Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement
A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the tot...
Saved in:
Published in | Magnetic resonance in medicine Vol. 68; no. 1; pp. 166 - 178 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.23224 |
Cover
Abstract | A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%. A new method was developed for fast quantitative mapping of the macromolecular proton fraction (MPF) defined within the two-pool model of magnetization transfer (MT). The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T 1 , B 0 , and B 1 maps with the total acquisition time ~10 min for whole-brain imaging. MPF maps are reconstructed by iterative solution of the matrix pulsed MT equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multi-parameter multi-point fit of the pulsed MT model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative MPF errors. Comparison with the multi-parameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%.A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The method utilizes a single image with off-resonance saturation, a reference image for data normalization, and T(1), B(0), and B(1) maps with the total acquisition time ~10 min for whole-brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4-7 kHz and 600°-900°, respectively. At optimal sampling conditions, the single-point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ± 0.7%. A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T1, B0, and B1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The method utilizes a single image with off‐resonance saturation, a reference image for data normalization, and T 1 , B 0 , and B 1 maps with the total acquisition time ∼10 min for whole‐brain imaging. Macromolecular proton fraction maps are reconstructed by iterative solution of the matrix pulsed magnetization transfer equation with constrained values of other model parameters. Theoretical error model describing the variance due to noise and the bias due to deviations of constrained parameters from their actual values was formulated based on error propagation rules. The method was validated by comparison with the conventional multiparameter multipoint fit of the pulsed magnetization transfer model based on data from two healthy subjects and two multiple sclerosis patients. It was demonstrated theoretically and experimentally that accuracy of the method depends on the offset frequency and flip angle of the saturation pulse, and optimal ranges of these parameters are 4–7 kHz and 600°–900°, respectively. At optimal sampling conditions, the single‐point method enables <10% relative macromolecular proton fraction errors. Comparison with the multiparameter fitting method revealed very good agreement with no significant bias and limits of agreement around ±0.7%. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
Author | Yarnykh, Vasily L. |
Author_xml | – sequence: 1 givenname: Vasily L. surname: Yarnykh fullname: Yarnykh, Vasily L. email: yarnykh@u.washington.edu organization: Department of Radiology, University of Washington, Seattle, Washington, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22190042$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URKeFBX8AZQmLtI7tJPYGiRamIHVAQuWxsxznenCJ7WAnQPn1mHlUgGDlK_t851jnHqEDHzwg9LDCJxXG5NRFd0IoIewOWlQ1ISWpBTtAC9wyXNJKsEN0lNI1xliIlt1Dh4RUAmNGFuh6qdJUOKVjcGEAPQ8qFmMMU_CFiUpPNg9OjaP163wRXKGKlOcBimBMGSEFr7yGrFl7mOwPtSGmqHwyEAsHKs0RHPjpPrpr1JDgwe48Ru-WL67OX5aXby5enT-7LHWdv1rWRLRU8Yb33HSMkq7tgPW66xsOTWeM7ozmRhlVi04ZUXHcE8qZEIJy3mNGj9HTre84dw56naOjGuQYrVPxRgZl5Z8v3n6S6_BVUlpVbdNkg8c7gxi-zJAm6WzSMAzKQ5iTrDDBdUWJIFn66Pes25B9wVlwuhXkglOKYKS206ajHG2H7CV_rVDmFcrNCjPx5C9ib_ov7c79mx3g5v9CuXq72hPllrBpgu-3hIqfZdPStpYfXl9I_rF5f_Z8eSVX9Cfz5L4l |
CitedBy_id | crossref_primary_10_1038_s41598_024_67445_4 crossref_primary_10_3389_fnhum_2022_922552 crossref_primary_10_1016_j_neuroimage_2015_03_068 crossref_primary_10_1016_j_neuroimage_2022_119641 crossref_primary_10_1002_mrm_30144 crossref_primary_10_1016_j_neuroimage_2017_11_065 crossref_primary_10_1002_nbm_3004 crossref_primary_10_1002_mrm_26164 crossref_primary_10_1002_mrm_29430 crossref_primary_10_1007_s12194_024_00843_5 crossref_primary_10_1016_j_zemedi_2023_02_005 crossref_primary_10_1038_s41380_022_01740_2 crossref_primary_10_1016_j_mri_2020_01_014 crossref_primary_10_1148_radiol_14140528 crossref_primary_10_1016_j_mri_2015_03_003 crossref_primary_10_1016_j_nicl_2022_103244 crossref_primary_10_1002_mrm_28984 crossref_primary_10_1002_mrm_29678 crossref_primary_10_1002_mrm_29951 crossref_primary_10_3389_fnhum_2021_662031 crossref_primary_10_1002_mrm_25516 crossref_primary_10_1007_s10334_024_01190_7 crossref_primary_10_1002_mrm_28509 crossref_primary_10_2463_mrms_rev_2024_0001 crossref_primary_10_1002_mrm_30013 crossref_primary_10_1002_mrm_28212 crossref_primary_10_1016_j_neuroimage_2019_05_061 crossref_primary_10_1371_journal_pone_0196297 crossref_primary_10_1002_mrm_29140 crossref_primary_10_1002_mrm_26673 crossref_primary_10_22328_2079_5343_2023_14_4_36_44 crossref_primary_10_1016_j_nicl_2014_07_010 crossref_primary_10_1371_journal_pone_0119915 crossref_primary_10_1016_j_neuroimage_2022_119785 crossref_primary_10_1002_mrm_27792 crossref_primary_10_1002_jmri_29710 crossref_primary_10_1002_mrm_29055 crossref_primary_10_1002_mrm_28362 crossref_primary_10_1109_TMI_2021_3088258 crossref_primary_10_1002_mrm_25811 crossref_primary_10_1016_j_neuroimage_2014_03_005 crossref_primary_10_1016_j_brainres_2015_06_006 crossref_primary_10_1111_desc_13323 crossref_primary_10_1177_20552173231211396 crossref_primary_10_1007_s11172_021_3343_8 crossref_primary_10_1177_0271678X18755203 crossref_primary_10_22328_2079_5343_2022_13_2_50_58 crossref_primary_10_1002_mrm_26176 crossref_primary_10_1016_j_nicl_2020_102234 crossref_primary_10_1016_j_neuroimage_2020_117678 crossref_primary_10_3389_fnagi_2024_1306312 crossref_primary_10_1002_mrm_29207 crossref_primary_10_1002_mrm_24677 crossref_primary_10_1016_j_neuroimage_2019_06_049 crossref_primary_10_1038_srep46686 crossref_primary_10_1002_jmri_27088 crossref_primary_10_1088_1742_6596_677_1_012006 crossref_primary_10_1038_s41398_021_01475_8 crossref_primary_10_1016_j_nicl_2019_101921 crossref_primary_10_1002_mrm_27174 crossref_primary_10_1038_nrneurol_2015_194 crossref_primary_10_1002_mrm_27337 crossref_primary_10_1038_s41380_024_02883_0 crossref_primary_10_1002_mrm_28940 crossref_primary_10_1002_mrm_29512 crossref_primary_10_1093_brain_awac436 crossref_primary_10_1093_braincomms_fcac088 crossref_primary_10_1007_s11172_021_3344_7 crossref_primary_10_1002_nbm_5293 crossref_primary_10_1002_mrm_26909 crossref_primary_10_1016_j_dib_2016_11_066 crossref_primary_10_1016_j_neuroimage_2023_119974 crossref_primary_10_2217_cnc_2016_0028 crossref_primary_10_1007_s11182_015_0451_7 crossref_primary_10_1016_j_joca_2014_06_004 crossref_primary_10_1007_s00247_020_04777_z crossref_primary_10_1016_j_neuroimage_2016_09_036 crossref_primary_10_3174_ajnr_A5542 crossref_primary_10_1002_nbm_3437 crossref_primary_10_3174_ajnr_A5668 crossref_primary_10_3390_jcm13051442 crossref_primary_10_1089_neu_2013_2952 crossref_primary_10_3390_jcm13237065 crossref_primary_10_1002_cmr_a_21357 crossref_primary_10_1162_imag_a_00177 crossref_primary_10_1007_s00234_017_1911_2 crossref_primary_10_1002_dneu_22552 crossref_primary_10_1016_j_neuroimage_2022_119743 crossref_primary_10_1002_nbm_4116 crossref_primary_10_1002_jmri_28308 crossref_primary_10_1371_journal_pone_0152480 crossref_primary_10_1002_nbm_3706 crossref_primary_10_1002_mrm_28324 crossref_primary_10_1002_mrm_29778 crossref_primary_10_1016_j_clinimag_2018_06_001 crossref_primary_10_3389_fnins_2022_819912 crossref_primary_10_1016_j_neuroimage_2024_120800 crossref_primary_10_1002_jmri_28936 crossref_primary_10_1002_jmri_26635 crossref_primary_10_1002_jmri_26998 crossref_primary_10_1016_j_nicl_2017_07_010 crossref_primary_10_1002_jmri_28938 crossref_primary_10_1002_mrm_30195 crossref_primary_10_1016_j_neuroimage_2017_08_038 crossref_primary_10_1002_mrm_28397 crossref_primary_10_7554_eLife_61523 crossref_primary_10_1088_1742_6596_886_1_012010 crossref_primary_10_1002_mrm_27221 crossref_primary_10_1177_0271678X211020860 crossref_primary_10_3390_cells8101204 crossref_primary_10_1523_JNEUROSCI_1043_22_2023 crossref_primary_10_1002_mrm_27984 crossref_primary_10_1093_texcom_tgab015 |
Cites_doi | 10.1002/mrm.21143 10.1002/mrm.1910290607 10.1002/mrm.1910330404 10.1002/mrm.10514 10.1016/j.mri.2005.10.025 10.1002/mrm.1910100113 10.1002/mrm.10120 10.1002/mrm.22331 10.1148/radiology.182.2.1732968 10.1002/nbm.951 10.1002/mrm.20310 10.1016/j.neuroimage.2010.10.065 10.1002/mrm.21732 10.1002/jmri.20984 10.1002/nbm.1358 10.1002/hbm.10062 10.1177/1352458508096006 10.1002/mrm.22846 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9 10.1088/0031-9155/54/23/N01 10.1016/S0730-725X(02)00598-2 10.1002/mrm.21705 10.1002/mrm.1910370426 10.1016/j.neuroimage.2009.11.054 10.1021/cr040659d 10.1002/mrm.21244 10.1002/mrm.10386 10.1016/j.neuroimage.2004.04.029 10.1002/mrm.21850 10.1002/mrm.21550 10.1016/j.neuroimage.2005.04.031 10.1002/jmri.1880070521 10.1002/mrm.21120 10.1002/mrm.22379 10.1002/mrm.1278 10.1002/mrm.10427 10.1016/j.neuroimage.2009.05.075 10.1002/mrm.21003 10.1002/mrm.22394 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/mrm.23224 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 178 |
ExternalDocumentID | PMC3311766 22190042 10_1002_mrm_23224 MRM23224 ark_67375_WNG_8X6VBDFT_M |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R21EB009908 – fundername: NIBIB NIH HHS grantid: R21 EB009908 – fundername: NIBIB NIH HHS grantid: R21EB009908 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R21 EB009908-02 || EB |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c5194-52973a868d8fb432b7be4dcbd68e6bffcbfc8fafa59baf9180d2384999388d043 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 17:39:02 EDT 2025 Thu Jul 10 18:45:52 EDT 2025 Sat May 31 02:07:47 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Wed Jan 22 17:11:46 EST 2025 Wed Oct 30 09:54:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5194-52973a868d8fb432b7be4dcbd68e6bffcbfc8fafa59baf9180d2384999388d043 |
Notes | istex:4E58217FBB3EDE228A0D321B354DD8953E3BF6A7 ArticleID:MRM23224 NIH - No. R21EB009908 ark:/67375/WNG-8X6VBDFT-M ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.23224 |
PMID | 22190042 |
PQID | 1020513292 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3311766 proquest_miscellaneous_1020513292 pubmed_primary_22190042 crossref_citationtrail_10_1002_mrm_23224 crossref_primary_10_1002_mrm_23224 wiley_primary_10_1002_mrm_23224_MRM23224 istex_primary_ark_67375_WNG_8X6VBDFT_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008; 60: 1396-1407. Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev 2005; 105: 2811-2828. Gochberg DF, Gore JC. Quantitative imaging of magnetization transfer using an inversion recovery sequence. Magn Reson Med 2003; 49: 501-505. Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26: 41-51. Frank PM. Introduction to system sensitivity theory. New York: Academic Press; 1978. 386 p. Gloor M, Scheffler K, Bieri O. Nonbalanced SSFP-based quantitative magnetization transfer imaging. Magn Reson Med 2010; 64: 149-156. Yarnykh VL, Yuan C. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain. Neuroimage 2004; 23: 409-424. Rausch M, Tofts P, Lervik P, Walmsley A, Mir A, Schubart A, Seabrook T. Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f. Mult Scler 2009; 15: 16-27. Underhill HR, Yuan C, Yarnykh VL. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T. Neuroimage 2009; 47: 1568-1578. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155. Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992; 182: 483-491. Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997; 37: 628-630. Samson RS, Wheeler-Kingshott CA, Symms MR, Tozer DJ, Tofts PS. A simple correction for B1 field errors in magnetization transfer ratio measurements. Magn Reson Imaging 2006; 24: 255-263. Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766. Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. Quantitative magnetization transfer measured pool-size ratio reflects optic nerve myelin content in ex vivo mice. Magn Reson Med 2009; 61: 364-371. Yarnykh VL. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn Reson Med 2010; 63: 1610-1626. Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med 1995; 33: 475-482. Ropele S, Filippi M, Valsasina P, Korteweg T, Barkhof F, Tofts PS, Samson R, Miller DH, Fazekas F. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn Reson Med 2005; 53: 134-140. Cercignani M, Alexander DC. Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI. Magn Reson Med 2006; 56: 803-810. Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441. Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50: 83-91. Gloor M, Scheffler K, Bieri O. Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 2008; 60: 691-700. Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice. NMR Biomed 2009; 22: 480-487. Portnoy S, Stanisz GJ. Modeling pulsed magnetization transfer. Magn Reson Med 2007; 58: 144-155. Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage 2011; 54: 2052-2065. Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010; 64: 177-185. Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923-931. Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 2002; 20: 721-731. Soellinger M, Langkammer C, Seifert-Held T, Fazekas F, Ropele S. Fast bound pool fraction mapping using stimulated echoes. Magn Reson Med 2011; 66: 717-724. Gochberg DF, Kennan RP, Robson MD, Gore JC. Quantitative imaging of magnetization transfer using multiple selective pulses. Magn Reson Med 1999; 41: 1065-1072. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007; 57: 192-200. Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn Reson Med 2003; 49: 864-871. Yarnykh VL. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn Reson Med 2002; 47: 929-939. Cercignani M, Symms MR, Schmierer K, Boulby PA, Tozer DJ, Ron M, Tofts PS, Barker GJ. Three-dimensional quantitative magnetization transfer imaging of the human brain. Neuroimage 2005; 27: 436-441. Helms G, Hagberg GE. In vivo quantification of the bound pool T1 in human white matter using the binary spin-bath model of progressive magnetization transfer saturation. Phys Med Biol 2009; 54: N529-N540. Lee RR, Dagher AP. Low power method for estimating the magnetization transfer bound-pool macromolecular fraction. J Magn Reson Imaging 1997; 7: 913-917. Odrobina EE, Lam TY, Pun T, Midha R, Stanisz GJ. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed 2005; 18: 277-284. Wolf SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135-144. Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R. A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage 2010; 49: 3015-3026. Ou X, Gochberg DF. MT effects and T1 quantification in single-slice spoiled gradient echo imaging. Magn Reson Med 2008; 59: 835-845. 2009; 22 2002; 17 2009; 47 1992; 182 1993; 29 2006; 56 2009; 61 2010 1995; 33 2004; 23 2009 2008; 59 2011; 54 1999; 41 2003; 50 2005; 27 2001; 46 2007; 57 2010; 63 2007; 58 1997; 7 1978 2002; 47 2010; 64 2010; 49 2009; 54 1989; 10 2002; 20 2006; 24 1997; 37 2005; 105 2011; 66 2005; 53 2003; 49 2008; 60 2005; 18 2009; 15 2007; 26 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 Frank PM (e_1_2_8_32_2) 1978 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 |
References_xml | – reference: Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. Quantitative magnetization transfer measured pool-size ratio reflects optic nerve myelin content in ex vivo mice. Magn Reson Med 2009; 61: 364-371. – reference: Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923-931. – reference: Ropele S, Filippi M, Valsasina P, Korteweg T, Barkhof F, Tofts PS, Samson R, Miller DH, Fazekas F. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn Reson Med 2005; 53: 134-140. – reference: Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441. – reference: Frank PM. Introduction to system sensitivity theory. New York: Academic Press; 1978. 386 p. – reference: Gochberg DF, Gore JC. Quantitative imaging of magnetization transfer using an inversion recovery sequence. Magn Reson Med 2003; 49: 501-505. – reference: Yarnykh VL. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn Reson Med 2010; 63: 1610-1626. – reference: Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766. – reference: Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007; 57: 192-200. – reference: Rausch M, Tofts P, Lervik P, Walmsley A, Mir A, Schubart A, Seabrook T. Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f. Mult Scler 2009; 15: 16-27. – reference: Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med 1995; 33: 475-482. – reference: Gloor M, Scheffler K, Bieri O. Nonbalanced SSFP-based quantitative magnetization transfer imaging. Magn Reson Med 2010; 64: 149-156. – reference: Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50: 83-91. – reference: Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26: 41-51. – reference: Helms G, Hagberg GE. In vivo quantification of the bound pool T1 in human white matter using the binary spin-bath model of progressive magnetization transfer saturation. Phys Med Biol 2009; 54: N529-N540. – reference: Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010; 64: 177-185. – reference: Soellinger M, Langkammer C, Seifert-Held T, Fazekas F, Ropele S. Fast bound pool fraction mapping using stimulated echoes. Magn Reson Med 2011; 66: 717-724. – reference: Ou X, Gochberg DF. MT effects and T1 quantification in single-slice spoiled gradient echo imaging. Magn Reson Med 2008; 59: 835-845. – reference: Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992; 182: 483-491. – reference: Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008; 60: 1396-1407. – reference: Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R. A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage 2010; 49: 3015-3026. – reference: Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage 2011; 54: 2052-2065. – reference: Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev 2005; 105: 2811-2828. – reference: Underhill HR, Yuan C, Yarnykh VL. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T. Neuroimage 2009; 47: 1568-1578. – reference: Gochberg DF, Kennan RP, Robson MD, Gore JC. Quantitative imaging of magnetization transfer using multiple selective pulses. Magn Reson Med 1999; 41: 1065-1072. – reference: Gloor M, Scheffler K, Bieri O. Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 2008; 60: 691-700. – reference: Cercignani M, Alexander DC. Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI. Magn Reson Med 2006; 56: 803-810. – reference: Samson RS, Wheeler-Kingshott CA, Symms MR, Tozer DJ, Tofts PS. A simple correction for B1 field errors in magnetization transfer ratio measurements. Magn Reson Imaging 2006; 24: 255-263. – reference: Yarnykh VL, Yuan C. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain. Neuroimage 2004; 23: 409-424. – reference: Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice. NMR Biomed 2009; 22: 480-487. – reference: Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn Reson Med 2003; 49: 864-871. – reference: Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997; 37: 628-630. – reference: Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 2002; 20: 721-731. – reference: Cercignani M, Symms MR, Schmierer K, Boulby PA, Tozer DJ, Ron M, Tofts PS, Barker GJ. Three-dimensional quantitative magnetization transfer imaging of the human brain. Neuroimage 2005; 27: 436-441. – reference: Portnoy S, Stanisz GJ. Modeling pulsed magnetization transfer. Magn Reson Med 2007; 58: 144-155. – reference: Wolf SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135-144. – reference: Odrobina EE, Lam TY, Pun T, Midha R, Stanisz GJ. MR properties of excised neural tissue following experimentally induced demyelination. NMR Biomed 2005; 18: 277-284. – reference: Lee RR, Dagher AP. Low power method for estimating the magnetization transfer bound-pool macromolecular fraction. J Magn Reson Imaging 1997; 7: 913-917. – reference: Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155. – reference: Yarnykh VL. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn Reson Med 2002; 47: 929-939. – volume: 47 start-page: 929 year: 2002 end-page: 939 article-title: Pulsed Z‐spectroscopic imaging of cross‐relaxation parameters in tissues for human MRI: theory and clinical applications publication-title: Magn Reson Med – volume: 49 start-page: 501 year: 2003 end-page: 505 article-title: Quantitative imaging of magnetization transfer using an inversion recovery sequence publication-title: Magn Reson Med – start-page: 386 year: 1978 – volume: 46 start-page: 923 year: 2001 end-page: 931 article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI publication-title: Magn Reson Med – volume: 64 start-page: 149 year: 2010 end-page: 156 article-title: Nonbalanced SSFP‐based quantitative magnetization transfer imaging publication-title: Magn Reson Med – volume: 22 start-page: 480 year: 2009 end-page: 487 article-title: The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice publication-title: NMR Biomed – volume: 66 start-page: 717 year: 2011 end-page: 724 article-title: Fast bound pool fraction mapping using stimulated echoes publication-title: Magn Reson Med – volume: 63 start-page: 1610 year: 2010 end-page: 1626 article-title: Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady‐state techniques publication-title: Magn Reson Med – volume: 61 start-page: 364 year: 2009 end-page: 371 article-title: Quantitative magnetization transfer measured pool‐size ratio reflects optic nerve myelin content in ex vivo mice publication-title: Magn Reson Med – volume: 23 start-page: 409 year: 2004 end-page: 424 article-title: Cross‐relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain publication-title: Neuroimage – volume: 20 start-page: 721 year: 2002 end-page: 731 article-title: Precise estimate of fundamental in‐vivo MT parameters in human brain in clinically feasible times publication-title: Magn Reson Imaging – volume: 58 start-page: 144 year: 2007 end-page: 155 article-title: Modeling pulsed magnetization transfer publication-title: Magn Reson Med – volume: 54 start-page: N529 year: 2009 end-page: N540 article-title: In vivo quantification of the bound pool T1 in human white matter using the binary spin‐bath model of progressive magnetization transfer saturation publication-title: Phys Med Biol – volume: 18 start-page: 277 year: 2005 end-page: 284 article-title: MR properties of excised neural tissue following experimentally induced demyelination publication-title: NMR Biomed – volume: 37 start-page: 628 year: 1997 end-page: 630 article-title: An extended two‐point Dixon algorithm for calculating separate water, fat, and B0 images publication-title: Magn Reson Med – volume: 49 start-page: 864 year: 2003 end-page: 871 article-title: Method for quantitative imaging of the macromolecular 1H fraction in tissues publication-title: Magn Reson Med – volume: 57 start-page: 437 year: 2007 end-page: 441 article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times publication-title: Magn Reson Med – volume: 29 start-page: 759 year: 1993 end-page: 766 article-title: Quantitative interpretation of magnetization transfer publication-title: Magn Reson Med – volume: 26 start-page: 41 year: 2007 end-page: 51 article-title: Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain publication-title: J Magn Reson Imaging – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – start-page: 4482 year: 2009 – volume: 60 start-page: 1396 year: 2008 end-page: 1407 article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI publication-title: Magn Reson Med – volume: 7 start-page: 913 year: 1997 end-page: 917 article-title: Low power method for estimating the magnetization transfer bound‐pool macromolecular fraction publication-title: J Magn Reson Imaging – volume: 54 start-page: 2052 year: 2011 end-page: 2065 article-title: Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model publication-title: Neuroimage – volume: 64 start-page: 177 year: 2010 end-page: 185 article-title: Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI publication-title: Magn Reson Med – volume: 41 start-page: 1065 year: 1999 end-page: 1072 article-title: Quantitative imaging of magnetization transfer using multiple selective pulses publication-title: Magn Reson Med – volume: 10 start-page: 135 year: 1989 end-page: 144 article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo publication-title: Magn Reson Med – volume: 60 start-page: 691 year: 2008 end-page: 700 article-title: Quantitative magnetization transfer imaging using balanced SSFP publication-title: Magn Reson Med – volume: 56 start-page: 803 year: 2006 end-page: 810 article-title: Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI publication-title: Magn Reson Med – volume: 15 start-page: 16 year: 2009 end-page: 27 article-title: Characterization of white matter damage in animal models of multiple sclerosis by magnetization transfer ratio and quantitative mapping of the apparent bound proton fraction f publication-title: Mult Scler – volume: 50 start-page: 83 year: 2003 end-page: 91 article-title: Quantitative magnetization transfer mapping of bound protons in multiple sclerosis publication-title: Magn Reson Med – volume: 59 start-page: 835 year: 2008 end-page: 845 article-title: MT effects and quantification in single‐slice spoiled gradient echo imaging publication-title: Magn Reson Med – volume: 182 start-page: 483 year: 1992 end-page: 491 article-title: Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging publication-title: Radiology – volume: 24 start-page: 255 year: 2006 end-page: 263 article-title: A simple correction for B1 field errors in magnetization transfer ratio measurements publication-title: Magn Reson Imaging – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 53 start-page: 134 year: 2005 end-page: 140 article-title: Assessment and correction of B1‐induced errors in magnetization transfer ratio measurements publication-title: Magn Reson Med – start-page: 4515 year: 2010 – volume: 33 start-page: 475 year: 1995 end-page: 482 article-title: A model for magnetization transfer in tissues publication-title: Magn Reson Med – volume: 27 start-page: 436 year: 2005 end-page: 441 article-title: Three‐dimensional quantitative magnetization transfer imaging of the human brain publication-title: Neuroimage – volume: 49 start-page: 3015 year: 2010 end-page: 3026 article-title: A fast B1‐mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T publication-title: Neuroimage – volume: 47 start-page: 1568 year: 2009 end-page: 1578 article-title: Direct quantitative comparison between cross‐relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T publication-title: Neuroimage – volume: 105 start-page: 2811 year: 2005 end-page: 2828 article-title: Sensitivity analysis for chemical models publication-title: Chem Rev – ident: e_1_2_8_15_2 doi: 10.1002/mrm.21143 – ident: e_1_2_8_5_2 doi: 10.1002/mrm.1910290607 – ident: e_1_2_8_6_2 doi: 10.1002/mrm.1910330404 – ident: e_1_2_8_12_2 doi: 10.1002/mrm.10514 – ident: e_1_2_8_39_2 doi: 10.1016/j.mri.2005.10.025 – ident: e_1_2_8_2_2 doi: 10.1002/mrm.1910100113 – ident: e_1_2_8_27_2 – ident: e_1_2_8_9_2 doi: 10.1002/mrm.10120 – ident: e_1_2_8_19_2 doi: 10.1002/mrm.22331 – ident: e_1_2_8_3_2 doi: 10.1148/radiology.182.2.1732968 – ident: e_1_2_8_23_2 doi: 10.1002/nbm.951 – ident: e_1_2_8_38_2 doi: 10.1002/mrm.20310 – ident: e_1_2_8_28_2 doi: 10.1016/j.neuroimage.2010.10.065 – ident: e_1_2_8_4_2 doi: 10.1002/mrm.21732 – ident: e_1_2_8_22_2 doi: 10.1002/jmri.20984 – ident: e_1_2_8_26_2 doi: 10.1002/nbm.1358 – ident: e_1_2_8_37_2 doi: 10.1002/hbm.10062 – ident: e_1_2_8_24_2 doi: 10.1177/1352458508096006 – ident: e_1_2_8_31_2 doi: 10.1002/mrm.22846 – ident: e_1_2_8_7_2 doi: 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9 – ident: e_1_2_8_17_2 doi: 10.1088/0031-9155/54/23/N01 – ident: e_1_2_8_10_2 doi: 10.1016/S0730-725X(02)00598-2 – start-page: 386 volume-title: Introduction to system sensitivity theory year: 1978 ident: e_1_2_8_32_2 – ident: e_1_2_8_16_2 doi: 10.1002/mrm.21705 – ident: e_1_2_8_34_2 doi: 10.1002/mrm.1910370426 – ident: e_1_2_8_41_2 doi: 10.1016/j.neuroimage.2009.11.054 – ident: e_1_2_8_33_2 doi: 10.1021/cr040659d – ident: e_1_2_8_21_2 doi: 10.1002/mrm.21244 – ident: e_1_2_8_11_2 doi: 10.1002/mrm.10386 – ident: e_1_2_8_13_2 doi: 10.1016/j.neuroimage.2004.04.029 – ident: e_1_2_8_25_2 doi: 10.1002/mrm.21850 – ident: e_1_2_8_43_2 doi: 10.1002/mrm.21550 – ident: e_1_2_8_14_2 doi: 10.1016/j.neuroimage.2005.04.031 – ident: e_1_2_8_29_2 doi: 10.1002/jmri.1880070521 – ident: e_1_2_8_35_2 doi: 10.1002/mrm.21120 – ident: e_1_2_8_42_2 doi: 10.1002/mrm.22379 – ident: e_1_2_8_8_2 doi: 10.1002/mrm.1278 – ident: e_1_2_8_30_2 doi: 10.1002/mrm.10427 – ident: e_1_2_8_18_2 doi: 10.1016/j.neuroimage.2009.05.075 – ident: e_1_2_8_40_2 – ident: e_1_2_8_20_2 doi: 10.1002/mrm.21003 – ident: e_1_2_8_36_2 doi: 10.1002/mrm.22394 |
SSID | ssj0009974 |
Score | 2.4151046 |
Snippet | A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two‐pool model of magnetization transfer. The... A new method was developed for fast quantitative mapping of the macromolecular proton fraction defined within the two-pool model of magnetization transfer. The... A new method was developed for fast quantitative mapping of the macromolecular proton fraction (MPF) defined within the two-pool model of magnetization... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 166 |
SubjectTerms | Adult Algorithms brain Computer Simulation cross-relaxation Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods macromolecular proton fraction Macromolecular Substances - analysis Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods magnetization transfer Middle Aged Models, Biological Models, Statistical multiple sclerosis Multiple Sclerosis - metabolism Multiple Sclerosis - pathology Protons Reproducibility of Results Sensitivity and Specificity |
Title | Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement |
URI | https://api.istex.fr/ark:/67375/WNG-8X6VBDFT-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23224 https://www.ncbi.nlm.nih.gov/pubmed/22190042 https://www.proquest.com/docview/1020513292 https://pubmed.ncbi.nlm.nih.gov/PMC3311766 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMetaQjEy4BxCzcZhBAv6VI7dWzxBIwyIWUP0wZ9QIp8HWhtMqWphHjiI_AZ-SQcO5dSGBKiT5VyGsnuOcd_28c_I_SUEQdZjulYOMLiVNksVoKbmBKTMQfjvQkb7fkhOzhJ380msy30oj8L0_IhhgU3HxkhX_sAl2q5t4aGLurFCOQA8SzQMWWem79_tEZHCdESmLPU5xmR9lShhOwNv9wYiy75bv1ykdD8s17yVx0bBqLpNfSxb0Jbf3I2WjVqpL_-Rnf8zzZeRzudQMUvW4-6gbZsuYuu5N0W_C66HGpG9fImmk_lssELGSr6ukt2sec-VCV2dXtgAh57AMQp9sdYsMR-ZWJuceXcj2_fYaZfed6HBavT0jbdkVDcBDFta7xYL2DeQifTN8evD-Lu8oZYgyhMYYIrMio544Y7lVKiMmVTo5Vh3DLlnFZOcyednAglnRjzxIB68PMvyrlJUnobbZdVae8ibC3T8EmJgSk0k1wkRqqEJVQzA0EuI_S8_xsL3ZHN_QUb86JlMpMC-rEI_RihJ4PpeYvzuMjoWfCFwULWZ77-LZsUHw7fFnzG3r_anx4XeYQe985SQFT6rRZZ2mq1hBcSyHaUCBKhO63zDG8jMEj4XBmhbMOtBgNP_N58Un7-FMjflI490BMaHLzm700o8qM8fLn376b30VVQg10t8gO03dQr-xAUV6MehdD6CavnK54 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTTBe-DNglL8GIcRLusxxHUfiBRilwNKHqYO-oMiO7YHWpihNJcQTH4HPyCfh7KQphSEh8hTJF0t27s6_O59_BnjEqUUvx_MgsZQHTJk4UInQQUR1zC2u99pvtKdDPjhmb8a98QY8XZ6Fqfkh2oSbswzvr52Bu4T03oo1dFpOu4gHKDsHWwyBhgu9Do5W5FFJUnMwx8x5moQteYVCutd-urYabbmJ_XIW1PyzYvJXJOuXov5l-LAcRF2BctpdVKqbf_2N3_F_R3kFLjUYlTyrleoqbJhiBy6kzS78Dpz3ZaP5_BpM-nJekan0RX3NPbvEUT_MCmLL-swENjsOiBPiTrIQSVxyYmLIzNof375jsD9zlB8GpU4KUzWnQknl8bQpyXSVw7wOx_2XoxeDoLm_IcgRFzKMcZM4koILLaxiEVWxMkznSnNhuLI2VzYXVlrZS5S0yb4INQIIF4JFQuiQRTdgs5gV5iYQY3iOD6Mao2guRRJqqUIeRjnXaOeyA0-W_zHLG3Jzd8fGJKtpmWmG85j5eezAw1b0c83ocZbQY68MrYQsT10JXNzL3g9fZWLM3z0_6I-ytAMPltqSoWG63RZZmNlijh1SdHgRTWgHdmvtaXujuE44d9mBeE2vWgFH-r3eUnz66Mm_o2jfcXrigL3a_H0IWXqU-pdb_y56H7YHo_QwO3w9fHsbLiI4bEqT78BmVS7MXQRglbrn7ewnP_YvvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h44TJu4WoQQrykyxzXccQTMMq4tELTNvqAFNmxPdDaZGpTCfHET-A38ks4di6lMCREniL5xJKdc_lsn_MZ4BGnFr0cz8PUUh4yZZJQpUKHMdUJtxjvtT9oH4743iF7M-6P1-BpWwtT80N0G27OMry_dgZ-qu32kjR0Opv2EA5Qdg42GEck4RDR_pI7Kk1rCuaEOUeTspZWKKLb3acrwWjDzeuXs5DmnwmTvwJZH4kGl-BjO4Y6AeWkt6hUL__6G73jfw7yMlxsECp5VqvUFVgzxRZsDpsz-C0475NG8_lVmAzkvCJT6VP6mlt2iSN-KAtiZ3XFBDY7Bohj4upYiCRua2JiSGntj2_fcalfOsIPg1LHhamamlBSeTRtZmS63MG8BoeDlwcv9sLm9oYwR1TIcIWbJrEUXGhhFYupSpRhOleaC8OVtbmyubDSyn6qpE13RKQRPrgFWCyEjlh8HdaLsjA3gRjDc3wY1biG5lKkkZYq4lGcc41WLgN40v7GLG-ozd0NG5OsJmWmGc5j5ucxgIed6GnN53GW0GOvC52EnJ24BLikn30YvcrEmB893x0cZMMAHrTKkqFZurMWWZhyMccOKbq7mKY0gBu18nS9UYwSzlkGkKyoVSfgKL9XW4rPnzz1dxzvOEZPHLDXmr8PIRvuD_3LrX8XvQ-b73cH2bvXo7e34QIiwyYv-Q6sV7OFuYvoq1L3vJX9BJ7ZLmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Macromolecular+Proton+Fraction+Mapping+from+a+Single+Off-resonance+Magnetization+Transfer+Measurement&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yarnykh%2C+Vasily+L.&rft.date=2012-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=1&rft.spage=166&rft.epage=178&rft_id=info:doi/10.1002%2Fmrm.23224&rft_id=info%3Apmid%2F22190042&rft.externalDocID=PMC3311766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |