Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning

There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represen...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 42; no. 4; pp. 2003 - 2021
Main Authors Morita, Kenji, Kawaguchi, Yasuo
Format Journal Article
LanguageEnglish
Published France Blackwell Publishing Ltd 01.08.2015
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.12994

Cover

Abstract There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward‐prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal‐ganglia influence on the dopamine neurons. Here we present a computational neural‐circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up‐regulate and down‐regulate the dopamine neurons via the basal‐ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward‐prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward‐prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward‐reversal learning and punishment‐avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter‐temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed‐circuit mechanistic understanding of appetitive/aversive learning. There are two popular notions in value‐based learning and choice: (i) dopamine represents reward prediction error, and (ii) the basal‐ganglia direct and indirect pathways are crucial for appetitive and aversive learning, respectively. We present an integrated account for these two, whose relationship has remained unclear. We provide predictions on the activity of cortical and striatal neuron subpopulations and on possible effects of the strengths of the two pathways on subject's time preference.
AbstractList There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning.
There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward‐prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal‐ganglia influence on the dopamine neurons. Here we present a computational neural‐circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up‐regulate and down‐regulate the dopamine neurons via the basal‐ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward‐prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward‐prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward‐reversal learning and punishment‐avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter‐temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed‐circuit mechanistic understanding of appetitive/aversive learning. There are two popular notions in value‐based learning and choice: (i) dopamine represents reward prediction error, and (ii) the basal‐ganglia direct and indirect pathways are crucial for appetitive and aversive learning, respectively. We present an integrated account for these two, whose relationship has remained unclear. We provide predictions on the activity of cortical and striatal neuron subpopulations and on possible effects of the strengths of the two pathways on subject's time preference.
There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning.There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning.
Author Morita, Kenji
Kawaguchi, Yasuo
AuthorAffiliation 2 Division of Cerebral Circuitry National Institute for Physiological Sciences Okazaki Japan
3 Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan
1 Physical and Health Education Graduate School of Education The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐0033 Japan
4 Japan Science and Technology Agency Core Research for Evolutional Science and Technology Tokyo Japan
AuthorAffiliation_xml – name: 4 Japan Science and Technology Agency Core Research for Evolutional Science and Technology Tokyo Japan
– name: 3 Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan
– name: 2 Division of Cerebral Circuitry National Institute for Physiological Sciences Okazaki Japan
– name: 1 Physical and Health Education Graduate School of Education The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐0033 Japan
Author_xml – sequence: 1
  givenname: Kenji
  surname: Morita
  fullname: Morita, Kenji
  email: : Kenji Morita, as above., morita@p.u-tokyo.ac.jp
  organization: Physical and Health Education, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Bunkyo-ku, Japan
– sequence: 2
  givenname: Yasuo
  surname: Kawaguchi
  fullname: Kawaguchi, Yasuo
  organization: Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26095906$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1u1DAQhS1URH_gghdAvoSLtHbiODEXSGjVLlRVQeJXvbEmzmTrkrWD7d1ln4GXJtttV4AEvhlZ850zMzqHZM95h4Q85eyYj-8Eb9wxz5USD8gBF5JlqpT1Hjlgqiyymsuv--QwxhvGWC1F-Yjs53JsKSYPyM-Jnw-LZN2MBlxBaLMhYGtNst5RDMGHlxQctS7hLEDCloIxfuES9R01PiRroKfJzjcO4FraQIQ-m4Gb9RboAOl6BetIOx8oDAMmm-wSb0lYYoibT48Q3Kh_TB520Ed8clePyKez04-TN9nFu-nbyeuLzJRciUw0MmeK5aqrEJRgTSHKBvLGsKLJ67wRvGaqrVoFXHDVlVI2AKVEaKrx_qItjsirre-waObYGnQpQK-HYOcQ1tqD1X92nL3WM7_UJStELfLR4PmdQfDfFxiTnttosO_BoV9EzStWMqZUvkGf_T5rN-Q-gRF4sQVM8DEG7HYIZ3qTrh7T1bfpjuzJX6yxCTZRjWva_n-Kle1x_W9rfXp-ea_ItgobE_7YKSB807IqqlJ_uZxq8fn8bPrh6kq_L34BhN3JIA
CitedBy_id crossref_primary_10_1093_cercor_bhx252
crossref_primary_10_3389_fncir_2018_00111
crossref_primary_10_1523_ENEURO_0022_16_2016
crossref_primary_10_1162_nol_a_00086
crossref_primary_10_1002_ibra_12174
crossref_primary_10_1371_journal_pcbi_1005145
crossref_primary_10_1523_ENEURO_0021_18_2018
crossref_primary_10_1016_j_neuroscience_2021_05_010
crossref_primary_10_1142_S021963521650028X
crossref_primary_10_1016_j_celrep_2023_112574
crossref_primary_10_1159_000496392
crossref_primary_10_1093_ijnp_pyaa007
Cites_doi 10.1152/jn.2000.83.5.3031
10.1016/S0893-6080(02)00047-3
10.1016/j.neuron.2010.11.022
10.1523/JNEUROSCI.0252-06.2006
10.1016/j.neuron.2010.05.011
10.1523/JNEUROSCI.15-04-03092.1995
10.1523/JNEUROSCI.0772-11.2011
10.1152/jn.01076.2010
10.1126/science.1255514
10.1523/JNEUROSCI.0435-08.2008
10.1111/ejn.12434
10.1146/annurev.neuro.28.061604.135709
10.1196/annals.1390.016
10.1016/j.neuroscience.2014.04.026
10.1038/nn.3100
10.1523/JNEUROSCI.2489-13.2014
10.1126/science.283.5401.549
10.1016/S0893-6080(02)00044-8
10.1016/j.neuron.2012.04.027
10.1016/j.neuroscience.2014.07.021
10.1016/j.tins.2012.04.009
10.1126/science.1093360
10.1162/neco.2006.18.7.1637
10.1523/JNEUROSCI.6157-08.2009
10.1073/pnas.1210797109
10.1038/nn.3017
10.1016/j.neuron.2012.03.037
10.1038/nn2013
10.1126/science.1150769
10.1523/JNEUROSCI.4415-08.2009
10.1073/pnas.1221742110
10.1038/nprot.2014.080
10.3389/fnana.2011.00059
10.1007/s002210000401
10.3389/fncom.2013.00194
10.1371/journal.pbio.1002034
10.1016/S0896-6273(02)01092-9
10.1523/JNEUROSCI.2810-11.2012
10.1152/jn.00458.2005
10.1162/0898929052880093
10.3389/fnana.2010.00142
10.1038/nature14179
10.1038/nn.2921
10.3389/fncom.2014.00152
10.3389/fnsys.2015.00051
10.1016/j.neuron.2010.04.036
10.1152/jn.1995.74.4.1652
10.1038/nn0806-987
10.1111/j.1460-9568.2010.07564.x
10.1016/j.conb.2013.01.026
10.3389/fnbeh.2011.00015
10.1523/JNEUROSCI.19-21-09587.1999
10.1038/nn1954
10.1523/JNEUROSCI.4870-09.2010
10.1126/science.1188472
10.1038/nn.3632
10.1038/nn.2752
10.1126/science.1115270
10.1523/JNEUROSCI.4614-12.2013
10.1016/j.brainresbull.2008.08.015
10.1523/JNEUROSCI.1238-13.2013
10.1016/0306-4522(89)90168-1
10.3389/fnbeh.2014.00076
10.1111/j.1460-9568.2012.08055.x
10.1016/S0168-0102(02)00027-5
10.1111/ejn.12822
10.1016/S0301-0082(96)00042-1
10.1152/jn.1994.71.1.17
10.1126/science.1160575
10.1016/j.neuron.2012.12.032
10.1038/311461a0
10.1016/S0166-2236(02)02235-X
10.1126/science.1094285
10.1126/science.1102384
10.1016/S0079-6123(06)60011-3
10.1523/JNEUROSCI.2728-09.2009
10.1038/nature14178
10.1016/j.neuron.2008.02.021
10.1038/35092560
10.1152/jn.00249.2001
10.1016/S0306-4522(98)00319-4
10.1038/nn.3140
10.1146/annurev-neuro-061010-113641
10.1016/j.neubiorev.2009.11.019
10.1111/j.1460-9568.2008.06192.x
10.1523/JNEUROSCI.16-05-01936.1996
10.1016/j.neuron.2013.05.014
10.1523/JNEUROSCI.22-06-02363.2002
10.1126/science.1102941
10.1038/nature09159
10.1038/nn.3397
10.1126/science.1146157
10.1146/annurev.neuro.27.070203.144247
10.1162/NECO_a_00049
10.1016/j.neuron.2011.05.014
10.1152/jn.00689.2011
10.1038/nn.3743
10.1101/lm.1178309
10.1152/physrev.2000.80.3.953
10.1016/S0959-4388(96)80077-8
10.1016/j.conb.2008.07.003
10.1038/nn.3369
10.1038/nrn3469
10.1038/nn.3048
10.1007/978-3-642-32375-1_7
10.1016/j.neuron.2013.11.005
10.1152/jn.00625.2013
10.1523/JNEUROSCI.0381-13.2013
10.1523/JNEUROSCI.5027-04.2005
10.1371/journal.pcbi.1001133
10.1523/JNEUROSCI.1990-04.2004
10.1523/JNEUROSCI.18-01-00266.1998
10.1038/nn.2374
10.1037/a0037015
10.1016/j.neuron.2012.03.017
10.1038/nn1560
10.1016/j.neuron.2013.10.016
10.1038/nature05506
10.1038/nn1743
10.1146/annurev.neuro.29.051605.112851
10.1126/science.275.5306.1593
10.1523/JNEUROSCI.3486-06.2006
10.1523/JNEUROSCI.3644-10.2010
ContentType Journal Article
Copyright 2015 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/ejn.12994
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate K. Morita and Y. Kawaguchi
EISSN 1460-9568
EndPage 2021
ExternalDocumentID PMC5034842
26095906
10_1111_ejn_12994
EJN12994
ark_67375_WNG_4VJFGSZZ_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Core Research for Evolutional Science and Technology
– fundername: The Ministry of Education, Science, Sports and Culture of Japan
  funderid: 26120710; 25115709
– fundername: Japan Agency for Medical Research and Development
– fundername: Japan Society for the Promotion of Science
  funderid: 25250005; 25123723; 15H01456
– fundername: The Ministry of Education, Science, Sports and Culture of Japan
  grantid: 26120710; 25115709
– fundername: Japan Society for the Promotion of Science
  grantid: 25250005; 25123723; 15H01456
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
24P
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c5194-4b6209029f7ea940b345ba2bc03b282b41809d7d9a1419f566baa56eab70863d3
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Thu Aug 21 13:38:22 EDT 2025
Fri Jul 11 02:30:21 EDT 2025
Thu Apr 03 07:00:48 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 03:02:11 EDT 2025
Wed Jan 22 16:33:02 EST 2025
Wed Oct 30 09:51:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords corticostriatal
direct pathway
indirect pathway
dopamine
reinforcement learning
Language English
License Attribution-NonCommercial-NoDerivs
2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5194-4b6209029f7ea940b345ba2bc03b282b41809d7d9a1419f566baa56eab70863d3
Notes The Ministry of Education, Science, Sports and Culture of Japan - No. 26120710; No. 25115709
Core Research for Evolutional Science and Technology
Japan Society for the Promotion of Science - No. 25250005; No. 25123723; No. 15H01456
ark:/67375/WNG-4VJFGSZZ-P
Japan Agency for Medical Research and Development
ArticleID:EJN12994
istex:7BB79E9AC2C8602EC9C97EF98AE934873621669E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12994
PMID 26095906
PQID 1705009922
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5034842
proquest_miscellaneous_1705009922
pubmed_primary_26095906
crossref_primary_10_1111_ejn_12994
crossref_citationtrail_10_1111_ejn_12994
wiley_primary_10_1111_ejn_12994_EJN12994
istex_primary_ark_67375_WNG_4VJFGSZZ_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Hoboken
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896-907.
Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. (2009) Role of striatum in updating values of chosen actions. J. Neurosci., 29, 14701-14712.
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R.J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454.
Lei, W., Jiao, Y., Del Mar, N. & Reiner, A. (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci., 24, 8289-8299.
Daw, N.D., Courville, A.C., Tourtezky, D.S. & Touretzky, D.S. (2006) Representation and timing in theories of the dopamine system. Neural Comput., 18, 1637-1677.
Aggarwal, M., Hyland, B.I. & Wickens, J.R. (2012) Neural control of dopamine neurotransmission: implications for reinforcement learning. Eur. J. Neurosci., 35, 1115-1123.
Frank, M.J., Samanta, J., Moustafa, A.A. & Sherman, S.J. (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309-1312.
Mallet, N., Le Moine, C., Charpier, S. & Gonon, F. (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci., 25, 3857-3869.
Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851.
Hazy, T.E., Frank, M.J. & O'Reilly, R.C. (2010) Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci. Biobehav. R., 34, 701-720.
Keeler, J.F., Pretsell, D.O. & Robbins, T.W. (2014) Functional implications of dopamine D1 vs. D2 receptors: a 'prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 282C, 156-175.
Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K. & Kreitzer, A.C. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622-626.
Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. (2009) Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 29, 4858-4870.
Roesch, M.R., Calu, D.J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci., 10, 1615-1624.
Robbins, T.W. & Everitt, B.J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol., 6, 228-236.
Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci., 34, 698-704.
Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci., 17, 1022-1030.
Hikosaka, O., Takikawa, Y. & Kawagoe, R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 80, 953-978.
Redish, A.D. (2004) Addiction as a computational process gone awry. Science, 306, 1944-1947.
Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858-873.
Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192-212.
Hempel, C., Hartman, K., Wang, X., Turrigiano, G. & Nelson, S. (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol., 83, 3031-3041.
Moyer, J.T., Halterman, B.L., Finkel, L.H. & Wolf, J.A. (2014) Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network. Front. Comput. Neurosci., 8, 152.
Smith, R.J., Lobo, M.K., Spencer, S. & Kalivas, P.W. (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol., 23, 546-552.
Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. (2011) Frontal cortex and reward-guided learning and decision-making. Neuron, 70, 1054-1069.
Chen, M.C., Ferrari, L., Sacchet, M.D., Foland-Ross, L.C., Qiu, M.H., Gotlib, I.H., Fuller, P.M., Arrigoni, E. & Lu, J. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur. J. Neurosci., 41, 748-759.
Kreitzer, A.C. & Malenka, R.C. (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature, 445, 643-647.
Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res., 43, 111-117.
Story, G.W., Vlaev, I., Seymour, B., Darzi, A. & Dolan, R.J. (2014) Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Front. Behav. Neurosci., 8, 76.
Gershman, S.J., Moustafa, A.A. & Ludvig, E.A. (2014) Time representation in reinforcement learning models of the basal ganglia. Front. Comput. Neurosci., 7, 194.
Mauk, M.D. & Buonomano, D.V. (2004) The neural basis of temporal processing. Annu. Rev. Neurosci., 27, 307-340.
Lau, B. & Glimcher, P.W. (2008) Value representations in the primate striatum during matching behavior. Neuron, 58, 451-463.
Collins, A.G. & Frank, M.J. (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev., 121, 337-366.
Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549-554.
Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci., 30, 2223-2234.
Frank, M.J. (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cognitive Neurosci., 17, 51-72.
Morishima, M. & Kawaguchi, Y. (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 26, 4394-4405.
Jin, X., Tecuapetla, F. & Costa, R.M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 17, 423-430.
Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science, 310, 1337-1340.
Reynolds, J.N., Hyland, B.I. & Wickens, J.R. (2001) A cellular mechanism of reward-related learning. Nature, 413, 67-70.
Wang, X.-J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968.
Gerfen, C.R., Paletzki, R. & Heintz, N. (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron, 80, 1368-1383.
Schultz, W., Dayan, P. & Montague, P.R. (1997) A neural substrate of prediction and reward. Science, 275, 1593-1599.
Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F. & Alvarez, V.A. (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci., 16, 632-638.
Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267-279.
Gurney, K.N., Humphries, M.D. & Redgrave, P. (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 13, e1002034.
Kalmbach, B.E., Ohyama, T., Kreider, J.C., Riusech, F. & Mauk, M.D. (2009) Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Memory, 16, 86-95.
Richfield, E.K., Penney, J.B. & Young, A.B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767-777.
Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S. & Kasai, H. (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345, 1616-1620.
Potjans, W., Diesmann, M. & Morrison, A. (2011) An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput. Biol., 7, e1001133.
Hong, S. & Hikosaka, O. (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci., 5, 15.
Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S. & Costa, R.M. (2014) Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc., 9, 1213-1228.
Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T. & Nakanishi, S. (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA, 109, 12764-12769.
Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W. & Kaneko, T. (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci., 33, 668-677.
Joel, D., Niv, Y. & Ruppin, E. (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks, 15, 535-547.
Ding, J., Peterson, J.D. & Surmeier, D.J. (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci., 28, 6483
2002; 15
2004; 27
2010; 466
1997; 275
2004; 24
1999; 283
2000; 133
2008; 31
2012; 15
2009; 12
2010; 22
1989; 30
1998; 18
1984; 311
2011; 70
2008; 27
2002; 87
2008; 28
2006; 26
2013; 110
2014; 17
2014; 121
1994; 71
2010; 4
2010; 30
2009; 16
1989
2001; 413
2010; 34
2007; 445
2004; 303
2015; 521
2007; 160
2008; 58
1995
2012; 35
2007; 10
2004; 306
1996; 16
2011; 5
2004; 304
2012; 32
2012; 107
2011; 7
2012; 109
2009; 78
2013; 77
2013; 79
2005; 8
2014; 282C
2013; 80
2000; 83
2010; 330
2015; 519
2000; 80
2014; 39
2005; 17
2007; 318
2014; 34
1995; 74
2013; 23
2007; 1104
1999; 89
2011; 14
2005; 28
2005; 25
2010; 66
2013; 14
2013; 16
2010; 68
1999; 19
2015; 41
2002; 43
2008; 319
2014; 282
2014; 9
2014; 8
2014; 7
1996; 6
2015; 13
2002; 36
2006; 95
2005; 310
1995; 15
2008; 18
2006; 9
1996; 50
2011; 31
2006; 18
2011; 33
2011; 34
2008; 321
2015; 9
2009; 29
2012; 74
2014; 112
2011; 105
2002; 25
2014; 81
2013; 33
2002; 22
2013
2014; 345
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
Houk J. (e_1_2_6_47_1) 1995
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
Watkins C. (e_1_2_6_122_1) 1989
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
22487041 - Eur J Neurosci. 2012 Apr;35(7):1115-23
12220881 - Trends Neurosci. 2002 Oct;25(10):525-31
18678255 - Curr Opin Neurobiol. 2008 Apr;18(2):209-16
12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506
22231429 - Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3
10933211 - Exp Brain Res. 2000 Jul;133(1):66-70
9004351 - Prog Neurobiol. 1996 Nov;50(4):381-425
17499115 - Prog Brain Res. 2007;160:189-208
17416920 - Ann N Y Acad Sci. 2007 May;1104:192-212
21472026 - Front Behav Neurosci. 2011 Mar 21;5:15
10805698 - J Neurophysiol. 2000 May;83(5):3031-41
22327472 - Nat Neurosci. 2012 Feb 12;15(4):613-9
19684590 - Nat Neurosci. 2009 Sep;12(9):1180-6
23542690 - Nat Neurosci. 2013 May;16(5):632-8
24769227 - Neuroscience. 2014 Dec 12;282:49-59
25258080 - Science. 2014 Sep 26;345(6204):1616-20
22544310 - Nat Neurosci. 2012 Jun;15(6):816-8
19144967 - Learn Mem. 2009 Jan 07;16(1):86-95
2528080 - Neuroscience. 1989;30(3):767-77
20147549 - J Neurosci. 2010 Feb 10;30(6):2223-34
18445222 - Eur J Neurosci. 2008 May;27(9):2313-21
19369554 - J Neurosci. 2009 Apr 15;29(15):4858-70
16311337 - Science. 2005 Nov 25;310(5752):1337-40
10362291 - Neuroscience. 1999;89(4):1009-23
21317906 - Nat Neurosci. 2011 Mar;14(3):366-72
22658226 - Trends Neurosci. 2012 Aug;35(8):457-67
24784819 - Nat Protoc. 2014;9(6):1213-28
16624959 - J Neurosci. 2006 Apr 19;26(16):4394-405
12067746 - Neurosci Res. 2002 Jun;43(2):111-7
22706268 - Nat Neurosci. 2012 Jun 17;15(7):960-1
24462094 - Neuron. 2014 Jan 22;81(2):267-79
18805468 - Brain Res Bull. 2009 Feb 16;78(2-3):60-8
24431428 - J Neurosci. 2014 Jan 15;34(3):698-704
16022602 - Annu Rev Neurosci. 2005;28:403-50
18466754 - Neuron. 2008 May 8;58(3):451-63
19657038 - J Neurosci. 2009 Aug 5;29(31):9861-74
9412506 - J Neurosci. 1998 Jan 1;18(1):266-83
17167083 - J Neurosci. 2006 Dec 13;26(50):12921-42
16764517 - Neural Comput. 2006 Jul;18(7):1637-77
16871163 - Nat Neurosci. 2006 Aug;9(8):987-8
18558860 - Annu Rev Neurosci. 2008;31:359-87
15528409 - Science. 2004 Dec 10;306(5703):1940-3
21957220 - J Neurophysiol. 2012 Jan;107(1):50-64
17287809 - Nature. 2007 Feb 8;445(7128):643-7
20613723 - Nature. 2010 Jul 29;466(7306):622-6
23439125 - Neuron. 2013 Feb 20;77(4):736-49
11544526 - Nature. 2001 Sep 6;413(6851):67-70
23511908 - Nat Rev Neurosci. 2013 Apr;14(4):278-91
23810541 - Neuron. 2013 Jul 24;79(2):347-60
21589888 - PLoS Comput Biol. 2011 May;7(5):e1001133
24360541 - Neuron. 2013 Dec 18;80(6):1368-83
17676057 - Nat Neurosci. 2007 Sep;10(9):1214-21
18687967 - Science. 2008 Aug 8;321(5890):848-51
23428656 - Curr Opin Neurobiol. 2013 Aug;23(4):546-52
20947769 - Science. 2010 Oct 15;330(6002):385-90
24464039 - Nat Neurosci. 2014 Mar;17(3):423-30
21159963 - J Neurosci. 2010 Dec 15;30(50):16922-37
24048856 - J Neurosci. 2013 Sep 18;33(38):15272-84
15829638 - J Neurosci. 2005 Apr 13;25(15):3857-69
20858126 - Neural Comput. 2010 Dec;22(12):3062-106
15385612 - J Neurosci. 2004 Sep 22;24(38):8289-99
12467598 - Neuron. 2002 Dec 5;36(5):955-68
21469956 - Annu Rev Neurosci. 2011;34:441-66
25739505 - Nature. 2015 May 7;521(7550):85-9
21941467 - Front Neuroanat. 2011 Sep 07;5:59
8989401 - J Neurophysiol. 1995 Oct;74(4):1652-61
21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44
11784772 - J Neurophysiol. 2002 Jan;87(1):567-88
22302828 - J Neurosci. 2012 Feb 1;32(5):1898-913
11896175 - J Neurosci. 2002 Mar 15;22(6):2363-73
25505406 - Front Comput Neurosci. 2014 Nov 25;8:152
8725965 - Curr Opin Neurobiol. 1996 Apr;6(2):228-36
16424448 - J Neurophysiol. 2006 Feb;95(2):567-84
18562619 - J Neurosci. 2008 Jun 18;28(25):6483-92
21314848 - Eur J Neurosci. 2011 Feb;33(4):668-77
15217335 - Annu Rev Neurosci. 2004;27:307-40
19944716 - Neurosci Biobehav Rev. 2010 Apr;34(5):701-20
22681697 - Neuron. 2012 Jun 7;74(5):947-60
24313650 - Eur J Neurosci. 2014 Feb;39(4):688-702
15701239 - J Cogn Neurosci. 2005 Jan;17(1):51-72
25065439 - Nat Neurosci. 2014 Aug;17(8):1022-30
21753015 - J Neurosci. 2011 Jul 13;31(28):10380-91
15087550 - Science. 2004 Apr 16;304(5669):452-4
9915705 - Science. 1999 Jan 22;283(5401):549-54
8158226 - J Neurophysiol. 1994 Jan;71(1):17-32
19940165 - J Neurosci. 2009 Nov 25;29(47):14701-12
21144997 - Neuron. 2010 Dec 9;68(5):815-34
21088706 - Front Neuroanat. 2010 Oct 25;4:142
25090423 - Psychol Rev. 2014 Jul;121(3):337-66
18339943 - Science. 2008 Mar 14;319(5869):1543-6
22802650 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12764-9
22726837 - Neuron. 2012 Jun 21;74(6):1075-86
10531461 - J Neurosci. 1999 Nov 1;19(21):9587-603
8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47
6207434 - Nature. 1984 Oct 4-10;311(5985):461-4
21689594 - Neuron. 2011 Jun 23;70(6):1054-69
10893428 - Physiol Rev. 2000 Jul;80(3):953-78
16862149 - Nat Neurosci. 2006 Aug;9(8):1057-63
9054347 - Science. 1997 Mar 14;275(5306):1593-9
18026098 - Nat Neurosci. 2007 Dec;10 (12 ):1615-24
7722648 - J Neurosci. 1995 Apr;15(4):3092-103
24598515 - J Neurophysiol. 2014 Jul 1;112(1):120-46
23785137 - J Neurosci. 2013 Jun 19;33(25):10209-20
25731172 - Nature. 2015 Mar 5;519(7541):51-6
16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
22681690 - Neuron. 2012 Jun 7;74(5):858-73
25062777 - Neuroscience. 2014 Dec 12;282:156-75
20547134 - Neuron. 2010 Jun 10;66(5):781-95
25926776 - Front Syst Neurosci. 2015 Apr 14;9:51
23666180 - Nat Neurosci. 2013 Jun;16(6):665-7
24409138 - Front Comput Neurosci. 2014 Jan 09;7:194
23678129 - J Neurosci. 2013 May 15;33(20):8866-90
17962524 - Science. 2007 Nov 23;318(5854):1309-12
23319622 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1923-8
25562526 - PLoS Biol. 2015 Jan 06;13(1):e1002034
15044807 - Science. 2004 Mar 26;303(5666):2040-2
21367999 - J Neurophysiol. 2011 May;105(5):2501-11
20620875 - Neuron. 2010 Jun 24;66(6):896-907
24659960 - Front Behav Neurosci. 2014 Mar 12;8:76
25581560 - Eur J Neurosci. 2015 Mar;41(6):748-59
12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47
15591205 - Science. 2004 Dec 10;306(5703):1944-7
References_xml – reference: Sato, M. & Hikosaka, O. (2002) Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J. Neurosci., 22, 2363-2373.
– reference: Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci., 15, 816-818.
– reference: Smith, Y., Raju, D., Nanda, B., Pare, J.F., Galvan, A. & Wichmann, T. (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain. Res. Bull., 78, 60-68.
– reference: Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P. & Wilson, C.J. (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci., 25, 525-531.
– reference: Luksys, G., Gerstner, W. & Sandi, C. (2009) Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. Nat. Neurosci., 12, 1180-1186.
– reference: Aggarwal, M., Hyland, B.I. & Wickens, J.R. (2012) Neural control of dopamine neurotransmission: implications for reinforcement learning. Eur. J. Neurosci., 35, 1115-1123.
– reference: Alexander, W.H. & Brown, J.W. (2011) Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci., 14, 1338-1344.
– reference: Grueter, B.A., Robison, A.J., Neve, R.L., Nestler, E.J. & Malenka, R.C. (2013) ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. USA, 110, 1923-1928.
– reference: Jocham, G., Hunt, L.T., Near, J. & Behrens, T.E. (2012) A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nat. Neurosci., 15, 960-961.
– reference: Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F. & Alvarez, V.A. (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci., 16, 632-638.
– reference: Lau, B. & Glimcher, P.W. (2008) Value representations in the primate striatum during matching behavior. Neuron, 58, 451-463.
– reference: Henny, P., Brown, M.T., Northrop, A., Faunes, M., Ungless, M.A., Magill, P.J. & Bolam, J.P. (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat. Neurosci., 15, 613-619.
– reference: Soltani, A. & Wang, X.-J. (2008) From biophysics to cognition: reward-dependent adaptive choice behavior. Curr. Opin. Neurobiol., 18, 209-216.
– reference: Kreitzer, A.C. & Malenka, R.C. (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature, 445, 643-647.
– reference: Mallet, N., Le Moine, C., Charpier, S. & Gonon, F. (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci., 25, 3857-3869.
– reference: Niv, Y., Daw, N.D. & Dayan, P. (2006) Choice values. Nat. Neurosci., 9, 987-988.
– reference: Mallet, N., Micklem, B.R., Henny, P., Brown, M.T., Williams, C., Bolam, J.P., Nakamura, K.C. & Magill, P.J. (2012) Dichotomous organization of the external globus pallidus. Neuron, 74, 1075-1086.
– reference: Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. (2006) Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci., 9, 1057-1063.
– reference: Joel, D., Niv, Y. & Ruppin, E. (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks, 15, 535-547.
– reference: Morishima, M., Morita, K., Kubota, Y. & Kawaguchi, Y. (2011) Highly differentiated projection-specific cortical subnetworks. J. Neurosci., 31, 10380-10391.
– reference: Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. (2007) Learning the value of information in an uncertain world. Nat. Neurosci., 10, 1214-1221.
– reference: Siegel, J.J., Kalmbach, B., Chitwood, R.A. & Mauk, M.D. (2012) Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J. Neurophysiol., 107, 50-64.
– reference: Li, N., Chen, T.W., Guo, Z.V., Gerfen, C.R. & Svoboda, K. (2015) A motor cortex circuit for motor planning and movement. Nature, 519, 51-56.
– reference: Siegel, J.J. & Mauk, M.D. (2013) Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not. J. Neurosci., 33, 15272-15284.
– reference: Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. (2009) Role of striatum in updating values of chosen actions. J. Neurosci., 29, 14701-14712.
– reference: Tepper, J.M., Martin, L.P. & Anderson, D.R. (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J. Neurosci., 15, 3092-3103.
– reference: Wang, X.-J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968.
– reference: Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68, 815-834.
– reference: Hirai, Y., Morishima, M., Karube, F. & Kawaguchi, Y. (2012) Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J. Neurosci., 32, 1898-1913.
– reference: Aston-Jones, G. & Cohen, J.D. (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.
– reference: Moyer, J.T., Halterman, B.L., Finkel, L.H. & Wolf, J.A. (2014) Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network. Front. Comput. Neurosci., 8, 152.
– reference: Wang, M., Yang, Y., Wang, C.J., Gamo, N.J., Jin, L.E., Mazer, J.A., Morrison, J.H., Wang, X.J. & Arnsten, A.F. (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77, 736-749.
– reference: Schultz, W., Dayan, P. & Montague, P.R. (1997) A neural substrate of prediction and reward. Science, 275, 1593-1599.
– reference: Graybiel, A.M. (2008) Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 31, 359-387.
– reference: Ungless, M.A., Magill, P.J. & Bolam, J.P. (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303, 2040-2042.
– reference: Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W. & Kaneko, T. (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci., 33, 668-677.
– reference: Seo, M., Lee, E. & Averbeck, B.B. (2012) Action selection and action value in frontal-striatal circuits. Neuron, 74, 947-960.
– reference: Schroll, H., Vitay, J. & Hamker, F.H. (2014) Dysfunctional and compensatory synaptic plasticity in Parkinson's disease. Eur. J. Neurosci., 39, 688-702.
– reference: Thorn, C.A., Atallah, H., Howe, M. & Graybiel, A.M. (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron, 66, 781-795.
– reference: Mauk, M.D. & Buonomano, D.V. (2004) The neural basis of temporal processing. Annu. Rev. Neurosci., 27, 307-340.
– reference: Gerfen, C.R. & Surmeier, D.J. (2011) Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci., 34, 441-466.
– reference: Robbins, T.W. & Everitt, B.J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol., 6, 228-236.
– reference: Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267-279.
– reference: Hempel, C., Hartman, K., Wang, X., Turrigiano, G. & Nelson, S. (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol., 83, 3031-3041.
– reference: Dembrow, N.C., Chitwood, R.A. & Johnston, D. (2010) Projection-specific neuromodulation of medial prefrontal cortex neurons. J. Neurosci., 30, 16922-16937.
– reference: Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T. & Nakanishi, S. (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA, 109, 12764-12769.
– reference: Ballion, B., Mallet, N., Bézard, E., Lanciego, J.L. & Gonon, F. (2008) Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur. J. Neurosci., 27, 2313-2321.
– reference: Hazy, T.E., Frank, M.J. & O'Reilly, R.C. (2010) Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci. Biobehav. R., 34, 701-720.
– reference: Humphries, M.D., Stewart, R.D. & Gurney, K.N. (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci., 26, 12921-12942.
– reference: Mongillo, G., Barak, O. & Tsodyks, M. (2008) Synaptic theory of working memory. Science, 319, 1543-1546.
– reference: Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192-212.
– reference: Ito, M. & Doya, K. (2009) Validation of decision-making models and analysis of decision variables in the rat basal ganglia. J. Neurosci., 29, 9861-9874.
– reference: Tepper, J.M. & Lee, C.R. (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog. Brain Res., 160, 189-208.
– reference: Frank, M.J., Samanta, J., Moustafa, A.A. & Sherman, S.J. (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309-1312.
– reference: Keeler, J.F., Pretsell, D.O. & Robbins, T.W. (2014) Functional implications of dopamine D1 vs. D2 receptors: a 'prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 282C, 156-175.
– reference: Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci., 30, 2223-2234.
– reference: Montague, P.R., Dayan, P. & Sejnowski, T.J. (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci., 16, 1936-1947.
– reference: Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci., 34, 698-704.
– reference: Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science, 310, 1337-1340.
– reference: Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. (2009) Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 29, 4858-4870.
– reference: Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851.
– reference: Redish, A.D. (2004) Addiction as a computational process gone awry. Science, 306, 1944-1947.
– reference: Kress, G.J., Yamawaki, N., Wokosin, D.L., Wickersham, I.R., Shepherd, G.M. & Surmeier, D.J. (2013) Convergent cortical innervation of striatal projection neurons. Nat. Neurosci., 16, 665-667.
– reference: Plenz, D. & Kitai, S.T. (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci., 18, 266-283.
– reference: Doya, K. (2002) Metalearning and neuromodulation. Neural Networks, 15, 495-506.
– reference: Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci., 17, 1022-1030.
– reference: Richfield, E.K., Penney, J.B. & Young, A.B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767-777.
– reference: Hikosaka, O., Takikawa, Y. & Kawagoe, R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 80, 953-978.
– reference: Roesch, M.R., Calu, D.J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci., 10, 1615-1624.
– reference: Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci., 35, 457-467.
– reference: Wall, N.R., De La Parra, M., Callaway, E.M. & Kreitzer, A.C. (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron, 79, 347-360.
– reference: Takeda, K. & Funahashi, S. (2002) Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. J. Neurophysiol., 87, 567-588.
– reference: Jin, X., Tecuapetla, F. & Costa, R.M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 17, 423-430.
– reference: Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol., 50, 381-425.
– reference: Nakanishi, S., Hikida, T. & Yawata, S. (2014) Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience, 282, 49-59.
– reference: Daw, N.D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci., 8, 1704-1711.
– reference: Cowan, R.L. & Wilson, C.J. (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol., 71, 17-32.
– reference: Reynolds, J.N., Hyland, B.I. & Wickens, J.R. (2001) A cellular mechanism of reward-related learning. Nature, 413, 67-70.
– reference: Saunders, A., Oldenburg, I.A., Berezovskii, V.K., Johnson, C.A., Kingery, N.D., Elliott, H.L., Xie, T., Gerfen, C.R. & Sabatini, B.L. (2015) A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 521, 85-89.
– reference: Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896-907.
– reference: Reiner, A., Hart, N.M., Lei, W. & Deng, Y. (2010) Corticostriatal projection neurons - dichotomous types and dichotomous functions. Front. Neuroanat., 4, 142.
– reference: Ding, J., Peterson, J.D. & Surmeier, D.J. (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci., 28, 6483-6492.
– reference: Frank, M.J., Seeberger, L.C. & O'Reilly, R.C. (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940-1943.
– reference: Gerfen, C.R., Paletzki, R. & Heintz, N. (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron, 80, 1368-1383.
– reference: Daw, N.D., Courville, A.C., Tourtezky, D.S. & Touretzky, D.S. (2006) Representation and timing in theories of the dopamine system. Neural Comput., 18, 1637-1677.
– reference: Smith, R.J., Lobo, M.K., Spencer, S. & Kalivas, P.W. (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol., 23, 546-552.
– reference: Watkins, C. (1989) Learning from Delayed Rewards. PhD Thesis. University of Cambridge, Cambridge.
– reference: Frank, M.J. (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cognitive Neurosci., 17, 51-72.
– reference: Lei, W., Jiao, Y., Del Mar, N. & Reiner, A. (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci., 24, 8289-8299.
– reference: Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S. & Kasai, H. (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345, 1616-1620.
– reference: Chen, M.C., Ferrari, L., Sacchet, M.D., Foland-Ross, L.C., Qiu, M.H., Gotlib, I.H., Fuller, P.M., Arrigoni, E. & Lu, J. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur. J. Neurosci., 41, 748-759.
– reference: Crittenden, J.R. & Graybiel, A.M. (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat., 5, 59.
– reference: Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res., 43, 111-117.
– reference: Gerfen, C.R. (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311, 461-464.
– reference: Lobo, M.K., Covington, H.E., Chaudhury, D., Friedman, A.K., Sun, H., Damez-Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy, P.J., Mouzon, E., Mogri, M., Neve, R.L., Deisseroth, K., Han, M.H. & Nestler, E.J. (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385-390.
– reference: Potjans, W., Diesmann, M. & Morrison, A. (2011) An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput. Biol., 7, e1001133.
– reference: Collins, A.G. & Frank, M.J. (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev., 121, 337-366.
– reference: Deng, Y., Lanciego, J.L., Kerkerian-Le Goff, L., Coulon, P., Salin, P., Kachidian, P., Lei, W., Del Mar, N. & Reiner, A. (2015) Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front. Syst. Neurosci., 9, 51.
– reference: Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. (2011) A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci., 14, 366-372.
– reference: Kalmbach, B.E., Ohyama, T., Kreider, J.C., Riusech, F. & Mauk, M.D. (2009) Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Memory, 16, 86-95.
– reference: Lobb, C.J., Wilson, C.J. & Paladini, C.A. (2011) High-frequency, short-latency disinhibition bursting of midbrain dopaminergic neurons. J. Neurophysiol., 105, 2501-2511.
– reference: Morita, K. (2014) Differential cortical activation of the striatal direct and indirect pathway cells: reconciling the anatomical and optogenetic results by using a computational method. J. Neurophysiol., 112, 120-146.
– reference: Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858-873.
– reference: Isomura, Y., Takekawa, T., Harukuni, R., Handa, T., Aizawa, H., Takada, M. & Fukai, T. (2013) Reward-modulated motor information in identified striatum neurons. J. Neurosci., 33, 10209-10220.
– reference: Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K. & Kreitzer, A.C. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622-626.
– reference: Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S. & Costa, R.M. (2014) Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc., 9, 1213-1228.
– reference: Morishima, M. & Kawaguchi, Y. (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 26, 4394-4405.
– reference: Gurney, K.N., Humphries, M.D. & Redgrave, P. (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 13, e1002034.
– reference: Story, G.W., Vlaev, I., Seymour, B., Darzi, A. & Dolan, R.J. (2014) Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Front. Behav. Neurosci., 8, 76.
– reference: Gershman, S.J., Moustafa, A.A. & Ludvig, E.A. (2014) Time representation in reinforcement learning models of the basal ganglia. Front. Comput. Neurosci., 7, 194.
– reference: Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. (2011) Frontal cortex and reward-guided learning and decision-making. Neuron, 70, 1054-1069.
– reference: O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R.J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454.
– reference: Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. J. Neurophysiol., 95, 567-584.
– reference: Redgrave, P., Prescott, T.J. & Gurney, K. (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009-1023.
– reference: Wang, X.-J. (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19, 9587-9603.
– reference: Fuster, J.M. (2000) Executive frontal functions. Exp. Brain Res., 133, 66-70.
– reference: Hikosaka, O., Rand, M.K., Miyachi, S. & Miyashita, K. (1995) Learning of sequential movements in the monkey: process of learning and retention of memory. J. Neurophysiol., 74, 1652-1661.
– reference: Hong, S. & Hikosaka, O. (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci., 5, 15.
– reference: Nakahara, H. & Kaveri, S. (2010) Internal-time temporal difference model for neural value-based decision making. Neural Comput., 22, 3062-3106.
– reference: Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. (2013) Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior. J. Neurosci., 33, 8866-8890.
– reference: Shepherd, G.M. (2013) Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 14, 278-291.
– reference: Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549-554.
– reference: Hunt, L.T., Kolling, N., Soltani, A., Woolrich, M.W., Rushworth, M.F. & Behrens, T.E. (2012) Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci., 15, 470-476.
– volume: 16
  start-page: 665
  year: 2013
  end-page: 667
  article-title: Convergent cortical innervation of striatal projection neurons
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 2223
  year: 2010
  end-page: 2234
  article-title: Distinct roles of GABAergic interneurons in the regulation of striatal output pathways
  publication-title: J. Neurosci.
– volume: 15
  start-page: 495
  year: 2002
  end-page: 506
  article-title: Metalearning and neuromodulation
  publication-title: Neural Networks
– volume: 9
  start-page: 51
  year: 2015
  article-title: Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats
  publication-title: Front. Syst. Neurosci.
– volume: 35
  start-page: 457
  year: 2012
  end-page: 467
  article-title: Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways
  publication-title: Trends Neurosci.
– volume: 28
  start-page: 403
  year: 2005
  end-page: 450
  article-title: An integrative theory of locus coeruleus‐norepinephrine function: adaptive gain and optimal performance
  publication-title: Annu. Rev. Neurosci.
– volume: 68
  start-page: 815
  year: 2010
  end-page: 834
  article-title: Dopamine in motivational control: rewarding, aversive, and alerting
  publication-title: Neuron
– volume: 282C
  start-page: 156
  year: 2014
  end-page: 175
  article-title: Functional implications of dopamine D1 vs. D2 receptors: a ‘prepare and select’ model of the striatal direct vs. indirect pathways
  publication-title: Neuroscience
– year: 1989
– volume: 29
  start-page: 9861
  year: 2009
  end-page: 9874
  article-title: Validation of decision‐making models and analysis of decision variables in the rat basal ganglia
  publication-title: J. Neurosci.
– volume: 15
  start-page: 470
  year: 2012
  end-page: 476
  article-title: Mechanisms underlying cortical activity during value‐guided choice
  publication-title: Nat. Neurosci.
– volume: 26
  start-page: 12921
  year: 2006
  end-page: 12942
  article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia
  publication-title: J. Neurosci.
– volume: 5
  start-page: 15
  year: 2011
  article-title: Dopamine‐mediated learning and switching in cortico‐striatal circuit explain behavioral changes in reinforcement learning
  publication-title: Front. Behav. Neurosci.
– volume: 110
  start-page: 1923
  year: 2013
  end-page: 1928
  article-title: ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 816
  year: 2012
  end-page: 818
  article-title: Distinct roles for direct and indirect pathway striatal neurons in reinforcement
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 3062
  year: 2010
  end-page: 3106
  article-title: Internal‐time temporal difference model for neural value‐based decision making
  publication-title: Neural Comput.
– volume: 30
  start-page: 767
  year: 1989
  end-page: 777
  article-title: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system
  publication-title: Neuroscience
– volume: 18
  start-page: 266
  year: 1998
  end-page: 283
  article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast‐spiking interneurons studied in cortex‐striatum‐substantia nigra organotypic cultures
  publication-title: J. Neurosci.
– volume: 319
  start-page: 1543
  year: 2008
  end-page: 1546
  article-title: Synaptic theory of working memory
  publication-title: Science
– volume: 30
  start-page: 16922
  year: 2010
  end-page: 16937
  article-title: Projection‐specific neuromodulation of medial prefrontal cortex neurons
  publication-title: J. Neurosci.
– volume: 466
  start-page: 622
  year: 2010
  end-page: 626
  article-title: Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry
  publication-title: Nature
– volume: 29
  start-page: 14701
  year: 2009
  end-page: 14712
  article-title: Role of striatum in updating values of chosen actions
  publication-title: J. Neurosci.
– volume: 17
  start-page: 423
  year: 2014
  end-page: 430
  article-title: Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences
  publication-title: Nat. Neurosci.
– volume: 330
  start-page: 385
  year: 2010
  end-page: 390
  article-title: Cell type‐specific loss of BDNF signaling mimics optogenetic control of cocaine reward
  publication-title: Science
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– volume: 95
  start-page: 567
  year: 2006
  end-page: 584
  article-title: Basal ganglia orient eyes to reward
  publication-title: J. Neurophysiol.
– volume: 413
  start-page: 67
  year: 2001
  end-page: 70
  article-title: A cellular mechanism of reward‐related learning
  publication-title: Nature
– volume: 9
  start-page: 1213
  year: 2014
  end-page: 1228
  article-title: Deep brain optical measurements of cell type‐specific neural activity in behaving mice
  publication-title: Nat. Protoc.
– volume: 5
  start-page: 59
  year: 2011
  article-title: Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments
  publication-title: Front. Neuroanat.
– volume: 74
  start-page: 1075
  year: 2012
  end-page: 1086
  article-title: Dichotomous organization of the external globus pallidus
  publication-title: Neuron
– volume: 23
  start-page: 546
  year: 2013
  end-page: 552
  article-title: Cocaine‐induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways)
  publication-title: Curr. Opin. Neurobiol.
– volume: 7
  start-page: 194
  year: 2014
  article-title: Time representation in reinforcement learning models of the basal ganglia
  publication-title: Front. Comput. Neurosci.
– volume: 445
  start-page: 643
  year: 2007
  end-page: 647
  article-title: Endocannabinoid‐mediated rescue of striatal LTD and motor deficits in Parkinson's disease models
  publication-title: Nature
– volume: 9
  start-page: 987
  year: 2006
  end-page: 988
  article-title: Choice values
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 1057
  year: 2006
  end-page: 1063
  article-title: Midbrain dopamine neurons encode decisions for future action
  publication-title: Nat. Neurosci.
– volume: 50
  start-page: 381
  year: 1996
  end-page: 425
  article-title: The basal ganglia: focused selection and inhibition of competing motor programs
  publication-title: Prog. Neurobiol.
– volume: 310
  start-page: 1337
  year: 2005
  end-page: 1340
  article-title: Representation of action‐specific reward values in the striatum
  publication-title: Science
– volume: 304
  start-page: 452
  year: 2004
  end-page: 454
  article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning
  publication-title: Science
– volume: 17
  start-page: 1022
  year: 2014
  end-page: 1030
  article-title: Direct and indirect pathways of basal ganglia: a critical reappraisal
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 152
  year: 2014
  article-title: Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically‐detailed computational model of the striatal network
  publication-title: Front. Comput. Neurosci.
– volume: 80
  start-page: 953
  year: 2000
  end-page: 978
  article-title: Role of the basal ganglia in the control of purposive saccadic eye movements
  publication-title: Physiol. Rev.
– volume: 18
  start-page: 209
  year: 2008
  end-page: 216
  article-title: From biophysics to cognition: reward‐dependent adaptive choice behavior
  publication-title: Curr. Opin. Neurobiol.
– volume: 41
  start-page: 748
  year: 2015
  end-page: 759
  article-title: Identification of a direct GABAergic pallidocortical pathway in rodents
  publication-title: Eur. J. Neurosci.
– volume: 306
  start-page: 1940
  year: 2004
  end-page: 1943
  article-title: By carrot or by stick: cognitive reinforcement learning in parkinsonism
  publication-title: Science
– volume: 74
  start-page: 947
  year: 2012
  end-page: 960
  article-title: Action selection and action value in frontal‐striatal circuits
  publication-title: Neuron
– volume: 112
  start-page: 120
  year: 2014
  end-page: 146
  article-title: Differential cortical activation of the striatal direct and indirect pathway cells: reconciling the anatomical and optogenetic results by using a computational method
  publication-title: J. Neurophysiol.
– volume: 71
  start-page: 17
  year: 1994
  end-page: 32
  article-title: Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex
  publication-title: J. Neurophysiol.
– volume: 89
  start-page: 1009
  year: 1999
  end-page: 1023
  article-title: The basal ganglia: a vertebrate solution to the selection problem?
  publication-title: Neuroscience
– volume: 22
  start-page: 2363
  year: 2002
  end-page: 2373
  article-title: Role of primate substantia nigra pars reticulata in reward‐oriented saccadic eye movement
  publication-title: J. Neurosci.
– volume: 39
  start-page: 688
  year: 2014
  end-page: 702
  article-title: Dysfunctional and compensatory synaptic plasticity in Parkinson's disease
  publication-title: Eur. J. Neurosci.
– volume: 31
  start-page: 359
  year: 2008
  end-page: 387
  article-title: Habits, rituals, and the evaluative brain
  publication-title: Annu. Rev. Neurosci.
– volume: 25
  start-page: 525
  year: 2002
  end-page: 531
  article-title: Move to the rhythm: oscillations in the subthalamic nucleus‐external globus pallidus network
  publication-title: Trends Neurosci.
– volume: 10
  start-page: 1214
  year: 2007
  end-page: 1221
  article-title: Learning the value of information in an uncertain world
  publication-title: Nat. Neurosci.
– volume: 306
  start-page: 1944
  year: 2004
  end-page: 1947
  article-title: Addiction as a computational process gone awry
  publication-title: Science
– year: 1995
– volume: 66
  start-page: 896
  year: 2010
  end-page: 907
  article-title: Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior
  publication-title: Neuron
– volume: 133
  start-page: 66
  year: 2000
  end-page: 70
  article-title: Executive frontal functions
  publication-title: Exp. Brain Res.
– volume: 28
  start-page: 6483
  year: 2008
  end-page: 6492
  article-title: Corticostriatal and thalamostriatal synapses have distinctive properties
  publication-title: J. Neurosci.
– volume: 35
  start-page: 1115
  year: 2012
  end-page: 1123
  article-title: Neural control of dopamine neurotransmission: implications for reinforcement learning
  publication-title: Eur. J. Neurosci.
– volume: 13
  start-page: e1002034
  year: 2015
  article-title: A new framework for cortico‐striatal plasticity: behavioural theory meets in vitro data at the reinforcement‐action interface
  publication-title: PLoS Biol.
– volume: 14
  start-page: 278
  year: 2013
  end-page: 291
  article-title: Corticostriatal connectivity and its role in disease
  publication-title: Nat. Rev. Neurosci.
– volume: 74
  start-page: 1652
  year: 1995
  end-page: 1661
  article-title: Learning of sequential movements in the monkey: process of learning and retention of memory
  publication-title: J. Neurophysiol.
– volume: 7
  start-page: e1001133
  year: 2011
  article-title: An imperfect dopaminergic error signal can drive temporal‐difference learning
  publication-title: PLoS Comput. Biol.
– volume: 311
  start-page: 461
  year: 1984
  end-page: 464
  article-title: The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems
  publication-title: Nature
– volume: 6
  start-page: 228
  year: 1996
  end-page: 236
  article-title: Neurobehavioural mechanisms of reward and motivation
  publication-title: Curr. Opin. Neurobiol.
– volume: 14
  start-page: 366
  year: 2011
  end-page: 372
  article-title: A reservoir of time constants for memory traces in cortical neurons
  publication-title: Nat. Neurosci.
– volume: 318
  start-page: 1309
  year: 2007
  end-page: 1312
  article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism
  publication-title: Science
– volume: 19
  start-page: 9587
  year: 1999
  end-page: 9603
  article-title: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory
  publication-title: J. Neurosci.
– volume: 15
  start-page: 535
  year: 2002
  end-page: 547
  article-title: Actor‐critic models of the basal ganglia: new anatomical and computational perspectives
  publication-title: Neural Networks
– volume: 24
  start-page: 8289
  year: 2004
  end-page: 8299
  article-title: Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats
  publication-title: J. Neurosci.
– volume: 36
  start-page: 955
  year: 2002
  end-page: 968
  article-title: Probabilistic decision making by slow reverberation in cortical circuits
  publication-title: Neuron
– volume: 34
  start-page: 701
  year: 2010
  end-page: 720
  article-title: Neural mechanisms of acquired phasic dopamine responses in learning
  publication-title: Neurosci. Biobehav. R.
– volume: 77
  start-page: 736
  year: 2013
  end-page: 749
  article-title: NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex
  publication-title: Neuron
– volume: 519
  start-page: 51
  year: 2015
  end-page: 56
  article-title: A motor cortex circuit for motor planning and movement
  publication-title: Nature
– volume: 10
  start-page: 1615
  year: 2007
  end-page: 1624
  article-title: Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards
  publication-title: Nat. Neurosci.
– volume: 87
  start-page: 567
  year: 2002
  end-page: 588
  article-title: Prefrontal task‐related activity representing visual cue location or saccade direction in spatial working memory tasks
  publication-title: J. Neurophysiol.
– volume: 34
  start-page: 698
  year: 2014
  end-page: 704
  article-title: Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term
  publication-title: J. Neurosci.
– volume: 8
  start-page: 76
  year: 2014
  article-title: Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective
  publication-title: Front. Behav. Neurosci.
– volume: 70
  start-page: 1054
  year: 2011
  end-page: 1069
  article-title: Frontal cortex and reward‐guided learning and decision‐making
  publication-title: Neuron
– volume: 78
  start-page: 60
  year: 2009
  end-page: 68
  article-title: The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states
  publication-title: Brain. Res. Bull.
– volume: 15
  start-page: 3092
  year: 1995
  end-page: 3103
  article-title: GABAA receptor‐mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons
  publication-title: J. Neurosci.
– volume: 17
  start-page: 51
  year: 2005
  end-page: 72
  article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism
  publication-title: J. Cognitive Neurosci.
– volume: 345
  start-page: 1616
  year: 2014
  end-page: 1620
  article-title: A critical time window for dopamine actions on the structural plasticity of dendritic spines
  publication-title: Science
– volume: 27
  start-page: 2313
  year: 2008
  end-page: 2321
  article-title: Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism
  publication-title: Eur. J. Neurosci.
– volume: 16
  start-page: 86
  year: 2009
  end-page: 95
  article-title: Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning
  publication-title: Learn. Memory
– volume: 58
  start-page: 451
  year: 2008
  end-page: 463
  article-title: Value representations in the primate striatum during matching behavior
  publication-title: Neuron
– volume: 81
  start-page: 267
  year: 2014
  end-page: 279
  article-title: Orbitofrontal cortex as a cognitive map of task space
  publication-title: Neuron
– volume: 74
  start-page: 858
  year: 2012
  end-page: 873
  article-title: Whole‐brain mapping of direct inputs to midbrain dopamine neurons
  publication-title: Neuron
– volume: 160
  start-page: 189
  year: 2007
  end-page: 208
  article-title: GABAergic control of substantia nigra dopaminergic neurons
  publication-title: Prog. Brain Res.
– volume: 66
  start-page: 781
  year: 2010
  end-page: 795
  article-title: Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning
  publication-title: Neuron
– volume: 105
  start-page: 2501
  year: 2011
  end-page: 2511
  article-title: High‐frequency, short‐latency disinhibition bursting of midbrain dopaminergic neurons
  publication-title: J. Neurophysiol.
– volume: 79
  start-page: 347
  year: 2013
  end-page: 360
  article-title: Differential innervation of direct‐ and indirect‐pathway striatal projection neurons
  publication-title: Neuron
– volume: 1104
  start-page: 192
  year: 2007
  end-page: 212
  article-title: Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix
  publication-title: Ann. NY Acad. Sci.
– volume: 8
  start-page: 1704
  year: 2005
  end-page: 1711
  article-title: Uncertainty‐based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
– volume: 80
  start-page: 1368
  year: 2013
  end-page: 1383
  article-title: GENSAT BAC cre‐recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits
  publication-title: Neuron
– volume: 33
  start-page: 15272
  year: 2013
  end-page: 15284
  article-title: Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not
  publication-title: J. Neurosci.
– volume: 121
  start-page: 337
  year: 2014
  end-page: 366
  article-title: Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive
  publication-title: Psychol. Rev.
– volume: 303
  start-page: 2040
  year: 2004
  end-page: 2042
  article-title: Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli
  publication-title: Science
– volume: 14
  start-page: 1338
  year: 2011
  end-page: 1344
  article-title: Medial prefrontal cortex as an action‐outcome predictor
  publication-title: Nat. Neurosci.
– volume: 27
  start-page: 307
  year: 2004
  end-page: 340
  article-title: The neural basis of temporal processing
  publication-title: Annu. Rev. Neurosci.
– volume: 33
  start-page: 8866
  year: 2013
  end-page: 8890
  article-title: Dopaminergic control of motivation and reinforcement learning: a closed‐circuit account for reward‐oriented behavior
  publication-title: J. Neurosci.
– volume: 16
  start-page: 632
  year: 2013
  end-page: 638
  article-title: Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use
  publication-title: Nat. Neurosci.
– volume: 33
  start-page: 668
  year: 2011
  end-page: 677
  article-title: Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron‐tracing study using a viral vector
  publication-title: Eur. J. Neurosci.
– volume: 29
  start-page: 4858
  year: 2009
  end-page: 4870
  article-title: Different pedunculopontine tegmental neurons signal predicted and actual task rewards
  publication-title: J. Neurosci.
– volume: 32
  start-page: 1898
  year: 2012
  end-page: 1913
  article-title: Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas
  publication-title: J. Neurosci.
– volume: 15
  start-page: 613
  year: 2012
  end-page: 619
  article-title: Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons
  publication-title: Nat. Neurosci.
– volume: 43
  start-page: 111
  year: 2002
  end-page: 117
  article-title: Functional significance of the cortico‐subthalamo‐pallidal ‘hyperdirect’ pathway
  publication-title: Neurosci. Res.
– volume: 34
  start-page: 441
  year: 2011
  end-page: 466
  article-title: Modulation of striatal projection systems by dopamine
  publication-title: Annu. Rev. Neurosci.
– volume: 521
  start-page: 85
  year: 2015
  end-page: 89
  article-title: A direct GABAergic output from the basal ganglia to frontal cortex
  publication-title: Nature
– start-page: 151
  year: 2013
  end-page: 181
– volume: 4
  start-page: 142
  year: 2010
  article-title: Corticostriatal projection neurons – dichotomous types and dichotomous functions
  publication-title: Front. Neuroanat.
– volume: 321
  start-page: 848
  year: 2008
  end-page: 851
  article-title: Dichotomous dopaminergic control of striatal synaptic plasticity
  publication-title: Science
– volume: 83
  start-page: 3031
  year: 2000
  end-page: 3041
  article-title: Multiple forms of short‐term plasticity at excitatory synapses in rat medial prefrontal cortex
  publication-title: J. Neurophysiol.
– volume: 26
  start-page: 4394
  year: 2006
  end-page: 4405
  article-title: Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex
  publication-title: J. Neurosci.
– volume: 25
  start-page: 3857
  year: 2005
  end-page: 3869
  article-title: Feedforward inhibition of projection neurons by fast‐spiking GABA interneurons in the rat striatum in vivo
  publication-title: J. Neurosci.
– volume: 282
  start-page: 49
  year: 2014
  end-page: 59
  article-title: Distinct dopaminergic control of the direct and indirect pathways in reward‐based and avoidance learning behaviors
  publication-title: Neuroscience
– volume: 283
  start-page: 549
  year: 1999
  end-page: 554
  article-title: The role of locus coeruleus in the regulation of cognitive performance
  publication-title: Science
– volume: 107
  start-page: 50
  year: 2012
  end-page: 64
  article-title: Persistent activity in a cortical‐to‐subcortical circuit: bridging the temporal gap in trace eyelid conditioning
  publication-title: J. Neurophysiol.
– volume: 18
  start-page: 1637
  year: 2006
  end-page: 1677
  article-title: Representation and timing in theories of the dopamine system
  publication-title: Neural Comput.
– volume: 33
  start-page: 10209
  year: 2013
  end-page: 10220
  article-title: Reward‐modulated motor information in identified striatum neurons
  publication-title: J. Neurosci.
– volume: 12
  start-page: 1180
  year: 2009
  end-page: 1186
  article-title: Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning
  publication-title: Nat. Neurosci.
– volume: 109
  start-page: 12764
  year: 2012
  end-page: 12769
  article-title: Pathway‐specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 960
  year: 2012
  end-page: 961
  article-title: A mechanism for value‐guided choice based on the excitation‐inhibition balance in prefrontal cortex
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 1936
  year: 1996
  end-page: 1947
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J. Neurosci.
– volume: 31
  start-page: 10380
  year: 2011
  end-page: 10391
  article-title: Highly differentiated projection‐specific cortical subnetworks
  publication-title: J. Neurosci.
– ident: e_1_2_6_39_1
  doi: 10.1152/jn.2000.83.5.3031
– ident: e_1_2_6_54_1
  doi: 10.1016/S0893-6080(02)00047-3
– ident: e_1_2_6_10_1
  doi: 10.1016/j.neuron.2010.11.022
– ident: e_1_2_6_74_1
  doi: 10.1523/JNEUROSCI.0252-06.2006
– ident: e_1_2_6_41_1
  doi: 10.1016/j.neuron.2010.05.011
– ident: e_1_2_6_113_1
  doi: 10.1523/JNEUROSCI.15-04-03092.1995
– ident: e_1_2_6_75_1
  doi: 10.1523/JNEUROSCI.0772-11.2011
– ident: e_1_2_6_65_1
  doi: 10.1152/jn.01076.2010
– ident: e_1_2_6_125_1
  doi: 10.1126/science.1255514
– ident: e_1_2_6_21_1
  doi: 10.1523/JNEUROSCI.0435-08.2008
– ident: e_1_2_6_100_1
  doi: 10.1111/ejn.12434
– ident: e_1_2_6_4_1
  doi: 10.1146/annurev.neuro.28.061604.135709
– ident: e_1_2_6_123_1
  doi: 10.1196/annals.1390.016
– ident: e_1_2_6_82_1
  doi: 10.1016/j.neuroscience.2014.04.026
– ident: e_1_2_6_59_1
  doi: 10.1038/nn.3100
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.2489-13.2014
– ident: e_1_2_6_116_1
  doi: 10.1126/science.283.5401.549
– ident: e_1_2_6_22_1
  doi: 10.1016/S0893-6080(02)00044-8
– ident: e_1_2_6_69_1
  doi: 10.1016/j.neuron.2012.04.027
– ident: e_1_2_6_56_1
  doi: 10.1016/j.neuroscience.2014.07.021
– ident: e_1_2_6_77_1
  doi: 10.1016/j.tins.2012.04.009
– ident: e_1_2_6_115_1
  doi: 10.1126/science.1093360
– ident: e_1_2_6_18_1
  doi: 10.1162/neco.2006.18.7.1637
– ident: e_1_2_6_51_1
  doi: 10.1523/JNEUROSCI.6157-08.2009
– ident: e_1_2_6_126_1
  doi: 10.1073/pnas.1210797109
– ident: e_1_2_6_49_1
  doi: 10.1038/nn.3017
– ident: e_1_2_6_102_1
  doi: 10.1016/j.neuron.2012.03.037
– ident: e_1_2_6_95_1
  doi: 10.1038/nn2013
– ident: e_1_2_6_72_1
  doi: 10.1126/science.1150769
– ident: e_1_2_6_86_1
  doi: 10.1523/JNEUROSCI.4415-08.2009
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.1221742110
– ident: e_1_2_6_16_1
  doi: 10.1038/nprot.2014.080
– ident: e_1_2_6_15_1
  doi: 10.3389/fnana.2011.00059
– ident: e_1_2_6_27_1
  doi: 10.1007/s002210000401
– ident: e_1_2_6_31_1
  doi: 10.3389/fncom.2013.00194
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pbio.1002034
– ident: e_1_2_6_119_1
  doi: 10.1016/S0896-6273(02)01092-9
– ident: e_1_2_6_45_1
  doi: 10.1523/JNEUROSCI.2810-11.2012
– ident: e_1_2_6_44_1
  doi: 10.1152/jn.00458.2005
– ident: e_1_2_6_23_1
  doi: 10.1162/0898929052880093
– ident: e_1_2_6_91_1
  doi: 10.3389/fnana.2010.00142
– ident: e_1_2_6_99_1
  doi: 10.1038/nature14179
– ident: e_1_2_6_3_1
  doi: 10.1038/nn.2921
– ident: e_1_2_6_80_1
  doi: 10.3389/fncom.2014.00152
– ident: e_1_2_6_20_1
  doi: 10.3389/fnsys.2015.00051
– ident: e_1_2_6_114_1
  doi: 10.1016/j.neuron.2010.04.036
– volume-title: Learning from Delayed Rewards
  year: 1989
  ident: e_1_2_6_122_1
– ident: e_1_2_6_42_1
  doi: 10.1152/jn.1995.74.4.1652
– ident: e_1_2_6_84_1
  doi: 10.1038/nn0806-987
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1460-9568.2010.07564.x
– ident: e_1_2_6_108_1
  doi: 10.1016/j.conb.2013.01.026
– ident: e_1_2_6_46_1
  doi: 10.3389/fnbeh.2011.00015
– ident: e_1_2_6_118_1
  doi: 10.1523/JNEUROSCI.19-21-09587.1999
– ident: e_1_2_6_6_1
  doi: 10.1038/nn1954
– ident: e_1_2_6_32_1
  doi: 10.1523/JNEUROSCI.4870-09.2010
– ident: e_1_2_6_66_1
  doi: 10.1126/science.1188472
– ident: e_1_2_6_52_1
  doi: 10.1038/nn.3632
– ident: e_1_2_6_7_1
  doi: 10.1038/nn.2752
– ident: e_1_2_6_97_1
  doi: 10.1126/science.1115270
– ident: e_1_2_6_78_1
  doi: 10.1523/JNEUROSCI.4614-12.2013
– ident: e_1_2_6_107_1
  doi: 10.1016/j.brainresbull.2008.08.015
– ident: e_1_2_6_105_1
  doi: 10.1523/JNEUROSCI.1238-13.2013
– ident: e_1_2_6_93_1
  doi: 10.1016/0306-4522(89)90168-1
– ident: e_1_2_6_110_1
  doi: 10.3389/fnbeh.2014.00076
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1460-9568.2012.08055.x
– ident: e_1_2_6_83_1
  doi: 10.1016/S0168-0102(02)00027-5
– ident: e_1_2_6_12_1
  doi: 10.1111/ejn.12822
– ident: e_1_2_6_71_1
  doi: 10.1016/S0301-0082(96)00042-1
– ident: e_1_2_6_14_1
  doi: 10.1152/jn.1994.71.1.17
– ident: e_1_2_6_103_1
  doi: 10.1126/science.1160575
– ident: e_1_2_6_120_1
  doi: 10.1016/j.neuron.2012.12.032
– ident: e_1_2_6_28_1
  doi: 10.1038/311461a0
– ident: e_1_2_6_8_1
  doi: 10.1016/S0166-2236(02)02235-X
– ident: e_1_2_6_85_1
  doi: 10.1126/science.1094285
– ident: e_1_2_6_90_1
  doi: 10.1126/science.1102384
– ident: e_1_2_6_112_1
  doi: 10.1016/S0079-6123(06)60011-3
– ident: e_1_2_6_57_1
  doi: 10.1523/JNEUROSCI.2728-09.2009
– ident: e_1_2_6_64_1
  doi: 10.1038/nature14178
– ident: e_1_2_6_62_1
  doi: 10.1016/j.neuron.2008.02.021
– ident: e_1_2_6_92_1
  doi: 10.1038/35092560
– ident: e_1_2_6_111_1
  doi: 10.1152/jn.00249.2001
– ident: e_1_2_6_89_1
  doi: 10.1016/S0306-4522(98)00319-4
– ident: e_1_2_6_53_1
  doi: 10.1038/nn.3140
– ident: e_1_2_6_29_1
  doi: 10.1146/annurev-neuro-061010-113641
– ident: e_1_2_6_38_1
  doi: 10.1016/j.neubiorev.2009.11.019
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1460-9568.2008.06192.x
– ident: e_1_2_6_73_1
  doi: 10.1523/JNEUROSCI.16-05-01936.1996
– ident: e_1_2_6_117_1
  doi: 10.1016/j.neuron.2013.05.014
– ident: e_1_2_6_98_1
  doi: 10.1523/JNEUROSCI.22-06-02363.2002
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1102941
– ident: e_1_2_6_58_1
  doi: 10.1038/nature09159
– ident: e_1_2_6_61_1
  doi: 10.1038/nn.3397
– ident: e_1_2_6_25_1
  doi: 10.1126/science.1146157
– ident: e_1_2_6_70_1
  doi: 10.1146/annurev.neuro.27.070203.144247
– ident: e_1_2_6_81_1
  doi: 10.1162/NECO_a_00049
– ident: e_1_2_6_96_1
  doi: 10.1016/j.neuron.2011.05.014
– ident: e_1_2_6_106_1
  doi: 10.1152/jn.00689.2011
– ident: e_1_2_6_11_1
  doi: 10.1038/nn.3743
– ident: e_1_2_6_55_1
  doi: 10.1101/lm.1178309
– ident: e_1_2_6_43_1
  doi: 10.1152/physrev.2000.80.3.953
– ident: e_1_2_6_94_1
  doi: 10.1016/S0959-4388(96)80077-8
– ident: e_1_2_6_109_1
  doi: 10.1016/j.conb.2008.07.003
– ident: e_1_2_6_9_1
  doi: 10.1038/nn.3369
– ident: e_1_2_6_104_1
  doi: 10.1038/nrn3469
– ident: e_1_2_6_40_1
  doi: 10.1038/nn.3048
– ident: e_1_2_6_35_1
  doi: 10.1007/978-3-642-32375-1_7
– ident: e_1_2_6_124_1
  doi: 10.1016/j.neuron.2013.11.005
– ident: e_1_2_6_76_1
  doi: 10.1152/jn.00625.2013
– ident: e_1_2_6_50_1
  doi: 10.1523/JNEUROSCI.0381-13.2013
– ident: e_1_2_6_68_1
  doi: 10.1523/JNEUROSCI.5027-04.2005
– ident: e_1_2_6_88_1
  doi: 10.1371/journal.pcbi.1001133
– volume-title: Models of Information Processing in the Basal Ganglia
  year: 1995
  ident: e_1_2_6_47_1
– ident: e_1_2_6_63_1
  doi: 10.1523/JNEUROSCI.1990-04.2004
– ident: e_1_2_6_87_1
  doi: 10.1523/JNEUROSCI.18-01-00266.1998
– ident: e_1_2_6_67_1
  doi: 10.1038/nn.2374
– ident: e_1_2_6_13_1
  doi: 10.1037/a0037015
– ident: e_1_2_6_121_1
  doi: 10.1016/j.neuron.2012.03.017
– ident: e_1_2_6_17_1
  doi: 10.1038/nn1560
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neuron.2013.10.016
– ident: e_1_2_6_60_1
  doi: 10.1038/nature05506
– ident: e_1_2_6_79_1
  doi: 10.1038/nn1743
– ident: e_1_2_6_33_1
  doi: 10.1146/annurev.neuro.29.051605.112851
– ident: e_1_2_6_101_1
  doi: 10.1126/science.275.5306.1593
– ident: e_1_2_6_48_1
  doi: 10.1523/JNEUROSCI.3486-06.2006
– ident: e_1_2_6_19_1
  doi: 10.1523/JNEUROSCI.3644-10.2010
– reference: 6207434 - Nature. 1984 Oct 4-10;311(5985):461-4
– reference: 2528080 - Neuroscience. 1989;30(3):767-77
– reference: 18558860 - Annu Rev Neurosci. 2008;31:359-87
– reference: 17167083 - J Neurosci. 2006 Dec 13;26(50):12921-42
– reference: 24769227 - Neuroscience. 2014 Dec 12;282:49-59
– reference: 18026098 - Nat Neurosci. 2007 Dec;10 (12 ):1615-24
– reference: 15087550 - Science. 2004 Apr 16;304(5669):452-4
– reference: 12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47
– reference: 22231429 - Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3
– reference: 18678255 - Curr Opin Neurobiol. 2008 Apr;18(2):209-16
– reference: 18805468 - Brain Res Bull. 2009 Feb 16;78(2-3):60-8
– reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9
– reference: 21589888 - PLoS Comput Biol. 2011 May;7(5):e1001133
– reference: 18445222 - Eur J Neurosci. 2008 May;27(9):2313-21
– reference: 19940165 - J Neurosci. 2009 Nov 25;29(47):14701-12
– reference: 23542690 - Nat Neurosci. 2013 May;16(5):632-8
– reference: 16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
– reference: 22802650 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12764-9
– reference: 23810541 - Neuron. 2013 Jul 24;79(2):347-60
– reference: 24431428 - J Neurosci. 2014 Jan 15;34(3):698-704
– reference: 21469956 - Annu Rev Neurosci. 2011;34:441-66
– reference: 25062777 - Neuroscience. 2014 Dec 12;282:156-75
– reference: 16764517 - Neural Comput. 2006 Jul;18(7):1637-77
– reference: 18339943 - Science. 2008 Mar 14;319(5869):1543-6
– reference: 15829638 - J Neurosci. 2005 Apr 13;25(15):3857-69
– reference: 15701239 - J Cogn Neurosci. 2005 Jan;17(1):51-72
– reference: 9915705 - Science. 1999 Jan 22;283(5401):549-54
– reference: 23511908 - Nat Rev Neurosci. 2013 Apr;14(4):278-91
– reference: 22544310 - Nat Neurosci. 2012 Jun;15(6):816-8
– reference: 23319622 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1923-8
– reference: 16624959 - J Neurosci. 2006 Apr 19;26(16):4394-405
– reference: 25258080 - Science. 2014 Sep 26;345(6204):1616-20
– reference: 9004351 - Prog Neurobiol. 1996 Nov;50(4):381-425
– reference: 24313650 - Eur J Neurosci. 2014 Feb;39(4):688-702
– reference: 22327472 - Nat Neurosci. 2012 Feb 12;15(4):613-9
– reference: 21941467 - Front Neuroanat. 2011 Sep 07;5:59
– reference: 9412506 - J Neurosci. 1998 Jan 1;18(1):266-83
– reference: 22487041 - Eur J Neurosci. 2012 Apr;35(7):1115-23
– reference: 24360541 - Neuron. 2013 Dec 18;80(6):1368-83
– reference: 8725965 - Curr Opin Neurobiol. 1996 Apr;6(2):228-36
– reference: 25090423 - Psychol Rev. 2014 Jul;121(3):337-66
– reference: 23678129 - J Neurosci. 2013 May 15;33(20):8866-90
– reference: 21689594 - Neuron. 2011 Jun 23;70(6):1054-69
– reference: 10362291 - Neuroscience. 1999;89(4):1009-23
– reference: 18466754 - Neuron. 2008 May 8;58(3):451-63
– reference: 16311337 - Science. 2005 Nov 25;310(5752):1337-40
– reference: 18687967 - Science. 2008 Aug 8;321(5890):848-51
– reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50
– reference: 17499115 - Prog Brain Res. 2007;160:189-208
– reference: 21314848 - Eur J Neurosci. 2011 Feb;33(4):668-77
– reference: 20858126 - Neural Comput. 2010 Dec;22(12):3062-106
– reference: 25562526 - PLoS Biol. 2015 Jan 06;13(1):e1002034
– reference: 20547134 - Neuron. 2010 Jun 10;66(5):781-95
– reference: 15217335 - Annu Rev Neurosci. 2004;27:307-40
– reference: 17287809 - Nature. 2007 Feb 8;445(7128):643-7
– reference: 25926776 - Front Syst Neurosci. 2015 Apr 14;9:51
– reference: 19684590 - Nat Neurosci. 2009 Sep;12(9):1180-6
– reference: 24784819 - Nat Protoc. 2014;9(6):1213-28
– reference: 21159963 - J Neurosci. 2010 Dec 15;30(50):16922-37
– reference: 12467598 - Neuron. 2002 Dec 5;36(5):955-68
– reference: 19657038 - J Neurosci. 2009 Aug 5;29(31):9861-74
– reference: 20147549 - J Neurosci. 2010 Feb 10;30(6):2223-34
– reference: 23666180 - Nat Neurosci. 2013 Jun;16(6):665-7
– reference: 17416920 - Ann N Y Acad Sci. 2007 May;1104:192-212
– reference: 17962524 - Science. 2007 Nov 23;318(5854):1309-12
– reference: 21088706 - Front Neuroanat. 2010 Oct 25;4:142
– reference: 24409138 - Front Comput Neurosci. 2014 Jan 09;7:194
– reference: 21367999 - J Neurophysiol. 2011 May;105(5):2501-11
– reference: 12067746 - Neurosci Res. 2002 Jun;43(2):111-7
– reference: 22706268 - Nat Neurosci. 2012 Jun 17;15(7):960-1
– reference: 11784772 - J Neurophysiol. 2002 Jan;87(1):567-88
– reference: 25505406 - Front Comput Neurosci. 2014 Nov 25;8:152
– reference: 24464039 - Nat Neurosci. 2014 Mar;17(3):423-30
– reference: 15528409 - Science. 2004 Dec 10;306(5703):1940-3
– reference: 24462094 - Neuron. 2014 Jan 22;81(2):267-79
– reference: 8989401 - J Neurophysiol. 1995 Oct;74(4):1652-61
– reference: 23785137 - J Neurosci. 2013 Jun 19;33(25):10209-20
– reference: 25731172 - Nature. 2015 Mar 5;519(7541):51-6
– reference: 21472026 - Front Behav Neurosci. 2011 Mar 21;5:15
– reference: 11896175 - J Neurosci. 2002 Mar 15;22(6):2363-73
– reference: 8158226 - J Neurophysiol. 1994 Jan;71(1):17-32
– reference: 10893428 - Physiol Rev. 2000 Jul;80(3):953-78
– reference: 16871163 - Nat Neurosci. 2006 Aug;9(8):987-8
– reference: 15385612 - J Neurosci. 2004 Sep 22;24(38):8289-99
– reference: 19369554 - J Neurosci. 2009 Apr 15;29(15):4858-70
– reference: 22302828 - J Neurosci. 2012 Feb 1;32(5):1898-913
– reference: 25065439 - Nat Neurosci. 2014 Aug;17(8):1022-30
– reference: 18562619 - J Neurosci. 2008 Jun 18;28(25):6483-92
– reference: 12220881 - Trends Neurosci. 2002 Oct;25(10):525-31
– reference: 15591205 - Science. 2004 Dec 10;306(5703):1944-7
– reference: 12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506
– reference: 22681690 - Neuron. 2012 Jun 7;74(5):858-73
– reference: 11544526 - Nature. 2001 Sep 6;413(6851):67-70
– reference: 21144997 - Neuron. 2010 Dec 9;68(5):815-34
– reference: 23428656 - Curr Opin Neurobiol. 2013 Aug;23(4):546-52
– reference: 19944716 - Neurosci Biobehav Rev. 2010 Apr;34(5):701-20
– reference: 24659960 - Front Behav Neurosci. 2014 Mar 12;8:76
– reference: 24598515 - J Neurophysiol. 2014 Jul 1;112(1):120-46
– reference: 22726837 - Neuron. 2012 Jun 21;74(6):1075-86
– reference: 19144967 - Learn Mem. 2009 Jan 07;16(1):86-95
– reference: 20613723 - Nature. 2010 Jul 29;466(7306):622-6
– reference: 24048856 - J Neurosci. 2013 Sep 18;33(38):15272-84
– reference: 25739505 - Nature. 2015 May 7;521(7550):85-9
– reference: 16424448 - J Neurophysiol. 2006 Feb;95(2):567-84
– reference: 15044807 - Science. 2004 Mar 26;303(5666):2040-2
– reference: 20620875 - Neuron. 2010 Jun 24;66(6):896-907
– reference: 21317906 - Nat Neurosci. 2011 Mar;14(3):366-72
– reference: 21753015 - J Neurosci. 2011 Jul 13;31(28):10380-91
– reference: 10933211 - Exp Brain Res. 2000 Jul;133(1):66-70
– reference: 23439125 - Neuron. 2013 Feb 20;77(4):736-49
– reference: 16862149 - Nat Neurosci. 2006 Aug;9(8):1057-63
– reference: 10531461 - J Neurosci. 1999 Nov 1;19(21):9587-603
– reference: 7722648 - J Neurosci. 1995 Apr;15(4):3092-103
– reference: 20947769 - Science. 2010 Oct 15;330(6002):385-90
– reference: 25581560 - Eur J Neurosci. 2015 Mar;41(6):748-59
– reference: 10805698 - J Neurophysiol. 2000 May;83(5):3031-41
– reference: 17676057 - Nat Neurosci. 2007 Sep;10(9):1214-21
– reference: 22658226 - Trends Neurosci. 2012 Aug;35(8):457-67
– reference: 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44
– reference: 22681697 - Neuron. 2012 Jun 7;74(5):947-60
– reference: 8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47
– reference: 21957220 - J Neurophysiol. 2012 Jan;107(1):50-64
SSID ssj0008645
Score 2.218742
Snippet There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of...
There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2003
SubjectTerms Animals
Appetitive Behavior - physiology
Avoidance Learning - physiology
Basal Ganglia - cytology
Basal Ganglia - physiology
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Choice Behavior
Computational Neuroscience
Computer Simulation
corticostriatal
direct pathway
dopamine
Humans
indirect pathway
Models, Neurological
Nerve Net - physiology
Neural Pathways - physiology
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Neurons - physiology
Predictive Value of Tests
Probability
reinforcement learning
Reward
Time Factors
Title Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning
URI https://api.istex.fr/ark:/67375/WNG-4VJFGSZZ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12994
https://www.ncbi.nlm.nih.gov/pubmed/26095906
https://www.proquest.com/docview/1705009922
https://pubmed.ncbi.nlm.nih.gov/PMC5034842
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a4wFe-NhghI_JIDTtJVXiOHECT9NYN1WimoBBNSFFdu0U2EirtBWMJ_4B_EZ-Cfc6TVhhSIi3RLmxZPva99i-PgfgMVGGYFQxPjdS-kJanAcLGfq64DpDmJSFGV1wft5PDo5EbxAPVuBpcxem5odoN9xoZLj5mga40tNzg9x-KDsYrDLiAg2jhHjzn734RR2VJk6gmOjU_DRMBgtWIcriaf9cikWXqVk_XwQ0_8yXPI9jXSDqXoe3TRXq_JOTznymO8Mvv7E7_mcdb8C1BUBlO7VH3YQVW67B-k6Ji_OPZ2yLuZRRtxe_Bld2G7m4dfhW60NgJGSVpVTcH1-_Tyo6BqKuZ7aqxtUTpkrWElQYpmqpCjYuGC6C3a46m5HM2AgNDcMIq06xmJGiu8aKkXryJ3U2ZQi0mZpM6IIcTtbOVrn0EnxZyGCMbsFRd-_V7oG_UHvwh4gihS90wilJNCukVZkIdCRirbgeBpHGdaEWxDRmpMlUKNCBEIZqpeLEKi2xsyMT3YbVclzaO8AQdARBkRoVciO4CnRqQqO1jCUXFr95sN30ez5cUKGTIsdp3iyJsOFz1_AePGpNJzX_x0VGW855WgtVnVDCnIzzN_39XLzudfdfHh_nhx48bLwrx-6hsxlV2vF8mhOrEaF1zj3YqL2tLY0TKWAWJB7IJT9sDYgifPlL-f6dowqPg0ikAsvcdm729yrke72-e7j776b34CrCx7hOh7wPq7Nqbh8gRJvpTbjExeGmG5E_AWv7PYg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9lAuCFqg4dMgVPUSlDhOnCAuVdXtsrSrSrSw6iWy187SUrKrdCvojX8Av5Ffwozzoa4oEreNMrG0ebbn2Xl-A_CKLEMwqxifGyl9IS3Og4UMfV1wnSFNysKMDjgfDJP-sRiM4tESvG3PwtT-EN2GG40MN1_TAKcN6Wuj3J6VrzFbZeIWrAjk5STo4-Kwm4fTxJUoJkM1Pw2TUeMrRDqe7tGFbLRCL_b7TVTzb8XkdSbrUlHvLtxpOCTbrkG_B0u2XIP17RLXz1-v2CZzqk63Xb4GqzttRbd1-FmXcMBkxSpLatnfP37NKvpSQ-gwW1XT6g1TJes8JAxTdTUJNi0YrlPdxjebUyWwCQYahklQnWMzE0XHgRWjAsff1NUFQy7M1GxGZ9hwPnWxyilA8KKpVDG5D8e93aOdvt8UZPDHSPSEL3TCSceZFdKqTAQ6ErFWXI-DSOPSTQsyAzPSZCoUiDEyRa1UnFilJaIRmegBLJfT0m4AQ14QBEVqVMiN4CrQqQmN1jKWXFi858FWC0w-btzKqWjGed6uWhDD3GHowcsudFZbdNwUtOnQ7SJU9YU0bTLOPw33cvFx0Nv7cHKSH3rwooU_R3jo84kq7fTyIifjISLUnHvwsO4OXWucfPuyIPFALnSULoBcvBfvlKefnZt3HEQiFdjmlutS__4L-e5g6H48-v_Q57DaPzrYz_ffDd8_htvI9uJavfgElufVpX2KjGqun7mB8wdv-yAV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVgJeuLRAw9UgVPUlq1yceANPVem2LLCqgMKqQorstbOFlmyU7grKE38A38iXMONc6EKREG-JMrFke-w5tsfnADwkyhCMKtoNtBAuFwbnwUz4rsoClSBMSvyELji_GMQ7e7w_jIYL8Li5C1PxQ7QbbjQy7HxNA7zQ2alBbj7kHQxWCT8HSzxGJEGI6OUv7qhubBWKiU_N7frxsKYVojSe9te5YLRE7fr5LKT5Z8LkaSBrI1HvMrxr6lAloBx2ZlPVGX35jd7xPyt5BS7VCJVtVC51FRZMvgwrGzmuzj-esDVmc0btZvwyXNhs9OJW4FslEIGhkJWGcnF_fP1elHQORH3PTFlOykdM5qxlqNBMVloVbJIxXAXbbXU2JZ2xMRpqhiFWHmExY0mXjSUj-eRP8uSYIdJmsijohhzO1tZW2vwSfKl1MMbXYK-39Xpzx63lHtwRwkjuchUHlCWaZMLIhHsq5JGSgRp5ocKFoeJENaaFTqTP0YMQhyopo9hIJbCzQx1eh8V8kptVYIg6PC_raukHmgfSU13ta6VEJAJu8JsD602_p6OaC50kOY7SZk2EDZ_ahnfgQWtaVAQgZxmtWedpLWR5SBlzIkrfDrZT_qbf2361v5_uOnC_8a4Uu4cOZ2RuJrPjlGiNCK4HgQM3Km9rSwuIFTDxYgfEnB-2BsQRPv8lf39gucIjL-RdjmWuWzf7exXSrf7APtz8d9N7cH73SS99_nTw7BZcRCgZVamRt2FxWs7MHYRrU3XXDsufuLk_fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+reward%E2%80%90prediction+error%3A+an+integrated+account+of+cortical+timing+and+basal%E2%80%90ganglia+pathways+for+appetitive+and+aversive+learning&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Morita%2C+Kenji&rft.au=Kawaguchi%2C+Yasuo&rft.date=2015-08-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=42&rft.issue=4&rft.spage=2003&rft.epage=2021&rft_id=info:doi/10.1111%2Fejn.12994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejn_12994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon