Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning
There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represen...
Saved in:
Published in | The European journal of neuroscience Vol. 42; no. 4; pp. 2003 - 2021 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
France
Blackwell Publishing Ltd
01.08.2015
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.12994 |
Cover
Abstract | There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward‐prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal‐ganglia influence on the dopamine neurons. Here we present a computational neural‐circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up‐regulate and down‐regulate the dopamine neurons via the basal‐ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward‐prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward‐prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward‐reversal learning and punishment‐avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter‐temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed‐circuit mechanistic understanding of appetitive/aversive learning.
There are two popular notions in value‐based learning and choice: (i) dopamine represents reward prediction error, and (ii) the basal‐ganglia direct and indirect pathways are crucial for appetitive and aversive learning, respectively. We present an integrated account for these two, whose relationship has remained unclear. We provide predictions on the activity of cortical and striatal neuron subpopulations and on possible effects of the strengths of the two pathways on subject's time preference. |
---|---|
AbstractList | There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning. There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward‐prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal‐ganglia influence on the dopamine neurons. Here we present a computational neural‐circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up‐regulate and down‐regulate the dopamine neurons via the basal‐ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward‐prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward‐prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward‐reversal learning and punishment‐avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter‐temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed‐circuit mechanistic understanding of appetitive/aversive learning. There are two popular notions in value‐based learning and choice: (i) dopamine represents reward prediction error, and (ii) the basal‐ganglia direct and indirect pathways are crucial for appetitive and aversive learning, respectively. We present an integrated account for these two, whose relationship has remained unclear. We provide predictions on the activity of cortical and striatal neuron subpopulations and on possible effects of the strengths of the two pathways on subject's time preference. There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning.There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning. |
Author | Morita, Kenji Kawaguchi, Yasuo |
AuthorAffiliation | 2 Division of Cerebral Circuitry National Institute for Physiological Sciences Okazaki Japan 3 Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan 1 Physical and Health Education Graduate School of Education The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐0033 Japan 4 Japan Science and Technology Agency Core Research for Evolutional Science and Technology Tokyo Japan |
AuthorAffiliation_xml | – name: 4 Japan Science and Technology Agency Core Research for Evolutional Science and Technology Tokyo Japan – name: 3 Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan – name: 2 Division of Cerebral Circuitry National Institute for Physiological Sciences Okazaki Japan – name: 1 Physical and Health Education Graduate School of Education The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐0033 Japan |
Author_xml | – sequence: 1 givenname: Kenji surname: Morita fullname: Morita, Kenji email: : Kenji Morita, as above., morita@p.u-tokyo.ac.jp organization: Physical and Health Education, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Bunkyo-ku, Japan – sequence: 2 givenname: Yasuo surname: Kawaguchi fullname: Kawaguchi, Yasuo organization: Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26095906$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1u1DAQhS1URH_gghdAvoSLtHbiODEXSGjVLlRVQeJXvbEmzmTrkrWD7d1ln4GXJtttV4AEvhlZ850zMzqHZM95h4Q85eyYj-8Eb9wxz5USD8gBF5JlqpT1Hjlgqiyymsuv--QwxhvGWC1F-Yjs53JsKSYPyM-Jnw-LZN2MBlxBaLMhYGtNst5RDMGHlxQctS7hLEDCloIxfuES9R01PiRroKfJzjcO4FraQIQ-m4Gb9RboAOl6BetIOx8oDAMmm-wSb0lYYoibT48Q3Kh_TB520Ed8clePyKez04-TN9nFu-nbyeuLzJRciUw0MmeK5aqrEJRgTSHKBvLGsKLJ67wRvGaqrVoFXHDVlVI2AKVEaKrx_qItjsirre-waObYGnQpQK-HYOcQ1tqD1X92nL3WM7_UJStELfLR4PmdQfDfFxiTnttosO_BoV9EzStWMqZUvkGf_T5rN-Q-gRF4sQVM8DEG7HYIZ3qTrh7T1bfpjuzJX6yxCTZRjWva_n-Kle1x_W9rfXp-ea_ItgobE_7YKSB807IqqlJ_uZxq8fn8bPrh6kq_L34BhN3JIA |
CitedBy_id | crossref_primary_10_1093_cercor_bhx252 crossref_primary_10_3389_fncir_2018_00111 crossref_primary_10_1523_ENEURO_0022_16_2016 crossref_primary_10_1162_nol_a_00086 crossref_primary_10_1002_ibra_12174 crossref_primary_10_1371_journal_pcbi_1005145 crossref_primary_10_1523_ENEURO_0021_18_2018 crossref_primary_10_1016_j_neuroscience_2021_05_010 crossref_primary_10_1142_S021963521650028X crossref_primary_10_1016_j_celrep_2023_112574 crossref_primary_10_1159_000496392 crossref_primary_10_1093_ijnp_pyaa007 |
Cites_doi | 10.1152/jn.2000.83.5.3031 10.1016/S0893-6080(02)00047-3 10.1016/j.neuron.2010.11.022 10.1523/JNEUROSCI.0252-06.2006 10.1016/j.neuron.2010.05.011 10.1523/JNEUROSCI.15-04-03092.1995 10.1523/JNEUROSCI.0772-11.2011 10.1152/jn.01076.2010 10.1126/science.1255514 10.1523/JNEUROSCI.0435-08.2008 10.1111/ejn.12434 10.1146/annurev.neuro.28.061604.135709 10.1196/annals.1390.016 10.1016/j.neuroscience.2014.04.026 10.1038/nn.3100 10.1523/JNEUROSCI.2489-13.2014 10.1126/science.283.5401.549 10.1016/S0893-6080(02)00044-8 10.1016/j.neuron.2012.04.027 10.1016/j.neuroscience.2014.07.021 10.1016/j.tins.2012.04.009 10.1126/science.1093360 10.1162/neco.2006.18.7.1637 10.1523/JNEUROSCI.6157-08.2009 10.1073/pnas.1210797109 10.1038/nn.3017 10.1016/j.neuron.2012.03.037 10.1038/nn2013 10.1126/science.1150769 10.1523/JNEUROSCI.4415-08.2009 10.1073/pnas.1221742110 10.1038/nprot.2014.080 10.3389/fnana.2011.00059 10.1007/s002210000401 10.3389/fncom.2013.00194 10.1371/journal.pbio.1002034 10.1016/S0896-6273(02)01092-9 10.1523/JNEUROSCI.2810-11.2012 10.1152/jn.00458.2005 10.1162/0898929052880093 10.3389/fnana.2010.00142 10.1038/nature14179 10.1038/nn.2921 10.3389/fncom.2014.00152 10.3389/fnsys.2015.00051 10.1016/j.neuron.2010.04.036 10.1152/jn.1995.74.4.1652 10.1038/nn0806-987 10.1111/j.1460-9568.2010.07564.x 10.1016/j.conb.2013.01.026 10.3389/fnbeh.2011.00015 10.1523/JNEUROSCI.19-21-09587.1999 10.1038/nn1954 10.1523/JNEUROSCI.4870-09.2010 10.1126/science.1188472 10.1038/nn.3632 10.1038/nn.2752 10.1126/science.1115270 10.1523/JNEUROSCI.4614-12.2013 10.1016/j.brainresbull.2008.08.015 10.1523/JNEUROSCI.1238-13.2013 10.1016/0306-4522(89)90168-1 10.3389/fnbeh.2014.00076 10.1111/j.1460-9568.2012.08055.x 10.1016/S0168-0102(02)00027-5 10.1111/ejn.12822 10.1016/S0301-0082(96)00042-1 10.1152/jn.1994.71.1.17 10.1126/science.1160575 10.1016/j.neuron.2012.12.032 10.1038/311461a0 10.1016/S0166-2236(02)02235-X 10.1126/science.1094285 10.1126/science.1102384 10.1016/S0079-6123(06)60011-3 10.1523/JNEUROSCI.2728-09.2009 10.1038/nature14178 10.1016/j.neuron.2008.02.021 10.1038/35092560 10.1152/jn.00249.2001 10.1016/S0306-4522(98)00319-4 10.1038/nn.3140 10.1146/annurev-neuro-061010-113641 10.1016/j.neubiorev.2009.11.019 10.1111/j.1460-9568.2008.06192.x 10.1523/JNEUROSCI.16-05-01936.1996 10.1016/j.neuron.2013.05.014 10.1523/JNEUROSCI.22-06-02363.2002 10.1126/science.1102941 10.1038/nature09159 10.1038/nn.3397 10.1126/science.1146157 10.1146/annurev.neuro.27.070203.144247 10.1162/NECO_a_00049 10.1016/j.neuron.2011.05.014 10.1152/jn.00689.2011 10.1038/nn.3743 10.1101/lm.1178309 10.1152/physrev.2000.80.3.953 10.1016/S0959-4388(96)80077-8 10.1016/j.conb.2008.07.003 10.1038/nn.3369 10.1038/nrn3469 10.1038/nn.3048 10.1007/978-3-642-32375-1_7 10.1016/j.neuron.2013.11.005 10.1152/jn.00625.2013 10.1523/JNEUROSCI.0381-13.2013 10.1523/JNEUROSCI.5027-04.2005 10.1371/journal.pcbi.1001133 10.1523/JNEUROSCI.1990-04.2004 10.1523/JNEUROSCI.18-01-00266.1998 10.1038/nn.2374 10.1037/a0037015 10.1016/j.neuron.2012.03.017 10.1038/nn1560 10.1016/j.neuron.2013.10.016 10.1038/nature05506 10.1038/nn1743 10.1146/annurev.neuro.29.051605.112851 10.1126/science.275.5306.1593 10.1523/JNEUROSCI.3486-06.2006 10.1523/JNEUROSCI.3644-10.2010 |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/ejn.12994 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | K. Morita and Y. Kawaguchi |
EISSN | 1460-9568 |
EndPage | 2021 |
ExternalDocumentID | PMC5034842 26095906 10_1111_ejn_12994 EJN12994 ark_67375_WNG_4VJFGSZZ_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Core Research for Evolutional Science and Technology – fundername: The Ministry of Education, Science, Sports and Culture of Japan funderid: 26120710; 25115709 – fundername: Japan Agency for Medical Research and Development – fundername: Japan Society for the Promotion of Science funderid: 25250005; 25123723; 15H01456 – fundername: The Ministry of Education, Science, Sports and Culture of Japan grantid: 26120710; 25115709 – fundername: Japan Society for the Promotion of Science grantid: 25250005; 25123723; 15H01456 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT 24P AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c5194-4b6209029f7ea940b345ba2bc03b282b41809d7d9a1419f566baa56eab70863d3 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 13:38:22 EDT 2025 Fri Jul 11 02:30:21 EDT 2025 Thu Apr 03 07:00:48 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 03:02:11 EDT 2025 Wed Jan 22 16:33:02 EST 2025 Wed Oct 30 09:51:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | corticostriatal direct pathway indirect pathway dopamine reinforcement learning |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5194-4b6209029f7ea940b345ba2bc03b282b41809d7d9a1419f566baa56eab70863d3 |
Notes | The Ministry of Education, Science, Sports and Culture of Japan - No. 26120710; No. 25115709 Core Research for Evolutional Science and Technology Japan Society for the Promotion of Science - No. 25250005; No. 25123723; No. 15H01456 ark:/67375/WNG-4VJFGSZZ-P Japan Agency for Medical Research and Development ArticleID:EJN12994 istex:7BB79E9AC2C8602EC9C97EF98AE934873621669E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12994 |
PMID | 26095906 |
PQID | 1705009922 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5034842 proquest_miscellaneous_1705009922 pubmed_primary_26095906 crossref_primary_10_1111_ejn_12994 crossref_citationtrail_10_1111_ejn_12994 wiley_primary_10_1111_ejn_12994_EJN12994 istex_primary_ark_67375_WNG_4VJFGSZZ_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Hoboken |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896-907. Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. (2009) Role of striatum in updating values of chosen actions. J. Neurosci., 29, 14701-14712. O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R.J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454. Lei, W., Jiao, Y., Del Mar, N. & Reiner, A. (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci., 24, 8289-8299. Daw, N.D., Courville, A.C., Tourtezky, D.S. & Touretzky, D.S. (2006) Representation and timing in theories of the dopamine system. Neural Comput., 18, 1637-1677. Aggarwal, M., Hyland, B.I. & Wickens, J.R. (2012) Neural control of dopamine neurotransmission: implications for reinforcement learning. Eur. J. Neurosci., 35, 1115-1123. Frank, M.J., Samanta, J., Moustafa, A.A. & Sherman, S.J. (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309-1312. Mallet, N., Le Moine, C., Charpier, S. & Gonon, F. (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci., 25, 3857-3869. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851. Hazy, T.E., Frank, M.J. & O'Reilly, R.C. (2010) Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci. Biobehav. R., 34, 701-720. Keeler, J.F., Pretsell, D.O. & Robbins, T.W. (2014) Functional implications of dopamine D1 vs. D2 receptors: a 'prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 282C, 156-175. Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K. & Kreitzer, A.C. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622-626. Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. (2009) Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 29, 4858-4870. Roesch, M.R., Calu, D.J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci., 10, 1615-1624. Robbins, T.W. & Everitt, B.J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol., 6, 228-236. Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci., 34, 698-704. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci., 17, 1022-1030. Hikosaka, O., Takikawa, Y. & Kawagoe, R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 80, 953-978. Redish, A.D. (2004) Addiction as a computational process gone awry. Science, 306, 1944-1947. Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858-873. Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192-212. Hempel, C., Hartman, K., Wang, X., Turrigiano, G. & Nelson, S. (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol., 83, 3031-3041. Moyer, J.T., Halterman, B.L., Finkel, L.H. & Wolf, J.A. (2014) Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network. Front. Comput. Neurosci., 8, 152. Smith, R.J., Lobo, M.K., Spencer, S. & Kalivas, P.W. (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol., 23, 546-552. Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. (2011) Frontal cortex and reward-guided learning and decision-making. Neuron, 70, 1054-1069. Chen, M.C., Ferrari, L., Sacchet, M.D., Foland-Ross, L.C., Qiu, M.H., Gotlib, I.H., Fuller, P.M., Arrigoni, E. & Lu, J. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur. J. Neurosci., 41, 748-759. Kreitzer, A.C. & Malenka, R.C. (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature, 445, 643-647. Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res., 43, 111-117. Story, G.W., Vlaev, I., Seymour, B., Darzi, A. & Dolan, R.J. (2014) Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Front. Behav. Neurosci., 8, 76. Gershman, S.J., Moustafa, A.A. & Ludvig, E.A. (2014) Time representation in reinforcement learning models of the basal ganglia. Front. Comput. Neurosci., 7, 194. Mauk, M.D. & Buonomano, D.V. (2004) The neural basis of temporal processing. Annu. Rev. Neurosci., 27, 307-340. Lau, B. & Glimcher, P.W. (2008) Value representations in the primate striatum during matching behavior. Neuron, 58, 451-463. Collins, A.G. & Frank, M.J. (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev., 121, 337-366. Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549-554. Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci., 30, 2223-2234. Frank, M.J. (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cognitive Neurosci., 17, 51-72. Morishima, M. & Kawaguchi, Y. (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 26, 4394-4405. Jin, X., Tecuapetla, F. & Costa, R.M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 17, 423-430. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science, 310, 1337-1340. Reynolds, J.N., Hyland, B.I. & Wickens, J.R. (2001) A cellular mechanism of reward-related learning. Nature, 413, 67-70. Wang, X.-J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968. Gerfen, C.R., Paletzki, R. & Heintz, N. (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron, 80, 1368-1383. Schultz, W., Dayan, P. & Montague, P.R. (1997) A neural substrate of prediction and reward. Science, 275, 1593-1599. Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F. & Alvarez, V.A. (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci., 16, 632-638. Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267-279. Gurney, K.N., Humphries, M.D. & Redgrave, P. (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 13, e1002034. Kalmbach, B.E., Ohyama, T., Kreider, J.C., Riusech, F. & Mauk, M.D. (2009) Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Memory, 16, 86-95. Richfield, E.K., Penney, J.B. & Young, A.B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767-777. Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S. & Kasai, H. (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345, 1616-1620. Potjans, W., Diesmann, M. & Morrison, A. (2011) An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput. Biol., 7, e1001133. Hong, S. & Hikosaka, O. (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci., 5, 15. Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S. & Costa, R.M. (2014) Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc., 9, 1213-1228. Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T. & Nakanishi, S. (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA, 109, 12764-12769. Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W. & Kaneko, T. (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci., 33, 668-677. Joel, D., Niv, Y. & Ruppin, E. (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks, 15, 535-547. Ding, J., Peterson, J.D. & Surmeier, D.J. (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci., 28, 6483 2002; 15 2004; 27 2010; 466 1997; 275 2004; 24 1999; 283 2000; 133 2008; 31 2012; 15 2009; 12 2010; 22 1989; 30 1998; 18 1984; 311 2011; 70 2008; 27 2002; 87 2008; 28 2006; 26 2013; 110 2014; 17 2014; 121 1994; 71 2010; 4 2010; 30 2009; 16 1989 2001; 413 2010; 34 2007; 445 2004; 303 2015; 521 2007; 160 2008; 58 1995 2012; 35 2007; 10 2004; 306 1996; 16 2011; 5 2004; 304 2012; 32 2012; 107 2011; 7 2012; 109 2009; 78 2013; 77 2013; 79 2005; 8 2014; 282C 2013; 80 2000; 83 2010; 330 2015; 519 2000; 80 2014; 39 2005; 17 2007; 318 2014; 34 1995; 74 2013; 23 2007; 1104 1999; 89 2011; 14 2005; 28 2005; 25 2010; 66 2013; 14 2013; 16 2010; 68 1999; 19 2015; 41 2002; 43 2008; 319 2014; 282 2014; 9 2014; 8 2014; 7 1996; 6 2015; 13 2002; 36 2006; 95 2005; 310 1995; 15 2008; 18 2006; 9 1996; 50 2011; 31 2006; 18 2011; 33 2011; 34 2008; 321 2015; 9 2009; 29 2012; 74 2014; 112 2011; 105 2002; 25 2014; 81 2013; 33 2002; 22 2013 2014; 345 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 Houk J. (e_1_2_6_47_1) 1995 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 Watkins C. (e_1_2_6_122_1) 1989 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_112_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 22487041 - Eur J Neurosci. 2012 Apr;35(7):1115-23 12220881 - Trends Neurosci. 2002 Oct;25(10):525-31 18678255 - Curr Opin Neurobiol. 2008 Apr;18(2):209-16 12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506 22231429 - Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3 10933211 - Exp Brain Res. 2000 Jul;133(1):66-70 9004351 - Prog Neurobiol. 1996 Nov;50(4):381-425 17499115 - Prog Brain Res. 2007;160:189-208 17416920 - Ann N Y Acad Sci. 2007 May;1104:192-212 21472026 - Front Behav Neurosci. 2011 Mar 21;5:15 10805698 - J Neurophysiol. 2000 May;83(5):3031-41 22327472 - Nat Neurosci. 2012 Feb 12;15(4):613-9 19684590 - Nat Neurosci. 2009 Sep;12(9):1180-6 23542690 - Nat Neurosci. 2013 May;16(5):632-8 24769227 - Neuroscience. 2014 Dec 12;282:49-59 25258080 - Science. 2014 Sep 26;345(6204):1616-20 22544310 - Nat Neurosci. 2012 Jun;15(6):816-8 19144967 - Learn Mem. 2009 Jan 07;16(1):86-95 2528080 - Neuroscience. 1989;30(3):767-77 20147549 - J Neurosci. 2010 Feb 10;30(6):2223-34 18445222 - Eur J Neurosci. 2008 May;27(9):2313-21 19369554 - J Neurosci. 2009 Apr 15;29(15):4858-70 16311337 - Science. 2005 Nov 25;310(5752):1337-40 10362291 - Neuroscience. 1999;89(4):1009-23 21317906 - Nat Neurosci. 2011 Mar;14(3):366-72 22658226 - Trends Neurosci. 2012 Aug;35(8):457-67 24784819 - Nat Protoc. 2014;9(6):1213-28 16624959 - J Neurosci. 2006 Apr 19;26(16):4394-405 12067746 - Neurosci Res. 2002 Jun;43(2):111-7 22706268 - Nat Neurosci. 2012 Jun 17;15(7):960-1 24462094 - Neuron. 2014 Jan 22;81(2):267-79 18805468 - Brain Res Bull. 2009 Feb 16;78(2-3):60-8 24431428 - J Neurosci. 2014 Jan 15;34(3):698-704 16022602 - Annu Rev Neurosci. 2005;28:403-50 18466754 - Neuron. 2008 May 8;58(3):451-63 19657038 - J Neurosci. 2009 Aug 5;29(31):9861-74 9412506 - J Neurosci. 1998 Jan 1;18(1):266-83 17167083 - J Neurosci. 2006 Dec 13;26(50):12921-42 16764517 - Neural Comput. 2006 Jul;18(7):1637-77 16871163 - Nat Neurosci. 2006 Aug;9(8):987-8 18558860 - Annu Rev Neurosci. 2008;31:359-87 15528409 - Science. 2004 Dec 10;306(5703):1940-3 21957220 - J Neurophysiol. 2012 Jan;107(1):50-64 17287809 - Nature. 2007 Feb 8;445(7128):643-7 20613723 - Nature. 2010 Jul 29;466(7306):622-6 23439125 - Neuron. 2013 Feb 20;77(4):736-49 11544526 - Nature. 2001 Sep 6;413(6851):67-70 23511908 - Nat Rev Neurosci. 2013 Apr;14(4):278-91 23810541 - Neuron. 2013 Jul 24;79(2):347-60 21589888 - PLoS Comput Biol. 2011 May;7(5):e1001133 24360541 - Neuron. 2013 Dec 18;80(6):1368-83 17676057 - Nat Neurosci. 2007 Sep;10(9):1214-21 18687967 - Science. 2008 Aug 8;321(5890):848-51 23428656 - Curr Opin Neurobiol. 2013 Aug;23(4):546-52 20947769 - Science. 2010 Oct 15;330(6002):385-90 24464039 - Nat Neurosci. 2014 Mar;17(3):423-30 21159963 - J Neurosci. 2010 Dec 15;30(50):16922-37 24048856 - J Neurosci. 2013 Sep 18;33(38):15272-84 15829638 - J Neurosci. 2005 Apr 13;25(15):3857-69 20858126 - Neural Comput. 2010 Dec;22(12):3062-106 15385612 - J Neurosci. 2004 Sep 22;24(38):8289-99 12467598 - Neuron. 2002 Dec 5;36(5):955-68 21469956 - Annu Rev Neurosci. 2011;34:441-66 25739505 - Nature. 2015 May 7;521(7550):85-9 21941467 - Front Neuroanat. 2011 Sep 07;5:59 8989401 - J Neurophysiol. 1995 Oct;74(4):1652-61 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44 11784772 - J Neurophysiol. 2002 Jan;87(1):567-88 22302828 - J Neurosci. 2012 Feb 1;32(5):1898-913 11896175 - J Neurosci. 2002 Mar 15;22(6):2363-73 25505406 - Front Comput Neurosci. 2014 Nov 25;8:152 8725965 - Curr Opin Neurobiol. 1996 Apr;6(2):228-36 16424448 - J Neurophysiol. 2006 Feb;95(2):567-84 18562619 - J Neurosci. 2008 Jun 18;28(25):6483-92 21314848 - Eur J Neurosci. 2011 Feb;33(4):668-77 15217335 - Annu Rev Neurosci. 2004;27:307-40 19944716 - Neurosci Biobehav Rev. 2010 Apr;34(5):701-20 22681697 - Neuron. 2012 Jun 7;74(5):947-60 24313650 - Eur J Neurosci. 2014 Feb;39(4):688-702 15701239 - J Cogn Neurosci. 2005 Jan;17(1):51-72 25065439 - Nat Neurosci. 2014 Aug;17(8):1022-30 21753015 - J Neurosci. 2011 Jul 13;31(28):10380-91 15087550 - Science. 2004 Apr 16;304(5669):452-4 9915705 - Science. 1999 Jan 22;283(5401):549-54 8158226 - J Neurophysiol. 1994 Jan;71(1):17-32 19940165 - J Neurosci. 2009 Nov 25;29(47):14701-12 21144997 - Neuron. 2010 Dec 9;68(5):815-34 21088706 - Front Neuroanat. 2010 Oct 25;4:142 25090423 - Psychol Rev. 2014 Jul;121(3):337-66 18339943 - Science. 2008 Mar 14;319(5869):1543-6 22802650 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12764-9 22726837 - Neuron. 2012 Jun 21;74(6):1075-86 10531461 - J Neurosci. 1999 Nov 1;19(21):9587-603 8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47 6207434 - Nature. 1984 Oct 4-10;311(5985):461-4 21689594 - Neuron. 2011 Jun 23;70(6):1054-69 10893428 - Physiol Rev. 2000 Jul;80(3):953-78 16862149 - Nat Neurosci. 2006 Aug;9(8):1057-63 9054347 - Science. 1997 Mar 14;275(5306):1593-9 18026098 - Nat Neurosci. 2007 Dec;10 (12 ):1615-24 7722648 - J Neurosci. 1995 Apr;15(4):3092-103 24598515 - J Neurophysiol. 2014 Jul 1;112(1):120-46 23785137 - J Neurosci. 2013 Jun 19;33(25):10209-20 25731172 - Nature. 2015 Mar 5;519(7541):51-6 16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11 22681690 - Neuron. 2012 Jun 7;74(5):858-73 25062777 - Neuroscience. 2014 Dec 12;282:156-75 20547134 - Neuron. 2010 Jun 10;66(5):781-95 25926776 - Front Syst Neurosci. 2015 Apr 14;9:51 23666180 - Nat Neurosci. 2013 Jun;16(6):665-7 24409138 - Front Comput Neurosci. 2014 Jan 09;7:194 23678129 - J Neurosci. 2013 May 15;33(20):8866-90 17962524 - Science. 2007 Nov 23;318(5854):1309-12 23319622 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1923-8 25562526 - PLoS Biol. 2015 Jan 06;13(1):e1002034 15044807 - Science. 2004 Mar 26;303(5666):2040-2 21367999 - J Neurophysiol. 2011 May;105(5):2501-11 20620875 - Neuron. 2010 Jun 24;66(6):896-907 24659960 - Front Behav Neurosci. 2014 Mar 12;8:76 25581560 - Eur J Neurosci. 2015 Mar;41(6):748-59 12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47 15591205 - Science. 2004 Dec 10;306(5703):1944-7 |
References_xml | – reference: Sato, M. & Hikosaka, O. (2002) Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J. Neurosci., 22, 2363-2373. – reference: Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci., 15, 816-818. – reference: Smith, Y., Raju, D., Nanda, B., Pare, J.F., Galvan, A. & Wichmann, T. (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain. Res. Bull., 78, 60-68. – reference: Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P. & Wilson, C.J. (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci., 25, 525-531. – reference: Luksys, G., Gerstner, W. & Sandi, C. (2009) Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. Nat. Neurosci., 12, 1180-1186. – reference: Aggarwal, M., Hyland, B.I. & Wickens, J.R. (2012) Neural control of dopamine neurotransmission: implications for reinforcement learning. Eur. J. Neurosci., 35, 1115-1123. – reference: Alexander, W.H. & Brown, J.W. (2011) Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci., 14, 1338-1344. – reference: Grueter, B.A., Robison, A.J., Neve, R.L., Nestler, E.J. & Malenka, R.C. (2013) ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. USA, 110, 1923-1928. – reference: Jocham, G., Hunt, L.T., Near, J. & Behrens, T.E. (2012) A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nat. Neurosci., 15, 960-961. – reference: Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F. & Alvarez, V.A. (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci., 16, 632-638. – reference: Lau, B. & Glimcher, P.W. (2008) Value representations in the primate striatum during matching behavior. Neuron, 58, 451-463. – reference: Henny, P., Brown, M.T., Northrop, A., Faunes, M., Ungless, M.A., Magill, P.J. & Bolam, J.P. (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat. Neurosci., 15, 613-619. – reference: Soltani, A. & Wang, X.-J. (2008) From biophysics to cognition: reward-dependent adaptive choice behavior. Curr. Opin. Neurobiol., 18, 209-216. – reference: Kreitzer, A.C. & Malenka, R.C. (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature, 445, 643-647. – reference: Mallet, N., Le Moine, C., Charpier, S. & Gonon, F. (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci., 25, 3857-3869. – reference: Niv, Y., Daw, N.D. & Dayan, P. (2006) Choice values. Nat. Neurosci., 9, 987-988. – reference: Mallet, N., Micklem, B.R., Henny, P., Brown, M.T., Williams, C., Bolam, J.P., Nakamura, K.C. & Magill, P.J. (2012) Dichotomous organization of the external globus pallidus. Neuron, 74, 1075-1086. – reference: Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. (2006) Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci., 9, 1057-1063. – reference: Joel, D., Niv, Y. & Ruppin, E. (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks, 15, 535-547. – reference: Morishima, M., Morita, K., Kubota, Y. & Kawaguchi, Y. (2011) Highly differentiated projection-specific cortical subnetworks. J. Neurosci., 31, 10380-10391. – reference: Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. (2007) Learning the value of information in an uncertain world. Nat. Neurosci., 10, 1214-1221. – reference: Siegel, J.J., Kalmbach, B., Chitwood, R.A. & Mauk, M.D. (2012) Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J. Neurophysiol., 107, 50-64. – reference: Li, N., Chen, T.W., Guo, Z.V., Gerfen, C.R. & Svoboda, K. (2015) A motor cortex circuit for motor planning and movement. Nature, 519, 51-56. – reference: Siegel, J.J. & Mauk, M.D. (2013) Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not. J. Neurosci., 33, 15272-15284. – reference: Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. (2009) Role of striatum in updating values of chosen actions. J. Neurosci., 29, 14701-14712. – reference: Tepper, J.M., Martin, L.P. & Anderson, D.R. (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J. Neurosci., 15, 3092-3103. – reference: Wang, X.-J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968. – reference: Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68, 815-834. – reference: Hirai, Y., Morishima, M., Karube, F. & Kawaguchi, Y. (2012) Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J. Neurosci., 32, 1898-1913. – reference: Aston-Jones, G. & Cohen, J.D. (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450. – reference: Moyer, J.T., Halterman, B.L., Finkel, L.H. & Wolf, J.A. (2014) Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network. Front. Comput. Neurosci., 8, 152. – reference: Wang, M., Yang, Y., Wang, C.J., Gamo, N.J., Jin, L.E., Mazer, J.A., Morrison, J.H., Wang, X.J. & Arnsten, A.F. (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77, 736-749. – reference: Schultz, W., Dayan, P. & Montague, P.R. (1997) A neural substrate of prediction and reward. Science, 275, 1593-1599. – reference: Graybiel, A.M. (2008) Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 31, 359-387. – reference: Ungless, M.A., Magill, P.J. & Bolam, J.P. (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303, 2040-2042. – reference: Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W. & Kaneko, T. (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci., 33, 668-677. – reference: Seo, M., Lee, E. & Averbeck, B.B. (2012) Action selection and action value in frontal-striatal circuits. Neuron, 74, 947-960. – reference: Schroll, H., Vitay, J. & Hamker, F.H. (2014) Dysfunctional and compensatory synaptic plasticity in Parkinson's disease. Eur. J. Neurosci., 39, 688-702. – reference: Thorn, C.A., Atallah, H., Howe, M. & Graybiel, A.M. (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron, 66, 781-795. – reference: Mauk, M.D. & Buonomano, D.V. (2004) The neural basis of temporal processing. Annu. Rev. Neurosci., 27, 307-340. – reference: Gerfen, C.R. & Surmeier, D.J. (2011) Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci., 34, 441-466. – reference: Robbins, T.W. & Everitt, B.J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol., 6, 228-236. – reference: Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267-279. – reference: Hempel, C., Hartman, K., Wang, X., Turrigiano, G. & Nelson, S. (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol., 83, 3031-3041. – reference: Dembrow, N.C., Chitwood, R.A. & Johnston, D. (2010) Projection-specific neuromodulation of medial prefrontal cortex neurons. J. Neurosci., 30, 16922-16937. – reference: Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T. & Nakanishi, S. (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA, 109, 12764-12769. – reference: Ballion, B., Mallet, N., Bézard, E., Lanciego, J.L. & Gonon, F. (2008) Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur. J. Neurosci., 27, 2313-2321. – reference: Hazy, T.E., Frank, M.J. & O'Reilly, R.C. (2010) Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci. Biobehav. R., 34, 701-720. – reference: Humphries, M.D., Stewart, R.D. & Gurney, K.N. (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci., 26, 12921-12942. – reference: Mongillo, G., Barak, O. & Tsodyks, M. (2008) Synaptic theory of working memory. Science, 319, 1543-1546. – reference: Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192-212. – reference: Ito, M. & Doya, K. (2009) Validation of decision-making models and analysis of decision variables in the rat basal ganglia. J. Neurosci., 29, 9861-9874. – reference: Tepper, J.M. & Lee, C.R. (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog. Brain Res., 160, 189-208. – reference: Frank, M.J., Samanta, J., Moustafa, A.A. & Sherman, S.J. (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309-1312. – reference: Keeler, J.F., Pretsell, D.O. & Robbins, T.W. (2014) Functional implications of dopamine D1 vs. D2 receptors: a 'prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 282C, 156-175. – reference: Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci., 30, 2223-2234. – reference: Montague, P.R., Dayan, P. & Sejnowski, T.J. (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci., 16, 1936-1947. – reference: Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci., 34, 698-704. – reference: Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science, 310, 1337-1340. – reference: Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. (2009) Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 29, 4858-4870. – reference: Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851. – reference: Redish, A.D. (2004) Addiction as a computational process gone awry. Science, 306, 1944-1947. – reference: Kress, G.J., Yamawaki, N., Wokosin, D.L., Wickersham, I.R., Shepherd, G.M. & Surmeier, D.J. (2013) Convergent cortical innervation of striatal projection neurons. Nat. Neurosci., 16, 665-667. – reference: Plenz, D. & Kitai, S.T. (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci., 18, 266-283. – reference: Doya, K. (2002) Metalearning and neuromodulation. Neural Networks, 15, 495-506. – reference: Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci., 17, 1022-1030. – reference: Richfield, E.K., Penney, J.B. & Young, A.B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767-777. – reference: Hikosaka, O., Takikawa, Y. & Kawagoe, R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 80, 953-978. – reference: Roesch, M.R., Calu, D.J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci., 10, 1615-1624. – reference: Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci., 35, 457-467. – reference: Wall, N.R., De La Parra, M., Callaway, E.M. & Kreitzer, A.C. (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron, 79, 347-360. – reference: Takeda, K. & Funahashi, S. (2002) Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. J. Neurophysiol., 87, 567-588. – reference: Jin, X., Tecuapetla, F. & Costa, R.M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 17, 423-430. – reference: Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol., 50, 381-425. – reference: Nakanishi, S., Hikida, T. & Yawata, S. (2014) Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience, 282, 49-59. – reference: Daw, N.D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci., 8, 1704-1711. – reference: Cowan, R.L. & Wilson, C.J. (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol., 71, 17-32. – reference: Reynolds, J.N., Hyland, B.I. & Wickens, J.R. (2001) A cellular mechanism of reward-related learning. Nature, 413, 67-70. – reference: Saunders, A., Oldenburg, I.A., Berezovskii, V.K., Johnson, C.A., Kingery, N.D., Elliott, H.L., Xie, T., Gerfen, C.R. & Sabatini, B.L. (2015) A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 521, 85-89. – reference: Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896-907. – reference: Reiner, A., Hart, N.M., Lei, W. & Deng, Y. (2010) Corticostriatal projection neurons - dichotomous types and dichotomous functions. Front. Neuroanat., 4, 142. – reference: Ding, J., Peterson, J.D. & Surmeier, D.J. (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci., 28, 6483-6492. – reference: Frank, M.J., Seeberger, L.C. & O'Reilly, R.C. (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940-1943. – reference: Gerfen, C.R., Paletzki, R. & Heintz, N. (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron, 80, 1368-1383. – reference: Daw, N.D., Courville, A.C., Tourtezky, D.S. & Touretzky, D.S. (2006) Representation and timing in theories of the dopamine system. Neural Comput., 18, 1637-1677. – reference: Smith, R.J., Lobo, M.K., Spencer, S. & Kalivas, P.W. (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol., 23, 546-552. – reference: Watkins, C. (1989) Learning from Delayed Rewards. PhD Thesis. University of Cambridge, Cambridge. – reference: Frank, M.J. (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cognitive Neurosci., 17, 51-72. – reference: Lei, W., Jiao, Y., Del Mar, N. & Reiner, A. (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci., 24, 8289-8299. – reference: Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S. & Kasai, H. (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345, 1616-1620. – reference: Chen, M.C., Ferrari, L., Sacchet, M.D., Foland-Ross, L.C., Qiu, M.H., Gotlib, I.H., Fuller, P.M., Arrigoni, E. & Lu, J. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur. J. Neurosci., 41, 748-759. – reference: Crittenden, J.R. & Graybiel, A.M. (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat., 5, 59. – reference: Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res., 43, 111-117. – reference: Gerfen, C.R. (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311, 461-464. – reference: Lobo, M.K., Covington, H.E., Chaudhury, D., Friedman, A.K., Sun, H., Damez-Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy, P.J., Mouzon, E., Mogri, M., Neve, R.L., Deisseroth, K., Han, M.H. & Nestler, E.J. (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385-390. – reference: Potjans, W., Diesmann, M. & Morrison, A. (2011) An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput. Biol., 7, e1001133. – reference: Collins, A.G. & Frank, M.J. (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev., 121, 337-366. – reference: Deng, Y., Lanciego, J.L., Kerkerian-Le Goff, L., Coulon, P., Salin, P., Kachidian, P., Lei, W., Del Mar, N. & Reiner, A. (2015) Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front. Syst. Neurosci., 9, 51. – reference: Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. (2011) A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci., 14, 366-372. – reference: Kalmbach, B.E., Ohyama, T., Kreider, J.C., Riusech, F. & Mauk, M.D. (2009) Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Memory, 16, 86-95. – reference: Lobb, C.J., Wilson, C.J. & Paladini, C.A. (2011) High-frequency, short-latency disinhibition bursting of midbrain dopaminergic neurons. J. Neurophysiol., 105, 2501-2511. – reference: Morita, K. (2014) Differential cortical activation of the striatal direct and indirect pathway cells: reconciling the anatomical and optogenetic results by using a computational method. J. Neurophysiol., 112, 120-146. – reference: Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858-873. – reference: Isomura, Y., Takekawa, T., Harukuni, R., Handa, T., Aizawa, H., Takada, M. & Fukai, T. (2013) Reward-modulated motor information in identified striatum neurons. J. Neurosci., 33, 10209-10220. – reference: Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K. & Kreitzer, A.C. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622-626. – reference: Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S. & Costa, R.M. (2014) Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc., 9, 1213-1228. – reference: Morishima, M. & Kawaguchi, Y. (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 26, 4394-4405. – reference: Gurney, K.N., Humphries, M.D. & Redgrave, P. (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 13, e1002034. – reference: Story, G.W., Vlaev, I., Seymour, B., Darzi, A. & Dolan, R.J. (2014) Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Front. Behav. Neurosci., 8, 76. – reference: Gershman, S.J., Moustafa, A.A. & Ludvig, E.A. (2014) Time representation in reinforcement learning models of the basal ganglia. Front. Comput. Neurosci., 7, 194. – reference: Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. (2011) Frontal cortex and reward-guided learning and decision-making. Neuron, 70, 1054-1069. – reference: O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R.J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454. – reference: Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. J. Neurophysiol., 95, 567-584. – reference: Redgrave, P., Prescott, T.J. & Gurney, K. (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009-1023. – reference: Wang, X.-J. (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19, 9587-9603. – reference: Fuster, J.M. (2000) Executive frontal functions. Exp. Brain Res., 133, 66-70. – reference: Hikosaka, O., Rand, M.K., Miyachi, S. & Miyashita, K. (1995) Learning of sequential movements in the monkey: process of learning and retention of memory. J. Neurophysiol., 74, 1652-1661. – reference: Hong, S. & Hikosaka, O. (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci., 5, 15. – reference: Nakahara, H. & Kaveri, S. (2010) Internal-time temporal difference model for neural value-based decision making. Neural Comput., 22, 3062-3106. – reference: Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. (2013) Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior. J. Neurosci., 33, 8866-8890. – reference: Shepherd, G.M. (2013) Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 14, 278-291. – reference: Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549-554. – reference: Hunt, L.T., Kolling, N., Soltani, A., Woolrich, M.W., Rushworth, M.F. & Behrens, T.E. (2012) Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci., 15, 470-476. – volume: 16 start-page: 665 year: 2013 end-page: 667 article-title: Convergent cortical innervation of striatal projection neurons publication-title: Nat. Neurosci. – volume: 30 start-page: 2223 year: 2010 end-page: 2234 article-title: Distinct roles of GABAergic interneurons in the regulation of striatal output pathways publication-title: J. Neurosci. – volume: 15 start-page: 495 year: 2002 end-page: 506 article-title: Metalearning and neuromodulation publication-title: Neural Networks – volume: 9 start-page: 51 year: 2015 article-title: Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats publication-title: Front. Syst. Neurosci. – volume: 35 start-page: 457 year: 2012 end-page: 467 article-title: Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways publication-title: Trends Neurosci. – volume: 28 start-page: 403 year: 2005 end-page: 450 article-title: An integrative theory of locus coeruleus‐norepinephrine function: adaptive gain and optimal performance publication-title: Annu. Rev. Neurosci. – volume: 68 start-page: 815 year: 2010 end-page: 834 article-title: Dopamine in motivational control: rewarding, aversive, and alerting publication-title: Neuron – volume: 282C start-page: 156 year: 2014 end-page: 175 article-title: Functional implications of dopamine D1 vs. D2 receptors: a ‘prepare and select’ model of the striatal direct vs. indirect pathways publication-title: Neuroscience – year: 1989 – volume: 29 start-page: 9861 year: 2009 end-page: 9874 article-title: Validation of decision‐making models and analysis of decision variables in the rat basal ganglia publication-title: J. Neurosci. – volume: 15 start-page: 470 year: 2012 end-page: 476 article-title: Mechanisms underlying cortical activity during value‐guided choice publication-title: Nat. Neurosci. – volume: 26 start-page: 12921 year: 2006 end-page: 12942 article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia publication-title: J. Neurosci. – volume: 5 start-page: 15 year: 2011 article-title: Dopamine‐mediated learning and switching in cortico‐striatal circuit explain behavioral changes in reinforcement learning publication-title: Front. Behav. Neurosci. – volume: 110 start-page: 1923 year: 2013 end-page: 1928 article-title: ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 816 year: 2012 end-page: 818 article-title: Distinct roles for direct and indirect pathway striatal neurons in reinforcement publication-title: Nat. Neurosci. – volume: 22 start-page: 3062 year: 2010 end-page: 3106 article-title: Internal‐time temporal difference model for neural value‐based decision making publication-title: Neural Comput. – volume: 30 start-page: 767 year: 1989 end-page: 777 article-title: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system publication-title: Neuroscience – volume: 18 start-page: 266 year: 1998 end-page: 283 article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast‐spiking interneurons studied in cortex‐striatum‐substantia nigra organotypic cultures publication-title: J. Neurosci. – volume: 319 start-page: 1543 year: 2008 end-page: 1546 article-title: Synaptic theory of working memory publication-title: Science – volume: 30 start-page: 16922 year: 2010 end-page: 16937 article-title: Projection‐specific neuromodulation of medial prefrontal cortex neurons publication-title: J. Neurosci. – volume: 466 start-page: 622 year: 2010 end-page: 626 article-title: Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry publication-title: Nature – volume: 29 start-page: 14701 year: 2009 end-page: 14712 article-title: Role of striatum in updating values of chosen actions publication-title: J. Neurosci. – volume: 17 start-page: 423 year: 2014 end-page: 430 article-title: Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences publication-title: Nat. Neurosci. – volume: 330 start-page: 385 year: 2010 end-page: 390 article-title: Cell type‐specific loss of BDNF signaling mimics optogenetic control of cocaine reward publication-title: Science – volume: 275 start-page: 1593 year: 1997 end-page: 1599 article-title: A neural substrate of prediction and reward publication-title: Science – volume: 95 start-page: 567 year: 2006 end-page: 584 article-title: Basal ganglia orient eyes to reward publication-title: J. Neurophysiol. – volume: 413 start-page: 67 year: 2001 end-page: 70 article-title: A cellular mechanism of reward‐related learning publication-title: Nature – volume: 9 start-page: 1213 year: 2014 end-page: 1228 article-title: Deep brain optical measurements of cell type‐specific neural activity in behaving mice publication-title: Nat. Protoc. – volume: 5 start-page: 59 year: 2011 article-title: Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments publication-title: Front. Neuroanat. – volume: 74 start-page: 1075 year: 2012 end-page: 1086 article-title: Dichotomous organization of the external globus pallidus publication-title: Neuron – volume: 23 start-page: 546 year: 2013 end-page: 552 article-title: Cocaine‐induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways) publication-title: Curr. Opin. Neurobiol. – volume: 7 start-page: 194 year: 2014 article-title: Time representation in reinforcement learning models of the basal ganglia publication-title: Front. Comput. Neurosci. – volume: 445 start-page: 643 year: 2007 end-page: 647 article-title: Endocannabinoid‐mediated rescue of striatal LTD and motor deficits in Parkinson's disease models publication-title: Nature – volume: 9 start-page: 987 year: 2006 end-page: 988 article-title: Choice values publication-title: Nat. Neurosci. – volume: 9 start-page: 1057 year: 2006 end-page: 1063 article-title: Midbrain dopamine neurons encode decisions for future action publication-title: Nat. Neurosci. – volume: 50 start-page: 381 year: 1996 end-page: 425 article-title: The basal ganglia: focused selection and inhibition of competing motor programs publication-title: Prog. Neurobiol. – volume: 310 start-page: 1337 year: 2005 end-page: 1340 article-title: Representation of action‐specific reward values in the striatum publication-title: Science – volume: 304 start-page: 452 year: 2004 end-page: 454 article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning publication-title: Science – volume: 17 start-page: 1022 year: 2014 end-page: 1030 article-title: Direct and indirect pathways of basal ganglia: a critical reappraisal publication-title: Nat. Neurosci. – volume: 8 start-page: 152 year: 2014 article-title: Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically‐detailed computational model of the striatal network publication-title: Front. Comput. Neurosci. – volume: 80 start-page: 953 year: 2000 end-page: 978 article-title: Role of the basal ganglia in the control of purposive saccadic eye movements publication-title: Physiol. Rev. – volume: 18 start-page: 209 year: 2008 end-page: 216 article-title: From biophysics to cognition: reward‐dependent adaptive choice behavior publication-title: Curr. Opin. Neurobiol. – volume: 41 start-page: 748 year: 2015 end-page: 759 article-title: Identification of a direct GABAergic pallidocortical pathway in rodents publication-title: Eur. J. Neurosci. – volume: 306 start-page: 1940 year: 2004 end-page: 1943 article-title: By carrot or by stick: cognitive reinforcement learning in parkinsonism publication-title: Science – volume: 74 start-page: 947 year: 2012 end-page: 960 article-title: Action selection and action value in frontal‐striatal circuits publication-title: Neuron – volume: 112 start-page: 120 year: 2014 end-page: 146 article-title: Differential cortical activation of the striatal direct and indirect pathway cells: reconciling the anatomical and optogenetic results by using a computational method publication-title: J. Neurophysiol. – volume: 71 start-page: 17 year: 1994 end-page: 32 article-title: Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex publication-title: J. Neurophysiol. – volume: 89 start-page: 1009 year: 1999 end-page: 1023 article-title: The basal ganglia: a vertebrate solution to the selection problem? publication-title: Neuroscience – volume: 22 start-page: 2363 year: 2002 end-page: 2373 article-title: Role of primate substantia nigra pars reticulata in reward‐oriented saccadic eye movement publication-title: J. Neurosci. – volume: 39 start-page: 688 year: 2014 end-page: 702 article-title: Dysfunctional and compensatory synaptic plasticity in Parkinson's disease publication-title: Eur. J. Neurosci. – volume: 31 start-page: 359 year: 2008 end-page: 387 article-title: Habits, rituals, and the evaluative brain publication-title: Annu. Rev. Neurosci. – volume: 25 start-page: 525 year: 2002 end-page: 531 article-title: Move to the rhythm: oscillations in the subthalamic nucleus‐external globus pallidus network publication-title: Trends Neurosci. – volume: 10 start-page: 1214 year: 2007 end-page: 1221 article-title: Learning the value of information in an uncertain world publication-title: Nat. Neurosci. – volume: 306 start-page: 1944 year: 2004 end-page: 1947 article-title: Addiction as a computational process gone awry publication-title: Science – year: 1995 – volume: 66 start-page: 896 year: 2010 end-page: 907 article-title: Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior publication-title: Neuron – volume: 133 start-page: 66 year: 2000 end-page: 70 article-title: Executive frontal functions publication-title: Exp. Brain Res. – volume: 28 start-page: 6483 year: 2008 end-page: 6492 article-title: Corticostriatal and thalamostriatal synapses have distinctive properties publication-title: J. Neurosci. – volume: 35 start-page: 1115 year: 2012 end-page: 1123 article-title: Neural control of dopamine neurotransmission: implications for reinforcement learning publication-title: Eur. J. Neurosci. – volume: 13 start-page: e1002034 year: 2015 article-title: A new framework for cortico‐striatal plasticity: behavioural theory meets in vitro data at the reinforcement‐action interface publication-title: PLoS Biol. – volume: 14 start-page: 278 year: 2013 end-page: 291 article-title: Corticostriatal connectivity and its role in disease publication-title: Nat. Rev. Neurosci. – volume: 74 start-page: 1652 year: 1995 end-page: 1661 article-title: Learning of sequential movements in the monkey: process of learning and retention of memory publication-title: J. Neurophysiol. – volume: 7 start-page: e1001133 year: 2011 article-title: An imperfect dopaminergic error signal can drive temporal‐difference learning publication-title: PLoS Comput. Biol. – volume: 311 start-page: 461 year: 1984 end-page: 464 article-title: The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems publication-title: Nature – volume: 6 start-page: 228 year: 1996 end-page: 236 article-title: Neurobehavioural mechanisms of reward and motivation publication-title: Curr. Opin. Neurobiol. – volume: 14 start-page: 366 year: 2011 end-page: 372 article-title: A reservoir of time constants for memory traces in cortical neurons publication-title: Nat. Neurosci. – volume: 318 start-page: 1309 year: 2007 end-page: 1312 article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism publication-title: Science – volume: 19 start-page: 9587 year: 1999 end-page: 9603 article-title: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory publication-title: J. Neurosci. – volume: 15 start-page: 535 year: 2002 end-page: 547 article-title: Actor‐critic models of the basal ganglia: new anatomical and computational perspectives publication-title: Neural Networks – volume: 24 start-page: 8289 year: 2004 end-page: 8299 article-title: Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats publication-title: J. Neurosci. – volume: 36 start-page: 955 year: 2002 end-page: 968 article-title: Probabilistic decision making by slow reverberation in cortical circuits publication-title: Neuron – volume: 34 start-page: 701 year: 2010 end-page: 720 article-title: Neural mechanisms of acquired phasic dopamine responses in learning publication-title: Neurosci. Biobehav. R. – volume: 77 start-page: 736 year: 2013 end-page: 749 article-title: NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex publication-title: Neuron – volume: 519 start-page: 51 year: 2015 end-page: 56 article-title: A motor cortex circuit for motor planning and movement publication-title: Nature – volume: 10 start-page: 1615 year: 2007 end-page: 1624 article-title: Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards publication-title: Nat. Neurosci. – volume: 87 start-page: 567 year: 2002 end-page: 588 article-title: Prefrontal task‐related activity representing visual cue location or saccade direction in spatial working memory tasks publication-title: J. Neurophysiol. – volume: 34 start-page: 698 year: 2014 end-page: 704 article-title: Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term publication-title: J. Neurosci. – volume: 8 start-page: 76 year: 2014 article-title: Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective publication-title: Front. Behav. Neurosci. – volume: 70 start-page: 1054 year: 2011 end-page: 1069 article-title: Frontal cortex and reward‐guided learning and decision‐making publication-title: Neuron – volume: 78 start-page: 60 year: 2009 end-page: 68 article-title: The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states publication-title: Brain. Res. Bull. – volume: 15 start-page: 3092 year: 1995 end-page: 3103 article-title: GABAA receptor‐mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons publication-title: J. Neurosci. – volume: 17 start-page: 51 year: 2005 end-page: 72 article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism publication-title: J. Cognitive Neurosci. – volume: 345 start-page: 1616 year: 2014 end-page: 1620 article-title: A critical time window for dopamine actions on the structural plasticity of dendritic spines publication-title: Science – volume: 27 start-page: 2313 year: 2008 end-page: 2321 article-title: Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism publication-title: Eur. J. Neurosci. – volume: 16 start-page: 86 year: 2009 end-page: 95 article-title: Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning publication-title: Learn. Memory – volume: 58 start-page: 451 year: 2008 end-page: 463 article-title: Value representations in the primate striatum during matching behavior publication-title: Neuron – volume: 81 start-page: 267 year: 2014 end-page: 279 article-title: Orbitofrontal cortex as a cognitive map of task space publication-title: Neuron – volume: 74 start-page: 858 year: 2012 end-page: 873 article-title: Whole‐brain mapping of direct inputs to midbrain dopamine neurons publication-title: Neuron – volume: 160 start-page: 189 year: 2007 end-page: 208 article-title: GABAergic control of substantia nigra dopaminergic neurons publication-title: Prog. Brain Res. – volume: 66 start-page: 781 year: 2010 end-page: 795 article-title: Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning publication-title: Neuron – volume: 105 start-page: 2501 year: 2011 end-page: 2511 article-title: High‐frequency, short‐latency disinhibition bursting of midbrain dopaminergic neurons publication-title: J. Neurophysiol. – volume: 79 start-page: 347 year: 2013 end-page: 360 article-title: Differential innervation of direct‐ and indirect‐pathway striatal projection neurons publication-title: Neuron – volume: 1104 start-page: 192 year: 2007 end-page: 212 article-title: Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix publication-title: Ann. NY Acad. Sci. – volume: 8 start-page: 1704 year: 2005 end-page: 1711 article-title: Uncertainty‐based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. – volume: 80 start-page: 1368 year: 2013 end-page: 1383 article-title: GENSAT BAC cre‐recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits publication-title: Neuron – volume: 33 start-page: 15272 year: 2013 end-page: 15284 article-title: Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not publication-title: J. Neurosci. – volume: 121 start-page: 337 year: 2014 end-page: 366 article-title: Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive publication-title: Psychol. Rev. – volume: 303 start-page: 2040 year: 2004 end-page: 2042 article-title: Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli publication-title: Science – volume: 14 start-page: 1338 year: 2011 end-page: 1344 article-title: Medial prefrontal cortex as an action‐outcome predictor publication-title: Nat. Neurosci. – volume: 27 start-page: 307 year: 2004 end-page: 340 article-title: The neural basis of temporal processing publication-title: Annu. Rev. Neurosci. – volume: 33 start-page: 8866 year: 2013 end-page: 8890 article-title: Dopaminergic control of motivation and reinforcement learning: a closed‐circuit account for reward‐oriented behavior publication-title: J. Neurosci. – volume: 16 start-page: 632 year: 2013 end-page: 638 article-title: Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use publication-title: Nat. Neurosci. – volume: 33 start-page: 668 year: 2011 end-page: 677 article-title: Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron‐tracing study using a viral vector publication-title: Eur. J. Neurosci. – volume: 29 start-page: 4858 year: 2009 end-page: 4870 article-title: Different pedunculopontine tegmental neurons signal predicted and actual task rewards publication-title: J. Neurosci. – volume: 32 start-page: 1898 year: 2012 end-page: 1913 article-title: Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas publication-title: J. Neurosci. – volume: 15 start-page: 613 year: 2012 end-page: 619 article-title: Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons publication-title: Nat. Neurosci. – volume: 43 start-page: 111 year: 2002 end-page: 117 article-title: Functional significance of the cortico‐subthalamo‐pallidal ‘hyperdirect’ pathway publication-title: Neurosci. Res. – volume: 34 start-page: 441 year: 2011 end-page: 466 article-title: Modulation of striatal projection systems by dopamine publication-title: Annu. Rev. Neurosci. – volume: 521 start-page: 85 year: 2015 end-page: 89 article-title: A direct GABAergic output from the basal ganglia to frontal cortex publication-title: Nature – start-page: 151 year: 2013 end-page: 181 – volume: 4 start-page: 142 year: 2010 article-title: Corticostriatal projection neurons – dichotomous types and dichotomous functions publication-title: Front. Neuroanat. – volume: 321 start-page: 848 year: 2008 end-page: 851 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science – volume: 83 start-page: 3031 year: 2000 end-page: 3041 article-title: Multiple forms of short‐term plasticity at excitatory synapses in rat medial prefrontal cortex publication-title: J. Neurophysiol. – volume: 26 start-page: 4394 year: 2006 end-page: 4405 article-title: Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex publication-title: J. Neurosci. – volume: 25 start-page: 3857 year: 2005 end-page: 3869 article-title: Feedforward inhibition of projection neurons by fast‐spiking GABA interneurons in the rat striatum in vivo publication-title: J. Neurosci. – volume: 282 start-page: 49 year: 2014 end-page: 59 article-title: Distinct dopaminergic control of the direct and indirect pathways in reward‐based and avoidance learning behaviors publication-title: Neuroscience – volume: 283 start-page: 549 year: 1999 end-page: 554 article-title: The role of locus coeruleus in the regulation of cognitive performance publication-title: Science – volume: 107 start-page: 50 year: 2012 end-page: 64 article-title: Persistent activity in a cortical‐to‐subcortical circuit: bridging the temporal gap in trace eyelid conditioning publication-title: J. Neurophysiol. – volume: 18 start-page: 1637 year: 2006 end-page: 1677 article-title: Representation and timing in theories of the dopamine system publication-title: Neural Comput. – volume: 33 start-page: 10209 year: 2013 end-page: 10220 article-title: Reward‐modulated motor information in identified striatum neurons publication-title: J. Neurosci. – volume: 12 start-page: 1180 year: 2009 end-page: 1186 article-title: Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning publication-title: Nat. Neurosci. – volume: 109 start-page: 12764 year: 2012 end-page: 12769 article-title: Pathway‐specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 960 year: 2012 end-page: 961 article-title: A mechanism for value‐guided choice based on the excitation‐inhibition balance in prefrontal cortex publication-title: Nat. Neurosci. – volume: 16 start-page: 1936 year: 1996 end-page: 1947 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J. Neurosci. – volume: 31 start-page: 10380 year: 2011 end-page: 10391 article-title: Highly differentiated projection‐specific cortical subnetworks publication-title: J. Neurosci. – ident: e_1_2_6_39_1 doi: 10.1152/jn.2000.83.5.3031 – ident: e_1_2_6_54_1 doi: 10.1016/S0893-6080(02)00047-3 – ident: e_1_2_6_10_1 doi: 10.1016/j.neuron.2010.11.022 – ident: e_1_2_6_74_1 doi: 10.1523/JNEUROSCI.0252-06.2006 – ident: e_1_2_6_41_1 doi: 10.1016/j.neuron.2010.05.011 – ident: e_1_2_6_113_1 doi: 10.1523/JNEUROSCI.15-04-03092.1995 – ident: e_1_2_6_75_1 doi: 10.1523/JNEUROSCI.0772-11.2011 – ident: e_1_2_6_65_1 doi: 10.1152/jn.01076.2010 – ident: e_1_2_6_125_1 doi: 10.1126/science.1255514 – ident: e_1_2_6_21_1 doi: 10.1523/JNEUROSCI.0435-08.2008 – ident: e_1_2_6_100_1 doi: 10.1111/ejn.12434 – ident: e_1_2_6_4_1 doi: 10.1146/annurev.neuro.28.061604.135709 – ident: e_1_2_6_123_1 doi: 10.1196/annals.1390.016 – ident: e_1_2_6_82_1 doi: 10.1016/j.neuroscience.2014.04.026 – ident: e_1_2_6_59_1 doi: 10.1038/nn.3100 – ident: e_1_2_6_37_1 doi: 10.1523/JNEUROSCI.2489-13.2014 – ident: e_1_2_6_116_1 doi: 10.1126/science.283.5401.549 – ident: e_1_2_6_22_1 doi: 10.1016/S0893-6080(02)00044-8 – ident: e_1_2_6_69_1 doi: 10.1016/j.neuron.2012.04.027 – ident: e_1_2_6_56_1 doi: 10.1016/j.neuroscience.2014.07.021 – ident: e_1_2_6_77_1 doi: 10.1016/j.tins.2012.04.009 – ident: e_1_2_6_115_1 doi: 10.1126/science.1093360 – ident: e_1_2_6_18_1 doi: 10.1162/neco.2006.18.7.1637 – ident: e_1_2_6_51_1 doi: 10.1523/JNEUROSCI.6157-08.2009 – ident: e_1_2_6_126_1 doi: 10.1073/pnas.1210797109 – ident: e_1_2_6_49_1 doi: 10.1038/nn.3017 – ident: e_1_2_6_102_1 doi: 10.1016/j.neuron.2012.03.037 – ident: e_1_2_6_95_1 doi: 10.1038/nn2013 – ident: e_1_2_6_72_1 doi: 10.1126/science.1150769 – ident: e_1_2_6_86_1 doi: 10.1523/JNEUROSCI.4415-08.2009 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.1221742110 – ident: e_1_2_6_16_1 doi: 10.1038/nprot.2014.080 – ident: e_1_2_6_15_1 doi: 10.3389/fnana.2011.00059 – ident: e_1_2_6_27_1 doi: 10.1007/s002210000401 – ident: e_1_2_6_31_1 doi: 10.3389/fncom.2013.00194 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pbio.1002034 – ident: e_1_2_6_119_1 doi: 10.1016/S0896-6273(02)01092-9 – ident: e_1_2_6_45_1 doi: 10.1523/JNEUROSCI.2810-11.2012 – ident: e_1_2_6_44_1 doi: 10.1152/jn.00458.2005 – ident: e_1_2_6_23_1 doi: 10.1162/0898929052880093 – ident: e_1_2_6_91_1 doi: 10.3389/fnana.2010.00142 – ident: e_1_2_6_99_1 doi: 10.1038/nature14179 – ident: e_1_2_6_3_1 doi: 10.1038/nn.2921 – ident: e_1_2_6_80_1 doi: 10.3389/fncom.2014.00152 – ident: e_1_2_6_20_1 doi: 10.3389/fnsys.2015.00051 – ident: e_1_2_6_114_1 doi: 10.1016/j.neuron.2010.04.036 – volume-title: Learning from Delayed Rewards year: 1989 ident: e_1_2_6_122_1 – ident: e_1_2_6_42_1 doi: 10.1152/jn.1995.74.4.1652 – ident: e_1_2_6_84_1 doi: 10.1038/nn0806-987 – ident: e_1_2_6_26_1 doi: 10.1111/j.1460-9568.2010.07564.x – ident: e_1_2_6_108_1 doi: 10.1016/j.conb.2013.01.026 – ident: e_1_2_6_46_1 doi: 10.3389/fnbeh.2011.00015 – ident: e_1_2_6_118_1 doi: 10.1523/JNEUROSCI.19-21-09587.1999 – ident: e_1_2_6_6_1 doi: 10.1038/nn1954 – ident: e_1_2_6_32_1 doi: 10.1523/JNEUROSCI.4870-09.2010 – ident: e_1_2_6_66_1 doi: 10.1126/science.1188472 – ident: e_1_2_6_52_1 doi: 10.1038/nn.3632 – ident: e_1_2_6_7_1 doi: 10.1038/nn.2752 – ident: e_1_2_6_97_1 doi: 10.1126/science.1115270 – ident: e_1_2_6_78_1 doi: 10.1523/JNEUROSCI.4614-12.2013 – ident: e_1_2_6_107_1 doi: 10.1016/j.brainresbull.2008.08.015 – ident: e_1_2_6_105_1 doi: 10.1523/JNEUROSCI.1238-13.2013 – ident: e_1_2_6_93_1 doi: 10.1016/0306-4522(89)90168-1 – ident: e_1_2_6_110_1 doi: 10.3389/fnbeh.2014.00076 – ident: e_1_2_6_2_1 doi: 10.1111/j.1460-9568.2012.08055.x – ident: e_1_2_6_83_1 doi: 10.1016/S0168-0102(02)00027-5 – ident: e_1_2_6_12_1 doi: 10.1111/ejn.12822 – ident: e_1_2_6_71_1 doi: 10.1016/S0301-0082(96)00042-1 – ident: e_1_2_6_14_1 doi: 10.1152/jn.1994.71.1.17 – ident: e_1_2_6_103_1 doi: 10.1126/science.1160575 – ident: e_1_2_6_120_1 doi: 10.1016/j.neuron.2012.12.032 – ident: e_1_2_6_28_1 doi: 10.1038/311461a0 – ident: e_1_2_6_8_1 doi: 10.1016/S0166-2236(02)02235-X – ident: e_1_2_6_85_1 doi: 10.1126/science.1094285 – ident: e_1_2_6_90_1 doi: 10.1126/science.1102384 – ident: e_1_2_6_112_1 doi: 10.1016/S0079-6123(06)60011-3 – ident: e_1_2_6_57_1 doi: 10.1523/JNEUROSCI.2728-09.2009 – ident: e_1_2_6_64_1 doi: 10.1038/nature14178 – ident: e_1_2_6_62_1 doi: 10.1016/j.neuron.2008.02.021 – ident: e_1_2_6_92_1 doi: 10.1038/35092560 – ident: e_1_2_6_111_1 doi: 10.1152/jn.00249.2001 – ident: e_1_2_6_89_1 doi: 10.1016/S0306-4522(98)00319-4 – ident: e_1_2_6_53_1 doi: 10.1038/nn.3140 – ident: e_1_2_6_29_1 doi: 10.1146/annurev-neuro-061010-113641 – ident: e_1_2_6_38_1 doi: 10.1016/j.neubiorev.2009.11.019 – ident: e_1_2_6_5_1 doi: 10.1111/j.1460-9568.2008.06192.x – ident: e_1_2_6_73_1 doi: 10.1523/JNEUROSCI.16-05-01936.1996 – ident: e_1_2_6_117_1 doi: 10.1016/j.neuron.2013.05.014 – ident: e_1_2_6_98_1 doi: 10.1523/JNEUROSCI.22-06-02363.2002 – ident: e_1_2_6_24_1 doi: 10.1126/science.1102941 – ident: e_1_2_6_58_1 doi: 10.1038/nature09159 – ident: e_1_2_6_61_1 doi: 10.1038/nn.3397 – ident: e_1_2_6_25_1 doi: 10.1126/science.1146157 – ident: e_1_2_6_70_1 doi: 10.1146/annurev.neuro.27.070203.144247 – ident: e_1_2_6_81_1 doi: 10.1162/NECO_a_00049 – ident: e_1_2_6_96_1 doi: 10.1016/j.neuron.2011.05.014 – ident: e_1_2_6_106_1 doi: 10.1152/jn.00689.2011 – ident: e_1_2_6_11_1 doi: 10.1038/nn.3743 – ident: e_1_2_6_55_1 doi: 10.1101/lm.1178309 – ident: e_1_2_6_43_1 doi: 10.1152/physrev.2000.80.3.953 – ident: e_1_2_6_94_1 doi: 10.1016/S0959-4388(96)80077-8 – ident: e_1_2_6_109_1 doi: 10.1016/j.conb.2008.07.003 – ident: e_1_2_6_9_1 doi: 10.1038/nn.3369 – ident: e_1_2_6_104_1 doi: 10.1038/nrn3469 – ident: e_1_2_6_40_1 doi: 10.1038/nn.3048 – ident: e_1_2_6_35_1 doi: 10.1007/978-3-642-32375-1_7 – ident: e_1_2_6_124_1 doi: 10.1016/j.neuron.2013.11.005 – ident: e_1_2_6_76_1 doi: 10.1152/jn.00625.2013 – ident: e_1_2_6_50_1 doi: 10.1523/JNEUROSCI.0381-13.2013 – ident: e_1_2_6_68_1 doi: 10.1523/JNEUROSCI.5027-04.2005 – ident: e_1_2_6_88_1 doi: 10.1371/journal.pcbi.1001133 – volume-title: Models of Information Processing in the Basal Ganglia year: 1995 ident: e_1_2_6_47_1 – ident: e_1_2_6_63_1 doi: 10.1523/JNEUROSCI.1990-04.2004 – ident: e_1_2_6_87_1 doi: 10.1523/JNEUROSCI.18-01-00266.1998 – ident: e_1_2_6_67_1 doi: 10.1038/nn.2374 – ident: e_1_2_6_13_1 doi: 10.1037/a0037015 – ident: e_1_2_6_121_1 doi: 10.1016/j.neuron.2012.03.017 – ident: e_1_2_6_17_1 doi: 10.1038/nn1560 – ident: e_1_2_6_30_1 doi: 10.1016/j.neuron.2013.10.016 – ident: e_1_2_6_60_1 doi: 10.1038/nature05506 – ident: e_1_2_6_79_1 doi: 10.1038/nn1743 – ident: e_1_2_6_33_1 doi: 10.1146/annurev.neuro.29.051605.112851 – ident: e_1_2_6_101_1 doi: 10.1126/science.275.5306.1593 – ident: e_1_2_6_48_1 doi: 10.1523/JNEUROSCI.3486-06.2006 – ident: e_1_2_6_19_1 doi: 10.1523/JNEUROSCI.3644-10.2010 – reference: 6207434 - Nature. 1984 Oct 4-10;311(5985):461-4 – reference: 2528080 - Neuroscience. 1989;30(3):767-77 – reference: 18558860 - Annu Rev Neurosci. 2008;31:359-87 – reference: 17167083 - J Neurosci. 2006 Dec 13;26(50):12921-42 – reference: 24769227 - Neuroscience. 2014 Dec 12;282:49-59 – reference: 18026098 - Nat Neurosci. 2007 Dec;10 (12 ):1615-24 – reference: 15087550 - Science. 2004 Apr 16;304(5669):452-4 – reference: 12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47 – reference: 22231429 - Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3 – reference: 18678255 - Curr Opin Neurobiol. 2008 Apr;18(2):209-16 – reference: 18805468 - Brain Res Bull. 2009 Feb 16;78(2-3):60-8 – reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9 – reference: 21589888 - PLoS Comput Biol. 2011 May;7(5):e1001133 – reference: 18445222 - Eur J Neurosci. 2008 May;27(9):2313-21 – reference: 19940165 - J Neurosci. 2009 Nov 25;29(47):14701-12 – reference: 23542690 - Nat Neurosci. 2013 May;16(5):632-8 – reference: 16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11 – reference: 22802650 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12764-9 – reference: 23810541 - Neuron. 2013 Jul 24;79(2):347-60 – reference: 24431428 - J Neurosci. 2014 Jan 15;34(3):698-704 – reference: 21469956 - Annu Rev Neurosci. 2011;34:441-66 – reference: 25062777 - Neuroscience. 2014 Dec 12;282:156-75 – reference: 16764517 - Neural Comput. 2006 Jul;18(7):1637-77 – reference: 18339943 - Science. 2008 Mar 14;319(5869):1543-6 – reference: 15829638 - J Neurosci. 2005 Apr 13;25(15):3857-69 – reference: 15701239 - J Cogn Neurosci. 2005 Jan;17(1):51-72 – reference: 9915705 - Science. 1999 Jan 22;283(5401):549-54 – reference: 23511908 - Nat Rev Neurosci. 2013 Apr;14(4):278-91 – reference: 22544310 - Nat Neurosci. 2012 Jun;15(6):816-8 – reference: 23319622 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1923-8 – reference: 16624959 - J Neurosci. 2006 Apr 19;26(16):4394-405 – reference: 25258080 - Science. 2014 Sep 26;345(6204):1616-20 – reference: 9004351 - Prog Neurobiol. 1996 Nov;50(4):381-425 – reference: 24313650 - Eur J Neurosci. 2014 Feb;39(4):688-702 – reference: 22327472 - Nat Neurosci. 2012 Feb 12;15(4):613-9 – reference: 21941467 - Front Neuroanat. 2011 Sep 07;5:59 – reference: 9412506 - J Neurosci. 1998 Jan 1;18(1):266-83 – reference: 22487041 - Eur J Neurosci. 2012 Apr;35(7):1115-23 – reference: 24360541 - Neuron. 2013 Dec 18;80(6):1368-83 – reference: 8725965 - Curr Opin Neurobiol. 1996 Apr;6(2):228-36 – reference: 25090423 - Psychol Rev. 2014 Jul;121(3):337-66 – reference: 23678129 - J Neurosci. 2013 May 15;33(20):8866-90 – reference: 21689594 - Neuron. 2011 Jun 23;70(6):1054-69 – reference: 10362291 - Neuroscience. 1999;89(4):1009-23 – reference: 18466754 - Neuron. 2008 May 8;58(3):451-63 – reference: 16311337 - Science. 2005 Nov 25;310(5752):1337-40 – reference: 18687967 - Science. 2008 Aug 8;321(5890):848-51 – reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50 – reference: 17499115 - Prog Brain Res. 2007;160:189-208 – reference: 21314848 - Eur J Neurosci. 2011 Feb;33(4):668-77 – reference: 20858126 - Neural Comput. 2010 Dec;22(12):3062-106 – reference: 25562526 - PLoS Biol. 2015 Jan 06;13(1):e1002034 – reference: 20547134 - Neuron. 2010 Jun 10;66(5):781-95 – reference: 15217335 - Annu Rev Neurosci. 2004;27:307-40 – reference: 17287809 - Nature. 2007 Feb 8;445(7128):643-7 – reference: 25926776 - Front Syst Neurosci. 2015 Apr 14;9:51 – reference: 19684590 - Nat Neurosci. 2009 Sep;12(9):1180-6 – reference: 24784819 - Nat Protoc. 2014;9(6):1213-28 – reference: 21159963 - J Neurosci. 2010 Dec 15;30(50):16922-37 – reference: 12467598 - Neuron. 2002 Dec 5;36(5):955-68 – reference: 19657038 - J Neurosci. 2009 Aug 5;29(31):9861-74 – reference: 20147549 - J Neurosci. 2010 Feb 10;30(6):2223-34 – reference: 23666180 - Nat Neurosci. 2013 Jun;16(6):665-7 – reference: 17416920 - Ann N Y Acad Sci. 2007 May;1104:192-212 – reference: 17962524 - Science. 2007 Nov 23;318(5854):1309-12 – reference: 21088706 - Front Neuroanat. 2010 Oct 25;4:142 – reference: 24409138 - Front Comput Neurosci. 2014 Jan 09;7:194 – reference: 21367999 - J Neurophysiol. 2011 May;105(5):2501-11 – reference: 12067746 - Neurosci Res. 2002 Jun;43(2):111-7 – reference: 22706268 - Nat Neurosci. 2012 Jun 17;15(7):960-1 – reference: 11784772 - J Neurophysiol. 2002 Jan;87(1):567-88 – reference: 25505406 - Front Comput Neurosci. 2014 Nov 25;8:152 – reference: 24464039 - Nat Neurosci. 2014 Mar;17(3):423-30 – reference: 15528409 - Science. 2004 Dec 10;306(5703):1940-3 – reference: 24462094 - Neuron. 2014 Jan 22;81(2):267-79 – reference: 8989401 - J Neurophysiol. 1995 Oct;74(4):1652-61 – reference: 23785137 - J Neurosci. 2013 Jun 19;33(25):10209-20 – reference: 25731172 - Nature. 2015 Mar 5;519(7541):51-6 – reference: 21472026 - Front Behav Neurosci. 2011 Mar 21;5:15 – reference: 11896175 - J Neurosci. 2002 Mar 15;22(6):2363-73 – reference: 8158226 - J Neurophysiol. 1994 Jan;71(1):17-32 – reference: 10893428 - Physiol Rev. 2000 Jul;80(3):953-78 – reference: 16871163 - Nat Neurosci. 2006 Aug;9(8):987-8 – reference: 15385612 - J Neurosci. 2004 Sep 22;24(38):8289-99 – reference: 19369554 - J Neurosci. 2009 Apr 15;29(15):4858-70 – reference: 22302828 - J Neurosci. 2012 Feb 1;32(5):1898-913 – reference: 25065439 - Nat Neurosci. 2014 Aug;17(8):1022-30 – reference: 18562619 - J Neurosci. 2008 Jun 18;28(25):6483-92 – reference: 12220881 - Trends Neurosci. 2002 Oct;25(10):525-31 – reference: 15591205 - Science. 2004 Dec 10;306(5703):1944-7 – reference: 12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506 – reference: 22681690 - Neuron. 2012 Jun 7;74(5):858-73 – reference: 11544526 - Nature. 2001 Sep 6;413(6851):67-70 – reference: 21144997 - Neuron. 2010 Dec 9;68(5):815-34 – reference: 23428656 - Curr Opin Neurobiol. 2013 Aug;23(4):546-52 – reference: 19944716 - Neurosci Biobehav Rev. 2010 Apr;34(5):701-20 – reference: 24659960 - Front Behav Neurosci. 2014 Mar 12;8:76 – reference: 24598515 - J Neurophysiol. 2014 Jul 1;112(1):120-46 – reference: 22726837 - Neuron. 2012 Jun 21;74(6):1075-86 – reference: 19144967 - Learn Mem. 2009 Jan 07;16(1):86-95 – reference: 20613723 - Nature. 2010 Jul 29;466(7306):622-6 – reference: 24048856 - J Neurosci. 2013 Sep 18;33(38):15272-84 – reference: 25739505 - Nature. 2015 May 7;521(7550):85-9 – reference: 16424448 - J Neurophysiol. 2006 Feb;95(2):567-84 – reference: 15044807 - Science. 2004 Mar 26;303(5666):2040-2 – reference: 20620875 - Neuron. 2010 Jun 24;66(6):896-907 – reference: 21317906 - Nat Neurosci. 2011 Mar;14(3):366-72 – reference: 21753015 - J Neurosci. 2011 Jul 13;31(28):10380-91 – reference: 10933211 - Exp Brain Res. 2000 Jul;133(1):66-70 – reference: 23439125 - Neuron. 2013 Feb 20;77(4):736-49 – reference: 16862149 - Nat Neurosci. 2006 Aug;9(8):1057-63 – reference: 10531461 - J Neurosci. 1999 Nov 1;19(21):9587-603 – reference: 7722648 - J Neurosci. 1995 Apr;15(4):3092-103 – reference: 20947769 - Science. 2010 Oct 15;330(6002):385-90 – reference: 25581560 - Eur J Neurosci. 2015 Mar;41(6):748-59 – reference: 10805698 - J Neurophysiol. 2000 May;83(5):3031-41 – reference: 17676057 - Nat Neurosci. 2007 Sep;10(9):1214-21 – reference: 22658226 - Trends Neurosci. 2012 Aug;35(8):457-67 – reference: 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44 – reference: 22681697 - Neuron. 2012 Jun 7;74(5):947-60 – reference: 8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47 – reference: 21957220 - J Neurophysiol. 2012 Jan;107(1):50-64 |
SSID | ssj0008645 |
Score | 2.218742 |
Snippet | There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value‐based learning: (i) the direct and indirect pathways of... There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2003 |
SubjectTerms | Animals Appetitive Behavior - physiology Avoidance Learning - physiology Basal Ganglia - cytology Basal Ganglia - physiology Cerebral Cortex - cytology Cerebral Cortex - physiology Choice Behavior Computational Neuroscience Computer Simulation corticostriatal direct pathway dopamine Humans indirect pathway Models, Neurological Nerve Net - physiology Neural Pathways - physiology Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Neurons - physiology Predictive Value of Tests Probability reinforcement learning Reward Time Factors |
Title | Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning |
URI | https://api.istex.fr/ark:/67375/WNG-4VJFGSZZ-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12994 https://www.ncbi.nlm.nih.gov/pubmed/26095906 https://www.proquest.com/docview/1705009922 https://pubmed.ncbi.nlm.nih.gov/PMC5034842 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a4wFe-NhghI_JIDTtJVXiOHECT9NYN1WimoBBNSFFdu0U2EirtBWMJ_4B_EZ-Cfc6TVhhSIi3RLmxZPva99i-PgfgMVGGYFQxPjdS-kJanAcLGfq64DpDmJSFGV1wft5PDo5EbxAPVuBpcxem5odoN9xoZLj5mga40tNzg9x-KDsYrDLiAg2jhHjzn734RR2VJk6gmOjU_DRMBgtWIcriaf9cikWXqVk_XwQ0_8yXPI9jXSDqXoe3TRXq_JOTznymO8Mvv7E7_mcdb8C1BUBlO7VH3YQVW67B-k6Ji_OPZ2yLuZRRtxe_Bld2G7m4dfhW60NgJGSVpVTcH1-_Tyo6BqKuZ7aqxtUTpkrWElQYpmqpCjYuGC6C3a46m5HM2AgNDcMIq06xmJGiu8aKkXryJ3U2ZQi0mZpM6IIcTtbOVrn0EnxZyGCMbsFRd-_V7oG_UHvwh4gihS90wilJNCukVZkIdCRirbgeBpHGdaEWxDRmpMlUKNCBEIZqpeLEKi2xsyMT3YbVclzaO8AQdARBkRoVciO4CnRqQqO1jCUXFr95sN30ez5cUKGTIsdp3iyJsOFz1_AePGpNJzX_x0VGW855WgtVnVDCnIzzN_39XLzudfdfHh_nhx48bLwrx-6hsxlV2vF8mhOrEaF1zj3YqL2tLY0TKWAWJB7IJT9sDYgifPlL-f6dowqPg0ikAsvcdm729yrke72-e7j776b34CrCx7hOh7wPq7Nqbh8gRJvpTbjExeGmG5E_AWv7PYg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9lAuCFqg4dMgVPUSlDhOnCAuVdXtsrSrSrSw6iWy187SUrKrdCvojX8Av5Ffwozzoa4oEreNMrG0ebbn2Xl-A_CKLEMwqxifGyl9IS3Og4UMfV1wnSFNysKMDjgfDJP-sRiM4tESvG3PwtT-EN2GG40MN1_TAKcN6Wuj3J6VrzFbZeIWrAjk5STo4-Kwm4fTxJUoJkM1Pw2TUeMrRDqe7tGFbLRCL_b7TVTzb8XkdSbrUlHvLtxpOCTbrkG_B0u2XIP17RLXz1-v2CZzqk63Xb4GqzttRbd1-FmXcMBkxSpLatnfP37NKvpSQ-gwW1XT6g1TJes8JAxTdTUJNi0YrlPdxjebUyWwCQYahklQnWMzE0XHgRWjAsff1NUFQy7M1GxGZ9hwPnWxyilA8KKpVDG5D8e93aOdvt8UZPDHSPSEL3TCSceZFdKqTAQ6ErFWXI-DSOPSTQsyAzPSZCoUiDEyRa1UnFilJaIRmegBLJfT0m4AQ14QBEVqVMiN4CrQqQmN1jKWXFi858FWC0w-btzKqWjGed6uWhDD3GHowcsudFZbdNwUtOnQ7SJU9YU0bTLOPw33cvFx0Nv7cHKSH3rwooU_R3jo84kq7fTyIifjISLUnHvwsO4OXWucfPuyIPFALnSULoBcvBfvlKefnZt3HEQiFdjmlutS__4L-e5g6H48-v_Q57DaPzrYz_ffDd8_htvI9uJavfgElufVpX2KjGqun7mB8wdv-yAV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVgJeuLRAw9UgVPUlq1yceANPVem2LLCqgMKqQorstbOFlmyU7grKE38A38iXMONc6EKREG-JMrFke-w5tsfnADwkyhCMKtoNtBAuFwbnwUz4rsoClSBMSvyELji_GMQ7e7w_jIYL8Li5C1PxQ7QbbjQy7HxNA7zQ2alBbj7kHQxWCT8HSzxGJEGI6OUv7qhubBWKiU_N7frxsKYVojSe9te5YLRE7fr5LKT5Z8LkaSBrI1HvMrxr6lAloBx2ZlPVGX35jd7xPyt5BS7VCJVtVC51FRZMvgwrGzmuzj-esDVmc0btZvwyXNhs9OJW4FslEIGhkJWGcnF_fP1elHQORH3PTFlOykdM5qxlqNBMVloVbJIxXAXbbXU2JZ2xMRpqhiFWHmExY0mXjSUj-eRP8uSYIdJmsijohhzO1tZW2vwSfKl1MMbXYK-39Xpzx63lHtwRwkjuchUHlCWaZMLIhHsq5JGSgRp5ocKFoeJENaaFTqTP0YMQhyopo9hIJbCzQx1eh8V8kptVYIg6PC_raukHmgfSU13ta6VEJAJu8JsD602_p6OaC50kOY7SZk2EDZ_ahnfgQWtaVAQgZxmtWedpLWR5SBlzIkrfDrZT_qbf2361v5_uOnC_8a4Uu4cOZ2RuJrPjlGiNCK4HgQM3Km9rSwuIFTDxYgfEnB-2BsQRPv8lf39gucIjL-RdjmWuWzf7exXSrf7APtz8d9N7cH73SS99_nTw7BZcRCgZVamRt2FxWs7MHYRrU3XXDsufuLk_fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+reward%E2%80%90prediction+error%3A+an+integrated+account+of+cortical+timing+and+basal%E2%80%90ganglia+pathways+for+appetitive+and+aversive+learning&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Morita%2C+Kenji&rft.au=Kawaguchi%2C+Yasuo&rft.date=2015-08-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=42&rft.issue=4&rft.spage=2003&rft.epage=2021&rft_id=info:doi/10.1111%2Fejn.12994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejn_12994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |