR1zC2u99pvtKdDPjhmb8a98QY8XZ6Fqfkh2oSbswzvr52Bu4T03oo1dFpOu4gHKDsHWwyBhgu9Do5W5FFJUnMwx8x5moQteYVCutd-urYabbmJ_XIW1PyzYvJXJOuXov5l-LAcRF2BctpdVKqbf_2N3_F_R3kFLjUYlTyrleoqbJhiBy6kzS78Dpz3ZaP5_BpM-nJekan0RX3NPbvEUT_MCmLL-swENjsOiBPiTrIQSVxyYmLIzNof375jsD9zlB8GpU4KUzWnQknl8bQpyXSVw7wOx_2XoxeDoLm_IcgRFzKMcZM4koILLaxiEVWxMkznSnNhuLI2VzYXVlrZS5S0yb4INQIIF4JFQuiQRTdgs5gV5iYQY3iOD6Mao2guRRJqqUIeRjnXaOeyA0-W_zHLG3Jzd8fGJKtpmWmG85j5eezAw1b0c83ocZbQY68MrYQsT10JXNzL3g9fZWLM3z0_6I-ytAMPltqSoWG63RZZmNlijh1SdHgRTWgHdmvtaXujuE44d9mBeE2vWgFH-r3eUnz66Mm_o2jfcXrigL3a_H0IWXqU-pdb_y56H7YHo_QwO3w9fHsbLiI4bEqT78BmVS7MXQRglbrn7ewnP_YvvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h44TJu4WoQQrykyxzXccQTMMq4tELTNvqAFNmxPdDaZGpTCfHET-A38ks4di6lMCREniL5xJKdc_lsn_MZ4BGnFr0cz8PUUh4yZZJQpUKHMdUJtxjvtT9oH4743iF7M-6P1-BpWwtT80N0G27OMry_dgZ-qu32kjR0Opv2EA5Qdg42GEck4RDR_pI7Kk1rCuaEOUeTspZWKKLb3acrwWjDzeuXs5DmnwmTvwJZH4kGl-BjO4Y6AeWkt6hUL__6G73jfw7yMlxsECp5VqvUFVgzxRZsDpsz-C0475NG8_lVmAzkvCJT6VP6mlt2iSN-KAtiZ3XFBDY7Bohj4upYiCRua2JiSGntj2_fcalfOsIPg1LHhamamlBSeTRtZmS63MG8BoeDlwcv9sLm9oYwR1TIcIWbJrEUXGhhFYupSpRhOleaC8OVtbmyubDSyn6qpE13RKQRPrgFWCyEjlh8HdaLsjA3gRjDc3wY1biG5lKkkZYq4lGcc41WLgN40v7GLG-ozd0NG5OsJmWmGc5j5ucxgIed6GnN53GW0GOvC52EnJ24BLikn30YvcrEmB893x0cZMMAHrTKkqFZurMWWZhyMccOKbq7mKY0gBu18nS9UYwSzlkGkKyoVSfgKL9XW4rPnzz1dxzvOEZPHLDXmr8PIRvuD_3LrX8XvQ-b73cH2bvXo7e34QIiwyYv-Q6sV7OFuYvoq1L3vJX9BJ7ZLmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Macromolecular+Proton+Fraction+Mapping+from+a+Single+Off-resonance+Magnetization+Transfer+Measurement&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yarnykh%2C+Vasily+L.&rft.date=2012-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=1&rft.spage=166&rft.epage=178&rft_id=info:doi/10.1002%2Fmrm.23224&rft_id=info%3Apmid%2F22190042&rft.externalDocID=PMC3311766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon